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Abstract
We presenta formal theory of model-basedtesting

and an algorithm for test generationbased on it, and
outline how testing is implemented by a diagnostic
engine.The key to making the complex task of test
generation feasible for systems with continuous
domains is the useof model abstraction.Testscan be
generatedusing manageablefinite models and then
mappedbackto adetailed level. We stateconditionsfor
the correctnessof this approachand discuss the
preconditionsandscopeof applicability of the theory.

1 Introduction
Testing meansshifting a system into different statesby
appropriateinputs in order to find observations that
determineits presentbehaviormode. Often,the testsare
designedto confirm a particular behavior, usually the
corrector intendedone, for instancein manufacturing.In
diagnosiswe may, in contrast,want discriminating tests
which effectively and efficiently identify the present
(faulty) behavior. This paperfocuseson confirmingtests.
Thereexist theoriesandalgorithmsfor testgenerationin
particular domains. For digital circuits, for instance,a
solution is feasible because,although the number of
componentscan be large, the individual components
exhibit a simple behavior and, more fundamentally,
becauseof theBooleandomain of the variables((Roth
1980), (Gupta& Welham 1989), (Camuratiet al. 1990)).
For variableswith largedomainsor for physical systems
with continuous behavior, these techniquesare not
applicable. In extending methods from model-based
diagnosis,andexploiting our work on multiple modeling
(Struss 1992), we proposeageneraltheorythat addresses
thegenerationandapplicationof testsin suchdomains.

We first discusstheproblemsaddressedandoutline the
basic ideas of our approachby presenting a simple
(continuousanddynamic)system,a thyristor. In section
3, we presentthebasic theory and an algorithm for test
generation.Testing of constituents in the context of a
wholedevice is shownto be a straightforwardextensionin
section 4. Section 5 outlines briefly how testing is
implementedby a standardmodel-baseddiagnosisengine.
Finally, we discusstheachievements,preconditions,and
restrictionsof theapproach.

Due to spacelimitations, we do not always treat the
most general cases,and we omit proofs. Both can be
found in the long versionof this paper(Struss 1994).

2 The Intuition behind Testing
In the following, we consider a continuous dynamic
system as an illustrative example(ratherthan a serious
application).A thyristor is a semi-conductorwith anode,
A, cathode,C, and gate,G, that operatesas a (directed)
switch: it works in two states,eitherconductingcurrentin
a specified direction with almost zero resistance
(exaggerated by the upper line of the simplified
characteristiccurvein Fig. 2.la), or blocking currentlike
a resistor with almost infinite resistance(the horizontal
line). The transition from the OFF state to ON is
controlled by thegate;if it receivesa pulsethethyristor
“fires”, providedthe voltage drop exceedsa threshold,

~‘Th There is a secondwayto fire a thyristor (which is
normally avoided, but may occur in certain circuits and
situations), namely if the voltage drop exceeds the
breakovervoltage,VB0 asis indicatedby thecharacteristic
in Fig. 2.la. The annotationwith 1 and0 indicatesthe
presenceandabsenceof agatepulse.So, for instance,for
AV > VB0 the thyristor is ON (i>0), no matterwhether
or not it receivesa gatepulseand, hence,the annotation
with 0 and I. In contrast,thesectionVTh <AV <VB0,
i>0 is annotatedwith 1, becauseagatepulseis required
for firing. This representationis basedon theassumption
that switching happensinstantaneously(turn-On time and
spreadingtime 0).

Now supposewe want to testathyristor, i.e. to make
sure that it behavesaccordingto thedescribedcorrect
behavior. This createsseveral problems: voltage and
currentareconsidereredto haveacontinuousdomain.We
canonly gatherafinite setof sampleobservations.But if
they all agreewith thedesiredbehavior,what would then
makeus confidentthatmoreobservationscouldnot reveal
a contradictionto this behavior?It is the fact that thereis
no otherpossiblebehavior(a faulty one) that wouldalso
be consistentwith thepreviousobservations.

What are thepossiblefaults of a thyristor?A thyristor
may bepunctured,i.e. actinglike a wire, or blocking like
an open switch. A third kind of fault may be dueto the
fact that the actual breakovervoltage is less than the



nominal one,with the resultthat the thyristor fires at a
voltagedrop well below VB0 without agatepulse.With
V’Bo we denote the lowest tolerable actual breakover
voltage (or the highest one-which is consideredto
characterizea faulty behavior). Fig. 2.1 shows the
(idealized)characteristicsof thesebehaviorsin comparison
to thecorrectbehavior.
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Figure 2.1 The characteristicsof the behaviorsof a
thyristor: a) correctb) blocking c) punctured

d) with a reducedbreakovervoltage

Consideringthesebehaviors(and,perhaps,looking at
the figures), we may get the following idea for a set of
two tests: the first one with a high voltage drop (i.e.
between V’Bo and VB0) without a gate pulse, and a
secondone with a mediumor high voltage drop (i.e.
betweenVTh andVB0) in conjunctionwith a gatepulse.
If we obtainresultsthatcomply with the correctbehavior
in both cases(zerocurrentfor the former,positivecurrent
for the latter), then thethyristormust be correct, because
theseobservationsrule out all threetypesof faults: the
first onecontradictsthe puncturedbehavioranda reduced
breakovervoltage, while the secondone refutes the
blocking mode.This simple exampleillustrates several
fundamentalideas:
• A particularbehavioris confirmed if all otherscanbe

refutedby somefinite set of observations.
• We obtain suchsets of testsby describingbehaviors

throughrelationsamongvariablesand by determining
theirdistinctions (i.e. set differences).

• We may end up with less teststhan the numberof
behaviorsto be refuted(in the thyristorexampletwo
testsfor an infinite numberof behaviors).

Finally, the thyristor indicates a way to addressthe
complexity problemwhenwe haveto handlelargeor even
infinite domains:
• We may be able to perform testgenerationusing a

(qualitative)abstractionof the behaviordescription
(e.g. with characterizationssuch as “high” and
“medium”).

In the remainder of this paperwe developtheseideasinto
a formal theory and an algorithmic solution for test
generationandtesting.

3 Test Generation for Single
Constituents

First, we presentthe basic definitions and results that
allow the generationof tests,basedon relationalbehavior
models. For all definitions and theorems,we first
paraphrasethem in Englishbeforepresentingthe formal
statement.Throughoutthis section, we considerone
constituent(component,mechanism,process,subsystem
that is) of a systemthat is assumedto be accessible.It
hasa (not necessarilyfinite) set of possible, mutually
exclusivebehaviors,BEHVS, associatedwith it. This set
is assumedto be exhaustive,i.e. the constituenthas
exactly onebehaviorB1E BEHVS. Later, we will discuss
the case of this assumption being wrong. That the
constituenthasoneuniquebehaviorseemsto excludethe
possibility of intermittent behaviors.In (Struss94a) we
showthat this is not thecase.

3.1 The Foundation: Finding Observable
Distinctions

As motivated by the example(and common in model-
based reasoningsystemswhich use constraints for
modeling),wedescribebehaviormodesby thesetof value
tuples that are possible under this behavior, i.e. by a
relationR in somerepresentation.Using theformalismof
(Struss1992) such a representationis determinedby
selectingavector

V2)

of local variablesand their respectivedomains:
DOM(v) DOM(v1) x DOM(v2) x .... x DOM(vk).

Forthe time being, we assumeone fixed representation
(v, DOM(~)),becausethis simplifies the notation and is
not an essentialrestriction (the generalcaseis treatedin
(Struss1994)). The behaviormodelsof the thyristor can
be describedin the representation

(YTh, DOM(vTh)) = ((AV,gate,i),Rx{0,l}xR).

The relationsRcDOM(ITh) from Fig. 2.1 modelingthe
thyristor behaviorsareshownin Table 3.1.The inevitable
inaccuracy in this model is reflected by the (small)
numbers~ and ~.By SIT we denotethesetof situations
physically possible under the present mode of a
constituent.We define a behaviormodel M(R) as the
claim that the relation R covers all value tuples~ may
take in a situationseSIT:

Definition 3.1 (Behavior Model)
M(R):

Vy~aDOM(yJ(3’saSIT v(s)=~)~ v0~R/

I v(s) = vo meansthat v hasthevalue vo in situations

rather than equality.Because.i can takedifferent values

R ok Th Bo



Table 3.1 Relations modeling thyristor behaviors,Each is
the unionof the lines of the table;e.g. the first line of Rok is

to be read (~‘~o,0] x [-6, 01 x (0,1).

If M(R~)is a model of thebehaviorB~EBEHVS, i.e.
B~=~M(R~),

and if anobservation(obs) contradictsthebehaviormodel,
i.e. lies outsideR~,then we can safely rule out the
behavior:

obs ~ -~M(R~)I— obs ~ —,B~.
While this providesa way for refuting behaviors,we are
interestedin confirming aparticularbehavior.
As suggestedby theexample,testsaredefinedas setsof

value tuplessuchthat observingat leastonetuple in each
set in reality allows us to concludethe presenceof a
behaviormode. More formally: a set of value tuples
V= {yfl containingat leastonetuple outof eachT~,

VT~~v~eV~
is calleda hitting set of (T~}.The fact that all the values
in V are actually taken in some real situationis denoted
by the sentence(Pv:

~Pv VIm V asicSIT v(si)=vi

Definition 3.2 (Test, Confirming Test Set)
A testis a non-emptyrelation on somerepresentational
space.’ T~ç DOM(v).
A set (T~Jof tests is a confirming test set for a
behaviorB0EBEHVSif for all hitting sets V of(Ti),
observationofV entailsB0:

c°v l~B0.
What assuredus that the tests in section 2 actually
confirm the thyristor’s correctbehavior?The fact that no
other behavior modewould survive observationsfrom

bothtests.In general,fo eachbehaviorBj, different from
the one to be confirmed, theremust exist a testT1 lying
completely outsidea modelingrelation of B3. In other
words,the complementof Ti,

T~c:= DOM(v)\Ti,
specifiesa model of B~.This is statedby Lemma3.1.

Lemma 3.1
(Ti) is a confirmingtestsetfor B0 if

VB1EBEHVSB1 �B0 ~ (3T~ B3 ~ M(Tj~’)).

A test is only useful if it is observable.So, in the
following, let OBS(v)cVARS(v) bethe set of observable
variablesin the representation(v,DOM(v)) with the
respectiveprojection(seeFig.3.4)

Pobs : DOM(v) —* DOM(vobs).

Definition 3.3 (Observable Test Set)
A testset lTd is observable,if all T~are observable,
i.e. T1 ~ DOM(y~bs).

Lemma 3.1 indicatesthe way to generateconfirming
(observable)test setsfor somebehaviorB0eBEHVS: we
haveto find (observable)distinctionsbetweenB0 andeach
other mode Bm, and confirm thesedistinctions to be
present.We cangraspthem asthesetdifferences

D1 :=pobs(RO)\pobs(Rm)
of appropriatemodelingrelationsof thesebehaviors.The
numberof differencesD~canbe smaller than thenumber
of behaviorsto be refuted,becausethemodelingrelations
chosenmaycoverseveralbehaviors(For the thyristor, for
instance,RRED..BO coversan infinite setof behaviors).

We even do not have to enumerateall behaviorsin
BEHVS, andwedo not haveto beable to describethem
in detail; we only haveto be surethat the set of relations
{R~}covers all possiblebehaviors.Table3.2 andFig. 3.1
showtheset differencesobtainedfor the thyristorexample
from the relations in Table 3.1 (in our case
OBS(vTh)=VARS(vTh) holds, i.e. all variablesare
consideredobservable).

Table 3.2 The differencesbetweenthe relation
characterizingthe correctbehaviorandthe fault mode

relations

AV gate i

Rok
(_oo, 01 (0,1 } [—6, 0]

(0, V11] {0,l) [0, 6]
(VTh, VB0I (0) [0, 6]
(VTh, VBol (I } l(res~A)*AV,(res+A)*AVi
(VB0, 00) (0,1 } [(res~A)*AV,(res+A)*iXV]

Rblock
(~00, 0] {0,l) [-6, 01
(0,00) {0,l} [0,61

Rpunct
(~00, 00) (0,1) [(res~A)*AV,(res+A)*AV]

RRed..Bo
(_00, 0] (0,1 } [—6, 0]
(0, VTh] (0,1 } [0, 6]
(VTh, V’Bo] (0) [0, 61
(VTh, 00) (0,1 } [(res~A)*AV,(res+A)*~V]

AV gate i

Dblock

(VTh, ~Bol (I) [(res~A)*AV,(res+A)*AV]

(VB0, oo) (0,1 } [(res~A)*AV,(res+A)*AV]

Dpunet
(-00,0] (0,11 [0,6]

(O,VTh) {0,l} [0,6]
(VTh, VB0I (0) [0, 6]

DRed..Bo
(V’Bo, VB0] (0) [0, 6]

(from different domains, but also in the samedomain),
(Struss 1992)usesaspecialpredicateVal.
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Figure 3.1 The relationsof Table 3.1 and the testsof
Table 3.3

Any observabletestrefutingM(Rm) andcontainingonly
tuples consistentwith M(R0) must be a subsetof Di.
Although wecould use (Di) as a testset,we may further
reducethe numberof testsby replacing several D1 by a
commonsubset.We call a setof sets, (Tk}, ahitting set
of setsof {D~}, if it containsa non-emptysubsetof each
Di:

VD~~Tk ø�Tk ~ D~.

The following lemma is thebasis for thegenerationof
observableconfirming testsets:

Lemma 3.2
Let

(R~I R~cDOM(yJJ
coverall behaviors(exceptB0):

VB
1

a BEHVS\[BoJ 3 R~ B
1

~ M(R~),

andR
0

cDOM(v)coverB
0

:
B

0
~ M(Ro).

If (TkJ is a hitting setofsetsof
(D

1
) ‘ = lPohs(R0)\pobs(Ri)),

then it is an observableconfirmingtestsetfor B
0

.

The thyristor test set is an illustration of Lemma 3.2.
SinceDRedBoc: Dpunct, thesetof relations

{Dblock, DRed..Bo)

is a hitting setof setsof
{Dblock, Dpunct,DRedBo}

andforms an observableconfirming test setfor thecorrect
behavior.

We also obtain a neccessaryconditionfor the existence
of a confirming testset: if B0 is actuallya restrictionof
some other behavior Bj, it is impossible to find a
confirmingtest setfor B0. An examplefor this caseis an
intermittentfault which is characterizedby a relationthat
coversthecorrect behaviorentirely (becausesometimes

the constituent behavescorrectly). This is intuitive,
becauseeven if we observeonly valuetuples consistent
with thecorrectbehavior,so far, we canneverbesurethat
the future will not reveal contradictory observations
(wheneverthe fault occurs).Note that even if Ro\R~is
non-empty, D~may be empty,becausethedistinction is
not observablein thegivenrepresentation.

Now we have determinedtest sets that confirm a
particularbehavior,if theyare observed.However, wedo
not want to wait for them to drop from heaven,but we
would like to enforcethemby an appropriatecausalinput
to the system.

3.2 Finding Deterministic Test Inputs
Weassumethat thecausalvariablesareobservable,which
is reasonable,becauseit meanswe know what we are
doing to the constituent.So, let

CAUSE(v) ~ OBS(v) ~ VARS(v)
be thesetof susceptiblevariablesand

Pcause: DOM(v) _~ DOM(vcause)

P’cause: DOM(lobs) _3 DOM(Vcause)
the respectiveprojectionsinto thesetof input tuples(see
Fig. 3.4). Whatwe would like to haveis testinputs, i.e.
subsetsof DOM(vcause),thatare guaranteedto determine
whether or not a particular behavioris present.More
precisely:if we input one tuple out of eachset to the
constituent, the resulting value tuples of y..
deterministicallyeitherconfirmor refutethebehavior:

Definition 3.4 (Test Input, Deterministic
Input Set)

A test input is a non-emptyrelation on DOM(y~ause).’
TIid.~OM(y~ause).

A setof test inputs (T1~Jis deterministicftr a behavior
B0aBEHVSif for all sets

V= (v~)çDOM(v)

whosesetof causesfpcause(vj))forms a hitting setof
IT’d, observationof V is inconsistentwith Bo or it
entails it.’

co~I— —7B0 or ~Pv I— B0
How can we generate deterministic input sets?
Unfortunately,for a testset (Ti) confirming B0, the input
set {Pcause(Ti)} is not necessarilydeterministic.

To illustratethis, we considertherelationRnegwhich
is asubsetof Rok\Rpunct(for AV <0) andwhich could
be usedto rule out the fault “punctured”of the thyristor
(Fig. 3.2). Pcauseprojectsto (AV, gate): -

Pcause(Rneg)= (oo,-~)x{0}.

However, if we chooseatest input with (AV, gate)out of
(-00,-C) X (0), avalueof i might be observedsuchthat the

vectorlies in the intersectionof Rok andRpunct (indicated
by “x” in Fig. 3.2) and, hence, is consistent with the
correct behavior but also fails to refute the fault. As a
cure, we haveto excludePcause(Rok(Th Rpunct), i.e. to
reducethe testinput for Av to (~00, c’).

0,1



Figure 3.2 Pcause(Rok’~Rpunct)and
Pcause(Rok ~ Rpunct)overlap

More generally, in order to construct input sets
deterministic for some B0nBEHVS and leading to
observabletest sets,for eachB1�B0wehaveto determine
and eliminate thoseinputs that possiblyleadto thesame
observationsunderboth B0 andB1. This is the set

P’cause(Pobs(RO)~ Pobs(Ri)).
Hence,if wedefine

DI~:= Pcause(R0)\ P’cause(Pobs(RO)(‘~Pobs(Ri)),
then we are guaranteedthat any input chosenfrom D11
causesan observablevalue tuple that is inconsistentwith
M(R1) or with M(R0) (possibly with both of them). This
is the ideaunderlyingthe proofof Theorem3.3.

Theorem 3.3
Under the conditions of Lemma3.2, each setof test
inputs (TIk) that is a hitting set ofsetsof

fDI~J= pcause(R0)\ P‘cause(Pobs(RO)‘‘) Pobs(Ri))

is deterministicfor B
0

and

(TkI.’ = (PobsU?0)~P‘ ~cause(T1k))

is an observableconfirming testsetfor B
0

.

In practice,onewantsto avoid testinputsthat areextreme
andpossiblycause(or makeworse)damage.For instance,
we do not want to test with AV > VB0, becausethe
thyristorcould be destroyed.In this case,DI~may haveto
be further reduced by intersecting it with a set of
admissibleinputs:

DIiadm:RadmC~DIi.
For the thyristor,we choose

RTh adm (Woo, VB0] X {0,1} X JR

andreducethetestswehaveobtained,so far, to
= RTh adm ~ Dblock.

T2 = RTh adm~ DRed..Bo DRedBo
which yields the test set we proposedin section 2 (see
Table 3.3 andFig. 3.1).

Although in this example,thenon-admissiblerangeis
relatedto thecorrectbehavior,in generalRadmcanalso be
chosenreflectingpotential faults: for instance,if a pipe
potentially has a crack, one might want to avoid high
pressureeventhoughthis causesno problemsfor a proper
pipe.

Lemma 3.2 does not preventus from constructing
observableteststhat are not real, but ratheran artificial
result of the choice of model relations: a non-empty
Dm=pobs(Ro)\pobs(Ri)may be due to choosingR0 much
larger than what is covered by the behavior, and D1
potentiallycontainsonly physically impossiblevalues.In
contrast, simply becausenothing prevents us from
causinginputsandobservingobservables,we have

Theorem 3.4
The existenceof a deterministic input setensuresthe
existenceof an observableand controllable testsetin
reality.

3.3 A Test Generation Algorithm

Here, weoutlinea family of algorithms(Fig. 3.3) based
on Theorem3.3, and discussit briefly.

Figure 3.3 An algorithm for generating(preferably
deterministic)test inputs TI andtest setsT confirming B0

The algorithm iterates over the model relations of
behaviorsBi�B() and attemptsto createan admissible
input set that discriminates between R0 and R~
deterministicallyand in an observableway accordingto
the abovedefinition of DI~(step I). If this is impossible
(2), it determinesin (3) the admissible input set
correspondingto an observabletest (obtainedas Dm
accordingto Lemma3.2)— which may fail, as well.

If thereexist input setsfrom previousiterations with a
non-emptyintersectionwith the new DI, one of them is
selectedandreplacedby this intersection(4). Thus, we

1

TI-SET = NIL

FOR R in MODEL-RELATIONS DO
(I) DI = RadmrThpcausc(RO)\ P’cause(PobsU~0)(ThPobs(1~))
(2) IF DI =0

THEN “No (adm.) deterministictestinput against”R

(3) DI = Radmflpcause(pobs(RO)\ Pobs(R))
IF Dl =0

THEN “No (adm.)observabletestagainst”R
GOTO .NEXT

SelectTIE TI-SET with DI n TI ~O
IF TI exists

(4) THENTI = TI n DI
(5) ELSEAppendDI to TI-SET

NEXT
ENDFOR
FOR TI IN TI-SET

(6) Collect Pobs(R0)fl P’~cause(TI)in T-SET

gate i
Ti

(VTh, VB0] {l} [(res~A)*AV,(res+A)*AV]

T2
(V’Bo, VB0] {0} [0, 6]

Table 3.3 Set of two testsconfirming the correct thyristor



accountfor thebehavior(s)correspondingto the currentR
without increasingthe numberof tests.Otherwise, the
currentDI is addedas a new testinput in itself (5). In step
6, an observabletest set is constructedfrom the final
input set accordingto Theorem3.3. It is confirming B0,
if all R~could beaccountedfor. The algorithmgenerates
thetwo testsfor the thyristormentionedin section 2. The
selectionof TI for step 4 opensspacefor variationsand
heuristics.For instance,simply the first onewith a non-
empty intersectioncould be chosen,or the onewith the
largest intersection.The latter strategyalways requires
intersectionwith all existing input setsandassessmentof
the result, but may getcloser to the optimum w.r.t. the
numberof testsgenerated.This algorithmproducesthe
test setfor the thyristor that is shownin Table 3.3.

If thereexistsa singletest, the algorithmgeneratesit in
linear time. In other cases,it is quadratic w.r.t. the
numberof model relations(which may be less than the
numberof behaviors)and may fail to generatea testsetof
minimal cardinality. Its result, includingwhetheror not
an existing minimal cardinality test set is found, can
dependon the orderingof the model relations.In many
domains,it will payoff to usemoreelaborateandcostly
algorithmsin orderto reducethe numberof testsrequired.

3.4 Making TestGeneration Feasiblethrough
Model Abstraction

Forphysicalsystemswith largeor continuousdomains
and complex behavior,the questionariseswhether it is
practically feasible to computeprojections,intersections
andsetdifferences.The answeris that we do not haveto.
As in section2, we want to maketestgenerationfor such
domainsfeasibleby performingit with modelrelations in
an abstract representation(with small domains). We
formalizethis procedureandshowits correctness.The key
ideais simple: If M(R~)is a modelof Bm, i.e.

B1 ~ M(R~),
andif R’m is anotherrelation (preferablyin a finite domain)
that specifiesaweakermodel, i.e.

M(R1) ~ M(R’m),
then refutingM(R’1) sufficesto ruleout B1. Hence,we can
build testsets from suchfinite relationsRi The task is
then to find conditionsanda systematicway to generate
modelsthat are guaranteedto be weaker(in the logical
sensespecified above) by switching to a different
representation(v’,DOM’(v’)) with finite domains.

In (Struss 1992), a large class of transformations
betweenrepresentationsis characterizedby conditionsthat
areboth ratherweakandnatural:

Definition 3.5 (Representational Trans-
formation)

A surjectivemapping
~: DOM(v) -~ DOM’(v.~)

is a representationaltransformation(if

(SeeagainFig. 3.4). This simply meansthat, in the same
situation, variablesin thedifferent representationshave
values related by ‘t. Under such representational
transformations,modelsarepreserved(Struss 1992):

Lemma 3.5

If
~:DOM(y) -~ DOM’(y’)

is arepresentationaltransformation,then

M(R) =~ M(r(’R)) and M(R’) .=~

This means, if we map a model relation from some
original representationinto a different one under a
representationaltransformationthe image will specify a
weakermodel,as required.In particular,we canchoosea
representationwith a finite domain,construct(observable)
confirming testsets and(deterministic)input sets in this
representationfrom thetransformedmodel relationsand
map thembackto theoriginal detailedrepresentation.

‘1:

‘pobs/cause

> DOM(Vb/)
~

Figure 3.4 Diagram of projectionsand representational
transformations

The following theoremstatesthat this actually yields
(deterministic)input setsand (observable)confirmingtest
sets in the original representation,thus justifying the
intuitive approach:

Theorem 3.6
Let

robs: DOM(y~,~s)~ DOM’(v’obs)
a,ii

~causeDOM(y~~~~e)~ DOM’(v’~.~use)
be representationaltran.vfonnations.
If (T’~)is an observableconfirming test setfor B0
then so is

IT1) .‘= 1~’obs(T’1)1.

If(Tl~)is a deterministicinput setfor B0, thenso is
(Tl~):=(T‘cause(TI’i)).

In particular,qualitativedomain abstraction(mappingreal
numbersto a set of landmarksand the intervals between
them)is a representationalrepresentation.In the thyristor
example,the landmarkscan be chosenas0, VTh, V Bo’
VB0 for AV, and0, -6, and6 for i. Ignoring the purely
theoreticalproblem of separatelytreating the landmark
points,this introducesquantityspacesQ~consistingof

DOM(v)

ohs/cause

DOM(v )obs/cause

.>DOM’(v’)

v(s)=

v’(s) =

v’(s) = ~‘I’MO)

~ 3y~e~*v~) v(s) =



for AV andQ~with

- := (~00, -6)
0 := [-6, 6]
+ :=(6,oo)

for i, respectively.Mapping real valuesfor AV and i to
the intervals of Q~and Q3, respectively, they are
containedin, definesthequalitativeabstraction

tq:IRX{0,l}XIR —~ Q5x(0,l}xQ3
by

tq((AV0, gates,i0)) = (qvo, gateo,qmo).
where

AV0e qv~EQ~andi0eqiocQ~
Underthe reasonableassumptionthat the holding current
is greaterthan theleakagecurrent:

(res - A) * VTh > 6,
the representationaltransformation then inducesmodel
relations

Ri : tq(Ri) ~ Q~X (0,1 } X Q3
from the relationsR~in the real-valued representation.
They aredisplayedin Table 3.4. (Sincethe two columns
on the left for (AV, gate) representthe causes,onecan
immediately see the non-deterinismof the model
M(R’RedBo) for (medium,0) which is dueto the fact that
it coversa wholeclassof behaviorswith actual breakover
voltageanywherebetweenVTh andV’Bo).

The tablealso showsthe respectiveset differencesD’~in
thenew representationwhich can easily be determined
from acomparisonof theR’ok column with respectiveR’~
column.The admissiblerangeexcludestoohigh from Q~:

R’adm= Q~\ {toohigh} x (0,1) x Q~,
and thealgorithm of section 3.3 intersectsD’RedBo and

D’punctyielding theobservableconfirming testset
T’1= {medium,high} x (1) x

{(high, 0, 0)}
andthedeterministicinput set

{medium,high}x{l},

((high,0)} }.

Mapping back the teststo the real domain under
producesatest set

{‘CqA(T’l), tq~(T’2)}

((VTh,VB0]x {l}x(6,o~),

(V’Bo, VB0] x {0} x [-6, 6])

which coversthe test set (T1, T2) shownin Table 3.3 Of
course,theabstractrepresentationmay be too coarseto
allow for the separationof particularbehaviors.We can
usethis as a criterion for selectingrepresentationsand
behavior models, for instance,as the highest level that
still allows to distinguishonebehaviorfrom the others.

Onemay be amazedthatTheorem3.6 requirestobsand
tcauseto be representationaltransformations,andtempted
to find a weaker sufficient condition. This is briefly
discussedin the following subsectionwhich is not
essentialand may be skipped.

3.5 Preservation of ObservableDistinctions
Recall theprocedurefor testgeneration:its basis is to

identify observable distinctions of behavior model
relations.The observabilityof this distinction must not

be destroyedunder back-transformationby ~rA.In other

words,if ~‘ I and.12canbe observedas beingdistinct:
P’obs(I’1) � P’obs(I’2),

then theobservablepartsof their pre-irnagest~(.1’~)must
also be disjoint. This seemsto be the weakestsufficent
condition we can impose, and it is captured by the
following definition (which we formulatefor the causes,
as well, becausethis is neededfor theconstruction of
deterministicinput setsfor analogousreasons).

Table 3.4The tuplesconstitutingthe relationsR’~andthe setdifferencesD’~in the qualitative
representation.The valuesfor the current i, in the respectivecolumn complementsthe pair for

(AV,gate) in each line.

neg
small
medium
high
too high

:= (~00, 0]
:= (0, VTh]
:= (VTh, V’Bo]
:= (V’Bo, VB0]

:= (VB0, oo)

AV gate
R’ok R’RedBo R’block R’punct D’Red.13o D’block D’punct

neg 0 0 0 0 - 0
neg 1 0 0 0 - 0
small 0 0 0 0 + 0
small 1 0 0 0 + 0
medium 0 0 0,1 0 + 0
medium I + + 0 + +

high 0 0 + 0 + 0 0
high I + + 0 + +

toohigh 0 + + 0 + +

toohiCh I + + 0 + +



Definition 3.6 (Faithful w.r.t. observable
(causal) distinctions)

A representationaltransformation
t’ DOM(v) —~ DOM’(v’)

is calledfaithful w. r. t. observabledistinctionsif

Vv’
1

,v’
2

a DOM’(v’) (P’obs(.1’l) �P’obs(V’2)

~ Pobs(~
1

(l’/))~ Pobs(T
1

(1’2))= 0).
it is calledfaithful w.r.t. causal distinctions if the
analogouspropertyholds,tbrPcause’

The property that the restriction of ‘r to observables
(causes, respectively) is also a representational
transformation,which is used as a condition in the
previoussubsection,will becalleddecomposability:

Definition 3.7 (Decomposable)
if there existsa mapping

‘robs DOM(y~bs)—~ DOM’(v’0b5)
such that

P’obs ° T = Tobs ° Pobs’
then T is calledobs-decomposable.
it is calledcause-decomposableif thereexistsa

Tcause.‘ DOM(Vcauve)~ DOM’(V’cause)

with

P cause°~= Tcause°Pcause
(Here “o” is the compositionof transformations).Note
that we only require that ‘tobs (‘tcause , resp.) be a
mapping.This is becauseany suchmapping“inherits” the
propertiesof a representationaltransformationfrom the
threeinvolved mappings:

Lemma 3.7
If there exists Tobs (Tcause) with the properties of

Definition 3.7, then ‘tobs (Tcause)is a representational
transformation.

The following lemma statesthat this conceptis only
seeminglystrongerthan theoneof Definition 3.6.

Lemma 3.8
A representationaltransformation

r: DOM(l) -~ DOM’(v’)
is friithful w.r.t. observable(causal)distinctions if T is
abs-decomposable(cause-decomposable).

Remark 3.9
Teausebeinga representationaltransformationis also a
necessary condition for the validity of
backtransformationof testsin thefollowing sense.’If it
is violated, we can construct behaviors and model
relations suchthat there existobservabletestsetswith
deterministic input setsfor them in the abstract
representation,but nonein thestrongerone. However,
theseconstructedbehaviorsmaybe irrelevantto anyreal
physicalsystem,and the back-transformationof tests
mayworkfor thepractical casesneverthele.v.v.

4 Testing Constituents in an Aggregate
Quite often the constituentto be testedis embeddedin a
particularcontext,namely an environmentconsistingof
other interacting constituents,and only the entire
aggregatecanbe controlledandobserved.Our approachis
generalenoughto coverthis case.

We regardtheaggregateas the constituentto be tested,
andobservablesand causesarerelated to this aggregate
constituent.The goal is to confirm one behaviorof this
aggregateconstituentby refuting the otherbehaviorsout
of a certainset. This set is given as the behaviorsof the
aggregateresulting from the different behaviorsof the
constituentembeddedin it.

More formally, let a constituentC0 be in aparticular
context CTX consistingof constituentsC1 ,...Cn with
their respectivevariables.Theaggregateis

Caggo{Cj}U{Co},
andrepresentationsfor describingthe aggregate’sbehavior
can be obtained from the representationsfor single
constituentsby taking the union of the local variables.
For the sake of simplicity, we assumethat all local
relations are already specified in the aggregate
representation.Issues that arise if the assumptionis
droppedarediscussedin (Struss1994).
If M(R~)are behaviormodelsfor constituentsC,j, then

R~~~=~Rj
specifiesa correspondingbehaviormodel for CTX={C~}.
if M(Rm0) are modelsof the behaviorsBm of C0, then the

relations
Rm=RCTXCIRi0

specifymodelsof thebehaviorsof
CaggCTXU(C0)

producedby thebehaviorsof C0 in CTX. In applying the
test generation algorithm to these relations, we can
constructobservabletestsanddeterministictest inputsfor
thebehaviorof Cagg that involvestheparticularbehavior
B0 ofC0.

Corollary 4.1
Let

Cagg = CTX U I C0) = ifIj) 1.) (C0),

RCTX= ()R1,
I

wheretheM(R
1

)are behaviormodelsof the C
1

.

Let M(R10) be modelsof the behaviormode.vB1 of C0.
Define

Ragg := RCTX~ R1o~
Di: = Pobs(Raggo)\ Pobs (Raggi)

DI~.‘ = Pcause(Raggi ) \

P’cause(Pobs(Raggo)~~Pobs(Raggi))
if M(RCTX)holds, then eachhitting set of sets(Tk) qf
{D~)is an observableconfirnungtestsetfor B

0
of C

0
,

and each hitting set of sets (Tik) of (DIi) i.c a
deterministicinput setjbr B

0
.



Since Pcauseand Pobs project to input sets and
observablesof Cagg~the tests are observableand
controllable through Cagg. Of course,this providesa
confirming testsetfor B0 of C0, only if M(RCTX)holds.
This corresponds,for instance, to the widespread
assumptionthat while testinga constituent,its context
works properly.However,wecanalsogeneratetestsbased
on the assumptionthat thecontextmay containparticular
faults, which, for instance,havebeenhypothesizedby a
diagnosisstep.

By constructing all behavior modes of Cagg
corresspondingto a singlefault of anyconstituent,wecan
generatea test set confirming the correctnessof all
constituentsunderthis assumption.

5 Realization of Testing
Now we have to implement a test system, i.e. a

program that takes the test inputs and the observed
responsesof thedeviceandreturnswhethertherespective
behaviorhasbeenconfirmedor refuted.For this purpose,
we do not haveto invent a new machinerybut canapply
an existing diagnostic system. Tests confirming a
behavior are based on refuting models of all other
behaviors.Refuting behaviorsthrough observationsis
also theprincipleof consistency-baseddiagnosis(deKleer,
Mackworth & Reiter 1990),andwecanimplementtesting
throughone of theconsistency-baseddiagnosisengines,
GDE~(Struss& DressIer1989).

In moredetail,GDE+ representsa constituentby theset
of behaviormodelsM(R~).If a completetestset {Tk) is
observed,i.e. cv holdsfor somehitting set V of (Tk},
then wehave

VTk ~seSIT ~IkETk I(s)1k.

By construction,thereexistsfor eachDi:=Ro\R1 at least
oneTk ç D1 . Hence, it follows

Vi�0 ~se SIT ~XiE D~ v(S)=vi,

which meansGDE+ refutesall behaviorsexceptB0:

Vi�0 ~sESIT ~Xi~ R1 I(S)1i

=~Vi�0 -~M(Ri) ~ Vi�0 -~Bi.

Then GDE~confirms B0 by applying its “physical
negation”rule (statingthecompletenessof theenumerated
behaviors)

~BlA1B2A...A1Bn~ B0.
Of course,observationof a valueoutsideR0 lets GDE+
refute B0. In summary,GDE+ makes the inferences
requiredfor theapplicationof a deterministicinput set.

Notethat, for thepurposeof testing,we canreplacethe
constituent’s model set (M(R~)}by the complementsof
thetests,{M(Tck)}, thus potentially reducingthenumber
and, perhaps,the complexity of modelsto be checked.
(Again, thedetailsarediscussedin (Struss94)).

6 Discussion, Future and Related Work

6.1 What Is Achieved?
Wemaketheratherstrongclaim that thetheorypresented
here solvestheproblem of testing physical systems.It
solvesit “in principle”, in thesamesenseas model-based
diagnosisis a solution to theproblemof fault localization
and identification. By this, we want to emphasizetwo
aspects:

• On the positive side, it is a general theory covering
largeclassesof devices,for which thereexistsno formal
theory or systematicsolution of the testing problem
today. All othersolutions to testgenerationare only
variations of this principled approach,perhaps by
applying heuristics,making certain assumptions,or
exploiting particularitiesof the domain (For instance,
we can show that the D-algorithm (Roth 1980) is a
specializationof our algorithm for digital circuit
testing).

• On the problem side, it is a solution only “in
principle”, becauseit shiftsthe burdento the hardtask
of modeling. The application to a particulardomain
may requiresubstantialwork andevenbe impossible
with the knowledgeavailable aboutthe domain.The
crucial issuesare in modeling and complexity. We
briefly mentionsomeof them.

6.2 Application Prerequisites and Problems
KnowledgeaboutthePossibleFaults: Particularlypeople
from model-baseddiagnosismay be scepticalaboutthe
necessityof (completesets of) fault models for this
approach.However,knowledge(or assumptions)aboutthe
possiblefaults is not a drawbackof our system,but is
inherent to the task of testing. In constrastto diagnosis,
where we may be content with refutationof (correct)
behaviors, testing aims at confirming a particular
behavior, usually the correctone. This is impossible,
unless we make certain assumptionsabout the other
possible behaviors, although this may happen
unconsciouslyand implicitly. (This is why we aretalking
abouttestingof physical systems,and, for instance,not
about testing systemdesignsor software.) We may
deliberatelyexcludesomefaultsfrom thesetof behaviors,
or, more precisely,choosemodel relationsthat do not
cover somefault behaviors,e.g.becausewe assumethey
are unlikely or irrelevant. For instance,we ignored
thermaltriggering of thethyristor andbasedthemodelon
theassumptionthat theturn-ON time andspreadingtime
arenegligible. Our approachhastheadvantageto make
such assumptionsexplicit (and the multiple modeling
framework allows us to treat them as defeasible
hypotheses,see(Struss1992)).

Models of BehaviorModes.’We haveto be able to turn
our knowledgeaboutthecorrect andthe faulty behavior
into models, relational models in our case. The



representationthroughrelationsis quitenaturalfor broad
classesof physicalsystems.Note that themodelsarenot
requiredto bedeterministic(rememberthemodel of the
classof thyristor faults called“ReducedVB0”). A major
problem is finding appropriatemodelsof deviceswith
complex dynamic behavior.The thyristor, a dynamic
device, illustratesthat it canbe possibleto do the testing
undertemporalabstraction.

AbstractandQualitativeModels: Model abstractionis the
key for the feasibility of the algorithm. But themodels
have to be strong enough to distinguish the behavior
modeof interestfrom theotherones.
Structural Complexity:If aggregatesare getting large,
testingof constituentsin its context may turn infeasible
becauseof thenumberof fault modelsof the aggregate,
(eventhough run time of severaldaysfor testgeneration
may beinsignificant comparedto savings in testingtime
and costs).We do not expect the algorithm to handle
systemswith thousandsof componentsin aflat structure.
But first experimentssuggestthat it canproduceresultsin
a reasonableamount of time for deviceswhich are
complex enoughto prohibit the completenessand/or
optimality of manuallygeneratedtests.Currently,we are
exploring binary-decision diagrams as a compact
representationof the model relations. The core of the
approachis finite constraintsatisfaction.It will benefit
from exploiting the specificityof thetask,e.g. thedevice
structure.

6.3 Perspectives
In this paper,we consideredonly testingwith the goal of
confirming oneparticular mode. Obviously, thereis a
generalizationpossiblethatcreatestestsfor identifying the
presentmode.Testing for discriminationis relevantto
diagnosis(Meerwijk & Preist 1992) and fits very well
with a consistency-baseddiagnosisengine. It can be
combinedwith probabilitiesof modes(andof tuplesfor
non-deterministicmodels) and forms a generalizationof
theprobe selectionstrategyusedin (de Kleer & Williams
1987).Additionally, this approachprovidesa basisfor a
formal assessmentof the (discriminating) power of
representations.Testingin the contextof diagnosisis the
subject of another paper. Another direction is the
exploitationof the strategyfor designpurposes:it allows
to analyzewhetheror not andwhere it is (or would be)
possibleto detect,discriminate,and identify faults of
constituentsin a designedsystem,thussupportingdesign
for testabilityand sensorplacement(see(Chien, Doyle &
Rouquette1991),(Scarl19991)).

In summary,we presentedan approachto model-based
test generationand testing that makes a large class of
systemsamenableto principledmethodsandwell-founded
algorithms. The exploitation of model abstractionis
crucial to making the task practically feasible for an
interestingclassof technicalsystems,notwithstandingthe
fact that the general task of hypothesistesting is np-
complete (Mcllraith 1993). Finally, the basis of the
theory is quitesimple,simpleenoughto be powerful.
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