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Abstract : Based on the view that symmetry
plays an essential role in human reasoning about
the laws of physical phenomena, we propose a
reasoning paradigm in which symmetry assists
in the reasoning about equations physical laws .
Within this paradigm, symmetries are used as
constraints which enable us to specify, derive and
generalize these equations . The symmetry-based
reasoning is extracted and formalized from
Einstein's work on relativity. We claim that the
reasoning procedure thus formalized provides a
general reasoning architecture that is common to
dimensional analysis in engineering,
mathematical proofs, and commonsense
reasoning. This symmetry-based reasoning
system has been implemented as a symbol-
processing system with a production system and a
formula-processing system . Using the symmetry-
based reasoning system, the equation of Black's
law of specific heat is demonstrated to be
specified .

1 Introduction
One aspect of symmetry that has not yet been

fully addressed is its function in human
reasoning. Despite the fact environment is full
of symmetry and that humans depend symmetry
for perception, memory and reasoning, relatively
little work on symmetry has been done in
artificial intelligence . Leyton's work on the role
of symmetry in reasoning about shape [Leyton, 88]
and Liu and Popplestone's work on spatial
reasoning [Liu and Popplestione, 90] are
exceptions to this general trend.
The ultimate goal of our research is to

introduce a reasoning that uses symmetry to
enhance the intelligence of the system . In this
paper, we focus on a specific reasoning based on
symmetry found in physics. We formalize the
reasoning that we can trace in Einstein's 1905
paper [Einstein, 05] which emphasizes that the
physical law should be expressed in a way
invariant under reference frame . Based on this
principle, we specify and derive the equations of
physical laws by using symmetry as a guiding
constraint .
The explicit investigation of symmetry-based

reasoning in physics is relatively modern. Such
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reasoning is evident in the special and general
relativity theory, the theory of quantum
mechanics, the theory of elementary particles,
and superstring theory . Early attempts to relate
symmetries in physical laws to conservation laws
can be seen in the 1918 work of Noether or even
the older work by Hamel in 1904. Nevertheless,
the origin of this investigation may be traced
back to Newtonian physics, which implemented
symmetries such as space translation, time
translation, time reversal and parity .

Further, this investigation is not restricted to
physics. If we take a broad definition of
symmetry, such common sense reasoning as "if it
takes one hour to go from A to B, then it would
take also one hour from B to A," canbe recognized
as examples of symmetry-based reasoning . In
general, symmetry-based reasoning seems to be a
weak method to which we resort when powerful
knowledge such as the dynamics of a particular
system is not readily available, as occurs with
the theory of elementary particles .
Viewed as a reasoning system, the symmetry-

based reasoning is distinct in that it is reasoning
about modeling rather than reasoning about the
behavior of given models. Although reasoning
about behavior has been widely discussed and
implemented -- primarily in artificial
intelligence -- little has been done on the
important topic of modeling .
Viewed as a law-discovery system [Simon, 77],

our implementation is in the same line as that of
Black System [Langley et al ., 87] in that it is
theory-driven and uses a conservation concept.
Although Bacon 5 [Langley et al., 81] uses
symmetry in part to economize search, the
implementation here relied on symmetry to form
the base of the reasoning paradigm .
Although we address symmetry-based

specification and derivation of the equations of
physical laws, we are fully aware not only that
the final justification of the law should be
against experimental data but that
experimental data are required to bridge the gap
between physical laws and symmetry .
Applying within a specific symbol system

[Simon, 69] would depend on the system's ability
to identify symmetry in the representation



adopted. Currently, it is possible for a computer
symbol system to identify symmetry to some
extent in symbolically expressed formulae, --
something which, up to now has been possible
only for a human symbol system using paper and
pencil .

The literature of physics includes several
principles [Bridgman, 62, Feynman, 65, Wigner,
67, Rosen, 83, Brandmuller, 86, van Fraassen, 89,
Froggatt, 91], which allow us to use symmetry in
reasoning . The principle we used in order to
specify and derive the equations of physical
laws is Symmetry as Guiding Constraints . At
this point, we need to formally state what we
mean by symmetry . The following definition is
merely a restatement of that by Weyl [Weyl,
52]: An object Ohas symmetry under a mapping T
that can operate on O if T(O) = O. We use the
word transformation when the mapping is
defined on the symbolic formulae .
To illustrate the use of these principles we

will consider the problem of specifying figures by
rotational symmetry around a center of rotation
on a plane. Let a symmetry defined by a rotation
ofa/naround the center point be denoted by C� .
As an example of using Symmetry as Guiding
Constraints, consider the problem of specifying
figures by the constraint of C6 rotational
symmetry . Obviously, this symmetry cannot
completely specify the object as a hexagon,
although it can eliminate the possibility of
pentagon or octagon.

Section 2 discusses the extraction of reasoning
with symmetry from Einsteins's work on
relativity . Derivation of the formula of
Pythagorean theorem and dimensional analysis
are discussed as one of the symmetry-based
reasoning . Section 3 presents primitives of
symmetry-based reasoning . In section 4, the
symmetry-based reasoning is formalized as a
symmetry-based specification and derivation,
and the example of specifying the equations of
Black's law is presented.

2. Overview of Symmetry-Based
Reasoning

2.1 . Extraction of Symmetry-Based
Reasoning from Einstein's Work
This work is motivated by Einstein's work on

relativity : Einstein's reasoning can be
formalized as symmetry-based reasoning that
fully uses symmetry as a constraint, and the
reasoning can be applied not only to motion but
also to other physical reasoning or even common
sense reasoning which is applied to the domain
other than physics.

Hence, we first discuss Einstein's work of
relativity and formalize the reasoning
paradigm as symmetry-based reasoning .
Then, as an application to artificial

intelligence, the symmetry-based reasoning can
be implemented as deriving the symbolic forms
with the symbolic rewriting system .
When one reviews Einstein's work on special

and general relativity from the viewpoint of
reasoning paradigm, one would realize they
have a reasoning style in common: Both special
and general theory of relativity have two
components, i .e. , the principle of relativity and
the entity carrying physical meaning. As will
be discussed in section 4 in the more general
context of symmetry-based reasoning, we
identify the former as symmetries and the latter
as object . In order to derive the symbolic forms
either for the mapping defined in symmetries or
for the object, symmetries are used as constraints
that the object must satisfy.

Specifically, the principle of relativity (as
in special theory of relativity) states that the
physical law should be invariant when viewed
from different coordinate systems; one moves
with a constant velocity relative to the other.
The application of the symmetry (special
relativity) to the object (constancy of the speed
of light) leads to the following: The light speed
must be invariant viewed from different
coordinate systems. This fact is used to derive
the Lorentz transformation, which correspond to
the mapping defining symmetry . Afterwards,
the Maxwell-Hertz equations are checked
against the Lorentz transformation to see
whether or not the equations are invariant
under the transformation . Further, the same
style of symmetry-based reasoning is used to
generalize the equations for the composition of
velocity and those for the Doppler effect . In
this reasoning, symmetry is the same as the
above (i.e ., special relativity), but it applied to
the object different from the constancy of the
speed of light.

In summary, symmetry-based reasoning, as
demonstrated by Einstein's work on relativity,
has two components : symmetry as shown in the
principle of relativity (in the special theory of
relativity) and objects carrying physical
meaning as in the constancy of the speed light
(in the special theory of relativity). The
symmetry-based reasoning is carried out by using
the symmetry as constraint to specify, derive,
andmodify the object. In the next subsection, we
will show an example which use symmetry-
based reasoning and which is outside of the



physics domain. This will show the symmetry-
based reasoning (as extracted from Einstin's
work) is so general that it can be applied to
physics as well as to other areas such as
geometry and modeling in engineering.

2.2. Geometric reasoning as a symmetry-
based reasoning

It is interesting that the same reasoning as
that explored in relativity theory can be
applied to many fields . One of the fields is
geometry .
Example 2.2 . (specifying the formula of

Pythagorean theorem)
An important symmetry for geometric objects is

that the interrelation among the components of
geometric objects is invariant under
dilation(expansion of the size). In other words,
what defines the geometric object is not the
absolute length of the components but the
relation of the lengths among them. For
example: for the right triangle shown in Figure
1, the relation between the length of the three
edges must be invariant under dilation . The
relation, thus, should be represented in a
symbolic form which is invariant under
dilation . This is completely parallel to the
reasoning in Einstein's relativity that the
symbolic form of the physical law should be
invariant under the different frame of reference .
In our context of symmetry-based reasoning, the
following two components are given.
O (Object to be specified) : c = f(a,b).
T (Transformation of the symmetry): c-> kc,

a-> ka, b-> kb where k is any real number and
v i -> g(v j ) denotes a substitution.

Thus, O =T(O) gives the constraint : k f(a,b) =
f(ka, kb) that is used to specify the symbolic
form of f(a,b) . For three right triangles, the big
one and two internal ones, equivalent forms must
hold : c = f(a,b), a = f(a2 /c, ab/c), b= flab/c,
b2 /c). The length c can be obtained by adding
the two edges from the two internal right
triangles; c = a2/C + b2 /c.

	

Thus, separating c
into the left hand side yields : c =

	

a2 +b2 .

a
Figure 1 Geometric object for Pythagorean

theorem
2 .3 . Symmetry-based reasoning as a

generalization of dimensional analysis

One of the important difference between
geometry and physics can be found in the scale
symmetry . In physics the scale symmetry does
not hold (as pointed out, for example, by
[Feynman 65]) : i.e ., if you make a miniature
system whose size is, say one tenth of the real
system, then you cannot expect everything is
same for the miniature as the real one even
though everything is made same as the original
one except size (known as scale effect). However,
the scale symmetry for unit of measure of
independent dimension must hold for physical
system as known from Buckingham's II theorem
[Buckingham 1411 .
Again, it should be noted that this

Buckingham's Il theorem is understood as the
result of applying same reasoning as Einstein's
theory of relativity : the representation of
physical law (the equation describing a physical
system in this case) must be represented as a form
invariant under change of frame of reference (the
system of dimension in this case). In fact,
0(7ri,7C2, . . .7r�_,) is such an invariant form since
7r1,762, . . .7r,_, are invariant under scale change
of unit of measure for each independent
dimension.
The next example illustrates not only that the

dimensional analysis can be done within the
framework of symmetry-based reasoning but that
the symmetry of scale change of unit of measure
for independent dimension in dimensional
analysis can be treated as constraints in
symmetry-based reasoning, similarly to the
other symmetries .
Example 2.3 . (Dimensional analysis) [Sedov 43]

Consider the motion of a simple pendulum
where the particle with mass m is suspended by
a string as shownin Figure 2.

Figure 2 A simple pendulum where the
particle with mass m is suspended by a string

1 If a physical system is described by f(zl, x2 9 . . ., X")
where z,,x2, . . . I x,, are n variables that involve r basic
dimensions, then the physical system will be described
only by n-r independent dimensionless products

The equation describing the physical
system is, thus, reduced to be 0(n1,7r2,. . .7r._,) .



The object to be specified is the formula of the
system f(t, 1, g, m, o) where t: time(T), 1: length of
string(L), g: gravity constant (L / (T 2 )), m: mass
of the pendulum(M), and o : angle of the string
(dimension is indicated inside the parentis) .
The given symmetries are:
" (1) scale symmetries due to the basic

dimensions T, L, M.,
" (2) phase translatory symmetry in terms of

time t, and
" (3) mirror symmetry in terms of the angle 0.
The symmetry (1) specify the form f(t, 1, g, m,

On one hand, insight of what symmetries are
involved in physical phenomena or
mathematical statement is important element.
Using these symmetries in deriving and
specifying the formulae by symbolic processing
is a core of our symmetry-based reasoning.
On the other hand, it should be noted that

finding the object with domain specific content
is an important core in scientific discovery .
However, this process of finding the object with
content is far from automating or even from
formalizing at this stage.
As will be seen in section 4.2 ., if the given

object is specific enough, the symmetry-based
reasoner carry out deductive reasoning .
However, if the given object is not specific, the
reasoner carry out inductive reasoning by
proposing candidate forms satisfying the given
symmetry and modifying the current forms to
meet the other given symmetries .

3 . Primitives of Symmetry-Based
Reasoning

3.1 . Fixed point and symmetry
Our method of specifying the equations of

physical laws is a generalization of that in
dimensional analysis . Buckingham's r1 theorem
can be generalized along the following lines
(where the symmetry used is scale symmetry for
unit of measure of an independent dimension and
the invariant form is a dimensionless product in
the Buckingham theorem):

gives the constraint :f(t 9,0)=f((t+Tc)
0) . The symmetry (3) further gives the constraint :

f(t (t19, 0)=f(t N1 , -0) .
Our method of specifying the equations of

physical law can be viewed as a generalization
of that in dimensional analysis . Table 1
summarizes the parallelism of the symmetry-
based reasoning among Einstein's theory of
relativity, derivation of the form of
Pythagorean theorem and dimensional analysis .

0) to : f(t 9F11, 0) . The symmetry (2) further
Table 1 Parallelism of the symmetry-based reasoning among Einstein's theory of relativity, derivation

ofPythagorean theorem and dimensional analysis .
of the form

If a formula is to be described with variables :
X1,X2, . . .,xn and if the formula should have a
symmetry that can be attained only by a form
F(xl,x2, . . ., x� ), then the target formula can be
reduced to the form f(F(x1,z2, . . .,xn) ).
Example 3.1.1 .
If the given symmetry is the translatory

symmetry such that the form should be
invariant under the translation: x1,x2, .. .,Xn ->

X1 + C,x2 + C, . . .,x� +C where C is an arbitrary
real number, then the unique 2 form is :
F(x1,X2, . . .,Xn) = alxl +a2x2+, . . .,+anxn where
a,,a2, . . .,a. are constants satisfying
al +a2+, . . .,+an = 0. Therefore, the formula
with this translatory symmetry can be reduced
to the form

	

f(F(x1 , x2,. . ., xn ) ) by the above
argument. (This form will be used in the
example 4 .2.1 . to specify Black's law.)
However, if the given symmetry is the
permutation symmetry : x i <-> x i (vi <-> v i
denotes a permutation), then there are many
forms satisfying the symmetry . Examples are:

2We do not derive the uniqueness here because the
derivation process itself is irrelevant with the
symmetry-based reasoning; we use the heuristics
associating the given symmetry with possible forms
satisfying the symmetry, as seen in the following
sections .

Einstein's theory of
relativi

Geometric reasoning in
Pythagorean theorem

Dimensional analysis

Symmetries Symmetry with frame Scale symmetry Scale symmetry for
ofreference unit of measure of

independent dimension
Object with the Constancy of the speed Geometric Involved variables and
Content of the Domain of light Configuration their physical

u ( I dimensions



F(xi,xj)= x i xi,F(x i ,x 1 )= x i+x j and F(x,,x j )
= x ix i +x i +x i .
The process of specifying the equations of

physical laws is a process of finding an object
(formula) whose symmetry is as close as possible
to the strength of the symmetries given as
constraints. Due to the absence of symbolic
version of the fixed point theorem, specification
and derivation process is driven by observing
how T(O) differs from O and by using the
equation O = T(O) . There is no continuous
measure that indicates how close the current
form is to the target solution in the search for
the symbolic form in our procedure of symmetry-
based reasoning . The discrete measure indicating
how close the current form is to the target
solution is the number of how many symmetries
(out of the symmetries given as the constraints)
the current form satisfies . One heuristic to
increase the efficiency of the search is that if
the current solution satisfies the symmetry, then
all the symmetries weaker than the symmetry
can be disregarded .
Example 3.1.2
Since a regular triangle already has the

symmetry C3, this symmetry does not provide
any information to the regular triangle.
However, both the symmetries C4 and C6 will
provide the information, for they require the
figure to be a regular 12-gon and a hexagon,
respectively . C6 is stronger symmetry than C3
because C3 cannot provide information for all
the objects to which C6 can provide
information . C4 is orthogonal to C3 because C3
can provide information for some objects to
which C4	cannotprovide information . In this
sense, the continuous symmetry C� , which
specifies a circle, is the strongest possible
symmetry .

In section 4.2., we will look at Black's law of
specific heat as an example of symmetry in a
physical law .

3.2 . Formula-processing for symmetry-
based reasoning

The formula-level operations required for the
symmetry-based reasoning are : symmetry
identification, equation building by symmetry,
and equation solving . These operations are
possible in the commercial formula-processing
systems such as Mathematica, Maple, Macsyma,
Reduce, and so on. In our study, we used
Mathematica [Wolfram, 88] for formula-
processing . The intrinsic problem in symmetry

identification comes from the lack of an ultimate
canonical form of the equations, which makes it
difficult for the system to identify two formulae
as equivalent. Thus, even if the two forms are not
identified as equivalent by the system, it may be
simply because the system cannot identify the
equivalence .
We used a production system to implement the

symmetry-based reasoning . The reasons we
adopted the production system architecture are
twofold : First, we formalized symmetry-based
reasoning as based on a human reasoning
paradigm rather than a computational
algorithm. Second, symmetry-based reasoning
requires much heuristic knowledge which is not
explicitly included in the formula .
We implemented a production system on

Mathematica so that the formula-level
operations mentioned above could be done within
the production system .
Like many other pattern-directed

applications of Ma th em a t i ca, formula-
processing for symmetry-based reasoning uses the
chain of (conditional) rewriting of the formulae .
Other than built-in functions such as solve and
Eliminate, the following components are
implemented for symmetry-based reasoning :
transformation of formula, symmetry
identification, proposing formula by symmetry,
and symmetry derivation from constraint . We
present the syntax and examples of each of these
components in the following subsections.

3.2 .1 . Transformation of formula
The syntax of transforming an expression is :

Trans_ [exp_,{parameter-list)] . There
are five types of transformations commonly used :
Tranal, Perm, Dilat, Com, ASCom .
The symmetry defined by the transformation
will be expressed as follows :
Trans-{parameter-list) .
" Transl [exp_, (x1,x2, . . . ),c] will
translate the listed variables xl,x2, . . . to
xl+c,x2+c , . . . in the expression specified in exp .
" Perm[exp_,(x1,x2,y1,y2 . . .)] will
permute x1 with x2, yl with y2,
and so on
" Dilat[exp_,(x1,x2, . . .),c] will
dilate the listed variables xl,x2, . . . into
cxl,c x2, . . . .
" Com [exp_, (xl, x2) ]

	

will permute xl
with x2.
" ASCom[f_[xl,x21,(x1,x2)] will
make the function f [xl,x2] into
1- f_[1 /x1,1 /x2] .

Other transformations which are specific to
the problems will be described at each example .



In the examples of the rest of paper, the input to
the system is in boldface . The output from the
system is not.
Example 3.2 .1
Transl[-(cl mi t1) - (c2 m2 t2)
+ cf (ml + m2) tf,(tf,t1,t2),c]
-(cl ml (c + tl) )

	

- c2 m2

	

(c + t2) +
cf (m1 + m2) (c + tf)

ASCom[f[m2/mi,c2/cl],(m2/ml,c2/c
1)]

Ml Cl
1 - f [--,

	

-
m2 c2

3.2.2 . Symmetry identification
The symmetry of the formula can be

mathematically identified by investigating the
equivalence between the original formula and
the formula after transformed as described
above . The syntax of the symmetry
identification is:

SymQ[{},exp-,Trans_�{parameter-listl]
which will identify the expression exp_ is equal
to the expression after the transformation :
Trans_[exp,{parameter-list)] . It will return
True if the equality is identified, otherwise it
returns False. As we have mentioned, it may
return False even if the expression and that after
complicated reduction are equal.

Example 3.2.2
SYMQ[(),-(1 - (1 + (c2
ml))"(-1) + t2/((1 + (c2

t 1 ) )

m2)/(cl
m2)/(cl

m 1 ) )
tf/t1,Perm,(m1,c1,m2,c2)]
True
SYMQI(),f[cl, c2, ml, m2, tf,
t1, t2],Transl, (tf, ti, t2)]
False

3.2 .3 . Proposing formula by symmetry
Symmetries can be used to propose possible

forms that the target object may have . Since
such proposals are made based on heuristics, the
resulting object must be evaluated (see section
4.1 . for the process) to see whether if they
satisfy all the given symmetries . The syntax of
proposing possible forms is :
Trans_[prop,exp_,{parameter-list)] .

Example 3.2.3
Transl [prop, f[c1,

	

c2,

	

m1,
tf, t1, t2],(tf, t1, t2)]
tf - (ti (1 - f[cl, c2, ml, m2]) +

t2 f[c1, c2, m1, m2l)

m2,

Dilat[prop,tf - (tl (1 - f[cl,
c2, mi, m2]) + t2 f[cl, c2, ml,
m2]),(cl, c2)]

tf -

	

(t1

	

(1 - f [l,
c2

f [l,

	

--, ml, m2l )
Cl

c2

cl
ml, m2l ) + t2

3.2.4. Symmetry derivation from constraint
Symmetries on the formula such as

permutation symmetry can provide a constraint
which can be used to derive internal symmetries
(symmetry on the part of the original formula),
as seen in the example of symmetry-based
specification of the equation of Black's law. To
carry out a symmetry derivation,

*First, Eliminate irrelevant variables from
the constraint (given by the symmetry).

*Then, use pattern-matching to search the
symmetry for the extracted part of the original
formula.

*After the internal symmetries are detected,
they are recast to the symmetry-based reasoning
system by creating a subgoal of specifying the
part of the original formula by the internal
symmetries detected .

4 Symmetry-based reasoning
4.1 . Procedure of symmetry-based reasoning
In his 1905 paper [Einstein, 05], Einstein used

the symmetry-based reasoning. It should be
noted that he used this reasoning to derive
symmetry of the Lorentz transformation [Lorentz,
04] and to derive objects3.

	

By extracting the
reasoning from Einstein's work and making it to
fit as a procedure, the symmetry-based reasoning
may be formalized as:
*(step 0) Given: transformation T and some
piece of information for an object O.
*(step 1) Checking symmetry : if the object
is given in symbolic form, then check
whether the object satisfies the given
symmetry . If O = T(O) , stop; otherwise
go to (step 3)
*(step 2) Proposing object: If object O
does symmetry, then propose a candidate
formula of the object O by heuristics on
the basis of the given list of symmetries T.
*(step 3)

	

Modifying object:
*(step 3.1) if O = T(O) can derive new
transformation T' for the part of object
O' then go back to (step 0) with these
T' and O'.
"(step 3.2) if

	

O = T(O) include
unknown parameters, solve the equation
O = T(O) .

3The generalized equation of Doppler's principle, the
equation of pressure of light, and the equation for a
relativistic mass[Einstein, 05] .



*(step 3.3) modify O by heuristics so
that O = T(O) is satisfied. If there is not
enough knowledge to do this, go back to
(step 2) for new proposal.
The rules of the symmetry-based reasoner can

be divided into the procedual steps above. The
rules of the step 1 see if given symmetries are
satisfied by the given object using SymQ described
above. If all the given symmetries are satisfied
by the object, then the rules of this step simply
terminate the task. A simple symmetry check
can be done within this step . We call this mode
symmetry identification .

If any of the symmetries are not satisfied by
the object and if there is any knowledge
available to propose modifications to the object
so that the unsatisfied symmetry may be
satisfied after the modification, then the rules of
the step 2 will make those modifications . Among
several symmetries which can propose
modifications, permutation symmetries work in a
unique manner. Permutation symmetries do not
propose the modification, but rather derive
constraints at the step 3.1 and then derive the
internal symmetries found in this step . Next, the
permutation symmetries create a subgoal of
specifying the part of the object using the new
symmetries found at this step . After these
modifications and after working memory
elements have been preprocessed, the object is
recast to the symmetry check process returning
the control to the step 1 . We call this mode
symmetry-based specification .

If the modification is just a specification of
unknown parameters in the object, then the rules
of the step 3.2 are evoked after the step 1 . In this
step, the given symmetries are used as building
the equation whose solution will specify the
unknown parameter . The modification on the
object is made by substituting the solution to the
unknown parameter at the next step 3.3 . After
this modification, the same process as that of
symmetry-based specification follows. We call
this mode symmetry-based derivation . In the
following, we present sample sessions for these
three modes.

4.2 . Examples of symmetry-based
reasoning
In this section, we will give only example of

symmetry-based specification, since symmetry-
based derivation and symmetry identification
use only a part of steps of symmetry-based
specification . The examples of symmetry
identification . mode demonstrated in our
reasoner include that the angular momentum is
invariant under spatial rotation, that the

quadratic form of -(c 2 t 2 ) + x2

	

+ y'-

	

+ z 2 i s
invariant under the Lorentz transformation, and
that the Maxwell equation is invariant under
the Lorentz transformation . The examples of
symmetry derivation of parameters include
that the specific heat from the symmetries used
in the next example 4.2.1 when given object has
only specific heat left as unspecified parameter,
the parameters in Lorentz transformation,

	

the
angle between spin and velocity for mass-less
particle is zero4, which is more complex than
those shown here .
Example 4.2.1 (Specification of the equation

of Black's Law)
Black's law of specific heat can be stated as

follows: If two entities, whose initial state
described by temperature

	

t i and t2 .

	

specific
heat c i and c,, and mass mi and m2 ,

	

are
thermally coupled, then the final equilibrium
temperature will be

	

tf = (c emit 1

	

+ c, m2 t ,
)/(c i in i +c 2 m2 ).

In the following example, the equation of
Black's law: t f = (cimiti + c 2m2 t 2 )/(cirri +
c2m2 ) will be specified starting from scale
symmetry (dimensional analysis), translatory
symmetry of temperature, permutation symmetry
of interacting entities, and permutation
symmetry of specific heat and mass. When
permutation symmetry exists in the list of
symmetries in the input, three more steps are
evoked after the step of P r o p o s e For mu 1 a
DeriveConstraint, DeriveSymmetry and
Focusintobj . As seen in the trace of the rule
firing, these additional steps first derive
constraint from permutation symmetry and find
the internal symmetry that this part of the object
exhibits .

This example specifies the equations of
Black's Law when sufficient symmetries are
given. Both the input and the output have been
translated to higher-level expression for
readability. Also, some inessential parts are
omitted. The step numbers in parentheses refer to
the procedural step described in the previous
subsection . The number before parentheses
indicates the depth as well as the cycle of the
procedure . ==, != and && denote equality,
inequality and logical and, respectively .

4"The intrinsic angular momentum of a particle with
zero rest-mass is parallel to its direction of motion, that
is parallel to its velocity [Wigner 67] ."



O : f[cl,c2,m1,m2,tf,t1,t2)
T :
Perm(m1,m2,cl,c2,t1,t2),
Perm(mi,c1,m2,c2),
Dilat(ml,m2),
Dilat{cl,c2),
Dilat(t1,t2,tf),
Transl(tf, t1, t2)

1(step 1 .1) The system identifies that the symmetry
Transl{tf, tl, t2} is not satisfied by the object .
. . . . symmetry checking given in the list T, similar to the above . . . . .
1(step 2) By the symmmetry Transl{tf, tl, t2}, the

modification from the object :
f [c1,

	

c2,

	

ml,

	

m2,

	

tf,

	

tl,

	

t2]
to .
tf -

	

(tl

	

(1 -

	

f [cl,

	

c2,

	

ml,

	

m2])

	

+ t2

	

f [cl,

	

c2,

	

m1,

	

m2))
1(step 2) By the symmmetry Dilat{c1, c2}, the

modification from the object :
tf - (t1 (1 - f[cl, c2, ml, m2]) + t2 f[cl, c2, m1, m2])
to :

	

c2

	

c2
tf -

	

(t1

	

(1

	

-

	

f [1,

	

--,

	

ml,

	

m2])

	

+ t2

	

f [1,

	

--,

	

ml,

	

m2] )
c1

	

cl
. ..modification of the objects by Dilat symmetries, similar to the above . . .
1(step 2) By the symmmetry Dilat{ml, m2}, the

modification from the object :
c2

t2 f[1, --, m1, m2]
tf

	

c2

	

c1
-_ _ (1 _ f[1, _-, ml, m2] + ________--____-----)
ti

	

cl
to .

ti
c2 m2

t2 f[1, --, 1, --]
c2 m2 cl m1
-_, 1, _-] + --_------_______-_)

t1

	

c1 m1

	

t1

tf

system proposed the

system proposed the

system proposed the

1(step 3 .1 .1) By the symmmetry Perm{m1, cl, m2, c2}, the system derived the
constraint :

c2 m2 m2
f[1, --, 1, --] != 0 && f[1, --,

cl m1 m1
1(step 3 .1 .1) By the symmmetry

c2
1, --]

cl
Perm{m1,

==
c2

f [I, --
cl

m2, cl, c2,

m2

m1
t1, t2}, the system

derived the constraint :
c2 m2 c1 ml c2 m2

f[1, --, 1, --]!=0 && f[1, --, 1, --]== 1 - f[1, --, 1, --]
cl ml c2 m2 cl ml

1(step 3 .1 .2) By the constraint :
c2 m2 m2 c2 c2 m2

1 , --] _= f[1, -_ 1 --]
cl ml ml c1 cl ml

the system derives the symmetry :
m2 c2

Com{--, -_}
ml c1

for the object :
c2 m2

f[1, -_ 1 --]
cl ml

1(step 3 .1 .2) By the constraint :
c2 m2 cl ml c2 m2

f[1, --, 1, --]!=0 &&
cl m1 c2 m2 cl m1



the system derives the symmetry :
m2 c2

ASCom{--, --}
ml cl

for the object :
c2 m2

f[1, --, 1, --]
cl m1

1(step 3 .1 .3) The system creates subgoal of checking the
derived symmetries :

m2 c2

	

m2 c2
Com{--, --} and ASCom{--, --}

ml c1

	

ml cl
for the internal object :

c2 m2
f[1, --, 1, --]

cl ml

1 .1(step 2) By the symmmetry
m2 c2

Com{--, --},
ml cl

the system proposed the modification from the object :
c2 m2

f[1, --, 1, --]
cl m1

to :

	

m2 c2
f[1, 1, com[--, --}]

m1 cl
1 .1(step 2) By the symmmetry

m2 c2
ASCom{--, --},

ml cl
the system proposed the modification from the object :

m2 c2
f[1, 1, com[--, --}}

ml cl
to .

that the symmetry

is satisfied by the internal object .
1 .2(step 1 .2) The system terminated the subgoal because there is no symmetry

that is not satisfied by the internal object .
2 (step 1 .1) The system identifies that all given symmetries are satisfied by

the object with new internal object .
2(step 1 .2) The system terminated because there are
no other symmetries that are not satisfied by the object with new internal

object .

1

c2 m2

cl ml
1 .2(step 1 .1) The system identifies

m2 c2 m2 c2
Com{--, --} and ASCom{--, --}

ml c1 m1 c1

1 .1(step 1 .1) The system identifies that the symmetry
m2 c2 m2 c2

ASCom{--, --} and Com{--, --}is not satisfied by the internal object .
MI. cl ml cl



Specification by symmetry can apply not
only to physics but to mathematics as well . As
we have seen in section 3.2 ., the Pythagorean
theorem, for example, can be specified by the
geometrical symmetries of a right triangle . The
application of this specification method is not
limited to the equations of physical laws. It can
also apply to the equation of a particular system
if the system exhibits symmetry . As we have
seen in section 3.3 ., it can apply to derive the
equation of a pendulum that exhibits some
obvious symmetry specific to the system
structure.

In this section, we have discussed the
specification and derivation of an object
(formula) . However, the symmetry-based
reasoning can be applied to specify or derive the
symmetry (transformations) as well . Einstein
specified or derived the Lorentz transformation
from the fact that it leaves an object (the speed
of light) unchanged . He also noted that the
transformation leaves unchanged the other
object such as Maxwell-Herz equation [Einstein,
05] . Our symmetry-based reasoning also can
check whether some other objects may have the
symmetry .

5 Conclusions
In this study, we demonstrated how the

Symmetry as Guiding Constraints principle can
be used to automate reasoning in order to
specify, derive, and generalize equations in
physical laws . Nevertheless, symmetry itself
still needs to be found .

There is not always one-directional mapping
from symmetries (constraints) to objects
(equations). Rather, in reality, the elaboration
process may go back and forth with symmetries
and objects constraining each other.

The symbolic equation serves as a powerful
representation of knowledge that can be :
checked if it has a certain symmetry, solved if
variables and constants are specified,
transformed into canonical form, and so forth . In
order for these operations to give physical
implications, the syntax as well as semantics of
the equation must be included in the knowledge
of the system . In this paper , we implemented
the syntax on the formula-rewriting system
Mathematica and the semantics on both the
long-term and short-term memory of a
production system .
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