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ABSTRACT

Utihising multiple-model descriptionsrequires that
the relationshipsbetween the various models be
well-defined and can be generatedsystematically

from areferencemodel.We presentagenericmodel
harness,for component-basedmodels, that is based

on a set of fundamentalrepresentationalprimitives
that are directly related to a classificationof basic
modelproperties.This supports the customisationof
the harnessfor a particular model and also the
systematicgenerationof multiple models.Examples
of the resulting models and their corresponding
behaviours are presented for a laboratory-scale
systemrig.

1. Introduction

We are,at last, enteringthe meta-modehhingstagein
thedevelopmentof problemsolversfor engineering
applications. More emphasis is beginning to be
given to why we are adopting a given approach
rather than how a particular approach is to be
implemented.This implies a reahisationthat no one
method,andhencea singlemodel, is optimal for all
potential applications.This viewpoint results in a
methodologicalapproach[7] to systemspecification
in which theproblemrequirementsare relatedto the
characteristicsof givensolutionssothat the selection
of the best’ approachfor a given problem can be
deternnined systematically. Further, there is a
growing interest in problem solvers that utihise
multiple models[2, 11, 121 to increasethegenerality
andeffectivenessof theapplicationsystem.In which
casethe characteristicsof theproposedsolution need
explicitly to be defined so that the relationship
between the (multiple) models can be understood
andhencethe coherentuseof thesemodelsbe made.

In this paper, we propose a generahisedmodel
harness, based on the component-connection
approachto modelling, such that various related
models can be produced within the harnessby
varying basicmodel propertiesin a systematicway.
Wepresentthe fundamentalprimitives of a generic

modelling language,the CBL [11, which is clearly
seen as a generahisationof classical numerical
simulation languages. We then define a set of
primitive model propertiesand the operationsthat
vary these properties. This is supported with
comprehensivesimulation results with referenceto
an experimental system-rig, clearly showing the
effect of modifying the model properties and the
utility of using a generic harnessfor developing
multiple modelsof continuousdynamicsystems.

2. A GenerahisedApproachto SystemModelling

Many engineeringapplicationsrequirea model that
explicitly representsthe observable(or measurable)
phenomena (variables) and the sub-systemsor
componentsthat interconnectthem. For instance,
such component modelsare fundamentalto many
model-based diagnostic approaches in that the
importantvariablesare exactlythosethat determine
the replaceablecomponentsand hencethe level of
isolation and/or identification required of the
diagnosticalgorithm. In which case, the modelling
languagesadoptedshould therefore be basedon a
component-basedontology [71, assumingthat a
physical systemcan be decomposedinto a set of
physically identifiablecomponentswhosecombined
behaviourconstitutesthe behaviourof the overall
system. Within which, a componentdescription is
given in terms of the internal mechanismsof the
component suchthat its stimulus-responsebehaviour
can be simulated. Component descriptions have
three basic requirements: 1) to represent various
physical quantities (possibly time-dependent)that
are, in principle, directly observable either by
humansor mechanicalsensors~2) to representthe
physical quantities that form the interconnections
betweenat leasttwo differentcomponents;and3) to
representreiationships(possiblytime-varyingand/or
dynamic) between observable phenomena that
influence or constrain the values of the physical
quantities.

On the basis of these requirementsthe following
primitive concepts are used in such modelling
languages:



• Structural Descriptions describe how a
componentcan be decomposedinto parts (or
sub-components)and how these parts are
interconnected. Hierarchical structures are
hencesupportedsince a part itself may havea
structuralmodel.

• Behavioural Descriptions describe the
relationshipsbetween the physical quantities
relatedto a componentwhich may be used to
simulate the behaviourof a component.This
may includedifferent modesof the behaviourof
a component, e.g., the normal and faulty
behaviours in diagnosis. Representational
Primitives areusedto constructthebehavioural

descriptions:
• Variables represent physical quantities

which are in general time-dependent,but
may be consideredconstantas part of the
modelling assumptions(i.e., for systemsin

equihibrium).
• L)o,nains are the support sets from which

variablestake their valuesat a given time,
e.g., the real numbers,the set of boolean
values,or otherquantityspaces[101.

• Terminal Variablesare the subset of the
variables that can be common to other
components,forming the interconnections
betweencomponents.

• Parameters are empirical (real-valued)
coefficientsbetweenvariables.

• Relationsrepresentthe inter-dependencies
between variables and can have various
representational forms, including

differential equations,algebraicconstraints,
andsetsof if-then rules.

These primitives are based on the fundamental
notion of signalsand system(or equivalently data

and entity relationship) that governs all
representational problems. Signals, here called
variables,representthe objectof the reasoning,i.e.,
the computation dependent part. Whereas the
relationshipsdescribe the system, or subject, that
determines how the computation will be done.
Normally, thisknowledgeis assumedto be constant
during computation.It canhoweverbeupdatedafier
computation as in machine learning or neural
computing,for example.

2.1. CBL: the componentbased language

The potentially wide class of application areasfor
generalisedmodelling techniquesrequire that the
ComponentBasedLanguage(CBL) employedwithin
certain model-basedreasoningtasks should be as
generalas possible.Adoptingthis point of view, we
briefly presenta descriptionof sucha hanguagethat
definesa setof core conceptswhich is, we believe,
commonto all of the to themodelling of continuous
dynamic systemsand allows the general concepts
describedaboveto be extendedby additionalaspects.
Thisallows the languageto beadaptedto a specified
application,if necessary.

The CBL hasbeendevelopedover thepast tenyears
within a numberof major Europeancollaborative
(ESPRIT) projects and used within different
application tasks, including process control [71,
intelligent training [51, and model-baseddiagnosis
[4]. Unfortunately,dueto the limitation on space,we
cannotpresentthedetailedsyntaxof theCBL in this
paper. A basicoutline of thesyntactical stnnctureof
the languageis given in figure 1 and further details
can be found in [11. Nevertheless,we hopethat the
way in which theCBL representssingleandmultiple
n-models of physical systems will become clearer.

(‘SYSTEM <system-name>
(<component-instance-’)
(OJ3SERVABLES(<comp-na,ne-variahle-id>))
(CON~VECTJONS{<:comp-na,ne-variable-id.comp-name-variable-id>)))

(a) Systemmodeldefinition

(COMPONENT-GL4S’S <component-class-name>
<variable_description>
<domain-description>
((MODEL <model-name>

(<hehavioural-descriplion>))))

(b) Componentclassdefinition

(COMPONENT <comnponent-name>
(IS-A <-component-class-name>)

((MODEL <model-name>
(WiTh (<parameter-name,value<J))))

(c) Componentinstancedefinition

Fig. 1. Outline of theCBL Syntax



2.2. Thesystemrig: an illustrativeexample

To illustrate the representationof (multiple) models
of continuous dynamic systems within the
frameworkof the CBL we utihise a laboratory-scale
systemrig asatest-bedshownin figure 2.

This system is a typical representativeof a wide-
rangeclassof industrialprocesssystemsandallows
the behaviourof a heat exchangeand extraction
processto be examinedexperimentally.As reflected
in thescannedimageof this system,it consistsof a
number of physical components,or sub-systems,
includinga tankanda sumpboth of which storepart
of the fluid flowing aroundthesystem,a heaterthat
heatsthe fluid in thetank, a radiator that dissipates

the thermal energyof the fluid passingthrough it.
andapumpthatdrivesthefluid aroundthe rig.

To exhibit the variouspropertiesorbehavioursof the
differentmodelsto be developedwe usea numerical
n-model of the system as the referencemodel. The

following is the third order numericalmodel of the
system composedof both the flow andthe thermal
process loops under normal (correct) working

conditions181:

~ qQ—c~a~f~i~

~,Q+q,ec(1~~~_7) ~_~O(l;’—l)
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Within which, the meaning of the variables and
parametersare listed in table 1. This model can be
representedwithin the CBL as given in figure ~.

where classesof componentsemployed within the
system are defined before the description of the
systemitself.

V = V —2 T

Variable Variable Meaning Parameter Parameter Meaning
q flow rate into tank A cross-sectionareaof tank

q0
flow rateout of tank a cross-sectionareaof tank

outputh heightof fluid in tank

~, totalvolume of fluid dischargecoefficient of tank

outputvolume in tank

~, volume in sunimp e~ heat-densitycoefficient of

fluid in lanktotal heatsupplyb~heater

T temperatureof fluid in tank U radiatorheattransfer

coefficient7’ temperatureof fluid in sump

T temperatureof fluid exiting radiator T ambienttemperature

Table. I. Explanationof VariablesandParameters

(C(M4PONFNT-(‘LAS~ fluid-lank

(JOG hi-i A Ri.1811~~L.f~.t,~ ~ ))

Fig. 2. The SystemRig
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([)OAuzhlN (real) al/-variables,)
(A.IODEL correct

(BE/LI JRAL-COA’S’IRAI.W’IN

((= (denyJ~)(\ (— L f~.) A)),

(=f~~~(*cd a(sqr(*2gJ~)))),

(= v(— v V ))
\ \ total other

(= (deny ~ ) (\ (+ Q0~(he L ec (~~ T~))) (~cc

((‘(T)IPONE7VT-(JA55 large-fluid-store

(LOGAL-VIRIABLESCt~~ , v, 7 , 1~))

(RE/ATEI)-V4RLIRib’S ~otal ‘‘~‘other~

(DOMAIN (real) all-variables)
(MODEL correct

(BET/AVJOUR.IL-CONSTRAINTS’

((f~~~L)
(= ~‘(— V V ‘~‘~
\ \ total other J/~

(= (denyToot.) (\ (* f ( i~T~))v))))))

(C(RLIPOI\/j’U\TT_(’jASS’ healing-element

(LOGIL-VARLIBLES’ T)
(DOMAIN (real) al/-variables,)
(A~I()DELcorrect

(BE/IAVIOURAL-CONSTRAINTh’(= T Q)m

(c’()A/1PoNb;N’r-cJ~4~Ssfluid-driver

(LOCAL-VARIABLES(.t~ ~ ~1’~

(DON/AIi’/ (real) all-variables,)
(MODEL correct

(BE/IAV1O(/RAL-C(.7’/,’~’TRA1N75(( .fout L) (> ~ut ~

~coA1J’o,vi~:NT-Ci,/INs’heat-radiator

(LO(~4L-VARIABLES(1~’,,,

(J)OAIAIIV (real) al/-variables)

(MODELcorrect
(RE/fl l~7ouR~IL-coNcTRALv7:s’

out ( 1’~(\ ( U ( ~ ~‘))( ~ c)))

(= ~ f~)>W)

(S’}lS’l’EitI

(COMJ’ONENTtank
(15-A fluid-tank)
(MODEL correct

(WJTH((A .15.4 x 10~), (c~.0.6), (a .0.17 x

(g.9.8), ~ .4.18x10b))).



(COMPQI’./EIVTsump
(IS-A large-fluid-store)
(MODELcorrect)

(COMPONKW’I’ radiator
(IS-A heal-radiator)
(MOL)EL correct

(COMPONENThealer
(15-A healing-elemenl
(MODEL correct)))

~‘COMPONEI\/Tpump
(IS-A fluid-driver,)
(MoDELcorrect))

(OBS’ERVABLES(heater_ Q~.oja1 , tank f~, tank — v, sump VTotal)

(COATNEC7’IONS((tank j~. radiator f~~)(tank f~ . sump J~),

(sump fout . pump_ f~), (pump_ fout . radiator_ fr’),

(heater Qeotat . tank ~otal)’ (tank ~total sump_ ‘~total)’

Basedon this model the dynamic evolution of the
systemcanbe simulatedusingtraditional numerical
integration techniquesin common with the CBL
description.To easethe comparisonlater, we herein
concentrateon theexhibitionof thecharacteristicsof
the two essentialprocessesrunning throughout the
system-rig. Figure 4 presents the (numerical)
simulation plot of the flow loop and that of the

temperatureloop, describedby the behaviourof the
fluid height in the tank and the temperatureof the
fluid in the tank. Also shown in this figure are,
(again, for the purposeof comparison to be made
later) thesimulation resultsunderan assumedfaulty
condition where the output orifice of the tank is
partially blocked.

height (m)

blockage

no blockage

1000 time(soc)

temperature(C)

40

1000 time(sec)

Fig. 4. NumericallySimulatedBehaviours

3. Model Propertiesand Modelling Dimensions

As indicatedin the introduction,we areinterestedin
using the CBI, as a harnessfrom which different
relatedmodels can be developedin a coherentand
systematic manner by varying the fundamental

model properties.The first model property in the
modelling processis the choice of representational
ontology that governsknowledgerepresentationin
generalandknowledgesource,knowledgelevel, and
knowledgeorientation, in particular. Within this
paper,we adopt the component-basedontology to

(W17’II ((U . 40), (7 . 20), (Cc . 4.18 x lob ))))

(tank_ ~other sump_ v), (sump_~‘othertank_ s’),

(tank_ 7~. radiator_ ~ (tank_ 7~. sump_ 7~).

(sump T~. pump_ Trn)~(pump_ T0~~. radiator_ ?~).~

Fig. 3. NumericalModel of System-Rigin CBL
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systemmodelling, as we are primarily interestedin
model-baseddiagnosis.Anotherimportantchoice for
modelling is the scope of the system model. It
defines the physical boundaryof the part of the
system that is being modelled. For instance, in
system engineering this property specifically
determineswhich variablesaretreatedas exogenous
or endogenous.Having chosen the ontology and
scopefor the model the descriptionof thebehaviour
of the systemor, equivalently, the solution of a
modelexhibits four basic representationalproperties
that we term resolution, precision, accuracy, and
uncertainty. Resolution is a simple, but essential
characteristicof systemmodels,which denotesthe
number of variables used to describe the physical
phenomenaconcerned.Precisionreflectsthe number
of distinctions supportedby the descriptionof the
behaviourand the underlying semanticsof such
distinctions, i.e., the quantity space. Accuracy
determinesthe closenessof the behaviourgenerated
to that of a referencemodel and is clearly an
important,but sometimesnon-essentialpropertyfor

a particular task. Uncertainty describes the
confidenceattachedto a givenstate or behaviour and
canbe used to representthe essentiallysubjective
knowledge common in modelling real application
systems.

As an example to illustrate the distinction of
precision, accuracy, and uncertainty consider the
case of modelling the trivial case of a single
measurement,say of the temperatureof the fluid in
the tank of the systemrig, whosetrue value is 100

°C. Figure 5 then shows different modelsof this
value in terms of varying these properties.Figure
5(a) shows time ‘true’ value, whereasfigure 5(b)
showsa precise,real-valued,but inaccuratemodel.
The accuracy of the model can be restored by
reducingtheprecision~Figure 5(c) showsa (crisp)
interval based model which describesthe value as

lying between 95--105 °C, which of course is
correct,but less precise.In figure5(d) a model of the
same precision is used but it is now inaccurate
through the processof approximation. All of the
abovemodelshaveassumedabsolutecommitmentto
the representation:either the true value lies inside
the description or outside of it. Of course real world
knowledgeis not as certain as this. In which case
fuzzy sets may be used to representthe inherent
uncertainty.Figure 5(e) showsan uncertain,precise
and correct model, using fuzzy numberswhereas
figure 5(f) shows an uncertain,less precisebut still
accuratemodel.

100

(a)

t
Reference model (true value)

~
(b)

100 105

Precise, but Inaccurate model

(c)

95 100 105

Less precise, but accurate model

I ~I 11~
100 105

(d) Same precision, but Inaccurate model

95 100 105
(e) Uncertain, precIse and accurate model

r(”c~)

90 100 110

(1) UncertaIn, less precise and accurate model

I
1~(“0)

-r (“C)

T (“C)

-r (“C)

Fig. 5. Exampleof Model Precision,AccuracyandUncertainty



We hope that the above discussionshows that the
precision, accuracy and uncertainty are indeed
distinct propertiesof modelsof system behaviour,
while the scope and resolution are apparently
anothertwo basicmodelcharacteristics.Varying one
of themresultsin a differentbehaviouraldescription
of the system and hence a different model is
established.Following this theme, we presentour
view on five fundamental modelling ‘dimensions
upon which to develop multiple models of a
continuous dynamic system based on a common
referencerepresentation in the CBL. Application of
thesedimensionsor model operations results in a set
of relatedmodels,basedon thereferencemodel, that
supports a general characterisation of multiple
modelling techniquesin a clear perspective.In the
following, unless otherwise stated, the simulation
results are obtained via the use of our Fuzzy
Qualitative Simulation algorithm [9]. That is, the
numericalmodelspresentedwithin the paper arcall
transformed into their corresponding (fuzzy)
qualitativemodels. Importantly, thesimulationsare
carried out in conjunction with a behavioural
prioritiser [61 that allows the selectionof the most
likely behaviour out of a number of possible
behavioursgeneratedby the simulation algorithm.
Also, within the resultsto be presented,all the lines
between the qualitative states (denoted by solid
circles)aregivenfor illustrativepurposeonly.

(S}’STEAI focused-heating-tank

3,1. Focusingmodels

It hasbeenpointedout that a fundamental property
of amodel is its scope,which denotesthepart of the
physicalworld representedby that model. Changing
a model’s scopeby redefiningthis boundarybetween
model and environment is termed the Focus
operation. This operationis very useful in model-
basedapplications in general and in model-based
diagnosis in particular. In which case, a model
reflecting a particularfocusof attentionmay beused
to first isolate a fault to a sub-systemwithin a plant
beforefurther focusing to a suspectedfaulty area or
an individual componentin thatsub-systemvia focus
of suspicion procedures 14, 111.

Suppose that within a model-based diagnostic
process,partof the systemrig consistingof the tank
with the embeddedheater needs to be further
examined for, say, fault identification. This part of
the systemcan then be modelled with a focused
model and represented by the following CBL
description of the focused ‘system’, with detailed
definition of the componentsunchanged.In this
case,however, the flow of the fluid in and out of the
tank and the corresponding temperatures are treated
as the input and output of the focusedsystem and,
therefore,assumedto beobservables:

(0 ‘OMPC)NEjVTtank
(IS-.4 fluid-lank)
(MOL)EL cnrrect

(WITJI((A .15.4x l0~), (c~.0.6),

(CoMPONENTheater
~I.5’-.4healing-element
(M()[)EL correct),))

(g.9.8), (Cc .4.18x 106))),

(a .0.17x 10~),

(OBSERtABLES((heater Qotai , tank J,,, tank f~ut)

(tank 1~,tank T0~~,tank v)))

(C’)NNJ((“lIONS ((heater Qe0~, . tank — 7~ )2))

Fig. 6. FocusedModel

In order to reveal the actual behaviourunder an
abnormal condition modifications to this model
shouldbe made.For instance,given knowledgeof a
partial blockage in the outputorifice of the tank an

adjustmentof the orifice dischargecoefficient c~to

conditionsaresimulatedand the resultsareprovided
in figure 7. Comparedwith thoseshownin figure 4.

clearly, qualitative simulation outcomedisplays the
sametendencyasthat in numericalsimulation.

anew valueis made.Both thenormal and abnormal
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p-medium

p-small

zero

Fig. 7. SimulationPlot of FocusedModels

3.2. Simplification of models

Different modelsof a uniquesystem(within a given
scope) canbe obtainedfrom the referencemodel by
neglecting some of the internal variables, thereby
affecting the resolution of the model. Such an
operation on models we term Simplification. For
example, the dynamics, or speed of responseof
certainvariablescanbe assumedto be instantaneous
(thoughknownto takesomefinite time) with respect
to the responseof othervariablesandhencereplaced
by their steadystatevalue[31. Thisresultsin a more
granular(lower resolution)model. In which casethe
variable may be eliminated from the simplified
model.

((OItIP(LVJ’NJ-( LAS’S Ilu,d-tanA

For the systemrig, whenonly information about the
dynamics of the flow processis concerned the
thermalvariablescanbeneglectedas indeedthey are
much slower than the dynamicsof the flow loop.
This leadsto asimpler modelwith lower resolution.
In ternms of the CBL representation,the resulting
model is presented in figure 8, Similarly, if

consideringthe thermal processonly, a simplified
second-ordermodel without flow variablescanalso
be developed.As demonstratedin figure 9, the
simplifiedmodelsrepresentingeitherthe flow or the
thermal loop only produce, again, a similar
descriptionof the evolution of the dynamicswithin
eachprocessto that obtainedfrom thecorresponding
numericalmodels.

p-top

P.large

p-medium

p.small

zero

(LOCAL-VARJ.4BLE.S’(j~, fo,~ , , V))

(RELATED-I-ARIABLESO”total ‘~other’~

(l)OAI..i IIY (real) all-variables)
(;‘vf()DEJ, correct

(RE/IAVJOURAL-C()iVS’7RAINTS’

((~(derivf~)(\ (- ~ f~) A)),

(~f~ (~c~a (sqr (* 2 g .1/,))))’
(= v (— “ v \)~n

total other 1

Fig. S Simplified Model
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p-large

p-medium

p-small

zero

ti t2 t3 t4 t5

—-~-- no blockage
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-- .- 4- . .

time ti t2 t3 t4 t5 time

height

S

temperature

p-top

4 p-large

p-medium -

p-small

zero

ti t2 t3 t4 t5

* S

S

S 4

time ti t2 t3 t4 t5 t6 time

Fig. 9. SimulationPlot of Simplified Models



3.3. Abstraction of models

A very basicoperationon models is Abstractionthat

modifies theprecisionof the underlying knowledge
representationof the model in order to make less
precisedescriptionsof the behaviourof the system.
As such, this modellingdimensionhasbeenby far
the most extensively studiedwithin the Qualitative
Reasoningcommunity. An importantand defining
characteristicof Abstraction is that the resulting
model is a ‘faithful’ transformationin that it will
produce a behaviour that is consistent with an
Abstractionoperationappliedto thebehaviourof the
referencemodel [121. In otherwords,anAbstraction
is a lessprecisebut still correctdescription.

Various models of the system-rig with different
levels of abstractioncan be obtained in the CBL
representation by varying the domain definition of
eachclass of componentssuchthat, whenusingthe

traditional three-signspace {+, — , 0} or a spaceof
fuzzy qualitative values {n-top, n-large, n-medium,
n-small, zero, p-small, p-medium,p-large, p-top},

the original domain { real} in the referencemodel is
substituted by one of them. In so doing, as an
example,thecomponentclassdefinitionof heating-
elementsbecomesoneof thetwo givenin figure 10.

We havecarried out a numberof simulationsusing
various (fuzzy) quantityspaces.In particular, figure
11 presents the behaviour generated by the
utilisation of the denserquantity spacegiven above
and thatproducedusinga quantityspaceconsisting
of (fuzzy) qualitative values that collapses the
definition of the underlying semanticsof p-smalland
p-mediumintop-small, and p-largeandp-top intop-
large.

or,

p-top

p-large

p-medium

p.small

zero

(‘COMPONENT-cLASS heating-element
(LOCAL-VARIABLEST.i

(DOMAIN(+, -‘--, 0)all-variables)
(‘MoDEL correct

(BEllAVIOURAL-CONSTRAINTS((= T Q))))),

(COMPONENT-CLASS heating-element
(LOCAL-VARIABLES’T,
(DO)IvIAIN (n-lop, n-large,n-medium,n-small,zero,

p-small,p-medium,p-large,p-top)all-variables)
(MODEL correct

(BEHAVIOURAL-CO)NSTRAINTS((= T Q)))s),

Fig. 10. AbstractedModels

Fig. 11. SimulationPlot of AbstractedModels

3,4. Modifying commitment to models

It is clear that uncertaintycan occur in two main
ways within a model. The first is in the particular
value to ascribe to a given measurement or
observation. In particular, if there is a random
element associated with the measurement,
probability canbe used to estimatethe most likely

‘next’ value based on historical information.
However, if the description of the measurementis
inherently vaguethen measuresbasedon beliefor
fuzzy setscanbe used to capture suchuncertainty.
The second way that uncertainty can occur, in
physical system modelling, is in the relationships
betweenthevariables,i.e. in describingthe physical
operations themselves. In stochastic uncertainty,

height

S

height

p-large

p-small

zero

ti t2 t3 t4 t5

5- —

-- 4’

time ti t2 t3 time



Fig. 12. SimulationPlot of ModelswithDifferentDegreeof Uncertainty

3.5. Approximation of models

The last butnot leastoperationof physicalmodelsis
called Approximation. This modelling dimension
correspondsto the model modifications where a
known functional relationship between internal
variablesof the model is replacedby a simpler but
less accuratefunction.This reductionin information
results in the approximate model not necessarily
maintaining the correctnessof the model.

Importantly, Approximations neednot be restricted
to real-valued quantity spaces. For instance,
functional relationships are represented in Fuzzy
Qualitative Simulation [9] by fuzzy relations.This

(COMPONENT-CL45,5’ fluid-tank

allows for moreor lessaccuratedescriptionsthrough
modifying the relational matrix in much the same
way as linear approximations to polynomial
relationshipson the real-numberline. In particular
for the system-rigwith a given quantityspace.the
quadraticfunction betweenthe fluid height in the
tank and the flow rate out of the tank may be
representedby a set of if-then rules and, further, be
interpretedby a look-up table through the fuzzy
compositionalruleof inferenceasgiven in figure 13.
As such, they are, necessarilyrestricted to the
operatingrangeexperiencedduring the operationor
experimentationwith the process,and thereforeare
fundamentallyapproximations.

(LOCAL-iARIAHI.!’ 5 (J;~ . I,; ~ ~

Bayesiantheory. or variantsthereof,canbe usedto
produce estimatesof ‘output’ based on uncertain
‘inputs’ and uncertain ‘operations’. Similarly, in
‘fuzzy’ situationspossibility theory can be used to
represent uncertain implications. Although
uncertainty plays an important role in Al, the
dimension of commitment is the least exploredin
Qualitative Reasoning. Most existing methods
assume crisp, although abstract and possibly
inaccuratemodels. The ability to refine uncertain
measureswithin application systems would have
important benefits for qualitative modelling
applications.

As an illustration let us examine in a bit more detail
the first situation that uncertaintymay appearwith
thesystem-rig.For simplicity, we concentrateon the
heightof thefluid in thetank. Supposethat thevalue
range of this variable in the referencemodel falls
within [0, 25/ (cm), a qualitatively precise model
with full certaintymay thenbe built upona quantity
spacesuchas (0, (0, 10), 10, (10, 25), 25}. This is,
of course,the sameasthe resultof usingabstraction.
However, if knowledgeof the important‘landmarks’
(i.e., 10 or 25) is known vaguely an uncertain

height

lesscommitted
p-top

.4 5- Sp-large

p-medium

p-small -

zero

quantity space like (zero, p-small, p-medium, p-
large, p-lop} should then be adoptedin order to
avoid potentially important difficulties in the
interpretation between behaviour derived from a
model and the physical observations [10]. This
results in a different model from which the crisp
qualitativequantity spaceis used.In terms of CBL
the representationof an uncertainmodelis similarto
the ono used to describea crisp one, as illustrated
earlier in figure 10. To visualisetheimplication that
different degreesof commitmentto a model has in
the generationof systembehaviour, we show the
resultsattainedby usingtwo relatedquantityspaces
that have the same precision but different
distributionof uncertaintyover individualqualitative
values.As illustratedby the resultingbehaviours,the
modification of commitment degree leads to the
change of the absolute time indices that indicate
when a particular qualitative state appears.More
importantly, perhaps,suchmodification results in a
reductionof qualitativeambiguity. Indeed,although
it is not reflectedwithin the simulation plot (since
we only present the most likely priority behaviour),
the more committed model, with less uncertainty,
generatesless possiblebehaviours.

height
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(DOAIAJN(n-top, n-large, n-medium,n-small, zero,
p—small,p-medium,p—large,p-top) all—variables)

(MODE!.. correct
(BEHAfr7OURAL-CONS’71A1NTh’

((= (derivf~)(\ (- ~ ~ A)),

(= (deny 1~)(\ (+ Q~ (* L cc (~i~,~ (* cc v))),

(~v (— v v )),
total other

((f~~~. f,~) (n-top. n_top) , ( n-large. n-large)

( n—medium . n—medium), ( n—small. n—small)

( zero . zero) , ( p—small - p—small)

( p-medium . p—medium), ( p-large . p—large)

(p-top, p-top)))s)~

Fig. 13. ApproximatedModel

The behaviourof the system-rig,with less accuracy
than the referencemodel, can be generatedusing
suchan approximatedmodel. Actually, the resulting
behaviourhasalreadybeenpresentedin sections3.2,
3.3, and 3.4 for comparison purposes. In addition,
we now presentthe simulated behaviour from a

p-top

p-large

p-medium

p-small

zero

further approximated model that represents a
mediumblockageat theoutputorifice of the tank.As
illustrated in figure 14. such a model leadsto the
behaviour with highest priority representingan
overflow of thefluid in thetank.

Fig. 14. SimulationPlot of ApproximatedModels

4. Conclusion

Although many approachesto system modelling

have been developed within the last decade, in
general,there does not exist a consensuson the
fundamentalmodel properties.The employmentof a
particular modelling technique and the use of
(multiple) models requires coherentdefinitions of

such properties and a clarification of potential
modification dimensions upon which different
models can be built via varying certain model
characteristics.We have proposeda set of five
important properties of system models and their

correspondingoperationsand associatedmodelling
primitives aresummarisedin table2.

We haveshown how thesepropertiesare related to
representationalprimitives and that, by adopting a
genericmodellingharnessbasedon theseprimitives,
variousmodelscan be developedsystematically.We
believe, the resulting operationson modelshavea
clearmeaning.This allows informeddecisionto be
made about choosing the appropriate modelling
methodandhencecorrectmodel(s) for a given class
of problem and, also, a clearer exposition of the
existing application systemsthat are basedon the
-utilisationof multiple models.

height

5’

height

p-top - .5

p-large --

p-medium ---

p-small -- -

- zero -

time ~ t3t4
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i Property Scope Resolution Precision Uncertainty Accuracy
~~Operation Focusing Simplification Abstraction Commitment Approximation

Primitive Connections Variables Domain Domain Relations

Table2. Model Properties.Operations,andPrimitives
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