
On-Line Diagnosis of Dynamic Systems based on
Qualitative Models and Dependency-recording Diagnosis Engines

Abstract
Dynamic systems impose an inherent complexity on simulation
and diagnosis tasks. In particular, dependency-based diagnosis
engines perform extremely bad on models of such systems. Put-
ting these diagnosers on-line is a necessity from the application
point of view, but a quite ambitious goal in view of previous
attempts in this direction .
Understanding dynamic systems in terms used by the qualitative
reasoning community and making use of the distinction between
intea-state and truer-state constraints allows us to make a major
step towards a satisfying solution.
Inter-state constraints are motivated by the continuity of physi-
cal variables and the direction of (the) time (arrow) . Previous
authors, e.g . [131,[141, and [161, have unconditionally assumed
that predictions across time, i .e. inter-state constraints, are
necessary for diagnosing dynamic systems. The key insight,
however, that enables us to diagnose a large class of dynamic
systems efficiently is that inter-state constraints often need not
be checked for thepurpose of consistency-based diagnosis at all!
We identify sufficient conditions about models, observability,
and faults for this result .
Based on this idea we employed a technique for caching and
temporally generalizing inferences to build a new diagnostic
engine, Magellan-MT . It is capable of diagnosing dynamic
systems at multiple times but at the computational cost of static
systems. Magellan-MT requires qualitative models to fully
exploit these computational advantages.
We present empirical results from an application on ballast tank
systems that are used on ships and offshore platforms .

1 . Introduction
Over the last twenty years the electronic revolution has
turned everyday products such as copiers and cars into
networks of computers. Various bus systems allow using
the same sensor reading at multiple places and help coor-
dinating e.g . motor, brakes, and gearbox . By 1992, a typi-
cal high end car already contained 50 microcontrollers, 25
control units and had 500ICB memory on board. Despite
decreasing costs far "silicon-based" hardware the auto-
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motive electrical and electronic systems are estimated to
make up more than 20% of the car production value by
the year 2000.

1.1 Diagnosis Needs Everywhere
Although the electronics are needed for additional control
features for e.g . meeting low emission standards, the
system `car' as a whole has become more vulnerable . A
sensor, for example, which was not needed in the pre-
electronic era, now provides information that is crucial
for the operation of the vehicle . If it breaks, the motor
might simply stop. Therefore most controllers contain
surprisingly complex diagnosis (and repair) software . To
a certain extent a controller recognizes faults in its envi-
ronment and even takes compensating actions . A missing
sensor reading, for instance, may be suspected to be
caused by a broken connection . As a repair action the
controller may estimate a value based on other available
data. For a standard motor controller hand-coded heuri-
stic knowledge of this kind makes up 40% ofits software .
The apparently inevitable trend towards more complex
systems is clearly visible in the automotive industry but
by no means limited to it. The need for diagnosis arises
everywhere in the technical domains . The extremely large
number of variants (not only in the car domain) makes the
hitherto common approach to providing the required
diagnosis and repair software obsolete. A better treatment
of the problem is needed . A possible new candidate tech-
nology is model-based diagnosis.

1.2 Diagnosis and Monitoring
Successfully deploying model-based diagnosis systems
far complex technical devices ranging from cars and
copiers to chemical plants etc . ultimately
" requires an on-line coupling with the artifacts via

senses and actuators and
"

	

an integration of monitoring and diagnosis phases .
Monitoring means tracking the system and signaling



deviations from expected behavior. Diagnosis means
identifying faulty parts . An integrated system interleaves
monitoring and diagnosis . It e.g. switches back from diag-
nosis to monitoring mode interpreting the measurements
coming from the sensors under the hypotheses that the
identified components are broken.
Consider figure 1 taken from an application on ballast

Figure 1 A ballast tank system

tank systems ([91) . A collection of ballast tanks of various
sizes is placed at different locations on ships and offshore
platforms . Depending on load, wind and sea motion,
water is pumped into or out of some of the tanks or the
sea. A leaking valve is normally tolerated in this context.
After localizing the fault a truly intelligent supervision
system would probably mark the valve for inclusion in the
routine repair schedule and then continue monitoring, but
know about the leaking valve .

1.3 The All-Components-Included Conflict
Syndrome
Dynamic systems have an inherent complexity for (simu-
lation and) diagnosis tasks. The system state at later tunes
depends on system states occurring before . Predicting the
behavior of a dynamic system means making predictions
about future values of system variables . This apparently
inevitable characteristic makes it difficult for depen-
dency-based diagnosis engines to diagnose dynamic
systems well .
The success of diagnosis systems in the GDE tradition
rests on the use of dependencies recorded by some truth
maintenance system (TMS). Dependencies recorded for
every predicted value of the system variables allows tra-
cing back contradictory derivations to their origins. This
enables diagnosis engines such as GDE ([81), GDE'
([201), Sherlock ([71, [51), DDE ([111, [121), and others to
first identify conflicting assumption sets and then to gene-
rate diagnoses .
Keeping track of dependencies across different times,

however, quickly accumulates large sets of involved
components because of global feedback effects across
time . For this reason the straightforward application to
the diagnosis of dynamic systems fails . The assumption
sets underlying detected discrepancies are too large, and
hence, not very informative. This, for instance, happens
with the approach described in [141 . In the extreme they
contain almost all components in the device. Then the
information in them reduces to `there is something wrong
with the device', or equivalently `any component(s)
could be faulted' . In such cases the various dependency-
based diagnosis engines which perform so successfully
on static systems will generate huge sets of candidates
which represent nothing more than this information .
Where is the way out? Can dependency-based diagnosis
systems deal with dynamic systems efficiently?

1.4 Solution
One solution is to provide for extensive observations and
to guarantee enough readings so that most of the global
feedback loops can be broken. This is the route taken in
[3l, [2] . and certainly appropriate in the case of analog
circuits in the laboratory. In the field and on board,
however, the cost of required sensors would be prohibi-
tive. The general and economically much more intere-
sting question of how to diagnose well
"

	

on-line, even on-board (!), and
"

	

under limited observability
is addressed here .

Our approach is based on just one critical insight that
questions the relevance of predicting future values of
system variables for the purpose of consistency-based
diagnosis. In the ballast tank application and for a large
class of models of dynamic systems all relevant faults
can be diagnosed without considering so-called inter-
state constraints at all. These constraints describe the
space of admissible (qualitative) state transitions. Far a
lot of physical system models the origin of these cons-
traints lies in the continuity of physical variables over
time' and the direction of (the) time (arrow) . A physical
system, however, - even a broken one - neither can
reverse the flow of time nor can it violate continuity of
physical variables. Therefore, checking these constraints
is needless from the viewpoint of consistency-based diag-
nosis! The rest of the paper shows how this idea is put to

1 . By a continuous physical variable we more precisely mean a rea-
sonable function over time as defined in [151 which essentially is a con-
tinuously differentiable function .



work

Section 2 introduces the distinction between intro-state
and inter-state behavior and shows how it is exploited for
diagnosing dynamic systems . Section 3 sketches our
approach to an integrated diagnosis and monitoring
system. In section 4 we present a summary of extended
truth maintenance functionalities that allow for temporal
indices and temporal generalization ([10]) . The next sec-
tion shows how we use these techniques to extend our
diagnosis framework for static systems ([1], [11], [12]) to
a more general one which is applicable to dynamic
systems. Finally, in section 6 we present empirical results .

2. Diagnosis of Dynamic Systems
2.1 The Ballast Tank Model
Ballast tank systems like the one in figure 1 can be
modelled using variables for the height of water in the
tanks, the pressures at their bottoms, the flow and pressu-
res in the pipes, the pressure before and after the pump
etc. In [9] the complete models can be found. There are
two remarkable facts about this system and its model that
are of interest here:
" reduced observability. only a small subset of the

variables can be measured, e.g. by the pressure
sensors at the tank bottoms
dynamics: at any given time the partial information
given by the measurements can be completed by
applying component models locally. The future
development of the system, however, is additionally
determined by knowledge that is not represented in
the component models . It consists of

knowledge about the direction of (the) time (ar-

row) and
knowledge about the continuity of physical varia-
bles. We come back to this point later.

2.2 Global Feedback Across Time
The straightforward application of standard dependency-
based diagnosis engines, e.g. Sherlock ([7]) or GDE+
([20]), to this system model requires that every inference
based on the system model is recorded as a justification
(expression) in some TMS. When the predictive engine
uses the component models to complete the partial des-
cription of the system state at time t as given by the sensor
readings it produces a constant stream of justifications
submitted to the TMS. Likewise it submits justifications
when future values of system variables are predicted . It is
exactly this latter step that results in global feedback

across time . It drags down the performance in terms of
accuracy of diagnosis (because confllicts are too large
and, hence, the set of diagnoses is indiscriminate) and
wastes computational resources.
Long chains of inference originating at some component
C and at same time t; will eventually lead to (new) values
of system variables connected to the same component C,
but the (new) values hold at time t ; +1 ! The term 'feed-
back' refers to the fact that component C now has
become part of a loop . Tbese loops tend to encompass
large parts of the system because predicting a future state
(with low ambiguity) out of a current state (even in the
case of qualitative simulation) requires an almost com-
pleted current state .
Viewed in temporal terms the loop becomes a spiral . A
component model, say ok-C, is used at time t; and then
again at ti,, along one and the same inference, i.e . justifi-
cation, chain.

Figure 2
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There is some confusion in the diagnosis literature sur-
rounding the notion of `feedback' . The authors of e.g.
[14], [3], [2], [13], and [16] are not very clear in that
respect. The confusion seems to be caused by not distin-
guishing between the assumptions made at different
times . The assumption that C is working correctly at time
y is different from the one about C working correctly at

If this distinction is not made, the spiral - in as far as
the tracking of underlying assumptions is affected - col-
lapses to a loop (and brings us back to square one, i .e . the
all-components-included conflict syndrome).
In the ballast tank application we have found - by making
the above mentioned distinction - that all of the faults
(classified relevant by a shipbuilding company) can be
detected and located based on conflicting assumption sets
each of which has a single common time index ti . This
means that

discrepancies between expected and observed
behavior show up at one time index (interval or
point) and that
they contain enough information for localizing the
faults .

This could be just a lucky accident in our application.
The following considerations, however, show that we are



actually dealing with a larger class of dynamic systems or
more precisely their models.

2.3 Understanding Dynamic Systems in
Qualitative Simulation Terms
At any time a physical system is in some state that can be
described qualitatively . Each system variable takes on a
qualitative value which is constrained by the qualitative
values of other variables . These restrictions are given by
intra-state constraints. An example is Kirchhoff s current
law ; the sum of the flows into a node is zero. But not only
algebraic equations, also differential equations are allo-
wed.

Inter-state constraints, in addition, make restrictions on
the way the system will develop over time, i .e . which
transitions to other qualitatively described states are
admissible . For example, a physical variable like the pres-
sure at a tank bottom cannot change its value in discrete
steps . I It must change continuously visiting every real
value in between . When the qualitative abstraction of a
physical variable is considered, the real number line is
divided into a set of qualitative values, i.e. points (so-cal-
led landmarks) and open intervals in between ([151) . The
physical variable can only change its qualitative value by
switching to adjacent values . Suppose the domain of the
pressure variable was divided into qualitative values
`low', `medium', and `high' and landmarks Ll and L2
defining the borders between them. If the pressure is cur-
rently `low', i .e . in the interval (0, Ll ), and keeps increa-
sing, then its next qualitative value is the landmark Ll ,
then the interval (Ll,I.2), i .e . `medium', etc .
In this way each of the qualitative variables is restricted in
its future development. Of course, the future qualitative
state of a system is further constrained by physical laws
and the system description that were expressed as intra-
state constraints .
This is the basis for a variety of (qualitative) simulation
algorithms . They alternate between consistency-checking
of states (intra-state constraints) and successor-state gene-
ration (inter-state constraints) . For instance, the basic
QSIM algorithm ([151) takes a partial description of an
initial qualitative state and completes it using intra-state
constraints. It generates potential successor states by
inter-state constraints which are then checked and com-
pleted by intra-state constraints again. And so on . In

1 . Obviously, we are not dealing with ballast tanks and similar devices
on the level of quantum mechanics

QSIM inter-state constraints are called P- and I- transiti-
ons . They encode the knowledge about admissible transi-
tions depending on whether the current state is associated
with a time point (P- transition) or a time interval (I- tran-
sition) .
Mathematically speaking, inter-state constraints use the
intermediate value theorem and the mean value theorem.
There is nothing more in them than the assumption that
physical variables behave reasonably (as e.g. defined in
[151), which essentially means that they are continuously
differentiable functions over time .
Numerical simulation is based on the same assumption .
The generated successor state is, however, unique and the
consistency checking of intra-state constraints is built
into it's construction.
Naturally, no physical system will violate this assump-
tion . One must, however, be aware that models of physi-
cal systems can do so!
In the light ofthis analysis the results obtained in the bal-
last tank application become less mysterious . A broken
system behaves like a broken system all of the time, alt-
hough

a fault may not be visible all of the time because the
conditions under which the system operates do not
expose the malfunction all of the time (think of the
FDIV bug in Intel's Pentium) and

"

	

afault may be present but produce discrepancies that
lie in the future. An example is a potentially
overflowing tank. Unless somebody (maybe an
automatic controller) stops the pump, the tank could
overflow.

Under sufficient assumptions, in both cases the fault will
be detected (and diagnosed) when the situation occurs,
i.e. with intra-state constraints only . Extending diagnosis
and monitoring algorithms so that they can wam about
and analyze potentially occurring malfunctions that lie
ahead is an interesting perspective .

2.4 The Scope of the Approach
From the application we can abstract assumptions that are
sufficient to diagnose with intra-state constraints only:
"

	

A control system pre-processes sensor information,
deals with noisy data, and computes qualitative
information, e.g . signs, about derivatives of
measurable variables .

"

	

The time between snapshots is small compared to the
evolution speed of the physical system .



"

	

Sensors provide measurements all the time, not only
sometimes ; if the measurements are distributed
sparsely over time, there is not much that can be done
with intro-state constraints alone. It is not required,
however, that all variables be measured .

Observations provide a partial view of the system state.
As in the static case, observability, model granularity, the
degree of completeness of the predictive engine, and the
class of relevant faults interact. If a coarse model is used,
faults may be indistinguishable from normal operation .
An incomplete predictor may fail to detect discrepancies .
The set of available observations may be insufficient to
reveal the manifestation of a fault. These individual
deficiencies can be compensated by strengthening other
contributors, e.g . a more complete predictor, more obser-
vations, or a finer model. Whether or not the selected
setup suffices also depends on the set of relevant faults.
Therefore,

available observations, model, and predictor must be
sufficient to significantly limit the set of consistent
states with respect to the relevant faults . Note, that it
is not required that the system state be uniquely
identified within the system's total envisionment .

Furthermore, we have assumed that
"

	

the models of the system are similar to the ones used
for qualitative simulation .

At first glance this appears to be aminor restriction. After
all `qualitative differential equations' can be obtained
more or less directly from the conventional differential
equations describing physical systems. However, for the
devices we ultimately want to diagnose, discrete event
type models and hybrid models of various sorts including
models of actions are of interest, too. For example, most
of the controllers in these devices can be described as
finite state machines. Wrong transitions are physically
possible in these contexts . This means that at least some
faults will only be detected by considering data about the
transient.

2.5 Why does it work ?
Observations and intro-state constraints determine a set of
admissible states rather than a single one. And this set can
be large. After all the problem with dynamic systems is
that they have memory and only partial information about
their states is available. The intro-state constraints only
check whether the current system state occurs in the
system's total envisionment .
The on-line coupling provides further restrictions . Initi-

ally, the physical system is in a known state . Assume that
the system in a fixed condition, ok or faulty in some par .
titular way . Its further development is guided by the
inter-state constraints .
Only a very limited number of adjacent states (allowed
by the inter-state constraints) exist . No physical system
that falls under our modelling assumption can arbitrarily
"jump" to another state. Therefore . the system state as
seen by the monitoring- and diagnosis-system provides a
narrow focus. Within this focus the intro-state constraints
- altoough they appear to be very weak - suffice to iden-
tify the relevant faults .
Please, note that in the above argumentation we have
adopted the non-intermittency assumption ([17l) . The
physical system, however, may not be in a fixed state but
may "flip" between different fault or ok modes . This
would result in different sets of diagnoses at different
times . In section 5 we show how the non-intermittency
assumption can be exploited in our framework.

3. Integration on Monitoring and Diagnosis
3.1 Monitoring as Diagnosis without
Discrepancies
We use qualitative models for both, diagnosis and moni-
toring:
"

	

For consistency-based diagnosis engines they prove
to be especially useful ; more detailed models become
obsolete, when a qualitative abstraction of them has
been refuted ([19]) . There often is no need to explore
further details.
For monitoring only significant deviations from
normal operation are of interest. Using a qualitative
model for a component's normal mode, one can
capture the complete set ofgood behaviors instead of
just a single one . Even more important, faulty
behavior which depends on unknown parameters
such as the size of a leak, the position of a hole, or
the deviation from a given frequency can be
described qualitatively as significant deviations from
good behavior.

When no discrepancies between observed and expected
behavior are detected, the empty diagnosis is computed
meaning that every component is working as expected.
With this in mind, we can view monitoring as `diagnosis
without discrepancies' ; the monitoring engine is nothing
but a diagnosis engine that operates in `idle mode'.
The purpose of models for monitoring and diagnosis,
however, is substantially different. While the former are



only needed to detect malfunctions, the latter must have
enough detail for localizing malfunctioning components.
Diagnosis systems like DP ([191) and Magellan ([1]),
however, can use multiple models of different granularity
during one and the same diagnosis session. Their diagno-

sis process starts with coarser models that are suitable for
monitoring, too .

3.2 Speed-up by Caching Inferences is
possible
For on-line coupling prediction, i.e. the application of the
system model, is necessary at the rate of incoming data.
Speed is ofprime interest . Ideally, consistency should be
checked at the sampling rate of the sensors .

Suppose we are monitoring a running motor. Incoming
real values are fast mapped to their qualitative abstrac-
tions, and then fed into the prediction machinery . This we
can afford to do every, say few seconds, depending on the
cost for running the model . Using qualitative models, not-
hing changes most of the time in qualitative terms, since
different real values are mapped to the same qualitative
value . Even if a monitored variable changes its qualitative
value this most often has very limited effects on the other
system variables . Therefore, we end up making more or
less the same predictions every few seconds while we
would like a higher sampling rate and do new predictions
only .
Likewise the generation of diagnoses, now an integrated
part of the monitoring phase, is carried out over and over
again although a conflicting assumption set identified at
one time is often re-discovered at other times. The set of
diagnoses at a given time, however, only depends on the
detectable discrepancies at that time . Most of them may
have been detected previously .

For both, prediction and diagnosis candidate generation,
caching of inferences pays off.

4. Our Kind of Caching: Prediction Sharing
Across Time and Contexts
With respect to time the system description SD, observa-
tions OBS, and mode assumptions rI fall into two diffe-
rent classes . The system description is temporally generic
in the sense that it describes behavior independent of the
specific time at which it takes place. Observations, wor-
king hypotheses and mode assumptions, however, may
change their truth value over time. Therefore, instead of
re-doing inferences based on the system description, we
can factor out the relevant computations (and do them
only once!) by caching inferences made for a specific

time and generalizing them to other times .

We start from statements like proposition a holding at
time t;, a@a ti, which we call temporally indexed state-
ments.
Definition : The temporal extent of a, TE (a),

denotes the set { t; I a holds at ti 1 .
Delays for consequences are not of interest for diagnosis
based on intra-state constraints only . It follows immedia-
tely that the derivation of a can be generalized from the
single time index t; to sets of time indices .
Definition : Aset GS ofnon-universally holding formulas
is called ground support for ~ iff there exists SD' c SD
such that SD' U GS 1= ~ .

Lemma: If GS is a ground support for ~ then

n Wa)9W~)
a E GS

This means we can generalize a derivation of ~ at a speci-
fic time ti to the intersection of temporal extents of 0's
support . Whenever all the propositions in GS hold at
some t; $ tj we know without re-deriving 0 that it holds at
tj , too.
Definition : For thosepropositions athatmay occurin the
ground support of derived formulae we introduce
symbols TEQ to represent TE(a) . These propositions a
are exactly the propositions for which temporally indexed
statements are available, i.e. observations and mode
assumptions. Symbols like TEQ are called temporal base
symbols. Using these symbols each atom is labelled with
a unique symbolic representation of its temporal extent
(temporal label) like e.g .

TL(O) - { { TEall, . . .,TEa1n1 , . . ., {TEaml' . . .,TEa.

The similarity to "logical" labels in the ATMS ([41) is not
accidental . In [101 we show how the ATMS both, serves
as a vehicle for computing temporal labels, and allows
integrating logical and temporal labels .

There are two principal entry points for statements with
mixed, temporal and logical, context information.
" On a basic level we can capture logical context

information by using justifications like
AA B A t17 -N EXT - TEa

where A and B are logical assumptions and t17 is an
assumption related to a specific time . Consequently, the
logical label as defined in [41 is
I.L(EXT-TEa ) = [[tt7, A, B1,_1 .
The symbols EXT -TEa are created for each TEa . to

r

denote the extensional description of times and logical



contexts where the individual TEQr hold .
"

	

On the level of recorded problem solver inferences
logical assumptions, say A and B, are added to the
antecedents : A n B A al A . . . Aan -4 P

The temporal labels then are relative to the logical con-
text.
Besides the symbols TE., ("normal") logical assumptions
may appear in the labels, and TL(O, O) now is called
temporal label of 0 under logical assumptions O.
The theorem below from [10] relates labels as computed
by the ATMS to temporal labels under assumptions.
Theorem : Let TBS be the set of temporal base symbols,
TBS-ASSM 9; ASSM be the subset of ATMS assumpti-
ons corresponding to temporal base symbols,
LY. TBS-ASSM -4 TBS be the bijective mapping that
associates assumptions with the symbols they were
created for and O be a set of logical assumptions .
Then TL(O, 0) =
{ le'I e E E t'1 TBS-ASSM A e' = Y(e)} I

E E LL(O) A (E\TBS-ASSM) c 01

There is a two stage approach to answering queries. The
evaluation is done relative to the logical context specified
as part of the query .

Lemma: ~ holds at ti under assumptions 9 iff 3 S s e
{t.} USE

	

U

	

n

	

LL~EXT-TE
tenv E TL (0, 8) TE, , . E ten,

5. Diagnosis at Multiple Times

5.1 The Static Diagnosis Framework
In [11]and [12] we introduced a static diagnosis frame-
work that we use as a starting point for our multiple time
framework . With the approach to consistency-based diag-
nosis proposed in [6] we share that two basic elements of
the logical theory are
"

	

the behavior model of the system (SD) represented as
sets of formulas, and

"

	

a set of observations of the (broken) system's actual
behavior (OBS).

In contrast to [6] we introduced
"

	

a set of possible working hypotheses (WHYP), i.e .
retractable assumptions suited to simplify the
reasoning process, such as "sensors reliable", "single
fault only", "non-intermittent-faults-only" or
modeling assumptions ([19]),

"

	

a set of different, mutually exclusive behavior modes,
modes(q),

	

for

	

each

	

component CiE COMPS,
represented as propositional atoms. Accordingly, SD

can contain models of several component faults
which are associated with the respective modes .
There is an unknown mode which has no model
attached to it and, hence, can never be refuted .
apartial order on the modes of each component,
z 5; modes(C) xmodes(Ci),
expressing differences between the modes such as
the frequency of occurrence, likelihood, or criticality.
We call this a preference . The correct behavior mode
is the most preferred and the unknown mode the least
preferred one.

Diagnosing a system means finding out what is wrong
and which components work properly, which translates
into appropriately assigning exactly one mode to each
component . We represent such mode assignments as sets
of modes:
rl= {mji(C) I GE COMPS1
where mk(Cj)En A mi(C i )E II =* k=1 .
Preferences among modes induce a preference order on
mode assignments :
For n=1mji(C3)) and

n' = lm;i(G)1 rI Z rf:t* vi mji(Ci) 2m;i(G).

The preferred diagnoses are the most preferred mode
assignments that accord with the system description, the
observations, and working hypotheses:
Definition :

	

(Preferred Diagnoses)
Let w 9;WHYP be a set of working hypotheses .
A mode assignment rl is a diagnosis under w, iff SD u
OBS u w u rl is consistent. rl is a preferred diagnosis
under w iff no other diagnosis under w is strictly
preferred over it For all diagnoses n' under w:

II'zn =:> II'=II

Default logic ([18]) allows characterizing preferred dia-
gnoses . Preferences among component modes are trans-
lated into defaults. If e.g . the component mode mj(C-) of
component Ci is preceded by modes prej(C) :_
[mk(Ci) I mk(Ci)>mj(Ci)1 then the default

- mk(ci): mj(ci) / mj(ci)
Mk(o)En{o;)

controls the assignment of mode g(C) in the intended
way.
Theorem : Let D=ldefij ) be the set ofpreference defaults.
n is a preferred diagnosis under w iff Cn(SD u OBS
u w u n) is a consistent extension of the default
theory (D, SD u OBS u w).



5.2 The Multiple Time Diagnosis Framework
For the temporal extension towards multiple times (points
or intervals) it suffices to identify the system description
and (most of) the working hypotheses as temporally gene-
ric formulas whereas observations and assumptions about
modes depend on the time when they are made and when
they apply, respectively .
Definition : (Preferred Diagnosis at Time t)
Let w c:WHYP be a set of working hypotheses. A mode
assignment II is a diagnosis at time t under w, iff SD u

OBS@tuw vn@t is consistent where OBS@t is the set
fa@t I aEOBS and t is the time at which the observation

holds) and 17@t is the set {m@t I ME II and t is the time

for which diagnoses are considered 1 . II is a preferred

diagnosis at time t under w iff no other diagnosis under

w at time is strictly preferred over it.

The purpose of the time parameter is to select observati-
ons made at time t and modes applicable at time L This is
a very limited use of time . Therefore it is not surprising
that the characterization of preferred diagnoses at time t
can be done in a way similar to the static framework . In
analogy to the temporal extent of a proposition we define
the temporal extent of a diagnosis.
Definition : The temporal extent ofa diagnosis II under
working hypotheses w, TE(II w), denotes the set It; III is

a diagnosis at time t ; under w I
Theorem : Let D=1 defii ) be the set ofpreference defaults

indexed by time t, i .e. defaults of the form
A -, mk(C;)@t : ml(Ciwa t l m1(C,)@t

-k(c;)E r-;(G)

rI is apreferred diagnosis at time t under w iff
Cn(SD V OBS@t V w V II@t) is a consistent exten-
sion of the default theory (D, SD u OBS@tu w).

The characterization of preferred diagnoses in [111 lends
itself to an efficient implementation (see [121). Preferred
diagnoses are computed by submitting a set ofjustificati-
ons related to the defined preferences and assumptions
about componentmodes to the ATMS. After doing so, the
logical label of a certain proposition (D represented in the
ATMS characterizes the preferred diagnoses (for details
see [111) . With the introduction of temporal labels as
shown in section 4, the same proposition's label now not
only characterizes the preferred diagnoses but also their
temporal extenL
Lemma: Let (D be theATMS node whoselabel characteri-

zes the preferred diagnoses as in [111 and let TBS-

ASSM 9-= ASSM be the subset of AIMS assumptions
corresponding to temporal base symbols .
Then II is a preferred diagnosis at time t under wor-
king hypotheses w iff 3 S 9w
{ti} US E

	

U

	

(1

	

LL( EXT - TEQ
tenv E TL (¢, w) TE4. E teav

TE (rI, w)

A II s Cxt([t; v S1) where Cxt([y v S }) denotes the
set of atoms in the deductive closure of { t i u S I
(as computed by the ATMS).
The temporal extent of a diagnosis II under working
hypotheses w is

U

	

n TE(a)
EE LL (4~) AEnWHYP9WAII9 -. Cxt(E)TE0..E EnTBSASSM

5.3 Diagnosis across Different Times
The non-interminency assumption as discussed in [171
can be treated as a working hypothesis about component
modes . When at some other time, due to changed system
variables, a component could be presumed innocent or
operating in a different preferred mode, the non-intermit-
tency assumption restricts these possibilities . It provides
a link between modes at different times . Consequently,
either the current or the diagnoses at other times might
change . Since we are, however, monitoring the artifact
"on board" from the start of its operation, we shall neces-
sarily be noting a switch from ok mode to fault mode
when a malfunction is detected. Therefore, it is crucial to
apply the non-intermittency assumption to fault modes
only . Otherwise, we would have to classify the ok-mode
of the component as intermittent.
When the working hypothesis 'non-intermittent-faults-
only' has been introduced, simply stating for fault modes

mk(C) that
non-intermittent-faults-only

d(ti E TW)

	

: (mk(Cl)@ti HMXI)W+11

suffices . TW is a window of time indices that controls
over which time period the non-intermittency assumption
is enforced . By the implication above, the modes are now
effectively "locked" over this period. It is important that
the non-intermittency assumption is not in effect during
prediction . Otherwise, we would be introducing global
feedback effects again through this back-door. Prediction
is therefore done as before. This means that during one
prediction run conflicting assumption sets (conflicts) will
still be indexed by a single common time index.



The conflicts discovered over the period TW are taken
into consideration by activating the non-intermittency
assumption during diagnosis candidate generation . Addi-
tionally, all of the time indices ti E TW (i.e . assumptions
from the TMS viewpoint) are put into focus . The prefer-
red diagnoses in the time window TW are then given as
the preferred diagnoses at every i E TW .
Definition :

	

II is a preferred diagnosis in the time
window TW under working hypotheses w iff
`d (t i E TW) : II is a preferred diagnosis at t; under w.
Theorem : Let the non-intermittency assumption be in

effect in the time window TW.
rI is a preferred diagnosis in the time window TW
under working hypotheses w iff II is a preferred diag-
nosis at some ti E TW under working hypotheses
w u fnon - intermittent - faults - only) u TW

6. Empirical Results
Figure 3 shows a typical distribution of run time and of
necessary new predictions for the monitoring case . The
important point is the strict alignment between the two . In
[101 we report experimental results on different device
configurations . All these experiments show similar pat-
terns. In the beginning the prediction cast (run time) is
substantial. No previous predictions have been cached
and every possible derivation has to be done explicitly .
Later on when a number of variables change their quali-
tative value, prediction cost increases but does not reach
the initial cost. Without prediction sharing run time is in
the range of the initial cost all of the time! We are gaining
a lot by inference caching . The results for the integrated

P New Predictions

Figure 3 Monitoring the 3-Tank system from figure 1,
considering 10 differenttestvectorsoccuring atmost 10
times . Prediction time for first timepoint: 3 .04s, average
for additional timepoints: 0.21s

diagnosis & monitoring system are similar . There are,

Figure 4 A diagnosis scenario in the ballast tank system
from figure 1 . A double fault is diagnosed while
the tanks are filled. At t2o a first fault is
encountered. The second, overlapping fault (a
leaking valve) becomes visible at about tl7o

however, additional peaks in the run time distribution
(diagnosis time!) when the artifact exhibits faulty beha-
vior, i.e. diagnosis becomes necessary. When a diagnosis
has been determined, no extra diagnosis time is needed at
later times unless a new fault is encountered in the scena-
rio data. Figure 4 again shows an alignment between the
curves. The linear increase of run time (vs . new predic-
tions) is caused by apoor implementation of a focus swit-
ching routine. In principle, new predictions and runtime
should be parallel curves .

7. Conclusions
Work on a theory of modeling for diagnosis has begun
only recently (see e.g . [191) . As we try to cover larger
application classes we will need a variety of modeling
formalisms and languages . A careful analysis of them is
needed from a strictly diagnosis pointofview. Otherwise,
the straightforward combination of modeling schemes
and diagnosis engines will most likely lead to non-satis-
fying results both in terms of accuracy and efficiency .
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