Model Abstraction for Testing of Physical Systems

Peter Struss
Technical University of Munich
Computer Science Dept.
Orleansstr. 34
D-81667 Munich
Germany
struss @informatik.tu-muenchen.de

Abstract

We present a formal theory of model-based testing
and an algorithm for test generation based on it, and
outline how testing is implemented by a diagnostic
engine. The key to making the complex task of test
generation feasible for systems with continuous
domains is the use of model abstraction. Tests can be
generated using manageable finite models and then
mapped back to a detailed level. We state conditions for
the correctness of this approach and discuss the
preconditions and scope of applicability of the theory.

1 Introduction

Testing means shifting a system into different states by
appropriate inputs in order to find observations that
determine its present behavior mode. Often, the tests are
designed to confirm a particular behavior, usually the
correct or intended one, for instance in manufacturing. In
diagnosis we may, in contrast, want discriminating tests
which effectively and efficiently identify the present
(faulty) behavior. This paper focuses on confirming tests.
There exist theories and algorithms for test generation in
particular domains. For digital circuits, for instance, a
solution is feasible because, although the number of
components can be large, the individual components
exhibit a simple behavior and, more fundamentally,
because of the Boolean domain of the variables ((Roth
1980), (Gupta & Welham 1989), (Camurati et al. 1990)).
For variables with large domains or for physical systems
with continuous behavior, these techniques are not
applicable. In extending methods from model-based
diagnosis, and exploiting our work on multiple modeling
(Struss 1992), we propose a general theory that addresses
the generation and application of tests in such domains.

We first discuss the problems addressed and outline the
basic ideas of our approach by presenting a simple
(continuous and dynamic) system, a thyristor. In section
3, we present the basic theory and an algorithm for test
generation. Testing of constituents in the context of a
whole device is shown to be a straightforward extension in
section 4. Section 5 outlines briefly how testing is
implemented by a standard model-based diagnosis engine.
Finally, we discuss the achievements, preconditions, and
restrictions of the approach.

Due to space limitations, we do not always treat the
most general cases, and we omit proofs. Both can be
found in the long version of this paper (Struss 1994).

2 The Intuition behind Testing

In the following, we consider a continuous dynamic
system as an illustrative example (rather than a serious
application). A thyristor is a semi-conductor with anode,
A, cathode, C, and gate, G, that operates as a (directed)
switch: it works in two states, either conducting current in
a specified direction with almost zero resistance
(exaggerated by the upper line of the simplified
characteristic curve in Fig. 2.1a), or blocking current like
a resistor with almost infinite resistance (the horizontal
line). The transition from the OFF state to ON is
controlled by the gate; if it receives a pulse the thyristor
"fires", provided the voltage drop exceeds a threshold,
Vrp. There is a second way to fire a thyristor (which is
normally avoided, but may occur in certain circuits and
situations), namely if the voltage drop exceeds the
breakover voltage, Vg as is indicated by the characteristic
in Fig. 2.1a. The annotation with 1 and O indicates the
presence and absence of a gate pulse. So, for instance, for
AV > Vg, the thyristor is ON (i>0), no matter whether
or not it receives a gate pulse and, hence, the annotation
with 0 and 1. In contrast, the section Vp < AV < Vg,
i>0 is annotated with 1, because a gate pulse is required
for firing. This representation is based on the assumption
that switching happens instantaneously (turn-On time and
spreading time 0).

Now suppose we want to test a thyristor, i.e. to make
sure that it behaves according to the described correct
behavior. This creates several problems: voltage and
current are considerered to have a continuous domain. We
can only gather a finite set of sample observations. But if
they all agree with the desired behavior, what would then
make us confident that more observations could not reveal
a contradiction to this behavior? It is the fact that there is
no other possible behavior (a faulty one) that would also
be consistent with the previous observations.

What are the possible faults of a thyristor? A thyristor
may be punctured, i.e. acting like a wire, or blocking like
an open switch. A third kind of fault may be due to the
fact that the actual breakover voltage is less than the

nominal one, with the result that the thyristor fires at a
voltage drop well below Vg, without a gate pulse. With
V'o we denote the lowest tolerable actual breakover
voltage (or the highest one which is considered to
characterize a faulty behavior). Fig. 2.1 shows the
(idealized) characteristics of these behaviors in comparison
to the correct behavior.

1
0,1
AY .£.§’O’l\ . Av
ok VTh VBO Rblock VTh VBO
d) iA 0.1
v 0,1 0 Av
R 1
Red-Bo VThVBO

Figure 2.1 The characteristics of the behaviors of a
thyristor: a) correct b) blocking c) punctured
d) with a reduced breakover voltage

Considering these behaviors (and, perhaps, looking at
the figures), we may get the following idea for a set of
two tests: the first one with a high voltage drop (i.e.
between V'g, and Vpgg) without a gate pulse, and a
second one with a medium or high voltage drop (i.e.
between VTp and VBe) in conjunction with a gate pulse.
If we obtain results that comply with the correct behavior
in both cases (zero current for the former, positive current
for the latter), then the thyristor must be correct, because
these observations rule out all three types of faults: the
first one contradicts the punctured behavior and a reduced
breakover voltage, while the second one refutes the
blocking mode. This simple example illustrates several
fundamental ideas :

* A particular behavior is confirmed if all others can be
refuted by some finite set of observations.

* We obtain such sets of tests by describing behaviors
through relations among variables and by determining
their distinctions (i.e. set differences).

* We may end up with less tests than the number of
behaviors to be refuted (in the thyristor example two
tests for an infinite number of behaviors).

Finally, the thyristor indicates a way to address the
complexity problem when we have to handle large or even
infinite domains:

* We may be able to perform test generation using a
(qualitative) abstraction of the behavior description
(e.g. with characterizations such as "high" and
"medium").

In the remainder of this paper we develop these ideas into
a formal theory and an algorithmic solution for test
generation and testing.

3 Test Generation for Single
Constituents

First, we present the basic definitions and results that
allow the generation of tests, based on relational behavior
models. For all definitions and theorems, we first
paraphrase them in English before presenting the formal
statement. Throughout this section, we consider one
constituent (component, mechanism, process, subsystem
that is) of a system that is assumed to be accessible. It
has a (not necessarily finite) set of possible, mutually
exclusive behaviors, BEHVS, associated with it. This set
is assumed to be exhaustive, i.e. the constituent has
exactly one behavior Bi€ BEHVS. Later, we will discuss
the case of this assumption being wrong. That the
constituent has one unique behavior seems to exclude the
possibility of intermittent behaviors. In (Struss 94a) we
show that this is not the case.

3.1 The Foundation: Finding Observable
Distinctions

As motivated by the example (and common in model-
based reasoning systems which use constraints for
modeling), we describe behavior modes by the set of value
tuples that are possible under this behavior, i.e. by a
relation R in some representation. Using the formalism of
(Struss 1992) such a representation is determined by
selecting a vector

v =(vi,...,v2)
of local variables and their respective domains:

DOM(y) = DOM(v1) X DOM(v2) X X DOM(vy).
For the time being, we assume one fixed representation
(v, DOM(¥)), because this simplifies the notation and is
not an essential restriction (the general case is treated in
(Struss 1994)). The behavior models of the thyristor can
be described in the representation

(¥Th, DOM(yTh)) = ((AV,gate,i), RX{0,1}xR).

The relations RcDOM(yTy) from Fig. 2.1 modeling the
thyristor behaviors are shown in Table 3.1. The inevitable
inaccuracy in this model is reflected by the (small)
numbers & and A.By SIT we denote the set of situations
physically possible under the present mode of a
constituent. We define a behavior model M(R) as the
claim that the relation R covers all value tuples v may
take in a situation se SIT:

Definition 3.1 (Behavior Model)
M(R) : &
Vvpe DOM(v) (Fs€SIT v(s)=vy) = vgeR !

1 v(s) = vo means that v has the value yq in situation s
rather than equality. Because y can take different values

AV gate i
Rok

(o2, 0] {0,1} -8, 0]

(0, VTl {01} [0, 8]

(V1h, VBol {0} [0, §]

(VTh, Vol {1} [(res-A)*AV,(res+A)*AV]

(VBo» =) {0,1} [(res-A)*AV,(res+A)*AV]
Rplock

(-oo’ O] {031 } [‘8’ 0]

(0,) {0,1} [0, 8]
Rpunct

(~e0, o0) {0,1} [(res-A)*AV,(res+A)*AV]
RRed-Bo

(noo’ 0] {0’1 } [‘8’ 0]

(0, Vrnl {0,1} [0, 8]
(V1h: ViBol {0} [0, 8]
(VTh, =) {0,1} [(res-A)Y*AV,(res+A)*AV]

Table 3.1 Relations modeling thyristor behaviors. Each is
the union of the lines of the table; e.g. the first line of Ryy 1
to be read (-0, 0] x [-8, 0] x {0,1}.

If M(R;) is a model of the behavior Bje BEHVS, i.e.

B; = M(Rj),
and if an observation (obs) contradicts the behavior model,
i.e. lies outside Rj, then we can safely rule out the
behavior:

obs = —M(R;) I— obs = —B;.
While this provides a way for refuting behaviors, we are
interested in confirming a particular behavior.

As suggested by the example, tests are defined as sets of
value tuples such that observing at least one tuple in each
set in reality allows us to conclude the presence of a
behavior mode. More formally: a set of value tuples
V= {yj} containing at least one tuple out of each Tj,

VTidyvieV vjeT;,
is called a hitting set of {T;}. The fact that all the values
in V are actually taken in some real situation is denoted
by the sentence @y:

Qv = Vyje V Isie SIT v(sj)=y;

Definition 3.2 (Test, Confirming Test Set)
A test is a non-empty relation on some representational
space. T; < DOM(v).
A set {T;} of tests is a confirming test set for a
behavior Boe BEHVS iff for all hitting sets V of {T;},
observation of V entails By:
¢y |— Bg.
What assured us that the tests in section 2 actually
confirm the thyristor’s correct behavior? The fact that no
other behavior mode would survive observations from

(from different domains, but also in the same domain),
(Struss 1992) uses a special predicate Val .

both tests. In general, fo each behavior Bj, different from
the one to be confirmed, there must exist a test Tj lying
completely outside a modeling relation of B;. In other
words, the complement of Tj,

T;® := DOM(V)\T;,
specifies a model of Bj. This is stated by Lemma 3.1.

Lemma 3.1
[T} is a confirming test set for By iff
VBje BEHVS B; # By = (3T; Bj = M(T/")).

A test is only useful if it is observable. So, in the
following, let OBS(v)cVARS(v) be the set of observable
variables in the representation (v,DOM(v)) with the
respective projection (see Fig. 3.4)

Pobs : DOM(¥) — DOM(vopys).

Definition 3.3 (Observable Test Set)

A test set {T,} is observable, if all T; are observable,
i.e. T, c DOM(vops)-

Lemma 3.1 indicates the way to generate confirming
(observable) test sets for some behavior Boe BEHVS: we
have to find (observable) distinctions between Bg and each
other mode Bj, and confirm these distinctions to be
present. We can grasp them as the set differences
Di:=pobs(RoNpobs(Ri)
of appropriate modeling relations of these behaviors. The
number of differences Dj can be smaller than the number
of behaviors to be refuted, because the modeling relations
chosen may cover several behaviors (For the thyristor, for
instance, RRep.po covers an infinite set of behaviors).
We even do not have to enumerate all behaviors in
BEHVS, and we do not have to be able to describe them
in detail; we only have to be sure that the set of relations
{Rj} covers all possible behaviors. Table 3.2 and Fig. 3.1
show the set differences obtained for the thyristor example
from the relations in Table 3.1 (in our case
OBS(¥1h)=VARS(yTh) holds, i.e. all variables are
considered observable).

AV gate i
Dplock
(V1h, VBol {1} [(res-AY*AV (res+A)Y*AV]
(VBo» =) {01} [(res-A)*AV (res+A)*AV]
Dpunct
(—oo’ OJ {0’1 } [0’ 6]
(0, Vnl {0,1} [0, 8]
(VrTh, VBol {0} [0, 3]
DRed-Bo

(V'Bo» VBol {0} [0, 8]

Table 3.2 The differences between the relation
characterizing the correct behavior and the fault mode
relations

iA 01 iA
1
0,1
N aN AR
Ditock| Vi Vi, Dpunct| Vi, Vi,

D h T —

Red-Bo| VBoBo ¥ T VBo

Figure 3.1 The relations of Table 3.1 and the tests of
Table 3.3

Any observable test refuting M(R;) and containing only
tuples consistent with M(Rg) must be a subset of D;j.
Although we could use {Dj;} as a test set, we may further
reduce the number of tests by replacing several Dj by a
common subset. We call a set of sets, {Tx}, a hitting set
of sets of {D;}, if it contains a non-empty subset of each
Dj:

VD; dTx DTk D;.
The following lemma is the basis for the generation of
observable confirming test sets:

Lemma 3.2
Let
{R;| RicDOM(v)}
cover all behaviors (except Bp):
VBj e BEHVS\[Bgp] I R; Bj = M(R)),
and RgcDOM(yv) cover By
Bp = M(Ryp).
If {Ty} is a hitting set of sets of
{Di} := {pobs(RoNPobs(Ri)/,
then it is an observable confirming test set for By.

The thyristor test set is an illustration of Lemma 3.2.
Since DRed-Bo < Dpunct, the set of relations

{Dblock> DRed-Bo}
is a hitting set of sets of

{Dblock Dpunct» DRed-Bo}
and forms an observable confirming test set for the correct
behavior.

We also obtain a neccessary condition for the existence
of a confirming test set: if Bg is actually a restriction of
some other behavior Bj, it is impossible to find a
confirming test set for Bg. An example for this case is an
intermittent fault which is characterized by a relation that
covers the correct behavior entirely (because sometimes

the constituent behaves correctly). This is intuitive,
because even if we observe only value tuples consistent
with the correct behavior, so far, we can never be sure that
the future will not reveal contradictory observations
(whenever the fault occurs). Note that even if Ro\R; is
non-empty, D; may be empty, because the distinction is
not observable in the given representation.

Now we have determined test sets that confirm a
particular behavior, if they are observed. However, we do
not want to wait for them to drop from heaven, but we
would like to enforce them by an appropriate causal input
to the system.

3.2 Finding Deterministic Test Inputs

We assume that the causal variables are observable, which
is reasonable, because it means we know what we are
doing to the constituent. So, let

CAUSE(v) ¢ OBS(v) € VARS(v)
be the set of susceptible variables and

Pcause : POM(v) = DOM(vcayse)

P'cause : DOM(¥obs) = DOM(¥Ycause)
the respective projections into the set of input tuples (see
Fig. 3.4). What we would like to have is test inputs, i.e.
subsets of DOM(vcause), that are guaranteed to determine
whether or not a particular behavior is present. More
precisely: if we input one tuple out of each set to the
constituent, the resulting value tuples of v
deterministically either confirm or refute the behavior:

Definition 3.4 (Test Input, Deterministic
Input Set)
A test input is a non-empty relation on DOM(Yoquse):
TI,cDOM(vequse)-
A set of test inputs {TI;} is deterministic for a behavior
Boe BEHVS iff for all sets
V={v;/cDOM(y)

whose set of causes [poause(vi)) forms a hitting set of

{TI;}, observation of V is inconsistent with By or it

entails it:

@, |— —=Bg or ¢, |l— By
How can we generate deterministic input sets?
Unfortunately, for a test set {Tj} confirming By, the input
set {pcause(Ti)} 1s not necessarily deterministic.

To illustrate this, we consider the relation Rpeg which
is a subset of Rok\Rpunct (for AV < 0) and which could
be used to rule out the fault "punctured" of the thyristor
(Fig. 3.2). pcause projects to (AV, gate):

Pcause(Rneg) = (-o0,-€)x{0}.

However, if we choose a test input with (AV, gate) out of
(-00,-€) X {0}, a value of i might be observed such that the
vector lies in the intersection of Ryk and Rpunct (indicated
by "x" in Fig. 3.2) and, hence, is consistent with the
correct behavior but also fails to refute the fault. As a
cure, we have to exclude pcause(Rok M Rpunct), 1-e. to
reduce the test input for Av to (-0, €.

Figure 3.2 pcapse(Rok'\Rpunct) and
Pcause (Rok M Rpunct) overlap

More generally, in order to construct input sets
deterministic for some Bge BEHVS and leading to
observable test sets, for each Bj#Bg we have to determine
and eliminate those inputs that possibly lead to the same
observations under both B and B;. This is the set
P'cause(Pobs(R0) M pobs(Ri))-
Hence, if we define
DI; = pcause(R0) \ P'cause(Pobs(R0) M pobs(Ri)),
then we are guaranteed that any input chosen from DI
causes an observable value tuple that is inconsistent with
M(R;) or with M(Rg) (possibly with both of them). This
is the idea underlying the proof of Theorem 3.3.

Theorem 3.3
Under the conditions of Lemma 3.2, each set of test
inputs {TIy] that is a hitting set of sets of
{DIi} = pcause(R0) \ P'cause(Pobs(R0) M Pobs(Ri))
is deterministic for By and
[T):={Pobs(ROINP" cause(TI)}
is an observable confirming test set for By.

In practice, one wants to avoid test inputs that are extreme
and possibly cause (or make worse) damage. For instance,
we do not want to test with AV > Vpg,. because the
thyristor could be destroyed. In this case, DI may have to
be further reduced by intersecting it with a set of
admissible inputs:

DLiadm:=RadmMPI;.
For the thyristor, we choose

RTh adm = (-e2, vBol ¥ {0,1} xR
and reduce the tests we have obtained, so far, to

T1 = RTh adm M Dblock-

T2 = RTh adm N DRed-Bo= DRed-Bo
which yields the test set we proposed in section 2 (see
Table 3.3 and Fig. 3.1).

AV gate i
Ty
(VTh: VBol {1} [(res-A)*AV (res+A)*AV]

T2

(V'Bo, VBol {0} 10,38

Table 3.3 Set of two tests confirming the correct thyristor

Although in this example, the non-admissible range is
related to the correct behavior, in general Ryqm can also be
chosen reflecting potential faults: for instance, if a pipe
potentially has a crack, one might want to avoid high
pressure even though this causes no problems for a proper
pipe.

Lemma 3.2 does not prevent us from constructing
observable tests that are not real, but rather an artificial
result of the choice of model relations: a non-empty
Di=pobs(Ro)\pobs(Rj) may be due to choosing Rg much
larger than what is covered by the behavior, and Dj
potentially contains only physically impossible values. In
contrast, simply because nothing prevents us from
causing inputs and observing observables, we have

Theorem 3.4

The existence of a deterministic input set ensures the
existence of an observable and controllable test set in
reality.

3.3 A Test Generation Algorithm

Here, we outline a family of algorithms (Fig. 3.3) based
on Theorem 3.3, and discuss it briefly.

TI-SET = NIL
FOR R in MODEL-RELATIONS DO
(1) DI = RadmMPeause(Ro) \ P'eause(Pobs(Ro)MPobs(R))
@)IFDI=@Q
THEN "No (adm.) deterministic test input against” R
(3) DI=RagmMPcause(Pobs(Ro) \ Pobs(R))
IFDI=©&
THEN "No (adm.) observable test against” R
GOTO NEXT
Select Tle TI-SET with DI n TI 2
IF TI exists
4y THENTI=TINDI
(5) ELSE Append DI to TI-SET
NEXT
END FOR
FOR TI IN TI-SET
(6) Collect pops(Rg) M p™! cause(TD) in T-SET

Figure 3.3 An algorithm for generating (preferably
deterministic) test inputs TI and test sets T confirming B

The algorithim iterates over the model relations of
behaviors B;#Bg and attempts to create an admissible
input set that discriminates between R and R;
deterministically and in an observable way according to
the above definition of DI; (step 1). If this is impossible
(2), it determines in (3) the admissible input set
corresponding to an observable test (obtained as Dj
according to Lemma 3.2) — which may fail, as well.

If there exist input sets from previous iterations with a
non-empty intersection with the new DI, one of them is
selected and replaced by this intersection (4). Thus, we

account for the behavior(s) corresponding to the current R
without increasing the number of tests. Otherwise, the
current DI is added as a new test input in itself (5). In step
6, an observable test set is constructed from the final
input set according to Theorem 3.3. It is confirming By,
if all Rj could be accounted for. The algorithm generates
the two tests for the thyristor mentioned in section 2. The
selection of TI for step 4 opens space for variations and
heuristics. For instance, simply the first one with a non-
empty intersection could be chosen, or the one with the
largest intersection. The latter strategy always requires
intersection with all existing input sets and assessment of
the result, but may get closer to the optimum w.r.t. the
number of tests generated. This algorithm produces the
test set for the thyristor that is shown in Table 3.3.

If there exists a single test, the algorithm generates it in
linear time. In other cases, it is quadratic w.r.t. the
number of model relations (which may be less than the
number of behaviors) and may fail to generate a test set of
minimal cardinality. Its result, including whether or not
an existing minimal cardinality test set is found, can
depend on the ordering of the model relations. In many
domains, it will pay off to use more elaborate and costly
algorithms in order to reduce the number of tests required.

3.4 Making Test Generation Feasible through
Model Abstraction

For physical systems with large or continuous domains
and complex behavior, the question arises whether it is
practically feasible to compute projections, intersections
and set differences. The answer is that we do not have to.
As in section 2, we want to make test generation for such
domains feasible by performing it with model relations in
an abstract representation (with small domains). We
formalize this procedure and show its correctness. The key
idea is simple: If M(R;) is a model of B;, i.e.

B; = M(R)),
and if R'j is another relation (preferably in a finite domain)
that specifies a weaker model, i.e.

M(R;) = M(RY),
then refuting M(R'j) suffices to rule out Bj. Hence, we can
build test sets from such finite relations R'; The task is
then to find conditions and a systematic way to generate
models that are guaranteed to be weaker (in the logical
sense specified above) by switching to a different
representation (v',DOM'(v')) with finite domains.

In (Struss 1992), a large class of transformations
between representations is characterized by conditions that
are both rather weak and natural:

Definition 3.5
formation)

A surjective mapping
T: DOM(y) — DOM(v’)
is a representational transformation iff
y(s) = vg = v(s) = 1yp)
v(s)=vp = Fuet!(vp) vs) = vo

(Representational Trans-

(See again Fig. 3.4). This simply means that, in the same
situation, variables in the different representations have
values related by t. Under such representational
transformations, models are preserved (Struss 1992):

Lemma 3.5
If
1 DOM(v) — DOM'(v’)
is a representational transformation, then
M(R) = M(1(R)) and M(R') = M(T-I(R')).

This means, if we map a model relation from some
original representation into a different one under a
representational transformation the image will specify a
weaker model, as required. In particular, we can choose a
representation with a finite domain, construct (observable)
confirming test sets and (deterministic) input sets in this
representation from the transformed model relations and
map them back to the original detailed representation.

DOM(y) T >DOM(v)
P obs/cause pobs/cause
1 t
DOM(yobs/cause) T obs/oause >DOM (y'obs/cause)

Figure 3.4 Diagram of projections and representational
transformations

The following theorem states that this actually yields
(deterministic) input sets and (observable) confirming test
sets in the original representation, thus justifying the
intuitive approach:

Theorem 3.6

Let
Tobs: DOM{(vyps) = DOM(V'opg)
and

Teause’ DOM(vcquse) = DOM'(V'cquse)
be representational transformations.
If {T';} is an observable confirming test set for By
then so is

(T} := (T op(T")} -
If {T1;] is a deterministic input set for Bg, then so is
{TIi):={T~ cquse(TI'i)}.

In particular, qualitative domain abstraction (mapping real
numbers to a set of landmarks and the intervals between
them) is a representational representation. In the thyristor
example, the landmarks can be chosen as 0, Vp, V'Bo»
VRo for AV, and 0, -8, and & for i. Ignoring the purely
theoretical problem of separately treating the landmark
points, this introduces quantity spaces Q3 consisting of

neg 1= (=00, 0]

small = (0, VTh]

medium = (VTp, V'Bol

high = (V Bo» VBol

too high = (VRo,)
for AV and Q3 with

- = (-oo‘ _6)

0 :=[-5,3]

+ = (B, o)

for i, respectively. Mapping real values for AV and i to
the intervals of Qs and Qj3, respectively, they are
contained in, defines the qualitative abstraction

Tg: R X {0,1} xR — Qs5x {0,1} x Q3
by

Tq((AVo, gateg, ig)) = (qv0, gateo, gi0)-
where

AVpegvoe Qs and ipe gipe Q3
Under the reasonable assumption that the holding current
is greater than the leakage current:

(res - A) * VTR > 90,
the representational transformation then induces model
relations

R :=1q(Rj) € Q5% {0,1} x Q3
from the relations R; in the real-valued representation.
They are displayed in Table 3.4. (Since the two columns
on the left for (AV, gate) represent the causes, one can
immediately see the non-deterinism of the model
M(R'Red-Bo) for (medium, 0) which is due to the fact that
it covers a whole class of behaviors with actual breakover
voltage anywhere between VTh and V'Bg).

The table also shows the respective set differences D'j in
the new representation which can easily be determined
from a comparison of the R'gkx column with respective R’
column. The admissible range excludes roohigh from Qs:

R'agm = Qs \ {toohigh} x {0,1} X Q3,
and the algorithm of section 3.3 intersects D'Red-Ro and

D'punct yielding the observable confirming test set
T'1= {medium,high} X {1} x {+}},
T'9 = {(high, 0, 0)}
and the deterministic input set
{{medium,high }x{1},
((high,0)}}.

Mapping back the tests to the real domain under 'cq'l
produces a test set

{1q 1 (T'), tq 1 (T2))
={ (VTh, VBol X {1} X (8, =),
(V'Bo» VBol X {0} x [-9, 8]}
which covers the test set {Ty, Tp} shown in Table 3.3 Of
course, the abstract representation may be too coarse to
allow for the separation of particular behaviors. We can
use this as a criterion for selecting representations and
behavior models, for instance, as the highest level that
still allows to distinguish one behavior from the others.
One may be amazed that Theorem 3.6 requires Tohg and

Tcause t0 be representational transformations, and tempted
to find a weaker sufficient condition. This is briefly
discussed in the following subsection which is not
essential and may be skipped.

3.5 Preservation of Observable Distinctions

Recall the procedure for test generation: its basis is to
identify observable distinctions of behavior model
relations. The observability of this distinction must not

be destroyed under back-transformation by ©'!. In other
words, if v'1 and y'9 can be observed as being distinct:

Plobs(¥'1) # Plobs(¥'2),

then the observable parts of their pre-images ! (v'{) must
also be disjoint. This seems to be the weakest sufficent
condition we can impose, and it is captured by the
following definition (which we formulate for the causes,
as well, because this is needed for the construction of
deterministic input sets for analogous reasons).

AV gate i
R'ok RRed-Bo R'block R'punct D'Red-Bo D'block D'punct

neg 0 0 0 0 - 0
neg 1 0 0 0 - 0
small 0 0 0 0 + 0
small 1 0 0 0 + 0
medium 0 0 0,1 0 + 0
medium I + + 0 + +

high 0 0 + 0 + 0 0
high 1 + + 0 + +

toohigh 0 + + 0 + +

toohigh 1 + + 0 + +

Table 3.4 The tuples constituting the relations R'j and the set differences D'j in the qualitative
representation. The values for the current i, in the respective column complements the pair for
(AV,gate) in each line.

Definition 3.6 (Faithful w.r.t. observable
(causal) distinctions)
A representational transformation
. DOM(v) — DOM'(v')
is called faithful w.r.t. observable distinctions iff
Vv'1v'2 € DOM'(Y) (p'obs(y'1) # Plobs(v2)

-1, -1,
= Pobs(T (1'1)) M pobs(T (12)) = D).
It is called faithful w.r.t. causal distinctions if the
analogous property holds for pcquse.

The property that the restriction of t to observables
(causes, respectively) is also a representational
transformation, which is used as a condition in the
previous subsection, will be called decomposability:

Definition 3.7 (Decomposable)
If there exists a mapping
Tobs: DOM(vobs) = DOM'(vps)
such that
Plobs ©T = Tobs © Pobs»
then T is called obs-decomposable.
It is called cause-decomposable if there exists a
Teause - DOM(veayse) = DOM'(¥'cquse)
with
P' cause® T= T cause°Pcause-
(Here "o" is the composition of transformations). Note
that we only require that Tophs (Tcause > resp.) be a
mapping. This is because any such mapping "inherits" the
properties of a representational transformation from the
three involved mappings:

Lemma 3.7
If there exists Tops (Tequse) With the properties of
Definition 3.7, then Tops (Tequse) IS a representational
transformation.

The following lemma states that this concept is only
seemingly stronger than the one of Definition 3.6.

Lemma 3.8
A representational transformation
7. DOM(v) — DOM'(v’)
is faithful w.r.t. observable (causal) distinctions iff T is
obs-decomposable (cause-decomposable).

Remark 3.9

Teause being a representational transformation is also a
necessary condition for the validity of
backtransformation of tests in the following sense: If it
is violated, we can construct behaviors and model
relations such that there exist observable test sets with
deterministic input sets for them in the abstract
representation, but none in the stronger one. However,
these constructed behaviors may be irrelevant to any real
physical system, and the back-transformation of tests
may work for the practical cases nevertheless.

4 Testing Constituents in an Aggregate

Quite often the constituent to be tested is embedded in a
particular context, namely an environment consisting of
other interacting constituents, and only the entire
aggregate can be controlled and observed. Our approach is
general enough to cover this case.

We regard the aggregate as the constituent to be tested,
and observables and causes are related to this aggregate
constituent. The goal is to confirm one behavior of this
aggregate constituent by refuting the other behaviors out
of a certain set. This set is given as the behaviors of the
aggregate resulting from the different behaviors of the
constituent embedded in it.

More formally, let a constituent Cg be in a particular
context CTX consisting of constituents Cy,...C,, with
their respective variables. The aggregate is

Cagg={Cj{Cop}.
and representations for describing the aggregate's behavior
can be obtained from the representations for single
constituents by taking the union of the local variables.
For the sake of simplicity, we assume that all local
relations are already specified in the aggregate
representation. Issues that arise if the assumption is
dropped are discussed in (Struss 1994).
If M(R;) are behavior models for constituents Cj, then

Rerx=NRj
specifies a corresponding behavior model for CTX={C;}.
If M(R;,,) are models of the behaviors Bj of Cp, then the
relations

Ri=RcTXMRj0
specify models of the behaviors of

Cage=CTXU{Cp}
produced by the behaviors of Cg in CTX. In applying the
test generatibn algorithm to these relations, we can
construct observable tests and deterministic test inputs for
the behavior of Cygg that involves the particular behavior
Bg of Cp.

Corollary 4.1
Let

Cugg = CTX U {Cp} = (Cj] LU (Cp),

Rerx= MR
where the M(jRj) are behavior models of the C;.
Let M(R;p) be models of the behavior modes B; of Cy.
Define

Rage i = Rcrx N Rig

Dj:= Pobs(Ragg ON Pobs (Ragg i)

DI := peause (Ragg i)\

P'cause (Pobs(Ragg 07 Pobs(Ragg i))-

If M(RcTx) holds, then each hitting set of sets {Ty)} of
{D;} is an observable confirming test set for By of Cy,
and each hitting set of sets {TIly} of {DI;} is a
deterministic input set for By.

Since pcause and pobs project to input sets and
observables of Cpgg, the tests are observable and
controllable through Cgage. Of course, this provides a
confirming test set for B of Cq, only if M(RcTy) holds.
This corresponds, for instance, to the widespread
assumption that while testing a constituent, its context
works properly. However, we can also generate tests based
on the assumption that the context may contain particular
faults, which, for instance, have been hypothesized by a
diagnosis step.

By constructing all behavior modes of Cygg
corressponding to a single fault of any constituent, we can
generate a test set confirming the correctness of all
constituents under this assumption.

5 Realization of Testing

Now we have to implement a test system, i.e. a
program that takes the test inputs and the observed
responses of the device and returns whether the respective
behavior has been confirmed or refuted. For this purpose,
we do not have to invent a new machinery but can apply
an existing diagnostic system. Tests confirming a
behavior are based on refuting models of all other
behaviors. Refuting behaviors through observations is
also the principle of consistency-based diagnosis (de Kleer,
Mackworth & Reiter 1990), and we can implement testing
through one of the consistency-based diagnosis engines,
GDE™ (Struss & Dressler 1989).

In more detail, GDEY represents a constituent by the set
of behavior models M(R;). If a complete test set {Ty} is
observed, i.e. ¢y holds for some hitting set V of {Tx},
then we have

VT JseSIT Jyvge Tk v(s)=vk.
By construction, there exists for each Dj:=R(\R; at least
one Ty ¢ Dj . Hence, it follows

Vi#0 JseSIT JyvieD; v(s)=v;,
which means GDE™ refutes all behaviors except By:

Vi#0 dse SIT Fv;gR; v(s)=y;

= Vi#0 -M(R;) = Vi) —B;.
Then GDEY confirms Bg by applying its "physical
negation" rule (stating the completeness of the enumerated
behaviors)

=B A=-B2 A ..A—-By = Byg.

Of course, observation of a value outside R lets GDE™
refute Bg. In summary, GDET makes the inferences
required for the application of a deterministic input set.

Note that, for the purpose of testing, we can replace the
constituent's model set {M(R;)} by the complements of
the tests, {M(T®)}, thus potentially reducing the number
and, perhaps, the complexity of models to be checked.
(Again, the details are discussed in (Struss 94)).

6 Discussion, Future and Related Work

6.1 What Is Achieved?

We make the rather strong claim that the theory presented
here solves the problem of testing physical systems. It
solves it "in principle”, in the same sense as model-based
diagnosis is a solution to the problem of fault localization
and identification. By this, we want to emphasize two
aspects:

* On the positive side, it is a general theory covering
large classes of devices, for which there exists no formal
theory or systematic solution of the testing problem
today. All other solutions to test generation are only
variations of this principled approach, perhaps by
applying heuristics, making certain assumptions, or
exploiting particularities of the domain (For instance,
we can show that the D-algorithm (Roth 1980) is a
specialization of our algorithm for digital circuit
testing).

¢ On the problem side, it is a solution only "in
principle"”, because it shifts the burden to the hard task
of modeling. The application to a particular domain
may require substantial work and even be impossible
with the knowledge available about the domain. The
crucial issues are in modeling and complexity. We
briefly mention some of them.

6.2 Application Prerequisites and Problems

Knowledge about the Possible Faults: Particularly people
from model-based diagnosis may be sceptical about the
necessity of (complete sets of) fault models for this
approach. However, knowledge (or assumptions) about the
possible faults is not a drawback of our system, but is
inherent fto the task of testing. In constrast to diagnosis,
where we may be content with refutation of (correct)
behaviors, testing aims at confirming a particular
behavior, usually the correct one. This is impossible,
unless we make certain assumptions about the other
possible behaviors, although this may happen
unconsciously and implicitly. (This is why we are talking
about testing of physical systems, and, for instance, not
about testing system designs or software.) We may
deliberately exclude some faults from the set of behaviors,
or, more precisely, choose model relations that do not
cover some fault behaviors, e.g. because we assume they
are unlikely or irrelevant. For instance, we ignored
thermal triggering of the thyristor and based the model on
the assumption that the turn-ON time and spreading time
are negligible. Our approach has the advantage to make
such assumptions explicit (and the multiple modeling
framework allows us to treat them as defeasible
hypotheses, see (Struss 1992)).

Models of Behavior Modes: We have to be able to turn
our knowledge about the correct and the faulty behavior
into models, relational models in our case. The

representation through relations is quite natural for broad
classes of physical systems. Note that the models are not
required to be deterministic (remember the model of the
class of thyristor faults called "Reduced VBo"). A major
problem is finding appropriate models of devices with
complex dynamic behavior. The thyristor, a dynamic
device, illustrates that it can be possible to do the testing
under temporal abstraction.

Abstract and Qualitative Models: Model abstraction is the
key for the feasibility of the algorithm. But the models
have to be strong enough to distinguish the behavior
mode of interest from the other ones.

Structural Complexity: If aggregates are getting large,
testing of constituents in its context may turn infeasible
because of the number of fault models of the aggregate,
(even though run time of several days for test generation
may be insignificant compared to savings in testing time
and costs). We do not expect the algorithm to handle
systems with thousands of components in a flat structure.
But first experiments suggest that it can produce results in
a reasonable amount of time for devices which are
complex enough to prohibit the completeness and/or
optimality of manually generated tests. Currently, we are
exploring binary-decision diagrams as a compact
representation of the model relations. The core of the
approach is finite constraint satisfaction. It will benefit
from exploiting the specificity of the task, e.g. the device
structure.

6.3 Perspectives

In this paper, we considered only testing with the goal of
confirming one particular mode. Obviously, there is a
generalization possible that creates tests for identifying the
present mode. Testing for discrimination is relevant to
diagnosis (Meerwijk & Preist 1992) and fits very well
with a consistency-based diagnosis engine. It can be
combined with probabilities of modes (and of tuples for
non-deterministic models) and forms a generalization of
the probe selection strategy used in (de Kleer & Williams
1987). Additionally, this approach provides a basis for a
formal assessment of the (discriminating) power of
representations. Testing in the context of diagnosis is the
subject of another paper. Another direction is the
exploitation of the strategy for design purposes: it allows
to analyze whether or not and where it is (or would be)
possible to detect, discriminate, and identify faults of
constituents in a designed system, thus supporting design
for testability and sensor placement (see (Chien, Doyle &
Rouquette 1991), (Scarl 19991)).

In summary, we presented an approach to model-based
test generation and testing that makes a large class of
systems amenable to principled methods and well-founded
algorithms. The exploitation of model abstraction is
crucial to making the task practically feasible for an
interesting class of technical systems, notwithstanding the
fact that the general task of hypothesis testing is np-
complete (Mcllraith 1993). Finally, the basis of the
theory is quite simple, simple enough to be powerful.

Acknowledgements

This work has been supported in part by the Christian-
Doppler-Labor of the Technical University of Vienna.

References

Camurati, P., Medina, D., Prinetto, P., and Sonza,
M.1990, A Diagnostic Test Pattern Algorithm. In:
Proceedings IEEE International Test Conference, 52-58

Chien, S., Doyle, R., and Rouquette, N. 1991, A Model-
based Reasoning Approach to Sensor Placement for
Diagnosability. In: Working Notes of the Second
International Workshop on Principles of Diagnosis,
Milano, 181-190

de Kleer, J., Mackworth, A., and Reiter, R. 1990,
Characterizing Diagnoses. In Proceedings of the
AAAI 90, 324-330.

Gupta, A., and Welham, R.1989, Functional Test
Generation for Digital Circuits. In: J. S. Gero (ed.),
Proceedings of Artificial Intelligence in Engineering,
Learning and Diagnosis, Elsevier

Mcllraith, S. 1993, Generating Tests Using Abduction. In
Working Papers of the Fourth International Workshop on
Principles of Diagnosis, Aberystwyth, 223-235.

Meerwijk, A., and Preist, C.1992, Using Multiple Tests
for Model-based Diagnosis. Working Papers of the Third
International Workshop on Principles of Diagnosis,
Rosario

Roth, G. P. 1980, Computer Logic, Testing, and
Verification. Rockville: Computer Science Press.

Scarl, E. 1991, Analysis of Diagnosability. In: Working
Notes of the Second International Workshop on Principles
of Diagnosis, Milano, 191-200

Struss, P. 1992, What's in SD? Towards a Theory of
Modeling for Diagnosis. In: Hamscher, W. Console, L.,
and de Kleer, J. eds., Readings in Model-based Diagnosis.
San Mateo: Morgan Kaufmann: 419-449.

Struss, P. 1994, A Theory of Testing Physical Systems
Based on First Principles, Technical Report 94/63,
Christian-Doppler-Labor, Technical University of Vienna.

Struss, P. 1994a, Multiple Models of Physical Systems -
Modeling Intermittent Faults, Inaccuracy and Tests in
Diagnosis. To appear in: Annals of Mathematics and
Artificial Intelligence .

Struss, P., Dressler, O. 1989, "Physical Negation" -
Integrating Fault Models into the General Diagnostic
Engine. In Proc. 11th Int. Joint Conf. on Artificial
Inteligence, Detroit, MI, 1318-1323.

