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Abstract: Spatial reasoning is crucial in many Al
application domains, such as robotics, qualitative and
naive physics, and some types of planning. Qual-
itative reasoning is often required; and in many of
these cases, uncertainty or imprecision about the spa-
tial extent of particular entities has to be represented
and coped with. This paper develops an axiomatisa-
tion of a relation of ‘crisping’ (reducing imprecision
or vagueness) between pairs of ‘vague’ spatial regions:
those with indeterminate boundaries. This axiomati-
sation is then related to the previously developed ‘egg-
yolk’ representation of vagueness, originally designed
by (Lehmann and Cohn 1994) for database applica-
tions, then applied to expressing spatial vagueness by
(Cohn and Gotts 1994).

Keywords: Qualitative spatial reasoning, knowledge
representation, uncertainty, logic

* We gratefully acknowledge the support of the EPSRC un-
der grant GR/H /78955 and also the CEC under the Basic Re-
search Action MEDLAR 2, Project 6471. We also acknowledge
useful discussions with the rest of the QSR group at Leeds and
Eliseo Clementini.

246

1 Introduction: Vague Spatial Regions

‘Traffic chaos enveloped central Amsterdam
today, as the QR community gathered from
all parts of the industrialised world.’

Where exactly are or were the limits of the traffic
chaos, central Amsterdam, the industrialised world?
They do not exist: some points or areas would be def-
initely within the regions these entities occupy, some
definitely outside, but for many there is no right or
wrong answer. How to represent and reason about
such entities, and the ‘vague’ regions they occupy, is
the topic of this paper.

Qualitative spatial reasoning is crucial in many Al
application domains, e.g. robotics, qualitative and
naive physics, and many kinds of planning. Often,
there is uncertainty or imprecision about the spatial
extent of particular entities (physical objects, regions
defined by some property such as temperature, and/or
socially defined regions such as those owned by per-
sons or organizations). We concentrate here on the
development of a representational formalism for such
vague spatial regions; we consider the development
of an adequate representation essential prior to de-
tailed consideration of questions relating to reasoning
and applications. We are sceptical about the merits
of ‘fuzzy’ approaches to indeterminacy, believing that
their use of real number indices of degrees of member-
ship and truth are both counterintuitive, and logically
problematic. We have no space to argue this contro-
versial viewpoint here; see (Elkan 1994) and responses
for arguments on both sides.

We need to say at least some of the same sorts
of things about vague regions as about ‘crisp’ ones,
with precise boundaries: that one contains another
(southern England contains London, even if both are
thought of as vague regions), that two overlap (the Sa-
hara desert and West Africa), or that two are disjoint
(the Sahara and Gobi deserts). In these cases, the
two vague regions represent the space occupied by dis-
tinct entities, and we are interested in defining a vague



area corresponding to the space occupied by either, by
both, or by one but not the other. We may also want
to say that one vague region is a ‘crisper’ version of an-
other. For example, we might have an initial (vague)
idea of the extent of a mineral deposit, then receive in-
formation reducing the imprecision in our knowledge.
Here, the vagueness of the vague region is a matter of
our ignorance: the entity concerned actually occupies
a fairly well-defined region — though perhaps any en-
tity’s limits will be imprecise to some degree. In other
cases, vagueness appears intrinsic: consider an infor-
mal geographical term like ‘southern England’. The
uncertainty about whether particular places (north of
London but south of Birmingham) are included can-
not be resolved definitively: it is a matter of interpre-
tational context. A contrasting example is the region
occupied by a cloud of gas from an industrial accident.
Here we have two sources of intrinsic vagueness: the
concentration of the gas is likely to fall off gradually
as we move out of the cloud; and its extent will also
vary over time, so any temporal vagueness (e.g., if we
are asked about the cloud’s extent ‘around noon’) will
result in increased spatial vagueness.

In these cases of intrinsic vagueness, there is a degree
of arbitrariness about any particular choice of an ex-
act boundary, and often, none is required. But if we
decide to define a more precise version (either com-
pletely precise, or less vague but still imprecise), our
choice version is by no means wholly arbitrary: we can
distinguish more and less ‘reasonable’ choices of more
precise description.

Distinguishing ignorance-based from intrinsic vague-
ness is important, but many of the same problems
of representation and reasoning arise for both. The
distinction between purely spatial entities (‘regions’),
and what occupies such regions (physical objects in
the broadest sense, or social phenomena such as areas
of legal ownership and political influence), will also
be significant. We are concerned mainly with regions
here, but need to remember that it is what occupies a
region that makes it interesting *.

Since we present here an axiomatisation which we
claim captures important aspects of the intuitive con-
cept of a vague region (and of relations between vague
regions, and between vague and crisp ones), we dis-
tinguish the intuitive terms ‘crisp’ and ‘vague’ from
their formally defined equivalents, Crisp and NonCrisp.
When we want to talk about regions which may be ei-
ther Crisp or NonCrisp, we will refer to ‘OCregions’ (for
‘Optionally Crisp regions’). We will use the informal
term ‘blurring’ as the converse of ‘crisping’.

Section 2 develops a set of axioms that expresses
some of the things we intuitively want to hold about

!Here, we allow regions themselves to be vague; it would
be possible to assign the vagueness of spatial extent only to
physical objects and other ‘region-occupiers’, or to a function
mapping them to sets of Crispregions instead.
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the relations between alternative, more or less vague,
estimates of the spatial extent of some extended entity,
when this is imprecisely known or defined. We express
the relation between two such estimates, of which one
is a refinement of the other, as X < Y, read: ‘re-
gion X is a crisping of vague region Y’?. A parallel
is drawn between the axiom-set developed, and the
axiom-sets for mereology (theory of part-whole rela-
tions) discussed by (Simons 1987). Toward the end
of section 2, a start is made on exploring the possi-
ble relations between vague regions representing the
spatial extent of different entities, revealing consid-
erable complexity. Section 3 introduces a previously
developed formalism which can be used for this lat-
ter purpose (Cohn and Gotts 1994), linking it to the
approach of section 2 and showing that it can serve
to reduce this complexity; it also suggests why the
parallels with mereology explored in section 2 exist.
Section 4 discusses future work, including a possible
application area.

2 Possible Axiom-Sets for the < Rela-
tion

We assume first order predicate calculus with equality
as a logical basis. What sort of properties do we want
< to have? First, < should be asymmetric, irreflexive
and transitive:

(ALVX,Y[X <Y =Y < X]

(A2VX,Y, Z[[X <YAY < Z] =+ X < Z]
(A1) ensures < is asymmetric and hence irreflexive,
(A2) that it is transitive. It will be convenient to add
some definitions as part of the basic package:

DX XY =gy X <YVX=Y

(D2)X =Y Zdef Y<X

(D3)MA(X,Y) S4ey 3Z[Z < X NZ R Y]

[D4)NMA(X Y) =4y “MA(X,Y)

D5)Crisp(X) Zgey ~IY[Y < X]

( 6)NonCrisp(X) =qey IY[Y < X]

(DT)X << Y =4y X XY A Crisp(X).
< can be read: ‘crisper than or equal to’. > is the
inverse of <, while MA and NMA stand for two re-
gions being ‘mutually approximate’ or ‘not mutually
approximate’: i.e, having, or not having, some com-
mon region which is < both. Whether Crisp OCregions
actually exist can be determined by adding an addi-
tional axiom, or left open. X << Y can be read ‘X is
a completely crisp version of Y’, or ‘X is a complete
crisping of Y.

These basic axioms and definitions alone allow us to
show that some intuitively correct properties of vague
regions and crispings hold. For example, we can show
that if X and Y are NMA, and Z is a crisping of X,
it cannot be MA with Y:

2We will use upper-case italic letters for variables ranging
over OCregions.



(T1)VX,Y,Z
[[NMA(X,Y)A Z < X] = NMA(Z,Y)]].
If T1 is not true, then:
(1)3X,Y,ZINMA(X,Y) A Z < X A=NMA(Z,Y)]
(2)3X,Y,ZINMA(X,Y)AZ < X AMA(Z,Y)]
(1, D4)
(3)3X,Y,Z[INMA(X,Y)A Z < XA
IWW <ZAW <Y]] (2, D3)
(4)3X,Y,Z, WINMA(X,Y)A Z < XA
W<XZAW=<Y](3)
(5)3X,Y,Z, WINMA(X,Y)AW <X AW <Y]
(1,4, A2)
(6)3X,Y[NMA(X,Y) AMA(X,Y)] (5, D3)
(7T)L (6).

At least one further axiom seems necessary (A3):
given one crisping of a NonCrisp region, there is an
alternative, incompatible one; if this is not assured, it
is not clear what could be meant by one region being
a crisping of another.

(A3VWX,Y[X <Y = 3Z[Z <Y ANMA(X, 2)]].
Beyond these three axioms, there are several indepen-
dent ‘dimensions’ along which sets of axioms for vague
regions can be extended. These can best be explored
using a parallel between the relations of crisping and
blurring on the one hand, and part/whole relations
on the other. If we regard the crisping relation < as
analogous to a proper part relation, the kinds of dis-
tinction made between possible mereological systems
by (Simons 1987) are very similar to those that arise
in the case of crisping.

2.1 A ‘Minimal Extensional Mereology’ and
its OCregion Counterpart

Early in his investigation of mereology, Simons (Si-
mons 1987, pp.25-30) constructs a ‘minimal exten-
sional mereology’, taking as primitive the proper part
relation, which he symbolises <. The logical basis of
the system is:

(SA0) Any axiom set sufficient for first-order pred-
icate calculus with identity.

The first two axioms for < are (using a different syn-
tax from Simons):

(SA1) Vz,y[z €« y =+ ~(y € 2)]

(SA2) Vz,y,z[[(z K ) A (y K 2)] =2 2 <K 2]
These, like (A1) and (A2) above, simply assert that
the system’s basic relation is a strict partial ordering.
Simons goes on to define part (symbolised ‘<’), in a
way that parallels our definition of <.

Simons’ next step is to note that an individual can-
not have a single proper part, just as we noted that a
vague region cannot reasonably have a single crisping.
He considers various axioms which ensure that if an
individual has a proper part, it has at least two. After
defining overlapping (‘o’) and disjointness (for which
we use ‘||, as Simons’ symbol is unavailable), in ways
directly corresponding to our definitions of MA and

248

NMA, Simons chooses:
(SA3)VWz,ylz <y =3 32z € yA z | ]].
This axiom he refers to as the Weak Supplementation
Principle (WSP), and in asserting that any individual
with a proper part has another that is disjoint with the
first, it corresponds exactly to our axiom A3 above.
The axiom set SAQ-3 still permits various models Si-
mons regards as unsatisfactory, in which overlapping
individuals do not have a unique product or intersec-
tion. One of these is shown as figure 1 (lines join
‘parts’ (below) to ‘wholes’ (above)). Such models are
“fuled out by adding;
(SA6)Vz,y[z oy — 3zVw
[w<z=w<zAw<y],
which ensures the existence of such a unique product.
The corresponding axiom for < would ensure the

Overlapping individuals...

...with non-unique products

Figure 1: An Inadmissible Model of Part-Whole Re-
lations

existence of a ‘vaguest common crisping’ (VCC), such
that any other common crisping of the two is also a
crisping of the VCC:
(A4)VX,Y[MA(X,Y) = 3Z2VW
WZ=W<XAW<Y].

For the time being, we simply assert that we choose to
add such an axiom to our set; later, we will indicate
why.

2.2 Blurring, and the ‘Complete Blur’

Simons notes that his ‘minimal extensional mereology’
of SA0-3 and SA6 is much weaker than the ‘classical’
mereological systems of (for example) (Tarski 1956),
or (Leonard and Goodman 1940), even for small fi-
nite models, because the existence of sums or upper
bounds is not guaranteed. (A mereological ‘upper
bound’ (u.b.) of two individuals is an individual of
which both are parts; a mereological ‘sum’ is an u.b.
of which any part overlaps one of the two individuals
summed.) He therefore considers how u.b.s and sums
can be added. Correspondingly, we can consider how
to ensure the existence of ‘common blurrings’ of pairs
of OCregions. We will not follow Simons the whole
way here, as we do not currently try to define gen-
eral blurrings, over arbitrary sets of OCregions; only
binary ones.

Simons suggests a considerable number of different
axioms and combinations of axioms concerning the ex-
istence of mereological u.b.s, least u.b.s (an u.b. that



is part of any other u.b. — if a sum exists it is always
the least u.b., but a least u.b. need not be a sum)
and sums, for pairs of individuals. It will be useful to
describe his axioms, although we do not write them
out:

(SA12) Guarantees the existence of an u.b. for any
pair of individuals.

(SAT) Does the same, for pairs of overlapping individ-
uals only.

(SA13) Guarantees the existence of a least u.b. for
any pair of individuals.

(SA8) Does the same, for pairs of overlapping individ-
uals only.

(SA14) Guarantees the existence of a sum for any pair
of individuals.

(SA9) Does the same, for pairs of overlapping individ-
uals only.

(SA10) Guarantees that a least u.b. exists for any pair
with an u.b..

(SA11) Guarantees that a sum exists for any pair of
individuals with an u.b..

(SA15) Guarantees that when a least u.b. exists, it is
a sum.

(SA16) Guarantees a universal individual exists,
which is an u.b. for any pair.

Clearly, a mereology does not need all of these:
the unconditional existence guarantees (SA12, SA13
and SA14) subsume their conditional counterparts (re-
spectively SAT7; SA8 and SA10; SA9 and SA1l), any
guarantee of the existence of a sum makes the corre-
sponding guarantee of a least u.b. or u.b. unnecessary,
and if a least u.b. exists then so does an u.b.. SAl4
in fact subsumes all of SA7-13 and SA15, and adding
it to SA0-3 and SA6 creates a Boolean algebra mi-
nus a zero element. SA16, guaranteeing the existence
of a universal region, is independent of all the others
apart from SA7 and SA12, which it subsumes, but
which are weaker. The strongest mereological system
Simons proposes without the use of general least u.b.s
or sums consists of SA0-3, SA6, SA14 and SA16.

The analogue of guaranteeing the existence of an
u.b. is guaranteeing that of a ‘common blurring’ (CB)
for a pair of OCregions: an OCregion to which both
members of the pair are <. A least u.b. would cor-
respond to a ‘crispest common blurring’ (CCB) of a
pair of OCregions, and a sum to an OCregion which is
a crispest common blurring of which any crisping is
MA to one of the pair (we could call it a ‘blur sum’
or BS). The analogue of the universal region of SA16
could be called the ‘complete blur’: a NonCrisp region
which is a blurring of any other OCregion.

Which of these analogues are plausible? In par-
ticular, would we want to adopt analogues of SAl4
and SA167 If not, what weaker substitutes should
be adopted? There is not necessarily a ‘right answer’
here: different sets of axioms may be useful for differ-
ent applications. Figure 2a shows why we probably
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would not want to adopt an analogue of SA14. In
the left part of figure 2a, the inner and outer pairs
of circles represent two NonCrisp regions: we might
take the inner of each pair to represent an area def-
initely within the NonCrisp region, the outer an area
definitely containing it. Imagine that these are, for ex-
ample, two versions of the area enveloped by a flood
received from different sources, each with some impre-
cision. What might their ‘crispest common blurring’
(CCB) look like? The right side of figure 2a shows
one possibility: we retain the inner circle from the
smaller of the pair, and the outer from the larger, and
take these as representing inner and outer limits on
a vaguer NonCrisp region which can be regarded as a
blurring of both. However, the dashed circles suggest
another possible crisping of this CCB, having no com-
mon crisping with either of the original pair. If this
is admitted, then the CCB cannot be the pair’s BS
(‘blur sum’): any crisping of the BS of two OCregions
should be MA with one of the pair, just as any part
of a mereological sum of a pair of individuals overlaps
one of them.

(DMMIM&“ Biurring?

lnamm:mummwcmnmqw

Figure 2: ‘Crispest Common Blurrings’

If a CCB must exist for any pair of OCregions, but a
BS may not, we need an analogue of SA13. We there-
fore adopt:

(AS)VX,Y[AZ[X < ZAY = ZA

VWX <WAY W= Z<W].
Depending on our interpretation of OCregions, we
might even want to deny that a CCB must exist for any
pair. Consider figure 2b: the lighter and darker circles
represent the inner limits of two NonCrisp regions with
a common outer limit (the containing oval). If we al-
low inner and/or outer limiting areas of a NonCrisp re-
gion to be discontinuous (multi-piece), then the CCB
of these two NonCrisp regions can be arrived at by
adding the two inner limiting regions to get the CCB's
inner limiting region, and letting their common outer
limit be the CCB’s outer limit. However, if we do dis-
allow discontinuous inner limiting regions, the inner
limiting region of any u.b. of the two NonCrisp re-
gions must include their inner limiting regions end a
‘bridge’ between them, such as those outlined by the
upper, dashed pair of lines, or the lower, dotted ones.
Clearly there is no unique such bridge and hence no
CCB.

Similarly, whether we adopt an analogue of SA16 de-
pends on the view we take of OCregions. One interpre-
tation of a ‘complete blur’, a vague region which is a
blurring of any other, is that no area is either definitely



in such a region, or definitely out of it: for example, we
might want to represent (our current state of knowl-
edge concerning) the parts of the universe which have
at any time been inhabited by extraterrestrial beings.
If so, we should adopt:

(AB)3IXYY[Y < X)].
If we only want to talk about NonCrisp regions with
some limits on their blurring, we could adopt the nega-
tion of this:

(A6a)-3XVY[Y < X]3.

To specify necessary and sufficient conditions for the
identity of two OCregions, we need an axiom linking
< and =. We could choose:

(ATa) X =Y =VZ[X <Z=Y < Z].
(X and Y are equal iff (X is a crisping of any Z iff
Y is a crisping of that Z).) If we wanted to define
equality in terms of <, rather than assuming it, we
could make this a definition. Note that this axiom
implies that there is at most one distinct OCregion
with no blurrings (the complete blur, if it exists). If
we axiomatised equality for OCregions instead as:

(AT X =Y =VZ[Z<X=2Z2<Y],
this would require that there would be at most one
OCregion with no crispings, that is, at most one Crisp
region. In fact, there is an alternative we prefer to
either of these — see (AT) in the next subsection.

2.3 Do Crisp Regions Exist?

Do Crisp OCregions exist? We have four alternative
possibilities, according to whether A8, A8a, A8b, or
none of the three is included in the set of axioms:

(A8)VX[IY[Y < X A Crisp(Y)]].

(A8a)VX[IY[Y < X]]

(A8b)3X[Crisp(X)]A

IXVY[Y <X = 3Z[Z <Y]]

The first of these asserts that all regions are Crisp, or
have a complete crisping; the second that there are no
Crisp regions. The third asserts that some regions are
‘crispable’, while others are not.

The existence or non-existence of Crisp regions is
analogous to that of mereological ‘atoms’: individu-
als without proper parts. Here, bearing in mind the
distinction made between spatial regions and the en-
tities that occupy them, we will add A8 to our set
of axioms: all NonCrisp OCregions are crispable. We
could further assume that for every pair of OCregions
such that one is a crisping of the other, there is a third
which lies between them:

(AVX,Y[X <Y = 3Z[X <ZANZ <Y].
This is a kind of ‘denseness’ axiom. Its mereological
counterpart would assert that for any two regions of
which one is a proper part of the other, there is a third
which is a proper superpart of the first and a proper
part of the second.

3 Axioms belonging to our current axiom-set are numbered
from (A1) to (All). Possible alternatives are given an addi-
tional lower-case letter, e.g. (A6a).
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In contrast to regions, we will allow that some phys-
ical and social entities are ‘uncrispable’. In a fuller
theory, linking spatial regions and entities with addi-
tional, non-spatial properties, we would need a func-
tion mapping things with spatial extent onto the re-
gions they occupy. Some types of entities might be
restricted to mapping onto NonCrisp OCregions; oth-
ers, to Crisp OCregions. Furthermore, given a tempo-
ral theory, we could formally express the fact that for
some kinds of physical entities, the regions would be-
come crisper (or at least not less crisp) as our knowl-
edge of their spatial extent grew, whilst for others,
their crispness might not necessarily increase with
time (e.g. the spatial extent of a river which varies
over time).

Asserting that all NonCrisp OCregions are crispable
gives us a way to deal with spatial relations between
the entities associated with vague regions, by thinking
in terms of the relations between members of their sets
of complete crispings. As we noted earlier, we want to
say that ‘London’ is a proper part of ‘southern Eng-
land’, even though both are vague. We can now say
that any complete crisping of the OCregion occupied
by London is a proper part of any complete crisp-
ing of the OCregion occupied by southern England.
We formally define the relation between the NonCrisp
OCregions for London and southern England as fol-
lows:

(D8)X <oc Y =dey
VZWI[[Z < XAWKY]= Z << W]
Relations such as >oc¢ (3> is the inverse of <), ooc,
|loc can be defined analogously, and will have the same
properties as their Crisp region counterparts: for ex-
ample, <gc¢ will be asymmetric and transitive.

We could not define a relation =gc¢ in the same fash-
ion, even if we had chosen to define = in terms of <:
for any two NonCrisp OCregions, even if they are iden-
tical, there must be complete crispings of the two that
are not =. Instead, we adopt the following axiom :

(AT X =YY=
VZ[Z « X 2 3IWW KY AZ =W]A
VZ[Z <Y =2 IW[W <K XAZ=W]]
(for any complete crisping of either OCregion there is
an equal complete crisping of the other). This also
suggests the possibility of defining analogous weaker
versions of the other mereological relations between
OCregions e.g.:
(DQ)X {OC. Y =def
VZ[Z « X =2 IWW <K YAZ K W]A
VZ[Z <Y = IW[W < X AW <« Z]].
This relation might hold where the stronger does not,
for example between the OCregions for ‘the wettest
parts of Britain’ and ‘the wetter parts of Britain’.
However we crisp the second, there will be a com-
plete crisping of the first that is a proper part of it,
and however we crisp the first, there will be a proper
superpart complete crisping of the second, but every
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complete crisping of the first may not be a proper
part (or even a part) of every complete crisping of the
second. The relation <oc, and its inverse are still
asymmetric and transitive. In fact, there are at least
nine possible weakened versions of € oc, of which eight
retain this property. Figure 3 shows the relationship
between <oc and the nine weaker possibilities: 3a
illustrates the logical relationships between six asser-
tions about pairs of sets of individuals, members of
which may be related by <. ‘VAVB[A « B]’ stands
for the assertion that every member of one set (the
As) is a proper part of every member of the other (the
Bs); ‘JAVB[A < B]’ means that there is some mem-
ber of the As that is a proper part of every member
of the Bs, and so on. Straight lines connect stronger
assertions (above) to weaker (below). Figure 3b shows
all the ten logically distinct conjunctions that can be
produced from these six assertions. Each of the ten
corresponds to a possible version of €oc, with the
Xs and Y's being the sets of complete crispings of two
OCregions: only the one at the bottom fails to retain
transitivity.

3 The Egg-Yolk Theory

Given all these possibilities for generalizing mereolog-
ical relationships from crisp to vague regions, an alter-
native approach is worth considering. (Lehmann and
Cohn 1994) suggest an approach to spatial vagueness
that involves using two (or more) concentric subre-
gions, indicating degrees of ‘membership’ in a vague
region. (In the simplest, two-subregion case, the inner
is called the ‘yolk’, the outer the ‘white’, and the inner
and outer subregions together the ‘egg’.) Lehmann
and Cohn first suggested the egg-yolk approach in the
context of the problem of integrating heterogeneous
databases, where the notions of ‘regions’ and ‘spatial
relations’ are used metaphorically to represent sets of
domain entities, and their relations. It was developed
as an approach to expressing spatial vagueness itself
in (Cohn and Gotts 1994). Here, we employ it as a
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Figure 3: Possible assertions about < between two sets of individuals
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means to understanding the alternative approach we
develop.

The egg-yolk formalism as developed in (Lehmann
and Cohn 1994) allows for just 5 ‘base relations’ (DR,
PO, PP, PPl and EQ) between any egg-egg or yolk-
yolk pair, or any egg and the yolk belonging to an-
other egg. (A yolk is always a PP of the corresponding
egg.) EQ, PP, PPl and DR correspond to Simons’ =,
&, >, and ||, except that they are defined in terms
of a primitive C(z, y) (connection) (Randell, Cui and
Cohn 1992), with which we need not be concerned.
PO (partial overlap) is simply the relation that holds
when none of the other four do: the five base rela-
tions (henceforth ‘RCC-5’ for historical reasons) form
a jointly exhaustive and pairwise disjoint (JEPD) set:
exactly one holds between any pair of (crisp) regions.

RCC theory asserts the existence of a universal re-
gion, Us (of which every other region is a PP), and pro-
vides quasi-Boolean functions (quasi-Boolean because
no ‘empty’ or ‘zero’ region exists) on pairs of regions:
compl(z) (the complement of a region in Us), and the
region-sum, region-intersection, and region-difference
of two regions (sum(z, y), prod(z, y) and diff(z, y)). All
these functions other than sum may return a NULL ob-
ject instead of a region (e.g. prod will do so if the two
argument regions are DR). The distinction between
regions and NULL is dealt with using the sorted logic
LLAMA (Cohn 1987).

The RCC-5 set produces 46 possible relations be-
tween a pair of egg-yolk pairs (see figure 4). In (Cohn
and Gotts 1994) we argued that these 46 could be
identified with the possible relations between com-
plete crispings of two vague regions. Here, we take the
OCregions of section 2 as our initial representation of
vague regions, and show how the egg-yolk representa-
tion can be used to provide additional constraints for
OCregion theory.

At first glance, there is one apparent problem with
the egg-yolk approach: the most obvious interpreta-



Figure 4: The 46 possible relationships between two egg-yolk pairs

tion is that it replaces the precise dichotomous di-
vision of space into ‘in the region’ and ‘outside the
region’ of the basic RCC theory by an equally precise
trichotomous division into ‘yolk’, ‘white’ and ‘outside’
— and this appears contrary to a key intuition about
vagueness: that not only is there a ‘doubtful’ zone
around the edges of a vague region, but that zone it-
self has no precise boundaries. So we want a way of
using the egg-yolk formalism that is consistent with
this.

We link the OCregions of section 2 (and the cor-
responding theory), with ordered pairs of RCC-5 re-
gions, the first of the pair being a part, but not neces-
sarily a proper part, of the second. If it is a PP, then
the pair is an egg-yolk pair in the sense of (Lehmann
and Cohn 1994), and the OCregion is NonCrisp. If not,
the OCregion is Crisp. We now link the < predicate
of OCregion theory with the egg-yolk approach. We
define a function ey to map an OCregion to an egg-
yolk pair, and two functions eggof and yolkof, to map
such egg-yolk pairs to the RCC-5 region comprising
its egg and yolk respectively. We will normally write
ey(X) as X for notational convenience. We have the
following axiom for egg-yolk pairs:

(A10) VXP(yolkof(X ), eggof(X))
We then assert the following additional axiom con-
cerning =<:
(ALVX,Y[X <Y =
[IPP(eggof(X), eggof(¥))A
P(yolkof(Y"), yolkof(X'))]V
[P(eggof(X), eggof(Y))A
PP(yolkof(Y'), yolkof( X ))]I].

This axiom links < to the predefined RCC-5 relations
by an implication, not an equivalence: we do not spec-
ify that if the specified RCC relations hold between
eggof(X), yolkof(X), eggof(Y) and yolkof(Y), the CR
relation holds between X and Y, but these relations
must hold for the < relation to do so. We leave un-
defined what additional conditions, if any, must be
met. This gives us the kind of indefiniteness in the
extent of vagueness, or ‘higher-order vagueness’, that
intuition demands. Consider the vague region ‘beside
my desk’. This can be regarded in OCregion theory
as a NonCrisp region. There are some precisely de-
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fined regions, such as a cube 10em on a side, 5em
from the right-hand end of my desk, and 50¢m from
the floor, that are undoubtedly contained within any
reasonable complete crisping of this NonCrisp region.
Others, such as a cube 50m on a side centred at the
front, top right-hand corner of the desk, contain any
such reasonable crisping. These two could correspond
to the ‘yolk’ and ‘egg’ of an egg-yolk pair constituting
the NonCrisp region ‘beside my desk’, forming a very
conservative inner and outer boundary on its possi-
ble range of indefiniteness. However, some OCregions
(Crisp and NonCrisp) lying between this pair would not
make a reasonable crisping of this region: consider a
volume including the ‘yolk’ of the pair, plus a layer
one centimetre deep at the very top of the white. This
meets all the conditions for a crisping of the specified
OCregion, but is an absurd interpretation of ‘beside
my desk’. In general, we need not precisely specify
the limits of acceptability. For specific applications,
we could add further conditions on acceptable crisp-
ings (such as preserving particular topological features
or relative proportions in different dimensions), and
perhaps assert that (for that application) these condi-
tions are sufficient.

Configuration 1 in figure 4, given the interpretation
of OCregion region theory in terms of egg-yolk pairs of
RCC-5 regions outlined here, clearly shows a pair of
NonCrisp regions such that any pair of complete crisp-
ings of the two must be DR. Taking the left-hand
egg-yolk pair as representing NonCrisp region X, and
the righthand one NonCrisp region Y':

YWW[[V<XAW KY]=
DR(eggof(V), eggof(W))]

Similarly, configuration 2 represents a pair of NonCrisp
regions such that, for any complete crisping of either,
we can choose a complete crisping of the other that is
DR from it, and there are also some complete crisp-
ing pairs of the two that are PO. (Cohn and Gotts
1994) shows how each of the 46 configurations can be
distinguished in terms of the possible results of re-
placing one or both of the egg-yolk pairs with a single
region-boundary lying within the white of the egg —
a complete crisping of the vague region represented by
the egg-yolk.



This way of interpreting OCregion theory explains
why we found so many parallels with Simons’ mereol-
ogy. Under the egg-yolk interpretation, an OCregion
amounts to a three-way division of Us into yolk, white,
and non-egg. If we consider a set of all such divisions
where no part of space is in the ‘yolk’ of one division
and the ‘non-egg’ of another, we have a mereologi-
cal system with all the possible precise boundaries as
‘atoms’. Crisping expands yolk and/or non-egg at the
expense of the white. One OCregion being a crisping
of another is like one individual being a proper part of
another because the white of the first is a proper part
of the white of the second. We have a plausible can-
didate for the VCC of two MA OCregions: the VCC'’s
yolk could be the sum of the yolks of its two blurrings,
its egg the prod of the two blurrings’ eggs (which, if
the two are MA, must exist as a region). Similarly,
the volk of the CCB of any two OCregions might be
defined as the prod of their yolks; its egg as the sum
of their eggs.

The implications of these identifications remain to
be explored. However, the egg-yolk model of the
OCregion axioms does appear to provide a straightfor-
ward way to define OCregion extensions of the compl,
sum, prod and diff functions defined within RCC. Us-
ing forms such as ‘(eggof(X),yolkof(X))’to represent
the egg-yolk pairs of RCC-5 regions corresponding
to NonCrisp OCregions, we extend the definitions of
compl, sum, prod and diff as follows:

(D10)compl(X) =ges
(compl(yolkof(X)), compl(eggof(X)))
[Dll)sum(}f,?) =des
(sum(eggof(X), eggof[Y))
sum{xolkof(X) yolkof(Y)))
(D12)prod(X, ?’) =def
(prod (eggof(X), eggof(Y)),
prod(yolkof(X) yolkof(Y)])
(D13)diff(X, V) =ges prod(X, compl(Y)).
In the cases of (D12) and (D13), one or both of the
components of the ‘output’ egg-yolk pair may be NULL
(as indeed is also the case with (D10) when taking
the complement of the ‘complete blur’ guaranteed by
(A6)). These cases require further investigation to en-
sure their correct formal treatment.

Figure 5 shows the 46 possibilities assuming that
RCC-5 calculus is used to relate eggs and yolks. We
will briefly investigate here how egg-yolk theory can
be used to explore the relations between vague regions
expressed in figure 3. Table 1 shows the various sets
of egg-yolk configurations which satisfy the upper five
quantificational schema of figure 3a, but considering
three of the other four mereological relations along
with the proper part relation (we omit PPl as it is
simply the dual of PP). Only PO differentiates all five
quantificational schema. DR, PP (and PPI) collapse
the distinction between IXVY and YY3X (and dually,
between 3YVX and YX3Y). EQ only distinguishes two
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cases. Thus, in the egg-yolk interpretation there are
not quite as many possible relations as figure 3 might
suggest. Moreover, egg-yolk theory gives us a way to
reason with vague regions using the existing mecha-
nism of the RCC calculus.

4 Discussion: From Representation to
Reasoning and Application

The paper has shown how two approaches to the rep-
resentation of vague spatial regions, originally devel-
oped in competition with each other (although partly
within the same research team), can be brought to-
gether, shedding new light on both and on the repre-
sentational problems they were designed to solve. The
next stage of our research is to investigate the poten-
tial of the two approaches, individually and in combi-
nation, to support reasoning about vague regions.

The mereologically-based approach outlined in sec-
tion 2 has concentrated on capturing aspects of the
relations between different, more or less vague ver-
sions of the same region. Here, we have shown that
these different versions of a region can be regarded as
forming a mereological structure, but most of the ax-
ioms adopted simply assert the existence of one vague
region given the existence of others: more work is re-
quired on developing axioms which constrain the re-
lations that can exist between different versions of a
region in useful ways.

The other kind of relation we want a vague region
formalism to support is that between different spa-
tially extended entities, each occupying a vague re-
gion. For example, we want to be able to deduce that
if London is a part of southern England, and southern
England is disjoint from central Europe, then London
is disjoint from central Europe — even if we regard
all three as having indeterminate boundaries. For this
kind of reasoning, we could make use of relations such
as €oc, defined toward the end of section 2; as noted
there, <oc (and its inverse) are transitive. However,
the link from the mereologically-based formalism to
the egg-yolk approach made in section 3 makes avail-
able the resources developed within the larger RCC
theory of spatial reasoning of which the latter forms
a part (Randell et al. 1992). These include ‘transitiv-
ity’ or ‘composition’ tables of relations (Cui, Cohn and
Randell 1993), which specify the set of possible rela-
tions between regions z and z, given those between the
pairs z and y, and y and z. Further work is planned
on this link between the two formalisms, and on ap-
plying their fusion to practical problems in qualitative
spatial representation. The application of the theory
to vague temporal intervals will also be investigated.

It is no accident that our motivating examples in
this paper have been geographical: dealing with geo-
graphical regions with indeterminate boundaries is an
important issue in current work on GIS (geographical
information systems), as the recent meeting specif-



[__1¥XvY XYY ¥Y3ax IYrX YX3Y
[PE] 24 18,24,36,33, 18,24,36,33, 8,13,32,34,26,34, 8,13,22,34,36,34,
_33,37,38 48 33,37,38,45 35,36,37,38,41 35,36,37,38.41
% 0 [ 33,40,45.46 [ 36,41 44,46
l’ﬁ 1 1.2.3,8,7 = 1,3.0.5.7 1,24.6.8 ;34,68
14 3,5,7,9,10,11,12,14, 3,8,7,8,10,11,12,14,18, 4,6,8,9,10,11,13,14,15, | 4,6,8,9,10,11,15,14,15,16,
15,16,18,19,30,21,28,29,33 | 16,18,19,20,21,38,29,32,33 | 16,17,19,20,22.34,35,36 | 17,19,20,23,37,34,35,36

Table 1: The egg-yolk configurations which satisfy various relations as defined by various quantificational schema.

ically on that issue (Burrough and Frank 1994) in-
dicates. Digital mapping, satellite photography, and
GIS have made greatly increased amounts of informa-
tion available to geographers in recent years; the dif-
ficulty they face is to make effective use of this infor-
mation. Appropriately organised summaries of what
is known about spatial relationships of interest — and
of what remains uncertain or ill-defined — are of cen-
tral importance in making available information useful
in hypothesis-building and testing, and it is here that
we see work on the topology of regions with indeter-
minate boundaries as potentially of great value. Con-
sider, for example, the questions surrounding global
climate change, forest destruction and desertification,
and similar actual or possible large-scale environmen-
tal problems. Information about the spatial properties
and relations of many different kinds of entities and
variables, from many different sources of varying reli-
ability, is potentially relevant to unravelling the com-
plex causal interactions involved.

To make the example more specific, what are the
leading causes of the degradation and destruction
of tropical forests? Logging, mining, road-building,
cattle-ranching and cash crops for export, fuelwood
gathering, increasing population, the movement of dis-
placed people, government-promoted migration, pat-
terns of land-ownership and the legal framework regu-
lating it, measures purportedly aimed at conservation
such as the declaration of national parks — all these
and more have been blamed in one region or another
(Hecht and Cockburn 1989, Brown and Pearce 1994).
Complex interactions between factors differing from
region to region are involved. To design and imple-
ment effective responses, a qualitative understanding
of such interactions is necessary (though certainly not
sufficient, as powerful economic and political interest
groups are involved). For such an understanding to
be developed, it is necessary to know how the spatial
distributions of the putative causal factors relate to
each other, and to the pattern of destruction in var-
ious parts of the world. Some of these factors have
well-defined and readily determined spatial bound-
aries: land ownership and the laws regulating it, for
example; but the majority do not.

In an initial search for plausible hypotheses, we
would want to ensure that we do not miss poten-
tially important possibilities, and therefore to make
generous estimates of the maximum spatial extent of
various possible causative factors. A large number of
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factors might then be shown as possibly overlapping
the areas of rapid destruction. However, we would
also wish to avoid erroneously concluding that a par-
ticular factor is essential, and would therefore wish to
have safe minimum estimates of these factors’ spatial
extent as well. Given similar maximum and minimum
estimates of the area of rapid forest destruction, we
would then have a (probably large) set of qualitative
hypothesis about the causally relevant factors. If we
assume that all the important factors lie among those
we are considering, then any Boolean combination of
factors whose spatial extent could coincide with the
areas of rapid destruction (under some crisping of the
vague regions concerned) is a possible qualitative hy-
pothesis.

It would then be useful to know the effect on this
set of hypotheses of tightening the limits on the spa-
tial extent of the areas of rapid destruction, and/or
one or more of the putative causal factors, in order to
help us decide what additional information would be
most useful in distinguishing between them. To sim-
plify matters, suppose we had just two possible factors
in mind, and the areas of rapid destruction lay within
the areas covered by factor A whatever estimates we
used, but within the areas covered by factor B if and
only if we used a narrow definition of the areas of rapid
destruction, and a generous estimate of the areas af-
fected by that factor. Additional information about
the spatial extent of factor B's effect is more likely to
be immediately useful in narrowing the range of hy-
potheses than information about that of factor A. To
reach this conclusion, we must ourselves be employ-
ing some intuitive ‘logic of vague regions’. Assigning
essentially arbitrary numerical measures of ‘degree of
membership’ to particular points, as in a ‘fuzzy’ ap-
proach, appears to us unlikely to be helpful. Clearly,
however, the non-numerical approach we have begun
to develop here needs considerably more work before
its usefulness can be assessed.
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