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Abstract: One of the main objectives of qualitative
physics is to derive the behavior of a system from the
description of its components and their interrelation-
ships. Observation of the problems that qualitative
simulation techniques present, motivated us to study
physical systems from a different perspective, their an-
alytical solutions. In this paper we present a frame-
work to reason about dynamic systems, and its imple-
mentation, called NumGen. This framework, based
on the properties of the analytic solutions, produces
descriptions of the behavior of systems that fall into
this category. The set of possible behaviors, can be
connected in a graph representing how changes in the
parameters of the system correspond to changes in its
response. abstract

1 Introduction
Quantitative Physics models a system in terms of Or-
dinary Differential Equations (ODEs). It discards
causality for the sake of conciseness. On the other
hand, explanations found in textbooks and classrooms
describe the interactions between the components of
the system in terms of cause and effect, paying little
or no attention to the precise values of parameters.
There have been several successful efforts in trying to
derive qualitative behavior from structure. De Kleer
and Brown [DB-90] model physical systems in a rep-
resentation that captured causality and allowed rea-
soning about change. They developed the concepts
of confluence (Qualitative Differential Equation or
QDE), qualitative state, a qualitative version of cal-
culus, and a reasoning framework (envisioning), based
on confluences. Williams proposed a technique that
performs large signal analysis of a mechanism de-
scribed by confluences [W-90]. Forbus describes physi-
cal situations as objects and processes that affect them
[F-90]. Kuipers presents an alternative to the idea of
qualitative simulation and implements it in a system
called QSIM. QSIM’s representation is based on con-
straint equations, derivable directly from the differen-
tial equations that govern the mechanism [K-90].
Kuipers’ work has been a reference to establish com-
parisons with many works in the field. Nevertheless,
it has several drawbacks. The local nature of the anal-
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ysis performed in QSIM gives place to the production
of spurious behaviors. Ambiguity arises due to the
presence of negative feedback loops, as a result of the
lack of additive inverse of the sign algebra. Also, as
pointed out by Kuipers et al [K-91], the derivatives
of certain variables are only constrained by continuity
(an intrinsic property of the model), leading to an ef-
fect known as chattering. Ambiguity and chattering
are translated into an intractable branching factor in
the behavior tree.

This leads to the following problems when using
QSIM. If you limit the number of nodes to be pro-
duced, the tree is so wide, that you will not get very
far in the simulation, missing all the important de-
tails. On the other hand, if you do not, the number of
nodes produced increases rapidly and with them the
number of spurious behaviors. The difference between
those behaviors is sometimes so subtle that it is hard
for the user to perceive it. The user is unable to distin-
guish between a real and a spurious behavior. QSIM’s
graphic capabilities are very limited; if we know that
responses to dynamic systems are either sinusoidal or
exponential, why draw them as straight lines?

These observations motivated us to search for a bet-
ter solution. In this paper we present a framework
for reasoning about dynamic systems represented as a
linear ordinary differential equation with constant co-
efficients. Given an nth order system, we want to gen-
erate descriptions of all possible qualitative responses.
Then for each response, we want to generate an in-
stance of a quantitative nth order equation that ex-
hibits that qualitative behavior.

A question may arise: Why are we trying to solve
this problem apparently limited in scope? Many im-
portant problems in engineering, and physics, can be
expressed in mathematical terms by means of a lin-
ear ordinary differential equation with constant coeffi-
cients. On the other hand, linear differential equations
that do not have constant coefficients, and non-linear
equations can be reasoned about if we apply linear
transformations and decompose them into piece wise
linear approximations of the original equation.

The rest of this paper is organized as follows. In
section two, the mathematical background about lin-



ear ordinary differential equations with constant co-
efficients is presented. We follow the approach of
exploiting available mathematical knowledge prior to
transforming the problem to a qualitative form [S-92].

In section three, we present a Qualitative Analysis
of the responses of systems governed by this kind of
differential equations. Section four gives the bases to
generate numerical examples and plot the response.
Section five mentions a couple of questions that are
being investigated. The last section proposes future
work, compares NumGen with other systems, and
presents the conclusions.

2 Linear Ordinary Differential Equa-

tions with Constant Coefficients
As mentioned before, linear ODEs with constant coef-
ficients are the most studied kind of differential equa-
tions; they have complete analytical solutions. Also,
there is a good number of problems that can be de-
scribed by this kind of equation, and more compli-
cated cases can be reduced to one or several of these
equations.

In this section, the theory of solution of linear ODEs
with constant coefficients, and a qualitative interpre-
tation is presented. The facts presented in this sec-
tion are the basis for the framework developed and
presented in the next section.

Consider the homogeneous nth order ODE given in
equation 1.

d™z(t) dr1z(t) dz(t) _
T U g +aaz(t) =0
(1)

where ag, ..., a, are real constants.

The solution represents the behavior of the system in
response to the forcing function and initial conditions
X(0), X'(0), ..., X™(0).

It is quite natural to think of an exponential function
as a candidate solution to that equation. Substituting
z = e in equation 1 and factoring e™ yields equa-
tion 2.

e (apr™ +ayr™ N 4+ an1r+an) =em2Z(r) (2)

z(t) is a solution of equation 2, for those values of r
that satisfy the characteristic equation. i.e. the roots
of polynomial Z(r). The general solution of equation 1
is of the form:

z(t) = cre™ + .- + cpe™! (3)

We can see that the natural response of an nth or-
der system, is the sum of n exponential terms. One for
each root of the characteristic equation of the ODE. If
it has positive roots, the system is unstable, otherwise,
it is stable. If the roots of the characteristic equa-
tion of the ODE are all real, the system’s response is
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non-cyclic. If the characteristic equation has complex
roots, they come in conjugate pairs, in which case,
the general solution is still of the form of equation 3,
only that each pair of complex roots (r + iw) becomes
an exponential sinusoidal function. This property is
known as Euler’s identity.

CrelmHiwlt 4 Coelmr—)t = ¢™( A, coswt + Az sinwt)
. (4)
So, if we restrict the kind of systems we are to ana-
lyze to those that can be expressed by an nth order or-
dinary differential equation with constant coefficients,
we know the kind of responses we are to get. We can
express the behavior of a system in terms of the ex-
ponential and sinusoidal components in the response.
We define

En(t) = Z aie™* (5)

1<i<n

as a summation with at most n exponential terms,
and

ES.(t) = Z a;e" ! sinw;t (6)

1<i<n

as a summation of exponentially decreasing sinu-
soidal functions. Noting that we are not interested in
giving analytical solutions to the differential equation,
but a qualitative description of its behaviors. That is,
the kind of qualitative shapes that responses to equa-
tion 1 can have.

Theorem 1 Given a system of order n, the response
can be ezpressed as in egquation 7.

X(t) = En,(t) + ESp,(t) (7

where nj+2n, = n. This result is evident from equa-
tion 3, equation 4, and the definitions of equation 5
and equation 6. This general form of the responses to
this kind of dynamic systems will be called High Level
Qualitative Description (HLQD).

We see that if the second term of equation 7 does
not exist, the response will be acyclic. Otherwise, it
is a sinusoidal wave, where E,,, (t) represents its axis
or attractor, and ESn,(t) its sinusoidal components.

Note that of we include a forcing function, the sys-
tem’s response would be decomposed into Natural (the
solution to the homogeneous equation) and Forced re-
sponses. If we restrict the forcing functions to be of
the form e*'sin Bt (i.e. constant, exponential, or si-
nusoidal), the forced response always has the same
qualitative form as the forcing function [BD-65]. This
would preserve the qualitative form of the response,
and only add one more exponential or sinusoidal term
to the response.



3 Qualitative Analysis of the Response
The HLQD of the response represents a family of func-
tions. If we want to be more precise and give a better
characterization of the responses, we need to study
how E,,(t) and ES,,(;) behave.

A study of exponential functions has taken us to the
following conjecture. A function f(t) = Eg,(t) has
at most n; places where f'(t) = 0. What this says
is that the number of peaks (maxima and minima,
including the zero when ¢ — oc) cannot be greater
than n — 1. That is, the qualitative shape of E,, (1)
depends on the order of magnitude relations between
its coefficients and exponents. For example, figures 1,
2, and 3 show all possible qualitative shapes of E3(t)
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Figure 2: E3(t) reducing to E(t)

As we can see, the possible different behaviors of

Figure 3: E3(t) presenting the maximum number
of peaks

function. Assuming all the decay rates and ampli-
tudes are comparable, the important parameters to
determine the qualitative shape of the response are
the frequencies.

If we order the n; frequencies of ES,,(t), we can
form a vector of order of magnitude relations among
its components. These will determine the different
qualitative shapes that the function can have. For in-
stance, for ES(t), the possible order of magnitude
relations between the two frequencies are w; < ws,
wy ~< wg, and wy = we. The first case can be seen
as the faster sine mounted on a slower one. The sec-
ond one, where the two frequencies are very close but
not equal, creates a beating response. The third case,
where both frequencies are equal, reduces to a single
sine response, i.e. ES;(t). Figures 4, 5, and 6, show
the three cases.
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Figure 4: ES(t) presenting two mounted sines

E,(t) are the behaviors of all E;(t) (for 0 < i < n),
(with ¢ maxima/minima).

ES,,(t) is a summation of ny exponentially decreas-
ing sinusoidal components. We can also derive reduc-
tion rules for this kind of functions. For instance, if
the decay rate of one component is too high, or its
amplitude is too small, this component becomes neg-
ligible, and the result is a reduction in order of the
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In general, the frequency vector for ES,,(t) can be

expressed as in equation 8:

w ©;, wr 9y, ...

Wn-1 9,-“_, Wn

(8)

where ©;; can be any of =, ~<, or <. These opera-
tors have the same meaning as the operators =, ~<,



IM% |

-50
-75
0 5 10 15 20 > 30
Figure 5: ES;(t) presenting two beating sines
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Figure 6: ES;(t) reducing to one sine
and << ---— <, mentioned in [M 87], for a parameter
e=0.1.

The mounting and beating relations that the dif-
ferent sine components may have, can be explicitly
stated, to give a more intuitive meaning to the fre-
quency vector. In that way, n > 2 frequencies related
by the operator ~<, could be represented as nB, and
n frequencies related by the operator < can be repre-
sented as nM. A sequence of n frequencies related by
the equality operator, =, collapse into a single element
(i.e. the summation of n sines of the same frequency
can be expressed as a single sine). For instance, the
vector wy < wy ~< wy < wy can be represented as
1M 2B 1M. This means the sine with the fastest
frequency w4 is mounted on the next two, that are
beating, and the result is mounted on a single sine.
As we see, the notation is read from right to left. Fig-
ure 7 shows a graphical example of a function that
presents those characteristics.

The total response of a dynamic system can be seen
as a pair, whose first element is a number that rep-
resents the number of exponential terms in the re-
sponse, followed by the frequency vector, expressed in
the above M B notation.

231

10 15

Figure 7: A function that
(1M 2B 1M) characteristic

presents the

4 Numeric Example Generation

In the previous sections, we have characterized the
possible responses to a time invariant dynamic sys-
tem. This description may not be adequate for users;
they would rather have a graphical description of the
expected responses. One idea is to give a qualitative
plot of the response. The other idea, and the one pre-
sented here, is to generate an example of a numeric
function that exhibits the desired qualitative behavior
and plot it. Since the response has exponential and si-
nusoidal components, E,(t) and ES,(t), we will treat
them separately.

For any given qualitative behavior, the conditions for
the parameters of ES,(t) are clearly stated. Therefore
we can produce a numeric vector of frequencies that
keeps the same relations of order of magnitude. We
start with a unit frequency (the slowest) and produce
the rest of the vector according to the following rules:

wp ~<wp = wyfwr=1.1
w <wy D> wyfwp =4

That is, two frequencies need to be very close to-
gether to beat, and, by observation, a factor of 1.1
makes two frequencies beat. If two sines are to be
mounted, it would be convenient to have at least four
complete periods of the fast mounted on the slow one,
so that the user can see the variations more clearly.
This also preserves the order of magnitude relations
proposed in [M 87] for a parameter e = 0.1. The
amplitudes and decay rates of the sines are generated
randomly, in ranges from 1 to 5 and —0.1 to —0.2,
respectively. These values were chosen so that the
waves do not vanish before the interesting features of
the sines appear.

The necessary order of magnitude conditions that
guarantee that an exponential function E,,(t) will
show the desired characteristics have not been so pre-
cisely defined. Nonetheless, some relations among
them have been established well enough to generate

9



the desired functions in an iterative way.
If we consider the terms of En(t) = 3, <;<, aie™
ordered from slowest to fastest rate of decay:

1. The sign of the amplitudes must alternate
(ie. [ai] # [@is1])-

2. The
absolute value of magnitude a;, must be greater
than the absolute value of the summation of the
previous magnitudes (i.e. | a; [> 3, ;< a5)-

3. The effect of the ith term must be negligible at
the time of the first zero of the function of the i;st
terms. See figure 8.
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Figure 8: Inclusion of the 1st term to E3(t)

The first two conditions are easy to satisfy, since
they are clearly stated; but the third one is not. To
ensure the produced function has the desired qualita-
tive properties, we will not only enforce the number
of maxima/minima, but will make the function alter-
nate around zero. The procedure starts with a decay
rate of —.1, and a randomly generated amplitude. We
double the decay rate, generate a random amplitude
that preserves conditions (1) and (2), and check if the
function presents a new zero between ¢t = 0 and the
time of the last zero. If it is not the case, the de-
cay rate is doubled again and again, until a zero is
produced.

Finally, we put the two components together. For
example, if the desired response is ((E1)(2B)), the
system generates the function shown in 10, which is
shown in figure 9.

20 | 7.635sint
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So, we can show the user all qualitatively different
responses to the system at different levels: the HLQD,
the M B notation, and a plot of the numerical exam-
ple.

We can go a little further than that. If we have a
numerical example of the response of the system, we

6.205sin 1.1¢

e (10)
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Figure 9: Plot of example of ((E1) (2B))

(r +0.05)
(r +0.01525 + I)(r + 0.01525 — I)
(r +0.01555 + 1.11)(r + 0.01555 — 1.11)

(a) The factored characteristic polynomial
0.0605262X (9 + 1.21392X (14

0.178591X () 4+ 2.2145X (3 4
0.1116X™ +0.1116X®) + X(®) =0

(b) The differential Equation

Figure 10: Generation of a differential equation for a
numerical example

can generate the differential equation that produced
that response. The decay rates and frequencies of the
response are the components of the roots of the char-
acteristic equation. With the roots, we form the fac-
tored polynomial, expand it and have the characteris-
tic equation, whose coefficients are the coefficients of
the differential equation.

For the example above, the factored characteristic
equation and the resulting differential equations are
shown in figure 10.

The generated function, equation 3, is the actual
solution to the differential equation. Thus, to know
the initial conditions, we just obtain its derivatives
and substitute for ¢ = 0. The result for this example
is shown in figure 11

We have shown how to derive all possible qualita-
tive different responses for a time invariant system of
order n and how to generate a numerical example of

X (0) = 20, XM(0) = 13.4605,
X®(0) =0.395141, X©)(0) = —15.8861,
X“(0)=097935, X©)(0)=17.5905

Figure 11: Generation of the initial conditions



a system that exhibits that behavior.

This framework has been implemented in Allegro
Common Lisp, interfacing with Mathematica [Wo-
88] to do some mathematical manipulation and plot-
ting. The implementation (called NumGen), has been
tested on a number of examples.

5 Current Research

In this section, we present the topics we are currently
investigating at this time, as well as several interesting
questions that still need to be solved. The first one
deals with differential analysis, the second with the
recognition of qualitative features and system design.

In the previous sections, based on the properties of
the analytic solutions, we showed how to produce de-
scriptions of behavior of time invariant systems. The
set of all possible behaviors can be connected in a
graph to represent how changes in the parameters
of the system correspond to changes in the response.
Differential Analysis answers these questions such as:
If the system is generating qualitative behavior QB;,
what kind of behavior is obtained if a; increases (i.e.
da; = +)?. Note that the changes in the response can
be either qualitative (i.e. the new response has a dif-
ferent shape), or quantitative (i.e. the new response
has the same shape, but different amplitude, decay
rate, or frequency).

In a behavior transition graph, the nodes will rep-
resent the different behaviors and the arcs the pos-
sible transitions among them. The frequency vec-
tor indicates what are the possible changes a re-
sponse can have. For example, for the vector
wy < wp < ws < wy (corresponding to 4M), if a given
frequency changes, let us say w, decreases, the only
possibility is that w; and w; get close enough to
beat, that is wy ~< ws < w3 < wy (corresponding to
2B 2M). Further reduction in w- leads to equality be-
tween w, and ws, reducing this term to 3M. Thus the
arcs of the transition graph are labeled by the kind of
changes that produce them, and since those changes
are reflexive, we only indicate the parameter whose
change produces the transition. Figure 12 shows the
total envisionment graph for ES(t), where frequen-
cies are altered. Note that big changes in frequencies
are accounted for by continuous small changes.

A similar analysis can be produced for the exponen-
tial part of the responses. All possible changes in all
the parameters generate the neighboring nodes to the
one in question.

An important issue arises here. The frequencies and
decay rates of the different components correspond to
the location of the roots of the characteristic equation
in the complex plane. We do not want to express the
transitions in terms of parameters that we are not al-
lowed to affect directly. It would be desirable to tag
the arcs with conditions on the coefficients a; of equa-
tion 1. The question is how to map changes in the

233

Figure 12: Behavior transition graph for ES4(t)

coefficients to changes in the parameters of the solu-
tions? In this discussion, we will talk about changes
in the coefficients, understanding that changes in the
initial conditions can be accounted for in the same
way.

We are considering qualitative behavior QB;, and
want to tag the arcs of the graph with changes in
the coefficients of the differential equation. To ac-
complish that, we can generate a numeric example
of a differential equation that exhibits qualitative be-
havior @B;, then modify each coefficient by a certain
amount and observe the result. When we modify a
coefficient, a slightly different differential equation is
obtained, which may exhibit a different qualitative be-
havior. To obtain this behavior we solve it (i.e. factor
the characteristic equation to find the parameters of
the new solution). The form of the solution can be an-
alyzed and its qualitative shape determined (i.e. how
many exponential terms does it have? how many si-
nusoidal terms? are they mounted, or do they beat?,
what are their amplitudes?, etc.) and compared with
the original response.

If both responses have the same qualitative shape,
we tag the arc from QB; to QB; with confluences, in-
dicating the changes in ai and the resulting changes
in any parameter. For instance, if a, increase in as
resulted in a decrease in the frequency wy, this would
be expressed as dasz + dwy = 0. We understand this
confluence is unidirectional, that is, ag can affect wy,




but not vice verse. If the change on a; takes us to a
different behavior @B;, we tag the corresponding arc
from QB; to @B; with the change in the coefficient.
This transition is reflexive, that is, if da; = + trans-
forms QB; into @B;, the opposite change da; = —,
would transform QB; into @B;.

Unfortunately, a simple change in a coefficient a; can
produce changes in several parameters of the response
(i.e. more than one frequency, or amplitude). More
work is needed on this problem.

Another area we are investigating is the development
of an algorithm to determine qualitative characteris-
tics from a quantitative representation of the response
of an unknown system (possibly generated by physical
measurements). In obtaining the qualitative shape of
the response, we need to verify what orders of magni-
tude are present among the different parameters, and
convert those relations into the M B notation. With
the qualitative properties of a numerical observation,
we know what kind of components are present in the
response. If we know the components of the response,
we already illustrated how to design a quantitative
differential equation that exhibits a similar behavior.

An interesting question is how to design a physical
system that could be modeled by a certain differential
equation. That would complete the design phase. An
important detail here is that the relation from phys-
ical systems to differential equations is many-to-one.
So we would need to find a way to design components
and their interactions to produce the desired model,
or have a library of physical systems of different or-
ders. In any case, it would be interesting to determine
order of magnitude relations on the system parame-
ters that would produce the desired characteristic in
the response.

The first part allows us to reason about how changes
in the system impact the response. The second part,
to reason in two directions: producing all possible be-
haviors of an nth order system, or to design a system
that exhibits a given behavior.

6 Conclusions

One of the main objectives of Qualitative Physics is
to derive the behavior of a system from its structure.
We propose a framework to reason about dynamic
systems, and discuss its implementation, NumGen.
NumGen, given an nth order system, generates de-
scriptions of all possible qualitative responses. Then
for each kind of response, generates a quantitative nth
order equation that exhibits that behavior. NumGen
expresses the response at two levels of abstraction. At
the high level of abstraction (HLQD) the response is
expressed in terms of qualitative descriptions of ex-
ponential and sinusoidal functions. At the low level
(the MB notation), a function is described by a the
characteristics its components may present.
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This framework can be compared with previous
works in the field of qualitative physics.

QSIM’s system representation [K-90] is more gen-
eral; in NumGen we trade this generality for more
specific descriptions of the response. This trade off is
reflected in the replacement of monotonic relations by
proportionalities. By using global knowledge about
the overall shape of the response, instead of the lo-
cal transition table given in QSIM, we eliminate the
production of spurious behaviors. Also, the numeric
example generator allows us to yield a more accurate
graphical description of the response.

Compared our work to that developed by Schaefer
[Sc-91], we see he solves a wider range of problems.
But his representation is less precise; it only includes
an abstraction of how the frequency and amplitude of
the response change with time. NumGen represents
the response at both high and low levels.

Sacks work [S-85] is probably the one that yields the
most complete form of response. He derives an analyt-
ical expression for the response (for systems solvable
by the Laplace method) and then describes it in an
interval based representation. An important feature
of NumGen is that it does not have to do any alge-
braic manipulation on the equations, and still yields
an acceptable form of description. In solving the dif-
ferential analysis problem, we do use some algebraic
manipulation (or numeric simulation).

There are still some problems to be addressed:

e For second order systems, the relation between
system parameters and differential equation coef-
ficients is clear and intuitive. For higher order
systems, the differential equation coefficients are
functions of the various physical system parame-
ters. At this point, to perform differential analy-
sis, we allow only one coefficient to vary at a time.
If we allow a single system parameter to vary, this
could cause many variations on the values of the
coefficients of the differential equation. We need
to explore how to account for multiple changes in
the coefficients at the same time.

e The algorithm we have to extract qualitative fea-
tures from a numeric representation of a response
needs to be fully developed and tested.

e To provide a framework to express specific knowl-
edge about different kinds of systems, such as non-
constant coefficient or non-linear systems.

It can be seen, when comparing this framework and
the solutions it is able to produce, with other works,
that by using mathematical knowledge and restricting
the domain of application, more precise answers can
be given, less spurious behaviors generated, and the
branching factor on the search for solutions reduced.
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