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ABSTRACT

Utilising multiple-model descriptions requires that
the relationships between the various models be
well-defined and can be generated systematically
from a reference model. We present a generic model
harness, for component-based models, that is based
on a set of fundamental representational primitives
that are directly related to a classification of basic
model properties. This supports the customisation of
the harness for a particular model and also the
systematic generation of multiple models. Examples
of the resulting models and their corresponding
behaviours are presented for a laboratory-scale
system rig.

1. Introduction

We are, at last, entering the meta-modelling stage in
the development of problem solvers for engineering
applications. More emphasis is beginning to be
given to why we are adopting a given approach
rather than how a particular approach is to be
implemented. This implies a realisation that no one
method, and hence a single model, is optimal for all
potential applications. This viewpoint results in a
methodological approach [7] to system specification
in which the problem requirements are related to the
characteristics of given solutions so that the selection
of the 'best’ approach for a given problem can be
determined systematically. Further, there is a
growing interest in problem solvers that utilise
multiple models [2, 11, 12] to increase the generality
and effectiveness of the application system. In which
case the characteristics of the proposed solution need
explicitly to be defined so that the relationship
between the (multiple) models can be understood
and hence the coherent use of these models be made.

In this paper, we propose a generalised model
harness, based on the component-connection
approach to modelling, such that various related
models can be produced within the harness by
varying basic model properties in a systematic way.
We present the fundamental primitives of a generic

modelling language, the CBL [1], which is clearly
seen as a generalisation of classical numerical
simulation languages. We then define a set of
primitive model properties and the operations that
vary these properties. This is supported with
comprehensive simulation results with reference to
an experimental system-rig, clearly showing the
effect of modifying the model properties and the
utility of using a generic harness for developing
multiple models of continuous dynamic systems.

2. A Generalised Approach to System Modelling

Many engincering applications require a model that
explicitly represents the observable (or measurable)
phenomena (variables) and the sub-systems or
components thal interconnect them. For instance,
such component models are fundamental to many
model-based diagnostic approaches in that the
important variables are exactly those that determine
the replaceable components and hence the level of
isolation and/or identification required of the
diagnostic algorithm. In which case, the modelling
languages adopted should therefore be based on a
component-based ontology [7], assuming that a
physical system can be decomposed into a set of
physically identifiable components whose combined
behaviour constitutes the behaviour of the overall
system. Within which, a component description is
given in terms of the internal mechanisms of the
component such that its stimulus-response behaviour
can be simulated. Component descriptions have
three basic requirements: 1) to represent various
physical quantities (possibly time-dependent) that
are, in principle, directly observable either by
humans or mechanical sensors; 2) to represent the
physical quantities that form the intcrconnections
between at least two different components; and 3) to
represent relationships (possibly time-varying and/or
dynamic) between observable phenomena that
influence or constrain the values of the physical
quantities.

On the basis of these requirements the following
primitive concepts are used in such modelling
languages:



®  Structural Descriptions describe how a
component can be decomposed into parts (or
sub-components) and how these parts are
interconnected. Hierarchical structures are
hence supported since a part itself may have a
structural model.
® Behavioural  Descriptions  describe  the
relationships between the physical quantities
related to a component which may be used to
simulate the behaviour of a component. This
may include different modes of the behaviour of
a component, e.g., the normal and faulty
behaviours in diagnosis. Representational
Primitives are used to construct the behavioural
descriptions:
® lariables represent physical quantities
which are in general time-dependent, but
may be considered constant as part of the
modelling assumptions (i.c., for systems in
equilibrium).

® Domains are the support sets from which
variables take their values at a given time,
¢.g., the real numbers, the set of boolean
values, or other quantity spaces [10].

®  Terminal Variables are the subset of the
variables that can be common to other
components, forming the interconnections
between components.

®  Paramelers are cmpirical (real-valued)
coefficients between variables.

®  Relations represent the inter-dependencies
between variables and can have various
representational forms, including
differential equations, algebraic constraints,
and sets of if-then rules.

These primitives are based on the fundamental
notion of signals and system (or equivalently data
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and entity relationship) that governs all
representational problems. Signals, here called
variables, represent the object of the reasoning, ie.,
the computation dependent part. Whereas the
relationships describe the system, or subject, that
determines how the computation will be done.
Normally, this knowledge is assumed to be constant
during computation. It can however be updated after
computation as in machine learning or neural
computing, for example.

2.1. CBL: the component based language

The potentially wide class of application areas for
generalised modelling techniques require that the
Component Based Language (CBL) employed within
certain model-based reasoning tasks should be as
general as possible. Adopting this point of view, we
briefly present a description of such a language that
defines a set of core concepts which is, we believe,
common to all of the to the modelling of continuous
dynamic systems and allows the general concepts
described above to be extended by additional aspects.
This allows the language to be adapted to a specified
application, if necessary.

The CBL has been developed over the past ten years
within a number of major European collaborative
(ESPRIT) projects and used within different
application tasks, including process control [7],
intelligent training [5], and model-based diagnosis
[4]. Unfortunately, due to the limitation on space, we
cannot present the detailed syntax of the CBL in this
paper. A basic outline of the syntactical structure of
the language is given in figure 1 and further details
can be found in [1]. Nevertheless, we hope that the
way in which the CBL represents single and multiple
models of physical systems will become clearer.

<system-name>

{“component-instance >}
(OBSERVABLES {<comp-name-variable-id>})
(CONNECTIONS {<comp-name-variable-id . comp-name-variable-id>}))

(a) System model definition

(COMPONENT-CLASS  <componeni-class-name>
<variable-description>
<domain-description>
{MODEL <model-name>

{<behavioural-description>})})

®) Component class definition

(COMPONENT  <component-name>
(IS-4 <component-class-name=)
{(MODEL <model-name>
(WITH {<parameter-name . value>}))})

©) Component instance definition

Fig. 1. Outline of the CBL Syntax



2.2. The system rig: an illustrative example

To illustrate the representation of (multiple) models
of continwous dynamic systems within the
framework of the CBL we utilise a laboratory-scale
system rig as a test-bed shown in figure 2.

Fig. 2. The System Rig

This system is a typical representative of a wide-
range class of industrial process systems and allows
the behaviour of a heat exchange and extraction
process to be examined experimentally. As reflected
in the scanned image of this system, it consists of a
number of physical components, or sub-systems,
including a tank and a sump both of which store part
of the fluid flowing around the system, a heater that
heats the fluid in the tank, a radiator that dissipates

the thermal energy of the fluid passing through it
and a pump that drives the fluid around the rig.

To exhibit the various propertics or behaviours of the
different models to be developed we use a numerical
model of the system as the reference model. The
following is the third order numerical model of the
system composed of both the flow and the thermal
process loops under normal (correct) working
conditions |8}
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Within which, the meaning of the variables and
parameters are listed in table 1. This model can be
represented within the CBL as given in figure 3,
where classes of components employed within the
system are defined before the description of the
system itself.

Variable Variable Meaning Parameter Parameter Meaning
g4 flow rate into tank A cross-section area of tank
q flow rate out of tank o cross-section area of tank
0
h height of fluid in tank output
v, total volume of fluid ¢, discharge coefficient of tank
v, volume in tank output
v, volume in sump e heat-density coefficient of
0 total heat supply by heater fluid in tank
T temperature of fluid in tank u radiator heat transfer
T, temperaturce of fluid in sump cocfficient
T, temperature of fluid exiting radiator T ambient temperature

Table. 1. Explanation of Variables and Parameters

(COMPONENT-CLASS  fluid-tank
(LOCAL-VARIABLES (f, , fo s fo oV T T )

(RELATED-VARIABLES (v

’
roral > "mhzr ’ Qural ) ’)




(DOMAIN {real} all-variables)
(MODEL correct
(BEHAVIOURAL-CONSTRAINTS

((=deriv f,) (\ (= Jo Jou) D)5
(= fou (5 ¢, a(sqr (2 g f)))),
=V (= Vs Voer )
(=derivT,)) (\(+ Qo Sy & (=T, T, ) (¥ V)
(COMPONENT-CLASS  large-fluid-store
(LOCAL-VARIABLES /f fw, , m,Tom))

(RELATED-VARIABLES (v, |V, )

(DOMAIN {real} all-variables)
(MODEL correct
(BEHAVIOURAL-CONSTRAINTS

(= fou 1)
GV Voar Vo))
(= (deriv T,.)) \ (* f, T, T,)) v
(COMPONENT-CLASS  heating-element
(LOCAL-VARIABLES T)

(DOMAIN {real} all-variables)
(MODEL correct

(BEHAVIOURAL-CONSTRAINTS (= T Q)))))

(COMPONENT-CLASS  fluid-driver

(LOCAL-VARIABLES (f, , f..,T. ,T )

(DOMAIN {real} all-variables)
(MODEL correct

(BEHAVIOURAL-CONSTRAINTS (= f.. f.). (=T, T )))

(COMPONENT-CLASS  heat-radiator

(LOCAL-VARIABLES (T T . f. . f..))

(DOMAIN {real} all-variables)
(MODEL correct
(REHAVIOURAL-CONSTRAINTS

(T, T (\NFu(~T T)*f, )
(=L L))

(SYSTEM system-rig

(COMPONENT tank
(IS-A fluid-tank)
MODEL correct

WITH ((A .15.4x107), (¢, .0.6), (a.0.17x107),
(8.9.8), (¢ .4.18x10°)




(COMPONENT sump
(1S-A large-fluid-store)
(MODEL correct)

(COMPONENT radiator
(IS-A heat-radiator)
(MODEL correct

WITH ((u . 40), (T .20), (& .4.18x 10°))

(COMPONENT heater
(IS-A heating-element
(MODEL correct)))

(COMPONENT pump
(IS-A fluid-driver)
(MODEI. correct))
(OBSERVABLES (heater_ Q. ,tank f ,tank v sump v,

otal > rorat /
(CONNECTIONS ((tank _ f, .radiator f ) (tank f .sump f ).
(sump_f,, .pump_f ) (pump_f .radiator f )
(heater @ . .tank 7 ) (tank v__ .sump v _. ).
(tank v .

(tank T .radiator T ). (tank T
(sump_7, .pump_7,) (pump_T,

.sump_v), (sump_v,_ .tank V)
.sump_T ),

ur

.radiator_ T ))))

ut

Fig. 3. Numerical Model of System-Rig in CBL

Based on this model the dynamic evolution of the temperature loop, described by the behaviour of the
system can be simulated using traditional numerical fluid height in the tank and the temperature of the
integration techniques in common with the CBL fluid in the tank. Also shown in this figure are,
description. To ease the comparison later, we herein (again, for the purpose of comparison to be made
concentrate on the exhibition of the characteristics of later) the simulation results under an assumed faulty
the two essential processes running throughout the condition where the output orifice of the tank is
system-rig. Figure 4 presents the (numerical) partially blocked.

simulation plot of the flow loop and that of the

height (m) temperature(C)
0.1 blockage 30 *
~— no blockage 7
0.0 20
1000 time(sec) 1000 time(sec)

Fig. 4. Numerically Simulated Behaviours

3. Model Properties and Modelling Dimensions model properties. The first model property in the

modelling process is the choice of representational
As indicated in the introduction, we are interested in ontology that governs knowledge representation in
using the CBL. as a harness from which different general and knowledge source, knowledge level, and
related models can be developed in a coherent and knowledge orientation, in particular. Within this

sysiematic manner by varying the fundamental paper, we adopt the component-based ontology to



system modelling, as we are primarily interested in
model-based diagnosis. Another important choice for
modelling is the scope of the system model. It
defines the physical boundary of the part of the
system that is being modelled. For instance, in
system engineering this property specifically
determines which variables are treated as exogenous
or endogenous. Having chosen the ontology and
scope for the model the description of the behaviour
of the system or, equivalently, the solution of a
model exhibits four basic representational properties
that we term resolution, precision, accuracy, and
uncertainty. Resolution is a simple, but essential
characteristic of system models, which denotes the
number of variables used to describe the physical
phenomena concerned. Precision reflects the number
of distinctions supported by the description of the
behaviour and the underlying semantics of such
distinctions, i.e., the quantity space. Accuracy
determines the closeness of the behaviour generated
to that of a reference model and is clearly an
important, but sometimes non-essential property for
a particular task. Unccrtainty dcscribcs  the
confidence attached to a given statc or behaviour and
can be used to represent the essentially subjective
knowledge common in modelling real application

systems.
1 ~

As an example to illustrate the distinction of
precision, accuracy, and uncertainty consider the
case of modelling the trivial case of a single
measurement, say of the temperature of the fluid in
the tank of the system rig, whose true value is /00

°C. Figure 5 then shows different models of this
value in terms of varying these properties. Figure
5(a) shows the 'true' value, whereas [igure 5(b)
shows a precise, real-valued, bul inaccurate model.
The accuracy of the model can be restored by
reducing the precision! Figure 5(c) shows a (crisp)
interval based model which describes the value as

lying between 95--105 °C, which of course is
correct, but less precise. In figure 5(d) a model of the
same precision is used but it is now inaccurate
through the process of approximation. All of the
above models have assumed absolute commitment to
the representation: cither the true value lies inside
the description or outside of it. Of course real world
knowledge is not as certain as this. In which case
fuzzy sets may be used to represent the inherent
uncertainty. Figure 5(c) shows an uncertain, precise
and correct model, using fuzzy numbers whereas
figure 5(f) shows an uncertain, less precise but still
accurate model.

100

) T ey

(a) Reference model (true valueo)

1 -

100

T ) T (°C)

105

(b) Precise, but inaccurate model

1 =

95 100

P T O

106

() Less precise, but accurate modei

T B

100

L T (°C)
105 11

(d) Same precision, but inaccurate model

T A ) T ()
os 100 105

(®) Uncertain, precise and accurate modsel

T “ - T (°c
20 100 110 > Tco

) Uncertain, less precise and accurate model

Fig. 5. Example of Model Precision, Accuracy and Uncertainty



We hope that the above discussion shows that the
precision, accuracy and uncertainty are indeed
distinct properties of models of system behaviour,
while the scope and resolution are apparently
another two basic model characteristics. Varying one
of them results in a different behavioural description
of the system and hence a different model is
cstablished. Following this theme, we present our
view on five fundamental modelling 'dimensions'
upon which to develop multiple models of a
continuous dynamic system based on a common
reference representation in the CBL. Application of
these dimensions or model operations results in a set
of related models, based on the reference model, that
supports a general characterisation of multiple
modelling techniques in a clear perspective. In the
following, unless otherwise stated, the simulation
results are obtained via the use of our Fuzzy
Qualitative Simulation algorithm [9]. That is, the
numerical models presented within the paper are all
transformed into their corresponding (fuzzy)
qualitative models. Importantly, the simulations are
carried out in conjunction with a behavioural
prioritiser [6] that allows the sclection of the most
likely behaviour out of a number of possible
behaviours generated by the simulation algorithm.
Also, within the results to be presented, all the lines
between the qualitative states (denoted by solid
circles) are given for illustrative purpose only.

(SYSTEM
(COMPONENT tank

(15-A fluid-tank)
(MODEL correct

(WITH ((A .15.4 x 10°%),

Jfocused-heating-tank

(g.9.8),

(COMPONENT heater
(I1S-4 heating-element
MODEL correct))

3.1. Focusing models

It has been pointed out that a fundamental property
of a model is its scope, which denotes the part of the
physical world represented by that model. Changing
a model's scope by redefining this boundary between
model and environment is termed the Focus
operation. This operation is very useful in model-
based applications in general and in model-based
diagnosis in particular. In which case, a model
reflecting a particular focus of attention may be used
to first isolate a fault to a sub-system within a plant
before further focusing to a suspected faulty area or
an individual component in that sub-system via focus
of suspicion procedures [4, 11}].

Suppose that within a model-based diagnostic
process, part of the system rig consisting of the tank
with the embedded heater needs to be further
examined for, say, fault identification. This part of
the system can then be modelled with a focused
model and represented by the following CBL
description of the focused 'system’, with detailed
definition of the components unchanged. In this
case, however, the flow of the fluid in and out of the
tank and the corresponding temperatures are treated
as the input and output of the focused system and,
therefore, assumed 1o be observables:

(c, .0.6),
(¢ .4.18x10°))))

(a.0.17x10%),

(OBSERVABLES ((heater Q@ tank _f, , tank f, ),

(tank

(CONNECTIONS ((heater Q)

in>

tank 7, tank v))
.tank T )y

oral toral

Fig. 6. Focused Model

In order to reveal the actual behaviour under an
abnormal condition modifications to this model
should be made. For instance, given knowledge of a
partial blockage in the output orifice of the tank an

adjustment of the orifice discharge coefficient ¢, to
a new value is made. Both the normal and abnormal

conditions are simulated and the results are provided
in figure 7. Compared with those shown in figure 4.
clearly, qualitative simulation outcome displays the
same tendency as that in numerical simulation.



height temperature
-—-- 1o blockage
p-top . . . p-top
p-large . . p-large blockage
p-medium s s ' p-medium e
p-small . p-small 1. P — . . -
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Fig. 7. Simulation Plot of Focused Models

3.2. Simplification of models

Different models of a unique system (within a given
scope) can be obtained from the reference model by
neglecting some of the internal variables, thereby
affecting the resolution of the model. Such an
operation on models we term Simplification. For
example, the dynamics, or speed of response of
certain variables can be assumed to be instantancous
(thongh known to take some finite time) with respect
to the response of other variables and hence replaced
by their steady state value [3]. This results in a more
granular (lower resolution) model. In which case the
variable may be eliminated from the simplified
model.

(COMPONENT-CLASS  fluid-tank

For the system rig, when only information about the
dynamics of the flow process is concerned the
thermal variables can be neglected as indeed they are
much slower than the dynamics of the flow loop.
This leads to a simpler model with lower resolution.
In terms of the CBL representation, the resulting
model is presented in figure & Similarly, if
considering the thermal process only, a simplified
second-order model without flow variables can also
be developed. As demonstrated in figure 9, the
simplified models representing either the flow or the
thermal loop only produce, again, a similar
description of the evolution of the dvnamics within
each process to that obtained from the corresponding
numerical models.

(LOCAL-VARIABLES (., .. s f, s V)

(RELATED-VARIABLES (v

(MODFEL correct

]
rotal "oﬂwr ) )

(DOMAIN {real} all-variahles)

(BEHAVIOURAL-CONSTRAINTS
((=(deriv £,) (\ (~ [, [..) A,
(=f,. Fc, alsqgr(*2g L)),

(: V- vroml vothtr ))))))
Fig. & Simplified Model
height temperature
p-top p-top ’ e ¢
p-large ° e ® p-large i
p-imedium e . p-medium .
psmall | e ’ p-small e 's
zero i \ ] | ] . zero T 1 s T ; )
Hoot2 B ow o me H 2 B8 t4 t5 t6 tme

Fig. 9. Simulation Plot of Simplified Models




3.3. Abstraction of models traditional three-sign space {+,—,0} or a space of

fuzzy qualitative values {n-top, n-large, n-medium,
n-small, zero, p-small, p-medium, p-large, p-fop},
the original domain {real} in the reference model is
substituted by one of them. In so doing, as an
example, the component class definition of heating-
elements becomes one of the two given in figure 10.

A very basic operation on models is 4bstraction that
modifies the precision of the underlying knowledge
representation of the model in order to make less
precise descriptions of the behaviour of the system.
As such, this modelling dimension has been by far
the most extensively studied within the Qualitative

Reasoning community. An important and defining We have carried out a number of simulations using

charactgrisﬁc': 9f At?straction is .that. the resultigg various (fuzzy) quantity spaces. In particular, figure
model is a 'faithful' transformation in that it will 11 presents the behaviour generated by the

produce a behaviour that is consistent with an utilisation of the denser quantity space given above
Abstraction operation applied to the behaviour of Fhe and that produced using a quantity space consisting
reference model {12]. In other words, an Abstraction of (fuzzy) qualitative values that collapses the

is a less precise but still correct description. definition of the underlying semantics of p-small and
p-medium into p-small, and p-large and p-top into p-

Various models of the system-rig with different large.

levels of abstraction can be obtained in the CBL
representation by varying the domain definition of
cach class of components such that, when using the

(COMPONENT-CLASS  heating-element
(LOCAL-VARIABLES T)

(DOMAIN {+,—,0} all-variables)
(MODEL correct

(BEHAVIOURAL-CONSTRAINTS ((= T Q))))),

or,
(COMPONENT-CLASS  heating-element
(LOCAL-VARIABLES T)
(DOMAIN {n-top, n-large, n-medium, n-small, zero,
p-small, p-medium, p-large, p-top} all-variables)
(MODEIL correct
(BEHAVIOURAL-CONSTRAINTS (= T Q))))),
Fig. 10. Abstracted Models
height height
p-top plarge |- ——
p-large | o A
p-medium |- e ;
p-small | . - p-small |- s
2ero ! T \ 1 z time zero 1 1
2 3 t4 15 t1 t2 13 time
Fig. 11. Simulation Plot of Abstracted Models
3.4. Modifying commitment to models 'next' value based on Thistorical information.
. However, if the description of the measurement is
It is clear that uncertainty can occur in two main inherently vague then measures based on belief or
ways within a model. The first is in the particular fuzzy sets can be used to capture such uncertainty.
value to ascribe to a given measurement or The second way that uncertainty can occur, in
observation. In particular, if there is a random physical system modelling, is in the relationships
element associated with the measurement, between the variables, i.e. in describing the physical

probability can be used to estimate the most likely operations themselves. In stochastic uncertainty,



Bayesian theory, or variants thereof, can be used to quantity space like {zero, p-small, p-medium, p-

produce estimates of 'output' based on uncertain large, p-top} should then be adopted in order to
‘inputs' and uncertain ‘operations'. Similarly, in avoid potentially important difficulties in the
'fuzzy' situations possibility theory can be used to interpretation between behaviour derived from a
represent  uncertain  implications.  Although model and the physical observations [10]. This
uncertainty plays an important role in Al the results in a different model from which the crisp
dimension of commitment is the least explored in qualitative quantity space is used. In terms of CBL,
Qualitative Reasoning. Most existing methods the representation of an uncertain model is similar to
assume crisp, although abstract and possibly the ono used to describe a crisp one, as illustrated
inaccurate models. The ability to refine uncertain earlier in figure 10. To visualise the implication that
measures within application systems would have different degrees of commitment to a model has in
important benefits for qualitative modelling the generation of system behaviour, we show the
applications. results attained by using two related quantity spaces
that have the same precision but different
As an illustration let us examine in a bit more detail distribution of uncertainty over individual qualitative
the first situation that uncertainty may appear with values. As illustrated by the resulting behaviours, the
the system-rig. For simplicity, we concentrate on the modification of commitment degree leads to the
height of the fluid in the tank. Suppose that the value -change of the absolute time indices that indicate
range of this variable in the reference model falls when a particular qualitative state appears. More
within /0, 25/ (em), a qualitatively precise model importantly, perhaps, such modification results in a
with full certainty may then be built upon a quantity reduction of qualitative ambiguity. Indeed, although
space such as {0, (0, 10), 10, (10, 25), 25}. This is, it is not reflected within the simulation plot (since
of course, the same as the result of using abstraction. we only present the most likely priority behaviour),
However, if knowledge of the important 'landmarks' the more committed model, with less uncertainty,
(ie, 10 or 25) is known vaguely an unceriain generates less possible behaviours.
height height
p-bop jess committed otop |- more committed
p-large ﬁ ® * p-large 2 * €
p-medium e p-medium s
p-small o« psmall . &
zero T T ! \ \ zero {— [ —
ot t3 w4 5 time 12 13 t4 15 time
Fig. 12. Simulation Plot of Models with Different Degree of Uncertainty
3.5. Approximation of models allows for more or less accurate descriptions through
modifying the relational matrix in much the same
The last but not least operation of physical models is way as linear approximations to polynomial
called Approximation. This modelling dimension relationships on the real-number line. In particular
corresponds to the model modifications where a for the system-rig with a given quantity space. the
known functional relationship between internal quadratic function between the fluid height in the
variables of the model is replaced by a simpler but tank and the flow rate out of the tank may be
less accurate function. This reduction in information represented by a set of if-then rules and, further, be
results in the approximate model not necessarily interpreted by a look-up table through the fuzzy
maintaining the correctness of the model. compositional rule of inference as given in figure 13.
As such, they are, necessarily restricted to the
Importantly, Approximations need not be restricted operating range experienced during the operation or
to real-valued quantity spaces. For instance, experimentation with the process, and thercfore arc
functional relationships are represented in Fuzzy fundamentally approximations.

Qualitative Simulation [9] by fuzzy relations. This

(COMPONENT-CLASS  fluid-tank
(LOCAL-VARIABLES (£, , four s Jor Vo Ty T ))
RELATED-VARIABLES (Vo) sV, > Qs V)




(DOMAIN {n-top, n-large, n-medium, n-small, zero,
p-small, p-medium, p-large, p-top} all-variables)

(MODEL correct

(BEHAVIOURAL-CONSTRAINTS
( (= (deriv £,) \ (= fo fur) A,
(=(derivT, ) (\ (+ Quu (* [ € (=T, T,))) (* & v))),

EV( Vo

((Jou - 1)

Vorer 1)

(n-top . n-top) , ( n-large . n-large)

( n-medium . n-medium) , ( n-small . n-small)
(zero . zero), ( p-small . p-small)

( p-medium . p-medium) , ( p-large . p-large) ,
(p-top . p-top))))))

Fig. 13. Approximated Model

The behaviour of the system-rig, with less accuracy
than the reference model, can be generated using
such an approximated model. Actually, the resulting
behaviour has already been presented in sections 3.2,
3.3, and 3.4 for comparison purposes. In addition,
we now present the simulated behaviour from a

further approximated model that represents a
medium blockage at the output orifice of the tank. As
illustrated in figure 14, such a model leads to the
behaviour with highest priority representing an
overflow of the fluid in the tank.

height height
p-top p-top -
p-large > o S plarge | e
p-medium - p-medium |- ) s
p-small o p-small |- o
zero ! ' ! ! \ . zero i i P
How© B @ i me H 2 B4 time

Fig. 14, Simulation Plot of Approximated Models

4, Conclusion

Although many approaches to system modeiling
have been developed within the last decade, in
general, there does not exist a consensus on the
fundamental model properties. The employment of a
particular modelling technique and the use of
(multiple) models requires coherent definitions of
such properties and a clarification of potential
modification dimensions upon which different
models can be built via varying certain model
characteristics. We have proposed a set of five
important properties of system models and their

corresponding operations and associated modelling
primitives arc summarised in table 2.

We have shown how these properties are related to
representational primitives and that, by adopting a
generic modelling harness based on these primitives,
various models can be developed systematically. We
believe, the resulting operations on models have a
clear meaning. This allows informed decision to be
made about choosing the appropriate modelling
method and hence correct model(s) for a given class
of problem and, also, a clearer exposition of the
existing application systems that are based on the
-utilisation of multiple models.



Property Scope Resolution Precision Uncertainty Accuracy
Operation Focusing Simplification Abstraction Commitment Approximation
Primitive Conncctions Variables Domain Domain Relations

Table 2. Model Properties, Operations, and Primitives
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