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Abstract: A central point in qualitative models
is that of calculation. The problem is to repre-
sent, compare, and combine, approximate or
symbolic values with the major constraint of
consistency with some numerical counterpart.
Aware of the fact that many qualitative characte-
rizations are in the form of antagonistic concepts
(such as low vs. high, weak vs. strong, bad vs.
good, etc.) more or less explicitly separated by a
reference (we call the norm), we exploit this idea
to build a dualistic algebra based on a linear or-
der and an homomorphism with the set of inte-
gers Z, which accounts for the ranks of qualita-
tive values (viewed as labels expressing magni-
tudes) ordered with respect to the norm. We de-
fine operations on those values, globally consis-
tent with classical arithmetic (+, —, %, /, power,
root) as well as fitting common sense in reaso-
ning.

1 Introduction

The major goal of qualitative reasoning (QR) is
to provide engineers with computational theories
to allow them to draw inferences about systems,
using information of various origins and diffe-
rent natures. Due to the complexity of systems,
qualitative models should be able to involve va-
riables having possibly different domains such
as real numbers, numerical intervals or even pu-
rely symbolic elements. Measurements (nume-
rical values) as well as basic observations
(symbolic values) are often translated into more
meaningful concepts within the framework of the
system under study: 0.476 is far above normal,
150 is very low, or small is beautiful. Concepts
used to characterize quantities are often antago-
nistic: low/high, good/bad, above/below,
false/true. This dualism implies the existence of a
reference representing normality within the
context of reasoning. It is either explicitly stated
or implicit. Actually it corresponds to the idea of
being located between both antagonistic concepts
which yields an order w.r.t. the norm. It may be
necessary to go beyond a binary opposition and
characterize a quantity at different granularity,
i.e. distinguishing among good and bad concepts
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more subtle characterizations such as very good
or very very bad. Another big point is composi-
tionality, i.e. how to combine very high with
bad, below with average and even blue with
beautiful and cold! These needs of comparison
and combination of heterogeneous things lead us
to find some set to play the role of a “common
currency”. Because qualitative values are intrin-
sically discreet entities, we chose the integers Z.
Since we do not base principally our formalism
on a partition of the real line (as opposed to most
of QR approaches), we will refer to qualiry
spaces (in the sense of Hayes, 1985) to denote
the set of possible values of a given qualitative
variable.

This paper addresses three main aspects: (i) how
to build a quality space (QS) with a dualistic
structure from a set of labels (section 2); (ii) how
to compare values of (single or distinct) variables
expressed on different QS at varying granularity
(section 3); (iii) how to combine values through
operations, consistent with both conventional
arithmetic and common sense expectations
(section 4). Then, we provide two examples of
qualitative analysis (section 5). Finally we dis-
cuss (too briefly) this so called dualistic algebra
(DuAl) formalism in the light of quantity spaces
theory (section 6).

2 Quality Spaces
2.1 Dualistic Variable

Def. 2.1: A dualistic variable is a surjective

function x: D, — QS(x), with domain the codo-
main D, of any variable (e.g. measurement, ob-
servation, or even another dualistic variable) and
codomain a quality space QS(x), that is a finite
set of ordered labels, i.e. qualitative values, as
defined below.

Let L(x) be a finite non-empty set of labels of

any kind Agq, ..., Ae such that each of them is
assumed to be a possible value for a variable x,
and all of them cover the whole codomain of x.
Let us assume they can be totally ordered (by
any kind of objective or even arbitrary means)



according to a precedence relation ‘<’. Thus,
(L(x), <) as a linear order, is reflexive, anti-
symmetric, transitive, and obeys the dichotomy

law (VA,, Agp € L(x), either A, SAgor Ay < A,).
2.2 Description Space

Def. 2.2: Denoted QS*(x), it is the partition of
L(x) resulting from the family of distinct equiva-
lence classes for the equality relation (from anti-
symmetry of <):
A== (A€ L(x), A, < Avand Ay <A},

so  QS*(x) = {[A]=)-

We will denote g;, qj,... the [A]-, [Aol=, ..
respectively. Since QS*(x) is a partition of L(x):

Vagie QS*(x).  |Jai=L(x),
and Vq;qj € QS*(x), qing;j=92.

2.3 Order Relation (£)

Def. 2.3: V¥ qi,qje QS*(x),
q; £ qjiff VM € qi, VApe gj, A\ S Ap.
(QS*(x), £) is also a linear order (reflexive,

anti-symmetric, transitive, and obeying the di-
chotomy law).

2.4 Norm

Def. 2.4: Assuming there exists at least a spe-
cial label A, € L(x), used as a reference for

classifying the others, then [Ay]- is called the
norm, and is denoted gy

Writing QS8*~(x) = {q;: i £ qm}
QS**(x) = {gj: qn £ q;},
QS*(x) = QS*—(x) U QS**+(x)
gm = QS~(x) N QS*(x).

2.5 Quality Space

then:
and

Def. 2.5: A description space QS*(x) is a
quality space, denoted QS(x), iff:
IQS*—(x)! = IQS**+(x)l

(where |.| denotes the cardinality of sets). Thus,
any QS has at least one element, q,,, an odd
cardinality, and is symmetric with respect to the
norm: q; £ qn £ q; for all g; € QS*~(x) and
qj € QS**(x). This is in keeping with Kuipers'
(1986) discretization of a continuous variable's
codomain as landmark values and intervals bet-
ween them. Characterizing a variable according
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to n landmarks (n 2 1), leads to consider 2n + 1
possible qualitative values, i.e. an odd number.
In our QS, if » is odd, the norm is a landmark; if
n is even, the normm is an interval between two
landmarks.

P.2.5.1: (QS(x), £), linear order, has least
and greatest elements, Qmin and Qmax respecti-

vely: V q; € QSx(x), Gmin £ Qi £ Qmax-

For sake of clarity, we may write extensively a
QS as: {Qmins--+» Qis- - +» Gmax }, Where the middle
element is the norm g, (€.g. in {small, medium,
tall}, medium is the norm).

Example 2.5.1: QS for a measurable variable.
Let {0, 100} be the landmarks for the tempera-
ture of water. 0°C, freezing point, and 100°C,
boiling point. An appropriate description space,
covering the whole variable's range, may be
chosen as: QS*(water_temp) = {(-273, 0), 0,

(0, 100), 100, (100, +e<)}, where —273°C is the
absolute zero. Its elements could also be denoted
as labels corresponding to water states, e.g.:
QS™*(water temp) = {ice, freezing, liquid, boi-
ling, vapor}. If one takes the liquid state
("liquid" or (0, 100)) as norms, then both QS*
and QS'* are quality spaces for warer_temp.
They may be merged also within a single quality
space, using equivalence between temperatures
and states: QS(water_temp) = {{(-273, 0), ice},
{0, freezing}, {(0, 100), liquid}, {100, boi-

ling}, {(100, +ee), vapor}}, where {(0, 100),
liquid} is taken as the norm.

Example 2.5.2: QS for a binary variable.

» L(bits) = {1, no, true, zero, yes, one, 0, false)
* QS*(bits) = {{0, no, zero, false}, {1, yes,
one, true}} is not a QS unless we add a norm to
it, arbitrarily or not, depending on the granularity
at which the phenomenon is observed (see how
Williams, 1984, represents a digital signal asa 5
valued set); e.g. let us take the symbol ?.

Assuming 0 £ ? £ 1, we write: QS(bits) = {{0,
no, zero, false}, {?}, {1, yes, one, true}).

Example 2.5.3: QS for a non-measurable
variable.

It may seem obvious that values of any measu-
rable variable can be ordered. Let us now consi-
der color with possible values: yellow, green and
red; how linearly order these labels ? For this,
we must define more precisely what do we mean
by color. We give hereafter several QS, depen-
ding on the definition given to color as:

« my favorite color for cars: {yellow, green, red}
» increasing wavelength ranges in the light spec-



trum: {green, yellow, red}

« traffic-light spots enumerated top-down: {red,
yellow, green}

* denoting the freshness of maple-tree leaves:

{yellow, red, green}

* my increasing preference to paint my dining-
room : {red, green, yellow}

» the lexical order of their names: {green, red,
yellow}.

In every case the middle element has the meaning
of being intermediate between the lowest and the
highest preference. Of course, one must consider
each characterization as alternative choices: color
based on different QS are distinct variables,
since the QS is what makes the variable's se-
mantics, not the converse.

2.6 Distance

Def. 2.6: The distance between two QS ele-
ments is a metric function with integers codo-

main d: QS(x) x QS(x) — Z, defined for any
pair (q; £ g;) by:
+d(Q;q) =0,iffg;=q;
v d(q;, q) =+, iff: - I qest. ;L Qe £ q;
* d(‘lb ) - d(QI'v ") + d( 'y ’),
suchq’that d( ~.ql-) =] VY
* d(q;, q)) =—d(q;, 92

P. 2.6.1: Composition of distances
If: i £qk(qi, qx € QS(x)), then:
Vqje QS(x) d(qi, qu) = d(q;, q;) + d(qj, Q1)

P. 2.6.2: Order
Vaqi, g€ QS(x), q; £ q;, iff: d(q;, q) 2 0.

P. 2.6.3: QS cardinality
IQS(x)! = d(Qmins Gmax) +1

P. 2.6.4: The norm is the middle element of a
QS: d(Qmin, Q) = d(Qm> Gmax)-

2.7 Ranking Function of QS Elements

Def. 2.7: The ranking function of a quality
space, R: QS(x) — Z is defined by:
V q; € QS(x), R(q;) = d(qm, 9:)

for Z the integers and g, the norm of QS(x).
Note that w.r.t. the definition:

R(Qm) = d(@m, 4m) = 0.
In the following we will denote a quality space
as QS,(x) with n = R(qmax) = —R(Qmin), and will
call the image of X (also denoted R,) the rank
space associated to QS ,(x).
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P.2.7.1: R is order-preserving, i.e.
V qi, qj € QSa(x), qi £ qj = R(q)) < R(Q)).

P.2.7.2: R is injective.
2.8 Interpretation Function

Def. 2.8: Let Z denote the integers and QS,(x)
be a quality space; we define an interpretation as

a dualistic variable : Z — QS,(x),by: Vze Z
Gmax f2>n
I(z)=1q; such that: R(gq;)=2,if —n<z<n
Qmin if2<-n
(I'may also be denoted I,). By Def. 2.7, since
R(qQm) = 0, then: I(0) = g.

P.2.8.1: I is order-preserving, i.e.
Vz,z€Zz<z = z) £ Kz))

P.2.8.2: Iis surjective.
Note that in general I is not the inverse of %,
since they are not bijective.

P.2.8.3: From the surjectivity of I it follows
that : IQS,(x)l <|Zland so: V z € Z,

* if z < R(Qmin), then z < R(N(2))

¢ if R(Qmin) <2 < R(Qmax), then z = R(1(z))

¢ if z> R(Qmax), then z > R(1(2))

P.2.8.4: However, r| Rs,(x) is bijective; since
RS,(x) and QS,(x) are finite sets they have the
same cardinality. Therefore, with domain restric-
ted to RS,(x): /=% and FF! = R, As a conse-
quence, the composition () of associate ranking
and interpretation functions yields the identity:

V qi € QSx(x), PR(q:) = q;, and

V z; € RS,(x), Rol(z;) = z;.

3 Comparison of Quality Spaces
3.1 Extension of a QS

Def. 3.1: Extending a quality space of a va-
riable x, can be achieved recursively by adding
new least and greatest elements (refining the ex-
tremities):

* QSy(x) = q,, with q,, the norm,

* Qsm-l(x) = (‘-l,} v an(x) () [‘L]

such that: R(q) =-R(q;) =n+ 1.



P.3.1.1: Hierarchical inclusion.

Given QS,,(x) and QS,y), and their rank spaces
RS, (x) and RS, (y), the lower-dimensional rank
space is included within the larger one:

n <n’ = RS,(x) S RS, ().

P.3.1.2: Given QS,(x) and QS,{(x), relative to
the same variable x, such that RS,(x) € RS, (x),
their difference is the interpretation of the diffe-
rence of their rank spaces: n <n' =

QSA(x) = QS,(x)= {I(2): z € RSp(x) — RSx(x)}
for I: RS,(x)— QS,1{x), an interpretation.

3.2 Equivalence of Distinct QS Elements

Def. 3.2: Two elements of any quality space,

q; € QS,(x) and g; € QS,(y), are equivalent at

level k (denotcd =;) if both have the same

interpretation in a common quality space QS,(2):
qi=kq; iff [(Ra(q)) = (Ra’(q)))-

The equivalence class of any q; € QS,(x) at level

k on any QS,{y) is:

[Qil~kQsniy) = {gj€ QS,4) : q; =¢q; ).
Figure 1 illustrates the equlva.lenoc links between
different QS elements.

P.3.2: Properties of the equivalence relation

* = is reflexive, symmetric, and transitive;

*V q;e QS,(x) and V g;& QS,{),

— if Re(q;) and Ra1(q;) are the same sign, then:
Ra(q)) # Radq) = q; =k q; & k<min(n, n’)
Ra(q;) = Raq)) = q; = q; forall k

i.e. two clements both located on the same side
w.r.t. the norm are equivalent only at more abs-
tract levels if their ranks differ, at any level if
they are the same rank.

— if Rx(q;) and Ra1{q;) are opposite signs, then:
q; =k q; for k=0 only, i.e. two elements loca-
ted on opposnc sides w.r.t. the norm can only be
equivalent at the most abstract level QSp (see
Fig. 1).

3.3 Mapping QS Elements to other QS

Def. 3.3: For any variable x, changing its va-
lue q; € QS,(x) into its equivalent value(s) qj
within another quality space, QS,{x) (n’ p0551-
bly different from n), is achieved by a mapping
c¢: QS,(x) — QS,{x), defined by:

V q; € QS,(x), q; ¢(q;) = [q)=pQsn'x)
If n <n’, cis called a refinement; if n 2 n'it is
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called an abstraction (see Fig. 1).

aso Qo0

ast q—&1
| N g s
— z
as2 a2 o1 a0 a1 q2 =
W
[T TN g [
= pd - = t
A LTI il
aQSn-1 gneigne2 = = g0 - - qn-2 gqn-1
gn gn+t - - 0" g1 agn
A1 LT TN
GSn+1 gnigngnel . _ _ g1 @0 gl _ _ _ gl gn gnel

Figure 1. Equivalence (=) links between QS;
elements (k=0, ..., n + 1); elements are indexed
by their ranks, i.e. denoted as qg(q).

4 Operations on QS
4.1 General Definitions and Properties

Def. 4.1.1: Internal operation.
Let #; be a k-place operationon Z (k= 1, 2), a
k-place operation on any QS,(x) is a function
© defined by:
* ©1: Q§,(x) = QS,(x), V q; € QS,(x),
©; q;= L(*1 Ry(qy))
* ©: [QS, (12 =QS,(), V q; g € [QS,™)]2
q; ©2 q; = L(Ra(q)) *2 Ra(q;)

P.4.1.1: Closure.
If Z is closed under *, so is QS,(x) under ©;.

Def. 4.1.2: Generalizing operations on any
QS. Let any QS,(x), QS,{»), QS,«2), and any
qi€ QS,(x), qj€e QS,,-(y), external operations
are transformcd into internal operations by

changing their operands into their equivalents
onto QS,-(z) using a function ¢ as defined by

D.3.3, that is (for ::= the rewriting sign):
* ©;1: QS,(x) = QS,(2), is changed into a func-
tion QS,-(z) = QS,(2), by:
©; q; ;=0 ¢c(q)
* ©y: QS,,(x) x QS,(y) = QS,«(2) is changed
into a function [QS,«(z)]2 = QS,,-(z) by:
(@ ©24) = (c(@) ©2¢(@))
with: ¢(q)) = [qil<n"Qsn"(2)
and ¢(q') =[q']-p"Qsn"(2)-



If: n <n” and n’ < n” (transformations by ¢ are
refinements), ©; yields (n” — n + 1) solutions
and ©; (n" = n+ 1)(n” — n’ + 1); otherwise if:
n" <n and n” < n’ (transformations by ¢ are
abstractions) they yield only one solution.

P.4.1.2: Morphism.
An interpretation [is a homomorphism from (Z,

<, *g, 0) into (QS,(x), £, ©, qm), since Iis a
function (by Def. 2.8), and it is structure pre-
serving w.r.t. order (by P.2.8.1), operations (by
Def. 4.1.1) and special element: (0) = q,, (see

Def. 2.8). I|gs,x)» is bijective (by P.2.8.4) and

$0, it is an isomorphism from (RS ,(x), <, %, 0)
into (QS,(x), £, ©, qm)-

4.2 Inverse

Def. 4.2.1: The inverse of an element is the
element of opposite rank:

V q;€ QS,(x), inv(q;) = I[(-R(q;))

P.4.2: Properties of inv.

V q;, gj&€ QS,(x) and g,, the norm:

* q; and inv(q;) are symmetrical w.r.t. Q,,:
d(inv(qy), Qm) + d(Q;; 4n) =0
If R(q;) 2 0, then: inv(q;)) £q, £ q;;
if ®(q) <0, then: q; £ q,, £ inv(q)).

» fixed point: inv(q,,) =q,,

« involution: inv(inv(q;)) =q;

sorder: q; £ q; < inv(q;) £ inv(q)).

4.3 Addition and Subtraction

Def.4.3.1: Addition (@) of two elements
yields the max of both:

V q;, gj€ QS,(x), q; ® q; =max(q; q))
ie. q;, if g; £ q;, q; otherwise.

P.4.3.1: Properties of ®
*» @ is commutative, associative, Qmin is the

identity element; then, the structures (QS,(x), ®)
are abelian monoids;

* @ is idempotent, max i absorbent.

Since the identity element of addition @ is the
smallest element of a QS (i.e., Qmin), there exists
no additive inverse for all the elements of a QS
(an inverse only exists for qmin). However we
may need some kind of counterpart of subtrac-
tion in the reals; it is thus defined below.
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Def.4.3.2: We define subtraction (©) of two
elements as the first of both:

Vq;qie QS,(x), q;©q;= q;
Although roughly defined, this operation has
some nice properties:

P.4.3.2: Complementarity of © with @
*Vq € Q5,(x.90q=gq;
*V q; g g€ QS,(),

9= q=q00q =qiff:q; Lq;
(this restriction must be kept in mind when trans-
forming equations).

9;®q)0q=q;®(q;0q) =q D q;

4.4 Multiplication and Division

D.4.4.1: The multiplication (®) of two ele-

ments is the interpretation of the arithmetic sum
of their ranks:

V qi,qj € QS,(x), q:®qj=[R(q) + R(q)))

P.4.4.1: Properties of ®

* @ is commutative, associative, q, 1is the
identity element but it has no absorbent element.
* inv yields the multiplicative inverse:

V qi, qi ®inv(q) =qm

These properties give (QS,(x), ®) a structure of
abelian group. Therefore the right and left

cancellation laws hold: the equation q; ®q = g;
has a unique solution ¢ = inv(q;) ® g;.
« inv is distributive over ®:
inv(q; ® q)) = inv(q;) ® inv(q))
* ® is distributive over @ and ©:
qi®(Qi®q=(qi®q) ®(q®qu
qi® (090 =(q®q) O (q®q)
=@Qi®q)

D.4.4.2: The division (&) of two elements is
the interpretation of the difference of their ranks:

V qi, g€ QS,(x), q:D qj= AR(qQ) - R(q)))

P.4.4.2: Properties of &
* Complementarity with &®:
Va,q, Dq=q iffiqi=q;®q
* Vq,q, 99 qj=q;®inv(g)and so:
q Dinv(gj) =qi® qj, qn D qi = inv(qi),



inv(QiDq)=qDqi,qDqi=qnm
4.5 Power and Root

D.4.5.1: An element power ([.]-) another is the
interpretation of the product of both ranks:

V qi, qj € QS,(x), [q:]9 = (R(q:) R(q)))

P.4.5.1: Properties of [.]-
» The power is commutative and associative.
* (1) (element of rank 1) is its identity element:

V q; [qi 1) = (D) =g
Since the existence of an inverse for all elements

is lacking (QS,(x), [.]) are not groups but abe-
lian monoids.
« Combination with inv:
[q:1m(@) = inv((q: 1Y) = g D [q: 1Y
« The norm is absorbent: V q;, [q; ]9 = qp
+» Compatibility with ®:
[qi]9Y =q; ®...8 q;, R(q)) times.
D.4.5.2: The root ()':) of an element is the in-

terpretation of the entire division of its rank by
the rank of the root:

V gie QS,(x), VY q; # qm,
gj |9 iff: R(q)=R(q;) R(q)
)}E= (qeqp) iff: R (q;) = R(q;)- R(qi) +7
=R(qj) R(qy)+0

fort,0e Z,t>0,0 <0and d(qx, q¢) = 1
(closest neighbors of the exact result).

P.4.5.2: Properties of )_

I(1)
« Identity element: V q;, g =q
4di
* Self-inverse: V q; # Qm, )g; = I(1)
qi
. AbSOl'pﬁDll: A4 9*q9m )qm =9m
« Compatibility with the power:
q; 1%
V Qi # Qms )?; =q;
« Distributivity: V q; # qm,
9 9 4;
—over®:  )g;®q, =)q; ®)q;
5 4 49
—over@:  )aDax = Egm

4.6 Operations Semantics

We can set some semantic equivalence between:
(i) I and exponentiation, and (ii) the ranking
function ® and logarithms (see Table 1). With
this respect, a quality space has to some extend
the semantic value of a geometric progression,
whereas the rank space stands for an arithmetic
progression (with ratio 1). This is why we call
multiplication, division, power and root, opera-
tions on QS based on +, -, x,/, in Z,
respectively.

Table 1: Corresponding notions between the DuAl and exponentiation as a model.

i Model Substitution Rules

Values q;» Qj» 4 € QS,(x) Yir ¥jo Yk € Rt
Ranks z;=R(q;) € RS,(x) cZ |x;=logay;€ R
Interpretation | ;= /z;) = AR(G;)) y;=a%i
Special Qmin 0 0 ::= g
elements e 1 1:=q,
Addition q';_&?qj=mm-(q‘-,qj) y‘.+yi.8max(xi,xj) +u=8
Subtraction q;04q;=q; y;—y;=aXi -u=8
Mult. inverse | inW(q;) = (-R(q;)) (y)l=aX L a=inv()
Multiplication | q; ® g;= XR(q) + R(q))) yiy;= aXigXj = gXi+X [x:u=®
Division qDqj= (RQ) - RQ)) |y; ly;= akifaXi=aXi—-Xj | /=0
Power 09 = ARQ)IRQ) |0 )E = (a*ir;i =X [ ()=}
Root . i) X) = axi X .

]q?:- : O-z=).
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5 Two Examples of Application
5.1 Analysis of a Non-Linear Model

We take from De Kleer and Brown (1984) the
example of the Cochin's law:

2P

ona;- (Eq. 1)

where Q is the flowrate through a valve, C the
discharge coefficient through the orifice of area

A, P the pressure across the valve and p the

mass density of the fluid. Since C, A, P and p
are all positives, using the sign algebra-based
formalism yields [Q] = +. Instead of that, one
would like to assess the influence of the magni-
tude of any of the variables C, A, p and P, on
the value of Q. That is, answering questions
such as: "What if C is low, A small, P much
above normal and p is more than very heavy ?".
Similarly: "keeping C, A, and P values constant,
what would be the influence of p ?".

Transforming the Cochin's expression into the
DuAl formalism yields:

1(2)

Q=CR®A®)(P®P)Dp

since P @ P = P (idempotence), the expression
simplifies to:
1(2)
Q=C®A®iP®p (Eq. c2)

Quality spaces we may choose (this is our
choice) for the variables are:

QS;(A) = {small, regular, large}

QS2(Q) = {very_small, small, OK, big,

very_big]}
QS3(C) = {very_low, low, normal, high,
very_high}
QS,(P) = {m_below, below, normal, above,
m_above}

QS3(p)={VVL, VL,L, M, H, VH, VVH]}
Answering the first question is achieved after
substitution in Eq. ¢2 of known variables for
their values:

1(2)
0 =low ®@small ® )m_above@VVH

However to perform a consistent calculation,
those values must be expressed in terms of their
equivalent in QS2(Q) using transformation func-

tions (Def. 3.3): ¢: q; - ¢(q; ) = [qi)=~2/052(0)-
So, the initial values of known variables to be
used in the calculus are given by:

C =low > c(low) = {small}

A = small - c¢(small) = {very_small, small}

P =m_above - c(m_above) = {very_big}

p =VVHE ¢(VVH) = {very_big}
Since we have two values for A, we get two

ssible solutions:
i) if A = very_small

1(2)

Q = small ® very_small ® )very_bigBvery_ big
(ii) if A = small

I1(2)
Q = small ® small ® )very_ big@very_ big
However, since:
(small ® very_small)

= (small ® small)

= very_small,

solutions (i) and (ii) sum up to only one solution:
I(2)

Q = very_small ® )very_bigBvery_big

1(2)

= very_small ® JOK = very_small ® OK
that is: Q@ = very_small, which answers the
above first question.
To answer the second question, keeping the
above values for C, A, and P, let us calculate Q
according to all the possible values of p by
solving the expression derived from instanciation
of Eq. c2 by known values:
1(2)

0 = low ® small ® )m_aboveDp
using equivalent values and simplifications as
above, it is rewritten as:

1(2)
Q = very_small ® )very_ big@p
Solutions are in table 2. Although the initial
model is non-linear, we get a linear response.

Table 2: Calculus of Q according to p (for C = low, A = small, P = m_above).

) VVL VL L M H VH VVH

c(p) | very small| very small small QK big very big | very big

Q OK OK OK, small small, | very_small | very_small
small very_small
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Table 3: Calculus of P from C = low, A = small, and values of p and Q in table 2.

p VVL VL L M H VH VVH

¢(p) | m_below | m_below below normal above m_above | m_above

Q OK OK OK, small small, | very_small | very_small
small very _small

normal normal normal, below below, m_below | m_below

below m_below

P | m_above | m_above | m_above,| m_above | m_above, | m_above | m_above
above above

In order to check the stability of calculus with
respect to a transformation of the initial expres-
sion, let us calculate P from the initial values of
C and A (i.e. C = low, A = small), and all the

configurations of p and Q values expressed in
table 2.
The transformation is performed as follows:

1(2)

0=C®A®)PDp
1(2)
= 0@(C®A)=)PDp
= [0@(C® A)]'® = Pop

=>P=p®[0(C®A)]"?.

The calculus must lead to P = m_above. The re-
sults are summarized in table 3, which shows
that stability is reasonably insured since all the
solutions cover the expected one.

5.2 Relative Orders of Magnitude

The O(M) formalism provides a set of primitive
relations to compare quantities one to each other
(Mavrovouniotis & Stephanopoulos, 1988).

The semantics of a relation is the comparison of
the ratio of both quantities with respect to 1, say
rs<yiff: xfy <1,

We can compute this using the DuAl formalism
by considering the ratio x/y as a single variable
depending on x and y values such that:

x/y = x@Dy, and taking as a QS:
QSs(xly ) = (€<, ~<, <, ==, Du, >-, 5>},
the primitive relations of O(M), ordered with

respect to strict equality == (x/y = q € QS3(x/y),

means x q y).

For sake of clarity, let x and y quality spaces be

the same:

QS3(x) = QS3(y) = {tiny, v_small, small,
normal, tall, v_tall, giant}.

The respective values of x/y are given in table 4.

Applied to the counter current heat exchanger
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~example described in Mavrovouniotis and

Stephanopoulos (1988) we can derive conclu-
sions consistent with O(M).
The model is based on two equations:

* Tem s differences:
DTH-DT1-DTC+DT2=0 (Eq. ol)
« Energy balance:
DTH.XH.FH = DTC.KC.FC (Eq. 02)

in which DTx are temperature differences (H and
C stand for hot and cold flows, respectively),
KH and KC are the molar-heats, FH and FC are
the molar flowrates.
Given initial conditions:

DT2/DT1 = (-<),

DTI1/DTH = (<<),

KH/KC = (>~),
let us derive: DT2/DTH, DTC/DTH, DT1/DTC,
and FC/FH.
« DT2/DTH =DT2/DT1.DT1/DTH

::==DT2/DT1 ® DT1/DTH

=(-<) B (<<) =(<<),
solution found by O(M).

* By eq. ol we get:

1 - DTC/DTH - DT1/DTH + DT2/DTH = 0,

then: DTC/DTH =1-DTI1/DTH + DT2/DTH
n=(==)0 (<) & (<) = (=),

consistent with: (~<..>~ ) = {~<, ==, >~} the

solution derived by O(M).

+ DT1/DTC = (DT1/DTH) / (DTC/DTH)
n=(<<) O (=) =(<<),

solution found by O(M).

* By eq. 02:
FC/FH = KH/KC . (DTC/DTH)!
2= KH/KC @DTC/DTH = (>~ ) @ (==) = (>~),
partially consistent with:

(““'<">“") =1~<, =5, >""]!
solution found by O(M).
For all these solutions one can find in table 4 the
set of possible values of x and y satisfying the
constraint expressed by the ratio x/y .



Table 4: x/y = x@y where x/y has the O(M) primitive relations as codomain.

x—| tny |v_small| small | normal tall v_tall giant
cx)=»| << ~< ~< == - > >>
yi cO)l
tiny <<| == > > >> >> >> >>
v_small -< - === p o > >> >> >>
[ small - < s == o > >> >>
normal == << -< ~< == = D > >>
tall > << << < S == X >
v_tall >- << << << < ~< == e
e
| giant >> << << << << < e ==

6 Conclusions and Perspectives

The DuAl formalism states that two elements of
same rank are “equal”, not because they are re-
presented by the same label or their real magni-
tude are equal, but because their distance with
respect to their own norm within some order are
equal. This captures the intuitive notion of
assessment or preference scales. Let apple pie be
an element of the quality space for cakes, and
roasted beef be an element for meat meals;
saying: “I like apple pie as much as roasted beef”
comes from the fact they are both interpreted as
“good meals” in my own scale of preference for
meals, although they are different things.
Pushing more, I may even say that an apple pie
is greater than America’s cup watched at the te-
levision. This may seem unintuitive and so-
mewhat scruffy, unless I add that if I had to
choose between both activities I would prefer
eating an apple pie than watching TV. Though,
the idea is that apple pie, roasted beef, watching
the America’s cup, are objects ordered with res-
pect to some common preference, utility, or
assessment scale. This scale is the distance of
objects to norms and all norms have the same
utility (zero) value of being a reference for some
relevant objects. Stating an equivalence between
two objects having the same interpretation in a
common quality space is thus the underlying idea
of our equivalence relation at level k.

Therefore, reasoning about quantities, may also
lead to deal with ordinal instead of cardinal va-
lues. That is why we resolved to choose the term
quality space instead of quantity space to denote
the set of possible values for any variable.
According to Forbus' definition (1984), a quan-
tity space is a finite set of distinguishable values
for signs (taking values on (-1, 0, +1}), magni-

tudes (taking values on R+U{0}) and finally
numbers, composed of both sign and magnitude

(taking values on R). In fact, quantity spaces are
collections of numerical values, eventually
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interpreted as linguistic labels (e.g., Davis,
1987). Therefore, operations of comparison and
combination on them are well defined, using the
classical algebraic operations or adaptation of
them (as in the sign or interval algebras). This is
also the case in Raiman's (1991) order of magni-
tude reasoning (e.g. coarse values are sets of
numbers). If our QS values q; stand for some
kind of magnitudes, they are not numbers since
the sign component is lacking. More generally,
Hayes' concept of quality spaces denotes the set
of all possible values of a quantity, whatever
their nature be. In those, as in our QS, may exist
notions such as distance between values, tole-
rance, non density, as well as functions to map
qualities with some linear order. DuAl is closer
to this concept.

As emphasized by Struss (1990), most of the
work in qualitative reasoning has been directed
towards the qualitative interpretation of quantita-
tive equations (i.e. real-valued). Our approach is
a bit different. Starting from qualitative, local,
poorly structured knowledge, our aim is to pro-
vide a representation framework enabling one to
derive unknown values from existing ones. The
DuAl approach came from difficulties encounte-
red in modeling complex systems, such as eco-
logical or biological, in which it is often useful to
compare and combine what is not comparable or
combinable. Human reasoning does so, but
classical models do not.

In terms of applications, a preliminary approach,
using mainly ad hoc combination tables and
some primitive operations, was proved useful to
heuristic knowledge representation (Guerrin,
1991). In the current work, we put the emphasis
on operations. Although the task of representing
knowledge in the form of equations is not easy,
the use of operations with known properties gua-
rantees sound calculations and provide verifica-
tion possibilities, especially when many possible
values exist. However we think this will not re-
frain heuristic representation if: (i) the semantics
of operations is clear, (ii) the modeler can check



several combinations before choosing the ade-
quate one, (iii) identification techniques are set
up to help find the right model from partial ad
hoc tables. Verification of these aspects is a
perspective. However, dealing with first prin-
ciples equations, and comparison to other QR
systems, is also possible, as shown in section 5
examples. Particularly, DuAl fits the general de-
finition given by Williams (1991) of a qualitative
algebra, as an abstraction of a quantitative one
(here integers arithmetic). The DuAl approach
was also checked against Raiman's example
(1991) of colliding masses, with consistent ana-
lytical results except in one case. This short-
coming comes from the lack of additive inverse

(in the sense of our @) and the brute force defi-
nition of addition and subtraction, which is a
limitation. In fact, our quality spaces, made of
positive elements, are more likely to the Rough
set (not closed under subtraction) of Raiman's
approach, whereas the Small set (including zero)
is lacking. A means to connect our Rough sets to
Small sets to improve calculation is another
perspective.

The refinement process for expanding a QS is,
till now, based on refining its extremities. This is
because greatest and least elements are very often
considered as right and left open intervals res-
pectively (e.g. any value above or below nume-
rical thresholds, respectively). We are currently
generalizing this notion of expanding a QS by
refining all the elements, be they extremities or
intermediate elements. This may lead also to de-
fine more gradual operations and certainly im-
prove the modeling power of the formalism by
improving its flexibility.
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