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Abstract

In ordinary qualitative reasoning{(QR), qualitative be-
havior of the dynamical systems is predicted by assign-
ment of qualitative values such as {+,0,—} into model
variables based on proper transition rules. Unfortu-
nately, due to ambiguities in these ordinarily introduced
qualitative values,their arithmetic and transition rules
cause predictions to be redundant,sometimes even inac-
curate. In this paper,we present a new method of qual-
itative reasoning which, besides using hyperreal num-
bers,takes into account their e-H ranking in describ-
ing both qualitative values and qualitative derivatives
of variables and also employs a convergence filter to in-
vestigate the infinitesimal asymptotic behavior of qual-
itative variables. We applied this qualitative reasoning
method to envision a temporally hierarchical complex
system.The result shows that this method provides a
more detailed and natural qualitative solution than pre-
vious methods like Kuipers’s time abstraction in envi-
sioning temporally hierarchical complex system.

1 Introduction

Limitations of ordinary qualitative reasoning{QR) us-
ing the {+,0,—} semantics have been discussed in many
works [1]-[7],[11]-[17]. One of the major limitations is
that scale information such as the relative magnitude
of quantities or their temporal derivatives are not in-
cluded so that further ambiguity arises in determining
state transition among all the possible adjacent values of
a current qualitative state. To compensate this too ab-
stract qualitative representation, several researchers in-
troduced the concept of order of magnitude(O(M)) pro-
posed by Raiman [11] and the hyperreal numbers to ex-
tend the definition of qualitative value[2][16]. Davis’s
CHEPACHET[2] and Weld’s HR-QSIM[16], though quite
different in their motivations and aims, can be consid-
ered as examples of this extention from ordinary QR.
We believe, however, that the true virtue of introduc-
ing this kind of scale information lies in envisioning a
complex system in which several scale hierarchies are

involved. Introducing this scale information can approx-
imately isolate interactions of subparts having different
magnitudes or time-scales, which, in ordinary QR, must
be taken into account together in equal levels. This
means that by using scale information we can introduce
some kind of hierarchization in envisionment to prune in-
significant transitions. Though infinitesimal analysis is
not explicitly used, Kuipers’s "abstraction by time-scale”
method [6] can be considered to lie along this line. He
treats the complex system as composed of different time-
scales. On account of the ”extra-mathematical” nature
of his method, however,this intuitively appealing method
has several problems when its range of application is ex-
tended.

In this paper we developed a new method to deal
with temporal hierarchization by introducing infinites-
imal analysis [5] to realize what Kuipers was trying
to do in a more formal and natural way. But in do-
ing so, simple introduction of hyperreal number like in
[2],[16] has proved to be insufficient. For this reason
we developed a new QR scheme which can handle in-
finitesimal qualitative behavior in a right way. Our QR
method features the following two newly introduced con-
cepts: First,infinitesimal/infinite numbers are ranked (e-
H ranking ) to be able to evaluate their relative magni-
tudes. Second a convergence filter is introduced in order
to investigate more precisely how variables converge to-
wards their equilibrium.

The paper is organized as follows:in Section 2, we
discuss Kuipers’s time-scale abstraction and its prob-
lems. Section 3 shows extensions of the qualitative val-
ues and transition rules for our new scheme. Section 4
presents our temporal hierarchization algorithm for en-
visionment. Section 5 gives an example which illustrates
envisionment by our temporal hierarchization applied to
the same problem in [6]. Finally,in Section 6 we discuss
about related work.

We assume that the reader is familiar with standard
theories of envisionment, as in [1},[7], and those with
qualitative hyperreals proposed by Davis [2] and Weld
[16]. In this paper, [z] denotes the qualitative value of a
variable z. Oz and 0%z stand for the qualitative deriva-




tive of z, and the second order of derivative of z, re-
spectively. And z; denotes the variable in a state i, for
example, x; is the variable in a state 1. We also use the
symbols,e,N,and H, which represent infinitesimals, finite
numbers, and infinite numbers respectively, in such a
way that, when distance between a variable z and a land-
mark o is infinitesimal: [z ~x¢] = ¢, finite:[z ~z¢] = N,
or infinite:{z — xo] = H.

2 Kuipers’s Hierarchization and
its Problems

Kuipers [6] deals with a complex system such as a collec-
tion of interacting equilibrium submechanisms. He gives
as an example the body fluid regulation and describes
the whole system in terms of two mechanisms, water
and sodium balances, that operate at different response
time.The basic principle of this time-scale abstraction
is "A faster mechanism reaches its equilibrium instan-
taneously and, during this process, a slower mechanism
can be treated as being constant”. His approach con-
sists of the following steps:1)Decompose a whole system
into faster system and slower system and model each one
separately, but with some sharing variables. 2)Faster to
slower: envision first the faster system. Viewed from
a faster system, slower variables are treated as con-
stants (relative constancy of slower variables). 3)Slower
to faster: from the point of view of the slower system,
the faster system instantaneously reaches its equilibrium
with its environment composed of the slower system.
Hence faster variables move quasi-statically along with
the equilibrium conditions determined by slower vari-
ables when the slower system changes (binding faster
variables as a function of slower variables). 3)The behav-
ior of the whole system is temporally joined in cascade
from faster to slower (continuation).

The essence of his approach is decomposition of a
model from the temporal point of view.This hierarchiza-
tion reflects our naive reasoning in envisioning behaviors
of such a complicated system; however, this approach has
several problems when extended to be applied to more
general cases: 1) Since his continuation is based on ”"cas-
cade shift of attention”, which handles mechanism by
switching between submodels, he assumes that all the
submodels are stable and reach their equilibrium in pre-
determined subsequent order. If the faster mechanism
does not converge (for example,oscillates with negligi-
ble magnitude), we cannot use this kind of decomposi-
tion. 2) Kuipers decomposes the structure of a system
completely, so that conjunction after such decomposition
may lose some important information about the interac-
tion between faster variables and slower variables which
is involved in the original system. 3) When faster vari-
ables converge to equilibrium values, their derivatives
must approach the same infinitesimal order of magni-
tude as those of the slower variable derivatives. His ab-

straction assumes that even in that stage faster variables
change more quickly.

The problems are mainly caused by the too strong
nature of the decomposition of a system. Since the dif-
ference in velocities between variables can be described
using the O(M) of those derivatives,it is expected that
the introduction of the O(M) for the qualitative deriva-
tives gives us a more sophisticated and natural way to
use the information of difference of the variable changing
rate without any decomposition of the structure.

3 QR with Ranked Hyperreals

3.1 Extensions of Qualitative Values

We extend a qualitative hyperreal representation de-
scribed by Weld [16] and Davis[2] in order to describe
the infinitesimal/infinite behaviors of qualitative vari-
ables more exactly. As Davis discusses in [2], one of the
problems of envisionment using qualitative hyperreals is
that once a parameter and its derivative both become
infinitesimal or both become infinite, it becomes impos-
sible to say anything about their relative sizes. To solve
this problem, we further divide infinitesimal and infinite
interval into €,62,€%,--- and H, H?,H?, - - -, respectively,
when these high-order numbers are required to be eval-
uated in the course of envisionment, for example, when
the convergence speeds of variables are required to be
evaluated.

Note that in evaluating the interval’s length we take its
maximal width. Thus, whereas £ means e-neighborhood
interval around some landmark, it is simultaneously rep-
resenting its interval’s length so that ¢ can be treated
also as a number in infinitesimal calculations in envi-
sionment. Hence we can write ¢ > €2 > &% > ---
On the other hand, H also means the interval greater
than the hyperreal infinite number H where the latter
is thought as a hyperreal number. Hence we can write
H < H? < H? < --.. We call this division of infinitesi-
mal/infinite interval ”e-H ranking.”

This ranking is illustrated in fig.1 and fig.2. Let [
be a certain landmark of a parameter. Fig.1 shows the
former relationship between ¢! and e*! for any integer
i. In this figure, ellipse denotes the neighbor of {; whose
radius is given by ¢, N, and H. Region inside the ellipse
whose radius is equal to ¢, and N represents the infinites-
imal neighborhood of ly, and the "finite-distance” neigh-
borhood of lg, respectively. The outside of this "finite-
distance” neighborhood shows the infinite neighborhood
of l().

If we zoom up the infinitesimal neighborhood, then
we can define the similar structure in the ellipse by in-
troducing power of €. Based on this characterization,
relationship between €2 and e can be defined as being
similar to that between ¢ and N.

In the similar way, in general, relationship between




e'*t! and £ can be defined as being similar to that be-
tween € and N. Also, we can define relation between
H't! and H® for any integer i, as shown in fig.2.

This ”e-H ranking.” is formulated as:

Definition 1 (Qualitative value with e-H ranking)
Let ly < 1y <lp < .1 (=0).. <l,(< H) be the landmark
values of a parameter x. Define the hyperreal qualitative
value of T as:

( H[H2,.., if = — H[H2.] < H(H2.))
N(= (I, H)), ife—l,>candz<H
I, +ele?, -, if 0<z—1, <e(€?.)
In, if z=1,
I, —e€le?, -], if 0<1l, —z<e(e?.)
(ln—1,1n), if =11 > ¢ and
lL,—xz>¢
[.7:] = { el
lo +ele?, -+, if 0<z—1p <ele?,.]
lO7 ’l«f T = lO
lo —ele?, -], if 0<ly—z<ele?,.]
—N(= (-H,l)), if lo—z>¢and
z>—-H
-H,[-H2,--, if —HH2.]-z
. < —H[H?2.)
where

denotes the possible alternation and (pl, p2) is equivalent
to the difference between open interval (p1,p2) and the
two halos as in Weld’s HR-QSIM. The quantity space of
a variable ©,QS(z) is defined as:

QS(z) = {(--,H?),H,N,

I +e(e, ), Iny 1y — (€2, - ),
(In—1,10), -+, (lo, l1),

lo +e(e?,-- ), lo, lg — (€2, ),

~N,-H,(-H?,..)}

Definition 2 (O(M) and Sign of Qualitative Value)

Define the order of magnitude (O(M)) of a variable z as:

HY, where = is H-infinite
_ ) N(>0), where © is finite
abs(z) = &, where T is et-infinitesimal
0, where £ = 0
where 1 is integer. O

Using D2 with the sign of a variable z sign(z), we can
define the qualitative derivative(QD) of a variable. We
also introduce the qualitative second-order derivatives of
variables to ”tame intractable branching” [8] where it is
appropriate to evaluate.

Definition 3 (Qualitative Derivative) For i = 1,2,
define the qualitative derivative of a variable = as:

) 1 dz’
Oz = sign(d a:) * abs( hd

Definition 4 (Qualitative Representation)

Define the qualitative representation of a variable state
z, Q,R(z) as:

Q,R(z) = ( [z], 8z,0% ).
]

Consider an example where qualitative differential
equation(QDE) is dz = —& * [z] and its initial con-
dition is [z] = e. From QDE, we obtain 8%z =
—e % Jz.  Hence the initial state: Q R(z;) =
(+¢,—€%,+€%) is obtained through constraint propa-
gation. Since 2 and €3 appear in 8z , QS(z) =
{H,N,e,e?,e%0,—€3,—¢€% —¢,~N,-H} and the next
candidate is the transition from [z] = ¢ to [z] = 2. The
next state Q,R(z2) = (+¢€2, €2, +¢*) is derived from
the above constraints.

Definition 5 (Qualitative Arithmetic) Arithmetic
between qualitative infinitesimal values is based on the
O(M) reasoning proposed by Raiman/[11]. We extend this
arithmetic as follows: For any integers m and n such
that m < n,

(Addition) €™ + g™ x> e™
(Substitution) €™ — g™ ~ ™
(Multiplication) €™ x¢ = ¢m*!
(Division) e ™ = H™
(Comparison) (e/e) < (1/e) < (1/e?) < ---
<(1/e™) < ..
where A ~ B means abs(A) = abs(B). ]

.Note that ¢/ is finite. Intuitively, this relation is derived
by an inequality e%/e(= €) < €/e < 1/e(= H). The
proof can be found in Keisler[5].

3.2 Transition with ¢-H ranking

Besides extensions of qualitative values,we extend defini-
tion of state interval, transition between qualitative val-
ues, and persistent and arrival time. The ¢-H ranking
adds many interesting characteristics to QR with hyper-
reals. But for limitations of space, this presentation is
restricted to the extensions of transition and persistent
and arrival time from Weld’s HR-QSIM[16]. For more
detail, see [15].

Definition 6 (Transition of Qualitative Values)
Qualitative values can have transitions only between two
adjacent states, or inside a e-neighborhood interval (¢* «»
€1 or inside a infinite interval (H! « H*1). The
possible transitions are as follows:




Table 1: time-distance table

distance
|0 e N
00 H
0z ¢ |0 N H H?
NI0 ¢ N H
H|0 & ¢

(.. = H? «)H o finite & ¢(o €2 & ..) & point

The steps which determine the transition of qualitative
values are derived by envisionment using Welds’ HR-
QSIM method [16] except for inside ¢ or H interval. D

Definition 7 (Arrival time and persistent time)
For any variable z and any integer i, I,(z;) be the O(M)
of the interval’s length of the state i, and I,(xi1) be the
minimum O(M) of the distance of x between the present
state(i) and the neat one(i+1). Persistent time(ts(x;))
and arrival time(t,(x;.1)) are represented as the follow-
ing equations:

ts(zi) = L;(2i)/abs(0z;)
ta(ziv1) = Lo(@iy1)/abs(0z;)

Their values are derived by qualitative calculus with £-
H ranking as shown in Section 8.1 and a time-distance
table as shown in Table 1. 0

For example, when I,(z) = ¢ and abs(dz) = &3,
to(z) = (e/e3) =72 = H?

Note that our e-H ranking improves Weld’s tempo-
ral filter[16]. For example, we can deal with e-ordering
rule[1] more concretely, which Weld a little bit trickily
includes in "Temporal Continuity Rule”. Consider an
example where a variable z is 0, and the order of its
derivative is €™ (m:a certain integer). The next deduced
transition is [z] = ™. Since I,(z) is the minimum O(M)
of the distance of z between 0 and &™, for any inte-
ger 3, Ta(z) < Ia(et*™) < Ia(e™). Hence we obtain
that t,(z) = (I(2)/abs(0z)) < (I(e"*™)/abs(dz)) =
(™ /e™) = g'. Consequently,t,(z) < €, that is, arrival
time from z=0 to ™ is less than . Since i is arbitrary,
this means that a variable in a state changes faster than
any other variables in an infinitesimal interval.

Then, how we can deal with the reverse case, that is,
the transition of z from ¢ to 0 ( z converges at 0 )? We
can classify the convergence into two types: x passes 0
after converging to 0 within a finite or an infinitesimal
interval and x converges at 0 asymptotically. In the next
section, we discuss about this case.

3.3 Convergence

When one variable converges monotonically, it would
happen that envisionment is repeated infinitely. For

example,consider the case mentioned in Section 3.1.
Envisionment generates the following infinite sequence:
(z,0z,0%z) = (+¢, —€2, +€%), (+€2, —€3, +&*),

(+€3, —€*,+€°)... . However,in this case,it is obvious
that (z, 8z, 8%z) converges at (0,0,0). Our formalism can
examine more precisely how a variable converge, (for the
above example, 0z, 3%z decreases as time passes),but it
cannot judge the convergence. Hence,in addition to the
extensions of QR discussed above, we must provide a
rule which judges whether and how the convergence of
variables occurs (In this section, for simplicity, we only
deal with "monotonic convergence”. However, our def-
initions can be easily generalized in order to deal with
damped oscillation. Generalization of a convergence fil-
ter is discussed in [15].)

Definition 8 (Convergence Filter) Let z, be the
nearest landmark. Also let I,(z;) denote the length of
an interval(i:integer). If

ai, Is(xi) =&
Yk such that k > i, 3m
([xg — zo] = —€™, 0z, > )V {[z, — zo] = +™, 0z < 0)

and if Iy(zpia) < e L(zy)

then we shall say that x converges at xq.
And the arrival time t, 1s defined as:

H

ta= Y ta(z).

j=itl
O

This arrival time is calculated by the ordinary methods
for infinite sum in nonstandard analysis[5] and it has
several important features. Unfortunately, for limitation
of space, we cannot give a detailed discussion about the
arrival time here. In this paper, we only present two
characteristics without their proof: if abs(t,) < N then
z passes zy and if abs(t,) > H then z converges at
zo asymptotically. Precise discussion is given in [15].

The above definition is clear, but insufficient to deter-
mine the convergence with finite steps.It does not reduce
the infiniteness of the determining process. Note that we
should judge the convergence in finite time: when we ob-
serve that some elements of the sequence of a variable z
approach at a point zg, we determine that = converges
at zg. This reasoning process is an example of "persis-
tence” in nonmonotonic reasoning(9],{10]. According to
our commonsense reasoning, we provide a convergence
filter rule as follows:

Definition 9 (Convergence Filter Rule) If the
states satisfy the condition D8 ( convergent condition
) until e* occurs, then check the next transition. And
if the condition D8 is also satisfied, the system judges




that convergence has occurred. Arrival time is calculated
as tg = E].ILH to(z;) where i is a certain integer such
that I,(z;) = €3. If abs(t,) < N then x passes zg, else

if abs(ty)) > H then z converges at o asymptotically.
0

Consider the example mentioned above. I,(z) = ¢,¢2, €3
and the candidate for the next state is (z,8z,0%z) =
(e*,—€%,%). Since the former states and the candi-
date satisfy the conditions D8, we check the next tran-
sition. The next is (¢°,—¢€%,¢7) and the condition is
also satisfied. So we determine that = (and dz) con-
verges at 0. And the arrival time is derived as follows:

ta = (/€2)+(62/6%) 4. = T (671 /&) = (1/e)+H =
H? > H. Hence a variable = converges at 0 asymptoti-
cally.

4 QD Restriction

Time-scale abstraction is considered to be based on the
two properties of the O(M) of qualitative derivatives.
First, relative constancy of slower variables means that
the O(M) of the derivatives of slower variables and their
change are much less than the derivatives of faster vari-
ables. Second, binding of faster variables means that
O(M) of the derivatives of faster variables is much larger
than slower ones. These temporal ontologies of variables
can be more sophisticatedly represented by specifying
range of derivatives; we call this hierarchy of qualitative
derivatives QD restriction.

Definition 10 (QD Restriction) Quantity space of
qualitative derivatives of faster variables(f) or slower
ones(s) should be represented as follows:

QS(8f) = {.,+H?,+H,+N,
+e,+€2,.,0,., —%, —¢,
_N,-H,-H?,.}

QS(8s) = {+e,+€%.,0,.,—€2 —¢}

QS(6%s) {+e,+€2,.,0,.,—€2, —¢}.

Direction of transition of qualitative derivative is deter-
mined by the signs of the second order derivatives of the
qualitatives values and precedence of transition is deter-
mined by the arrival time. ]

Note that the second order derivatives of the slower vari-
ables are also restricted. If their order of magnitude is
N(finite), the derivatives transit into a finite interval.
This contradicts the above definition. For example, con-
sider 8z = ¢ and 8%z = N. In order for Oz to stay at
¢,the order of persistent time for 8%z = N is lower than
(N —¢€)/N = N/N ,that is,its order is equal to or lower
than e. If we consider that the third order derivatives
meet the above requirements, 93z will be H. Hence,this
fact contradicts the definition of slower variables: slower

variables change much slower than faster variables in a
finite interval. Therefore the second order derivatives are
also required to be restricted.

One may say that QD restriction can be naturally em-
bedded in QDE as shown in Davis[2],such that dz =
—& * [z] where z is a slower variable and ¢ is integer.
However, this embedding is not sufficient. When z is
H¢, 8z is —N. If the O(M) of the QD of a faster variable
is N, then we cannot differentiate between a faster vari-
able and slower one. Hence even in the above case, QD
restriction is also needed.

5 QUASAR

We develop a program QUASAR (QUAlitative reason-
ing using time-Scale information Analysis by epsilon-eta
ranking and Restriction of qualitative derivatives) which
implements QR with ranked hyperreals, the convergence
filter and QD restriction. QUASAR consists of two parts:
setting part, and transition analyzer. Setting part cal-
culates the constraints of QD from given QDE and then
QD restriction is set up. Finally, it derives the initial
states from an initial condition. Transition analyzer en-
visions a transition from a certain state ¢. In this section,
first we show algorithm for transition analysis, and then
illustrate how QUASAR works.

5.1 Algorithm for Transition

In this algorithm, we use a operator ”:=" for substitu-
tion, for example, "z := 3” means that 3 is substituted
for z. For simplicity, we assume that there is no branch-
ing before the state 1.

Algorithm

Let i, j, k, I, m, n and p be integer. z;(m) stands for a
variable of the system{l < m < n, n:the total number
of the variables in QDE ) in a state . And also let
first;,;min; and final; denote the set of first candidates,
minimum candidates, and final candidates respectively
as defined below. Before transition analysis, all the sets

are {}(empty).

1. Apply the transition rules to each variable:z;(j),
and generate the list of the nearest qualitative adja-
cent value of each variable considered as the candi-
dates of the next state transition: first;1; = {(1:
2i41(1)), s (n 2 Zig1(n))}

2. Calculate each to(&;+1(k))(k : integer,1 < k < n).
Compare the O(M) of t,(£;+1(k)), and choose the
set of candidates whose O(M) of the arrival time is
minimum:( minimum candidates: min;4; = {(J :
2411 VI, abs(2i41(5)) < abs(Zi41(1)} )-




3. Choose a variable, say z;;1(m), from min;yq:
miniy; = mingg1 — {(m : zip(m))} . Sub-
stitute z;41(m) for z;(m) in the state 7 and ap-
ply the constraint propagation. If the constraints
are satisfied, add this variable to the set of the
final candidates(finaliy1 := finali, U {(m

zir1(m))})-

4. ming; # {}.80t03). Emin,1 = {JAfinalip #
{}, go to 5). If min;y1 = {} A finaliy1 = {}, quit
as failure.

5. Choose a variable, say z;11(p) from finaliti.(
final,py = finaliy; — {p: z;41(p)} ). Apply the
convergence filter rule to z;41(p):

(a) If the past four sequences of z(p) satisfy the
convergent condition, then check the next tran-
sition.

(b) If the convergent condition is also satisfied,
then determine that z(p) converges at a point
zo(Zi+1(p) := To).

(c) If z(p) converges,calculate the arrival time(t,).
If abs(t,) < N then z(p) passes at the point,
else z(p) converge at the point asymptotically.

(d) If z(p) passes, store this state as the next state
else store this state as the final state.

6. If final;,y, # {} then go to 5).
If final;+1 = {} then quit as succeeded.

5.2 An Example

Let us consider a model of body fluid regulation.
Body fluid system is regulated chiefly by amount of
water(w),sodium(n) and concentration of sodium(c =
n/w) which is almost equal to osmotic pressure. It is
known that the amount of body fluid change(water in-
take and excretion) is regulated by sensing osmotic pres-
sure deviation, and this regulation takes place with re-
sponse time 10 minutes, whereas change of the amount
of sodium is regulated by the amount of water with re-
sponse time more than one hour. This system can be
modeled as follows:

ow = [c— ¢
On = ¢ex[wy—w]
n
c = -
w

where w is a faster variable,n is a slower variable.
And ng,wp,co(= no/wp) are quantities of sodium, wa-
ter, and concentration of sodium at steady state, re-
spectively. We consider the case when osmotic pres-
sure is hypertonic(c¢ > ¢g), and both water and salt

are overloading(w > wq,n > ng) to show how QUASAR
works.

5.2.1 Setting Part

From the qualitative derivative equations, we calcu-
late the constraints about derivatives and second order
derivatives of faster and slower variables as follows:

on — cOw

w

fc =
Pw = &

*n = ex(-0w)

c = 8%n—20ndw — 8w + (Bw)>.

Using these formulae, QD restriction are used to obtain
into the quantity space of qualitative derivatives:

QS(0w) = Q8(8°w) {--,+H? +H,+N,

Il

+e,+€%,---,0,- -, —€%, ¢,

—'N’ "'H$ _sz ne '}a
QS(8n) = QS(6*n) = {+e,+€%,--+,0,--+,—€?, —€},
Q8(dc) = Q8(8%*c) = {--,+H?* +H,+N,

+e,+€2,--+,0,- -, —€%, —¢,

~-N,-H,-H? - .}.

After the above settings, the given initial conditions
are propagated:Statel is an interval,where Q,R((w —
w())l) = (+N) N: “‘N)a QsR((n - nO)l) = (+N’ —&, "E)a
QsR((c — ¢)1) = (+N,—N,~N). From this initial
state,the transition process begins.

5.2.2 Transition

Using the algorithm mentioned in 4.3, we can derive the
results of gualitative analysis as shown in Table 2. Here,
we give one example: transition from state4 to stateb to
illustrate how the results are obtained.

(Transition from state4 to state5)

1. The candidates are [w — wg] : +N — H, [n — ng} :
+N — +¢, [c ~ ¢l : +€% — e*:thus firsty = {(vw -
wo)s : H),((n ~no)s : +€),((c — co)s : +€*}.

2. Calculate each arrival time: w : (H - N)/N ~ H,
n: Nje ~H, c: (e3 —e*)/e ~ €2, c are the final
candidates: mins = {((c — co)s : +&*)}.

3. Choose a variable (¢ — cp)s (then mins = {}).
Perform constraint propagation and the solution:
Qs R((w — wy)s) = (N, +€*, —¢), Qs R((n — no)s) =
(N1 *E,“ES)) QsR((C - 00)5) = (+€4a"—€a+5) are
derived. Add it to the final candidates: finaly =

{(c = co)s}-
4. mins = {} and finals = {(c — cp)s}, so go to 5).

5. Choose (¢ —cg)s ( then finals = {} ). It satisfy the
convergent condition: that is to say, for a variable
¢ and for integer i = 2,3, and 4, Ja((c - ¢)2) =




&, Ta((c = co)iy1) < € Ia((c — co)i), [e — co] =
+e*~1 and 8c < 0. Check the next transition. the
next state is ([c — ¢g], O¢c, 8%c) = (+€°, —¢, +¢€), and
the arrival time is 3. So we determines that [c —
¢o] converges at 0 and their arrival time is t, =

Egz gl ~ 2. Since t, < N, c passes c;: the state
is stored as the state 5.

6. finals = {} , so quit as succeeded.

5.2.3 The Results

The results of qualitative analysis show that three
kinds of the processes are involved. First, the amount
of water(w) increases fast and the concentration of
sodium(c) converges at the point(cy). Second, when ¢
reaches ¢y, w stops increasing. Third, ¢ passes ¢;, and
w begins to decrease slowly. The variable ¢ remains to
be in the neighborhood of ¢; only to give the driving
force to adjust remained water imbalance after osmotic
pressure is regulated. w and n decreases and,as infinite
time passes, w,n and c reach their equilibrium. First
and second process correspond to faster mechanisms in
Kuipers’s time-scale abstraction, and third process to
slower mechanisms. But our results explain the inter-
action between faster variables(w) and slower ones(n)
more clearly: while w changes quickly when ¢ — ¢y > ¢,
w changes slowly with n when ¢ >~ ¢;. Those behav-
iors clearly agrees with the body fluid regulation: if the
osmotic pressure changes a little, this change is compen-
sated mainly by renal function - slower mechanism. In
Kuipers’s time-scale abstraction, however, if "¢ =~ ¢p”,
one constraint:”c = n/w = ¢p” should be given for qual-
itative simulation; interconnection must be always given
from outside in order to simulate only the slower mech-
anism. Qur method can cope with that case correctly.

6 Discussion

We combine qualitative representation based on Weld’s
qualitative hyperreals with envisionment based on Davis’
CHEPACHET[2] and introduce e-Hranking and the con-
vergence filter with QD restriction specially for applica-
tion of our method to a temporal hierarchical system.
e-H ranking and the convergence filter give more precise
information of qualitative variables to ordinary QR. Pro-
viding some important knowledge of real numbers and
the O(M) of QD makes the envisionment more accurate
and reduces the ambiguities in qualitative values. Also it
can represent interaction between faster and slower vari-
ables more naturally than ”extra-mathematical” hierar-
chization, especially when derivatives of faster variables
converge on the O(M) of the derivatives of slower one
and extends his approach. Hence,our approach realizes
Kuipers time-scale abstraction in a more mathematical
way and extends his approach.

The limitation of this work is that this work will be
computationally expensive when faster and slower vari-
ables are not well-defined. In other words, since QD
restriction may not be applied in that case, so transition
of qualitative derivatives is not restricted as in defini-
tion 10. QUASAR cannot detect whether a given model
support QD restriction or not. To implement these au-
tomated detection is our future work.

7 Related Works

Little previous attention has been devoted to time-scale
abstraction,except for Kuipers work [6]. In this sec-
tion,we consider Al work related to temporal hierarchiza-
tion.

Weld [16] extends qualitative values to qualitative hy-
perreal numbers,and develops a program that considers
a role of one parameter in a system by comparing a nor-
mal system behavior with the exaggerated system behav-
ior. He discusses about Kuipers approach and describes
that his exaggeration can represent time-scale abstrac-
tion implicitly,whereas he does not discuss the method-
ology in detail. One may say that our QD restriction
can be regarded as exaggeration of slower variables:we
use the nonstandard analysis, and also introduce time-
scale into the quantity space of derivatives. However,QD
restriction is different from exaggeration. As shown in
Section 5, the derivative of faster variables reaches the
same order of those of slower variables. And in those
states the derivative of slower variables is not exagger-
ated any more. Hence the whole behavior can be inter-
preted as combination of exaggerated behavior and not-
exaggerated one. Original exaggeration method needs
the continuation analysis to deal with time-scale abstrac-
tion,which generates the problems discussed in Section
2. So our approach includes exaggeration about time-
scale and solve the problems of the continuation analysis
of exaggeration.

Davis [2] combines order of magnitude reasoning with
envisionment of qualitative differential equations. He di-
vides the non-standard real line into seven disjoint inter-
vals: —LARGE (infinite numbers), —MEDIUM (finite num-
bers), ~SMALL (infinitesimals), ZERO, SMALL, MEDIUM,
LARGE. He introduces variance of parameter,which is
equal to our I,(z), and time duration, which is equal
to persistent time. He illustrates quickly settling control
parameter and observes that this example is similar to
those studied by Kuipers. Our approach is also simi-
lar to his work. However, he does not discuss the cases
when derivatives of faster variables converge on the or-
der of derivatives of slower one. In those cases, the in-
teraction between faster and slower variables necessarily
appears.So, we cannot envision both of them separately.
Our QUASAR can cope with this problem and simulate
those cases much finer.

Iwasaki [4] discusses about the mixture of slower sys-




tem and faster system in a viewpoint from causal order-
ing. She regards a mixed structure M as combination of
equilibrium equations Static(M) which represent a very
short-term equilibrium description, and dynamic equa-
tions Dynamic(M) which represent slower mechanisms.
Her approach also uses pre-decomposition of the model
and deals with both systems independently. Like the
approaches mentioned above,she does not discuss the in-
teraction between faster and slower variables and the
problems about the continuation analysis.

Finally,note that our framework can deal with hier-
archization of variables’ magnitude, such as a system
which includes a subsystem of infinitesimal sustained os-
cillation. Detailed treatment of this kind of system is
our future work.
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Figure 1: Relationship between the powers of ¢

Table 2: Transition of an Example

state 1 2 3 4 (5) 6 7 8 9 10 (11
w-w] N N N N N N N N & & 0

m-n) N N N N N N N N & & 0

e—c) N & € €& 0 - -& -g -£2 £ 0

Ow N ¢ € & 0 - - - - -£ 0

on € € -€ - - - - -& -g2 g% 0

fc N € - -« - - 0 g ¢ g’ 0

0w N ¢ - - - - 0 £ ¢ g3 0

&*n £ -2 g3 gt 0 g2 2 g2 g8 e 0

¢ N ¢ € € € € € ¢ g 0

ta N N ¢ N N N H H H?
t, for state4 — stated t, =2+ 4+ =ex(1/(1—¢)) =¢?

t, for statel0 — statell

ta=1/e+1/e+...=H/e = H?
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