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Abstract

We present a theory of a modeler’sproblem de-
composition skills in the context of optimal rea-
sonzng — the use of qualitative modeling to
strategically guide numericalexplorations of ob-
jective space.Our technique,called activity anal-
ysis, appliesto thepervasivefamily of linear and
non-linear, constrainedoptimization problems,
and easily integrateswith any existing numeri-
cal approach. Activity analysisdraws from the
power of two seemingly divergentperspectives—

the global conflict-basedapproachesof combina-
torial satisficing search, and the local gradient-
basedapproachesof continuous optimization —

combined with the underlying insights of engi-
neering moriotonicity analysis. The result is an
approachthat strategicallycuts away subspaces
that it can quickly rule out as suboptimal,and
then guidesthenumericalmethodsto theremain-
ing subspaces.

Introduction and Example
Our goal is to capturea modeler’stacit skill at decom-
posing physicalmodelsandits application to focusing
reasoning. This work is ultimately directed towards
the contruction of “self modeling” systems,operating
in embedded,real time situations. This article ex-
plores the modeler’sdecompositionalskills (Williams
&~Raiman1994)in the contextof optimal reasoning—

the use of qualitativemodeling to strategicallyguide
gradient-basedandother numericalexplorationsof ob-
jective spaces.Optimal reasoningis crucial for embed-
dedsystems,wherenumericalmethodsarekey to such
areasasestimation,control, inductive learningand vi-
sion. The techniquewe present, called activity analy-
.sis, applies to the pervasivefamily of linear and non-
linear, constrainedoptimization problems,and easily
integrateswith any existing numericalapproaches.

Activity analysis is striking in the way it merges
together two styles of search that are traditionally
viewed as quite disparate: first is the more strategic,
conflict-basedapproachesused in combinatorial,satis-
ficing searchto eliminatefinite, inconsistentsubspaces
(e.g., (de Kleer & Williams 1987)). The secondis the
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rich suite of more tactical, numeric methocls(Vancler—
plaats1984) used in continuous optimizing searchto
climb locally but monotonically towardstheoptimum.
Activity analysisdraws from the power of both per-
spectives,strategicallycutting awaysubspacesthat it
can quickly rule out as suboptimal, and then guiding
the numericalmethodsto the remainingsuhspaces.

Thepower of activity analysisto eliminatelargesub-
optimal subspacesis derived from Qualitative KT, an
abstraction in qualitative vector algebra of the foun-
dational Kuhn-Tucker (KT) condition of optimization
theory. The underlying algorithm achievessimplicity
andcompleteness,by introducingtheconceptof gener-
ating pruneimplzcatzngassignmentsof linear, qualitat-
ice vector equations. This processof ruling out feasi-
ble, but suboptimalsubspacesin acontinuousdomain,
nicely parallelsthe useof conflicts and primeimplicant
generationfor combinatorial, satisficing search. The
end result is a methodthat achievesparsimoniousde-
scriptions, guaranteescorrectness,and maximizesthe
filtering achievedfrom QKT.

Finally, activity analysiscan be thought of as au-
tomating the underlyingprinciple aboutmonotonicity
used by thesimplex method to examineonly the ver-
tices of the linear feasible space. It then generalizes
and automatically applies this principle to nonlinear
programmingproblems.
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Figure 1: Hydraulic Cylinder



To demonstratethe task considerthe design of a
hydraulic cylinder, a classicoptimization problem,in-
troduced by Wilde (Wilde 1975) to demonstratethe
related techniqueof monotonicity analysis. The cylin-
der (figure 1) delivers force f, through input pressure
p. Weight is modeledas inside diameter(i) pius twice
the cylinder thickness (t), force (f) as pressure(p)
times cylinder area, and hoop stress (s) as pressure
times diameter acting acrossthe thickness. The task
is to find aparametricsolution that minimizescylinder
weight, while satisfying constraintsincluding positiv-
ity of variables(i, s, t, p,f > 0), maximumpressure(P)
and stress(S), and minimum force (F) and thickness
(T) (designvariablesarein lowercase,fixed parameters
in uppercase,and equality and inequality constraints
are labeled h~and g,, respectively): Minimize + 2t,

subject to:

s—~ = 0, (h
1

=0): T—t K 0, (g~K0)

f — ~p = 0, (h
2

= 0): p — P 0, (g3 <0)
F—f < 0, (gi <0): s—S K 0, (g4 ~0)

Given this symbolic formulation, activity analysis
uses qualitative arguments to classify regions of the
design spacewhere optima might lie and where they
cannot. After eliminating suhoptirnalregions.eachre-
maining regionidentifies the solutionas possibly lying
on the intersectionof one or more constraint bound-
aries. Each region reducesthe dimensionalityof the
problem by the number of intersecting boundaries,
thus significantly increasingthe easewith which asolu-
tion can he found. In particular, for the cylinder prob-
lem activity analysisconcludestherearetwo suhspaces
of the designspacethat could containthe optima, one
subspacein which g~and g4 becomestrict equalities,
and a secondin which all but g

4
becomestrict equal-

ities. The new problemformulation finds the optima
of the two spacesand combinesthe results as follows
(where “argmin” returnsa set of optima):

Given: vector x (lstpf)T

1. Let Y = argminx(i + 2t), subject to:

(h
1

= 0) (gi 0) (g3 < 0)

(h
2

0) (g3 <0) (g4 0).

2. Let Z argminx(i + 2t), subject to:

(h
1

= 0) (gi = 0) (g3 = 0)
(h

2
=0) (g2=0) (g4<0).

3. Return argminx(l + 2t), subject to:

x EE Y U Z.

Originally, theproblemhasa3 dimensionalspaceto he
explored (3 degreesof freedom— DOF) resulting from
5 variables,2 equality constraints. The reformulated
problemrules out the interior and boundaries,except
someintersections.Thefirst remainingsuhspacecorre-
spondsto a line (1 DOF) producedby the intersection
of thegi andg4 constraintboundarieswith theh,. The

secondremaining spaceis a point (0 DOF) produced
by the intersectionof g~,g2, g3 and the h~.Thus find-
ing a solution to the first problem involves a single.
one dimensional line search,and the secondinvolves
solving the systemof equalitiesto find the uniqueso-
lution. IJsingparametervaluesF=1000 lhf, T.05 in,
S=30000psi, T=1000 in, applying matlab to the orig-
inal problemtook 46.3seconds.The optimal solution
lies in Z, which took only 8.1 secondsto run: no feasi-
ble solution exists in Y for theseparametervalues.

Activity analysisdraws inspiration from monotonic-
ity analysis(MA) (Papalambros& Wilde 1979; Pa-
palambros1982). Monotonicity analysis began as a
set of principles and methods used by modelers to
identify ill-posed problemsandto partially solvethem.
basedon monotonicargumentsalone. Theseprinciples
were encoded in several rule-based implementations
(Azram & Papalambros1984; Choy & Agogino 1986:
Rao & Papalambros1987; Hansen, Jaumard,& Lu
1989), presentedinformally asheuristic methods.

The problem activity analysis addressesis similar
in spirit to that of MA; nevertheless, the approach
is quite different. First, activity analysisoperatesdi-
rectly on an abstraction (QKT) of the Kuhn-Tucker
(KT) conditions of optimization theory. While much
easier to apply, QKT and KT are equivalent for the
task, given only knowledge of monotonicities. Sec-
ond, activity analysis providesa precise formulation
of the problem in terms of minimal pstationary cov-
erings, that guaranteesthe solution is parsimonious,
maximizesthe filtering derived from QKT, andinsures
correctness.Finally, a mappingto prime assignments
and the introduction of a simple but completeprime
assignmentengineguaranteesthat these threeproper-
ties areachieved.

Stationary Points and Kuhn-Tucker
For a point x* to be an optimumit is necessarythat
the point he stationary, that is any “down hill” direc-
tion is blocked by the constraints. Activity analysis
exploits this fact to eliminate setsof points that can
quickly he proven to he nonstationary, using a con-
dition we call Qualitative Kuhn-Tacker (QKT). This
section introduces the optimization problem, the con-
cept of stationary point, andthe traditional algebraic
(Kuhn-Tucker)condition for testing stationarypoints.
Activity analysisappliesto the pervasivefamily of lin-
earandnon-linear, constrainedoptimizationproblems
OP Kx, f’s, h):

Find x* argmin f(x)
subject to: g(x) < 0

h(x) = 0,

wherecolumn vectorsare denotedin bold (e.g., x, x*.
g(x) and h(x)), f(x) is the objectivefunction, g(x) is
a vector of znequalityconstraintsand h(x) is a vector
of equality constraints. A point x fi 1I~” is feasible if
it satisfiesthe constraints, and feasiblespace~ U



/,Tg(x*) = or
> 0.

(KT2)
(KT3)

denotesall feasiblepoints (representedF = (g,h)). A
feasibledirection~ from a feasiblepoint is onethrough
which a non-zerodistancecan he movedbeforehitting
a constraint boundary. f(x) is decreasingat x in di-
rection ~ if 9f(x) . ~ < 0. Finally, a point is stationary
(denotedx*) if any direction that decreasesthe objec-
tive is infeasible. The Kuhn-Tucker (KT) conditions
(Kuhn & Tucker 1951) provide a set of vector equa-
tions that are satisfied for a feasiblepoint x* exactly
when that point is stationary:

o~ (KTI)

subject to

~ t.ransposescolumn vector ~s to a row. Gradients

~f, ~g and 7h denoteJacobianmatrices. 7f is a

row vector (~-.. ~). 7g and 7h are matrices

~ ) and (p—~)‘ respectively,where (a,~)denotesa
matrix whoseelement in the ith row andjth column
is a,

3
, for all i and j. For example, KT1 and KT2

are equivalencesbetweenrow vectors, and KT3 is a
relation betweencolumn vectors.

In KT1 the — ~ f term denotes directions of de-
creasingobjective from x*, the term (,\T 7 h(x*) +

~ g(x*)) denotesinfeasibledirectionsfrom x*, and
the equality says the decreasingdirections are all in-
feasible; hence, x* is stationary. More specifically, ~
decreasesthe objective if it hasa componentin the
— ~ f direction (i’. ~f < 0). A direction is infeasible
with respectto inequalityconstraint gj(x*) if x* lies on
theconstraintboundary(gj(X*) = 0) andit hasacom-
ponent in the + ~ gj(x*) direction. A direction is in-
feasiblewith respectto equality constrainth

3
(x*) if it

hasacomponentin either the —7h~(x*)or +~h
3

(x*)
direction. Most importantly, if x* lies on multiple con-
straint boundaries,then an infeasible direction hasa
componentwhich is a linear, weightedcombinationof
the abovegradientsfor theseconstraints.The weights
are ~sand ~\, (called Lagrange multipliers), and the
combination is jjT

7
g + ,\T

7
h subject to KT2 and

KT3. Hence all decreasingdirections are infeasible
when — ~ f equals one of these linear combinations
(KT1). Figure 2 shows an exampleof ~f and ~g
gradient vectors, and the combinedweighted vector,
which exactly cancels~f.

A key property of KT is that it identifies active in-
equality constraints. Intuitively, a constraint [gi] is
active at a point x when x is on the constraintbound-
ary and the direction of decreasingobjective, 7f, is
pointing into the boundary. When this is true ,is, is
positive. The basisof our approachis to conclude,by
looking at signs of js, that the stationary points lie at
the intersectionof the constraint boundaries. One or
more constraintshavebeen identified asactive, hence
the nameactivity analysis.

Vg2

w~s1Vg1÷ti2Vg2

Figure 2: Examplegradient vector dkgram for KT.

Qualitative KT Conditions
Qualitative KT (QKT) is an abstraction of KT that
is a necessary,but insufficient., condition for a point
being stationary. It is the means by which activ-
ity analysisquickly rules out suboptimal suhspaces.
Qualitative properties used by QKT to test a point
x include whethereachconstraint is active at x. and
the quadrantof the coordinateaxeseachgradient7f,
~g and ~h lies within. Thesepropertiescan be ex-
tracted quickly andhold uniformly for largesubsetsof
the feasiblespace, and parameterizedfamilies of op-
timization problems. QKT, its proof (see (Williams
1994)), and manipulations by activity analysis rely
on a matrix version of SRi — a hybrid algebracom-
bining signs and reals. This algebrabehavesas one
expectsgiven a familiarity with (scalar) sign algebra
and traditional matrix algebra (see (Williams 1994;
1991)). Derived from KT, QKT states that a feasi-
ble point x* is stationaryonly if (QKT1):

[~f(x*)] + [\]T [v~i(x*)] + []T [7g(x*)] U OT,

subject to

[is]T[g(x*)1 = O~and (QKT2)

(QKT3)

where [v], calleda sign vector,denotesthesignsof the
elementsof v, such that [i’4 ~ {i, 0, 4-}. Recall KT
said that to he stationarytheremust exist a weighted
sum (~)of 9g and ~h that exactlycancels7f (note
s~is a row vector). QKT saysa point is nonstatiori-
ai-y unless there exists a ~ that lies in the quadrant
diagonalfrom that which contains~f. For example,
in figure 2 ~‘f lies in the upper left quadrant; thus,
a ~ must exist that lies in the lower right. The sign
vector [v] denotesthe quadrantcontaininga vector v,
andeachcomponent[v~}describeswherev lies relative
to the i, = 0 plane. For example,[~]= ( 4-
indicatesthat ~ is in the lower right. Using this alge-
braic representation,the condition on diagonalquad-
rants becomes—[~f]= [~].

Using only knowledge of the quadrant each con-
straint’s gradient lies within and whether each con-
straint is active (indicatedby thesignsof the lagrange

Vgl

Vf

Vgl
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Expanding matrix operations for step 3 results in

equationsQKT1( 1)-(5):

multipliers [~~}and [~\]), we know from KT that the
quadrants~ may lie within are a subspaceof those
described by [~]T[

7~
]± [\]T[Vh}. Thus, —{~f]=

{~]ç [~j]T[
7

g] + [\]1 [~h] (i.e., QKT1). For example,
in figure 2 since ~g (= ( -1- 4- )) lies in the tipper

right and 9g~(= ( )) lies in the lower left, it
is possiblefor a~ to lie in the lower right; thus, anyx
satisfying theseconditionsmaybe stationary. But sup-
pose7g~is replacedwith ~ which lies in the upper
left for points in somesubspaceFl C F. Then ~ may
lie in the tipper or lower left, but not the lower right;
thus, all points in .T1 must he nonstationary.That is,
evaluating—[~f]= [~]T[

7
g] for Vgi andthen 7g~:

(~ K) c(~ ~) =(~ ~)(t +)but

(~ K) ~(K •~) =(~ ~)(I ±)

It is this secondtype of conclusion, made from only
qualitative properties, that activity analysis uses to
eliminatefeasiblesuhspacesof nonstationarypoints.

Next, to instantiateQKT1 on optimizationproblem
OP (x,f,g,h):

1. Compute Jacobians~f, ~g and 7h by symbolic
differentiation.

2. Computesignsof Jacobians.For eachelement,

(a) replacereal operators with sign operators,using
properties [a + b] C [a] + [b], [ab] = [a][b], [a/b) =
{a]/[b] and [—a] = —[a].

(h) Substitute for sign variables [a] using positivity

conditions ([a] = 4-), and performsign arithmetic
(e.g., [5] ~ 4-, (~)±(~)~ -).

3. ExpandQKT1 by expandingmatrix sumsandprod-
ucts.

Returning to the hydraulic cylinder problemfrom the
introduction, recall that x is the vector (itfsp)T, the
objective f(x) is i + 2t, andthe constraint vectorsare:

h = (~—~ f_n~p),

g = (F—f T—t p—P s—S )~T

The following shows {7h] after steps2a (middle) and
2b (right):

/ .±t ~t~jIiJ_ 0 Iii .Ltii~
I J.~1 — {2][t} [2I[tl~ L I [i][t]
LV — [

2
)[P] 0 [1] 0 []2

— (1 4- 0 4- U
— ~K 0 4- 0 -

Repeatingfor [~f]and[7g], and insertinginto QKT:

O
T

(~)T

o C (+) —[.s~j— [A
3~

(1) 0 q I~’.i] + [.‘iI ~Ti
o ç U-) — [53] + [~~ fl ° c [~~]— [“d — [.\3] (5)

o C -[sj]±[A~[ (3)

Note that the computation of sign matrices in step
2 is extremely simple, hut suprisingly adequatefor
manyproblems. The symbolic algebrasystemMinima
(Williams 1991) provides a general tool for deducing

thesignsof sensitivities(e.g., [~~] ) subjectto x sat-

isfying theequalityandinequality constraints. Having
achievedan easilyevaluablecondition that is sufficient.
for testing the suboptimality of infinite suhspaces,we
turn to its usefor strategicallyfocussingoptimization.

Activity Analysis and Prime
Assignments

Activity analysisreducesan optimization problem to
a set of simpler subprohlemsby “cutting” out feasi-

ble suhspacesthat are suboptimal. These subspaces
contain all and only those points that are provably
nonstationaryby QKT (see (Williams 1994)). The
output of activity analysisis a concisedescription of
the remainder,called a minimal pstationary covering
(“p-” standsfor “possible” according to QKT). It is a
set of feasiblesubspaces(andcorrespondingoptimiza-
tion problems),at least one of which is guaranteedto
contain the true optimum. What is key is that the
descriptionsare parsimonious,they maximizethe “fil-
tering” achievablefrom QKT, and are always correct
(these three propertiesare theorems,statedprecisely
in (Williams 1994)). This section statesand demon-
stratestheactivity analysisproblem,anda sound and
completesolution algorithm. The core is a mapping
betweenminimal pstationary subspacesand prime as-
signments,and a generalprime assignmentenginefor
arbitrary systemsof linear sign equations.

To start we say a point is pnonstatzonaryif it fol-
lows from QKT that it is nonstationary; otherwise,
it is pstationary. A feasiblesubspaceis pstatzonary
if all its points are pstationary, and pnonstationary
if all its points are pnonstationary. Activity analysis
maximizes its use of QKT while preservingcorrect-
ness by eliminating exactly the pnonstationarysub-
spacesfrom its descriptionof the feasiblespace. This
description is built from a set E whose elementsre-
sult from strengtheningoneor more of the inequality
constraintsgj < 0 to strict equalities g, = 0; that
is, E is the powersetof constraintboundary intersec-
tions. The description (called a minimal pstatioriary
covering), covers the pstationarypoints by collecting
all pstationarysuhspacesthat are maximal under su-
perset. Thesecover every pstationarysuhspace.The



activity analysisproblem is then: given optimization
problem OP = (x, f, g,h) and instantiation of QKT
(=QKT(OP)), construct the minimal pstationary cov-
ering C’.

Mapping QKT(OP) to C relieson two observations:
First, from QKT2 (~[p.2(x)I[g,(x)] = 0) it follows that

= + — g,(x) = 0 (denotedRI). That is, any
point where [,u~] = + must be on the gj = 0 constraint
boundary. Thus, when activity analysisshows that a
suhspaceof pstationarypoints makes[u,] = 4- for one
or more g~’s,it concludesthat these points lie along
the intersectionof the gj boundaries. Second,a par-
ticular set of variable assignmentsfor QKT1, called
prime (implicating) assignments,directly mapsto the
minimal pstat.ionarycoveringby applyingthe first ob-
servation. The key here is that achieving parsimony,
maximum filtering andcorrectnessreducesto generat-
ing completeprime assignments.

The following properties.statedinformally here,are
given asdefinitions and theoremsin (Williams 1994).
First, a (partial) assignmentto [x] is a set a which as-
signs each [r,] at most onevalue,a C {[x,] = s [xi] ~
x, s fi {—, 0, +}}. We are interestedin the consistent
assignmentsto QKT1, where the [x] to be assignedis

a vector of lagrangemultipliers ([~]T[,\]T)T. Addition-
ally, the consistent assignmentsmust also satisfy the
restriction of QKT3 ([~i} � —). Note that each con-
sistent assignmentC hasacorrespondingsubsetS of
feasiblespace,produced by applying Ri to the assign-
ment andthen adding the resulting active constraints
to theoriginal constraintset. S has the property that
everypoint in S satisfiesC.

Next, an implicating assignmenty is a consistentas-
signmentto QKT1, suchthat wheneveranextensionto
-y satisfiesrestriction QKT3, it also is consistent with
QKT1. That is, assignment~y implies QKT1 under
restriction QKT3. An implicating assignmenthas the
important property that everypoint in its correspond-
ing suhspaceS satisfiesQKT. Thus S is a pstationary
suhspace.

Finally, a prime assignmentP is an implicating as-
signmentno propersubsetof which is alsoan implicat-
ing assignment.Thus P’s correspondingS is a maxi-
mal pstationarysubspace.Conversely,every maximal
pstationarysubspaceis the correspondingsubspaceof
someprimeassignment.Thus thesetof suhspacescor-
respondingto all primeassignmentsis a minimal psta-
tionary covering.

To produceall primesfor QKT1, our prime assign-
ment enginefirst computesthe primesP~of eachscalar
equation in QKT1, then combines them using mini-
mal set covering. Pulling this all together,the activity
analysisalgorithm is:

Given problem OP = (x, f, g, h):

1. InstantiateQKT1 (given earlier) —* QKT1(OP),

2. Compute prime assignments P, of each
QKT1,(OP) E QKT1(OP),

3. Computeminimal set coveringof P, P, deleting
inconsistentassignments,

4. Extract minimal setsof [j~,] = 4- assignmentsfrom
P * U,

5. Map eachelementof U to a maximal pstationary
subspaceby applying ~u,(x)] = + gi(x) = 0,
producinga covering.

6. Formulateand return a new optimization problem
from this covering.

Steponewasdemonstratedin theprevioussection. For
steps two and threewe not.e that QKT1 is an instance
of a linear system of sign equations(denotedL([xfl)
and solve the prime assignmentproblemfor arbitrary
L([x]). That is, L([x]) in vector form is 0 C [B] +

[A][x], with [A] and [B] beingsign constantmatrices,
[x] an n vector, [A] an n by in matrix and [B] an
in vector. The ith scalar equation of L({x]) (denoted
L~([x])) is of the form:

L,([x]) 0 C [b~]+ ~[a,~] [r~].

j=i

For QKT1, xT is (jsT,\T)T, [B] = {~f], and [A] is
the matrix (7g 7h). Additionally, we generalizethe
set of restrictions given by QKT3 (i.e., (a,] ~ —),
to arbitrary sets of restrictions R([x]) C {[x,] �
sjx~fi x,s ~ {<,0.-~i-}}. For the cylinder (table,
end of QKT section), QKT1 has 5 L~([x])’s, with

X (y~
11521

j
31

j
4

,\
1

,\
2

)T For easeof readingwe wrote
terms -I-[x~] as [xj], <[xi] as —[xi], and eliminated
terms 0[n~J.The cylinder R([x]) is {[,ai] � —, [/i~]~

� -~[~]� <}.
For step2, theprime assignmentsof eachL,([x]) are

constructed from three sets of scalar assignments, con-
sistent with R([x]): thoserestricting one of theequa-
tion’s terms ([aj~][xj]) to be positive (P,) those mak-

ing a term zero (Z,), and those making a term negative
(N,), respectively:

[au] [a~~]~ 0, ([~~ a~,]) ~

{[x~]=0~[a~,]~0, ([xi] ~0)~R([xl)}and

N, {[~] -[a~] [a~,]~ 0, ([xi] ~ -[a,~]) ~ R([xD}.

Justifying P,, for example, we know in general that
[c] ~ 0 [c]

2 = 4-. Thus [a~j][x] = 4- if [~v~]= [a,
3

]
and [a,3] ~ 0. The derivation of Z, and N, is similar.
Constructing the prime assignmentsfor the cylinder
L~([x])uses:

5, P 1
1 [Ad = ~,[A

2
] = ~ [A

1
] = 0,[A

3
] = 0 Ui] = ~.[-‘i[ =

2 [Ad = ~-,[~] = .i. (A
1

] = 0,[~,] = 0 [
5

i] =

3 [A
2

]=.-,[
51

]=.)- A
2

=0,
51

=0 [A
2

[.[.
4 [A

1
]=- .51=0,54=0 [A

1
].].,[

54
]=.).

5 (A
1

] = .].,[A,] = -)- A
1

= 0,A~ = 0, [A
1

] = ..,[A
2

[ = —,
530

Next, recall that the prime (implicating) assign-
ments for L,([x]) must imply L5([x]). That is, they
guaranteethat it holds, given R( [x]), independentof



[b~]= 4-, then the right handside mustbecome?.This
holds exactly when at leastone of the [a~

1
][x~]terms

is negative (since 0 C (U) + (4-) = ?). For example,
in thecylinder QKT equation(2), .\i = — guarantees
that the equationis satisfied. The only other assign-
ment that guaranteesthis is ,u~= 4-. Thus the prime
assignmentsfor (2) are = —} and~ = ±}. The
treatmentof [b~]= U is analogous.

Next, suppose [b~] = 0. then to imply L,([x}) the
prime assignment can make the right hand side either

0 or 2. The first holds exactly when all terms are 0.
The second holds when at least one term is positive

af(X)
and theother is negative. For example, —~-— = 0 in
cylinder QKT1(3) : 0 C —[~s~]± H]. Thus, the prime
assignmentsare {‘\~ = 0,~si= 0} and{~= +,ysi =
4-}. Note that {~= U, = —} is not acceptable,
since by restriction [,i.~,] ~ —. To summarize,theprime
assignmentsof L,([x]) are 1) N, if [b~] = +, ~) P~
if [b~] = <, and 3) {Z

5
} U {{p, n}Ip e P, n fi NJ if

[b~]= 0 (wherep and n in {p, n} do not contradicteach
other). Completing step two for the table of cylinder
equationsQKT1(i) - (5) produces:

{~\l = 4-}, {~2 =

= U}, {~2=

= 0,~ = 0} ~ = 4-,~ =
{~i = 0,~ = 0}, {~\~= ~ =

= 0,.\~= Oj53 =

{~i = 4-, ~ = ~, } {~i = 4-, ~ =
= —,:13 = 4-}, ~ = 4-,1~3= 4-} P(5)

The third step, constructing the composite primes
for L([x]), is based on:

V (Aa)aA( V (Aa))
pEP(L([X])) aEp i=1 pEP(L,([X[)) aEp

The left handside is a disjunctionof the L([x]) prime
assignments,and the right hand side is an expression
in terms of the primesof L

2
( [x]), just computed. Thus,

the desired primes result from reducing theexpression
on the right to minimal, disjunctive normal form. For
this specialized case, this step is equivalent to comput-
ing minimal set covering of the P(L,([x])) and then
removing inconsistent assignments(seea standardal-
gorithm text, or (Williams 1994) for our algorithm).
For the cylinder, the minimal covering of P(l) - (5)
producesjust two prime assignments,

{{[~J = —‘ H] =+, [i~]=+, (a4} =±}, -
{[A

1
1 = 0,[.\i] = +,[~~]= +,[~~] +, [~]= +,[~] = 0}}.

The fourth step, extracting the minimal sets of (a,] =
+ assignmentsresults in {[js~] = +, [yo~] = 4-} and

{[isil = +, (az] = +, (as] = +}. The fifth step uses
[j~,] = + g,(x) = 0 to map these sets to the equiv-
alent minimal pstationarycovering. The sets tell us
that gj and g4 must be active, or a,., a, and g

3
. The

resulting cover is:

F
1

a ({g2,go},{hl,hi,gl,g
4

}) and
F2 a ({g

4
},{hi,hi,gi,gi,g

3
}),

where (g, h) is a spacedefined by inequality g and
equality h constraints. F

1
andF3 denote the lile and

point highlighted in the introduction to the cylinder
example. The final step, formulating a new optimiza-
tion problem, produces:

Given: S a {x* x* = argminx~xf(x),F E
Find: minx€g f(x).

The first part finds the minimum of each subspace in
the covering. The second part selects from these the

global minimum. A more expandedform was given
ifl tile introduction. Thus through this example we
have demonstrated activity analysis’capabilityof par-
tially solving constrainedoptimization problemsfrom
monotonicity constraints, andfor synthesizingspecial
purpose optimization codes.

Discussion
As we mentionedin tile introduction, activity anal-
ysis builds upon a large body of work from tile me-
chanicalengineeringcommunityon monotonicityanal-
ysis(Wilde1975; Papalambros& Wilde 1979;Papalam-
bros 1982), a method that uses derivative informa-
tion to address tile bouridedness and global optimal-
ity of optimization problems. Monotonicity analysis
providestwo rules that test the houndednessof a for-
mulation:

Rule 1: If the objectivefunction is monotonic with
respectto a variable, then there exists at least one ac-
tive constraintthat houndstile variablein thedirection
oppositeof the objectivefunction.

Rule 2: If a variableis not containedin the objective
function then it must he either bounded from both
aboveand below by active constraintsor not actively
boundedat all (i.e., in the latter caseany constraint
that is monotonic with respect to that variable must
he inactive or irrelevant).

Both of theserules can he derived from the Kuhn-
Tucker Conditions. They also follow asan instanceof
QKT andare embodiedwithin activity analysis.

The result of monotonicity analysis (exhaustiveap-
plication of the rules) are several sets of constraints
one of which must he active for a problem to he
well hounded. Various levels of rule-based imple-
mentations of monotonicity analysis have been de-
scribed in (Michelena & Agogino 1988; Rao & Pa-
palambros1987;Azram & Papalambros1984; Hansen,
Jaumard,& Lu 1989), whichguidenumericaloptimiza-
tion codes. Choy andAgogino (Choy Jr Agogino 1986)

additional consistent assignments.This is true if the
right hand side of L, ( [xJ) is guaranteedto beasuperset

of 0 (i.e., it is either 0 or ?). The form of the assign-
ments that achievethis for someL, ([x]) depends on the

value of [b~J,where [b,] = [~_]for QKT1. Suppose

P( 1)
P(2)
P(3)
P(4)



andAgogino and Almgren (Agogino Jr Almgren 1987)
incorporatesymbolic algebraicmethods to aid in the
evaluation of monotonicitiesand the solution of the
optima. CaganandAgogino (CaganJr Agogino 1987)
apply monotonicity analysis to identify topological
changesto designs that improve performance. While
thesesystemsaddressthe optimal reasoningproblem,
they do not present algorithms proven to he sound
andcomplete(eachof theseimplementationshasbeen
describedas “heuristic” (Rao Jr Papalambros1987;
Hansen,Jaumard,Jr Lu 1989)).

Activity analysis provides the following contribu-
tions: it formalizesthe strategic.way in which a mod-
eler focusesoptimization. as the processof generat-
ing minimal pstationarycoverings. It introducesQKT
as a powerful condition for quickly eliminating large,
suhoptimal subspaces. Finally, it exploits this con-
dition through a novel problem reformulation based
on the prime, implicating assignments of linear sign

equations. Tile activity analysisalgorithm is sound
and completewitll respect to classifying the design
spaceinto pstationaryand pnonstatiOllarysubspaces.
The method of pruning suboptimal suhspacespro-
vides a continuous analog to the conflict-based ap-
proachesprevalent in combinatorial satisficingsearch
(such as those used in model-based diagnosis (de Kleer
Jr Williams 1987)). Activity analysisautomatestile in-
tuitions about monotonicity exploited by the simplex
method to examine only the verticesof thelinear feasi-
ble space,most importantly, extendingits application
to nonlinearproblems.

Activity analysis hasbeen demonstratedon several
engineering problems. The implementation is in Franz
Lisp running on a Sparc 2. The problem reformulation
is passed to Matlab’s Optimization toolbox, where a
wide variety of nonlinear gradient methodsareavail-
able. (Williams 1994) describesan extensionto ac-
tivity analysisfor caseswheremonotonicitiesare only
partially known. Activity analysisis currently being
pursued in the context of visual 3D matching prob-
lems andotherembedded,realtime problems.Activity
analysis can also be extended to provide explainable
optimizers, ones that use QKT to provide common-
senseexplanationsabout optimahty. Activity analy-
sis is one of several techniquesbeing developedthat
capture a modeler’sexpertiseat strategicallyguiding
numericalcodes.
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