Temporal Constraints on Trajectories
in Qualitative Simulation

Giorgio Brajnik”
Dip. di Matematica e Informatica
Universita di Udine
Udine — Italy

giorgio@dimi.uniud.it

Abstract

We present a new method for specifying temporal
constraints on trajectories of dynamical systems and
enforcing them during qualitative simulation. Such
constraints are otherwise inexpressible using stan-
dard qualitative reasoning techniques. Trajectory con-
straints can be used to restrict the simulation to a re-
gion of the state space and to inject discontinuities.
This capability can be used to focus the simulation
for larger, more complex simulations, simulate non-
autonomous and piecewise—continuous systems, rea-
son about boundary condition problems and incorpo-
rate observations into the simulation. The method has
been implemented in TeQSIM, a qualitative simulator.
It combines the expressive power of qualitative differ-
ential equations with temporal logic by interleaving
temporal logic model checking with the simulation to
constrain and refine the resulting predicted behaviors
and to inject discontinuous changes into the simula-
tion.

The paper discusses the applicability of temporal con-
straints in tasks ranging from simulation to monitor-
ing and control of continuous dynamical systems. We
present a real-world control problem in the domain of
water supply. Finally, the basic algorithm and the-
oretical results (soundness and completeness) are de-
scribed.

Introduction

State space equations that constrain the values of re-
lated variables within individual states are often used
in models of continuous dynamical systems such as or-
dinary differential equations. These models do not al-
low the representation of non-local information con-
straining the behavior of the system across time ex-
cept through the application of continuity. Qualitative
simulation (Kuipers, 1994; Forbus, 1984) uses an ab-
straction of ordinary differential equations to specify
structural equations based on a state space descrip-
tion. The discretization of trajectories into abstract
qualitative states, however, makes the representation

*The research reported in this paper has been performed

while visiting the Qualitative Reasoning Group at the Uni-
versity of Texas at Austin.

22 QR-96

Daniel J. Clancy
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712
clancy@cs.utexas.edu

used by qualitative simulation amenable to the appli-
cation of temporal formalisms to specify non-local tra-
Jectory constraints. In general, trajectory information
can be used to restrict the simulation to a region of the
state space. This capability can be used to focus the
simulation for larger, more complex simulations, simu-
late non-autonomous systems, reason about boundary
condition problems and incorporate observations into
the simulation.

TeQSIM (Temporally Constrained QSIM, pro-
nounced tek’sim) allows the modeler to specify both
continuous and discontinuous behavioral information
via trajectory constraints' that restrict the simulation.
Trajectory constraints are formulated using a combi-
nation of temporal logic expressions, a specification
of discontinuous changes and a declaration of external
events not predictable from the model.

This paper provides a detailed description of the
TeQSIM algorithm along with the presentation of an
example demonstrating how trajectory constraints can
be used to restrict a simulation. In addition, we present
theoretical results showing that TeQSIM is sound and
complete with respect to the trajectory constraints. Fi-
nally, an evaluation of this research is provided along
with a discussion of some of the tasks that TeQSIM
can be used to address.

Conceptual Framework

Qualitative simulation uses a discretization of a con-
tinuous real valued trajectory space into qualitative
states to represent a set of behaviors consistent with
the structural constraints included in the qualitative
differential equation (QDE) and continuity constraints
applied during the simulation. Each qualitative be-
havior corresponds to a set of real-valued trajectories.
Trajectory information can be used to further con-
strain the qualitative simulation and reduce ambiguity
within the behavioral description. Figure 1 describes

A trajectory for a tuple of variables <vy,...,v,> overa
time interval [a,b] C R* U{0, 400} is defined as a function
T mapping time to variable values defined over the set of
the extended reals, i.e. 7 :[a,b] = (RU {—00, +0})".

Trajeciory Space

TeQSIM uses three sources of information to constrain a
simulation: structural constraints are specified as equa-
tions relating variables within the model; implicit continu-
ity constraints restrict the relationship between variable
values across time to ensure the continuity of each vari-
able; and trajectory constraints are specified via tem-
poral logic expressions restricting the behavior of individ-
nal variables and the interactions between the behaviors of
related variables.

o Each point in the above diagram represents a real val-
ued trajectory. A qualitative behavior corresponds to a
region within this space of trajectories.

e Discontinuous changes specified by the user cause a re-
laxation of the continuity constraints applied during
simulation (dotted line surrounding the continuity con-
straints).

e Incorporating external events into the simulation ex-
tends the set of trajectories consistent with the struc-
tural constraints (dotted line surrounding the structural
constraints).

e The qualitative behaviors generated by QSIM corre-
spond to the trajectories consistent with both the un-
extended structural constraints and the unrelaxed con-
tinuity constraints (thick boundary region) while the set
of behaviors generated by TeQSIM corresponds to those
trajectories consistent with all three constraint types
(shaded region).

Figure 1: TeQSIM constraint interaction,

the relationship between different sources of constrain-
ing power.

A billiards shot provides a very simple example of
how trajectory information can be useful when reason-
ing about the behavior of a dynamical system. We are
interested in deriving quantitative bounds on the ve-
locity required to hit a successful billiards shot given
an initial description of the table. (i.e. How hard and
in which direction does the white ball need to be hit
so that it strikes a designated ball and propels it into a
particular pocket?) A standard qualitative simulation
would derive a description of all potential behaviors
including behaviors in which the shot is not success-
ful. The modeler would then need to identify those
behaviors that are consistent with the desired shot and
extract the required information. TeQSIM allows the
modeler to use trajectory constraints to specify bound-
ary conditions on the desired behaviors to restrict the

simulation to the region of the state space in which the
cue ball strikes the target ball and the target ball hits
the desired pocket. This example demonstrates only
some of the benefits provided by trajectory constraints
within TeQSIM.

Three different types of expressions are used to
specify trajectory constraints: temporal logic expres-
sions, discontinuous change specifications, and external
event declarations. Temporal logic expressions are the
primary method of specifying trajectory constraints.
Temporal logic model checking is interleaved with the
simulation process to ensure that only behaviors sat-
isfying the set of temporal logic expressions are in-
cluded within the resulting description. The temporal
logic used is a variation of a propositional linear-time
temporal logic (PLTL) (Emerson, 1990). It combines
state formulae specifying both qualitative and quanti-
tative information about a qualitative state with tem-
poral operators such as until, always, and eventually
that quantify such properties over a sequence of states.
For example, the expression (until (qvalue X (nil
inc)) (gvalue Y (Y¥# nil))) states that the qdir of
X is inc (i.e. X increases) until Y reaches Yx.

Our logic extends work done by Shults and Kuipers
(Kuipers and Shults, 1994; Shults and Kuipers, 1996)
to query behavioral descriptions. Two extensions are
required to constrain a simulation. A three-valued
logic is used to allow an expression to be condition-
ally entailed when quantitative information contained
within the expression can be applied to a behavior to
refine the description. In addition, the model checking
algorithm is designed to handle the incremental nature
of a qualitative simulation. An undetermined result oc-
curs whenever the behavior is insufficiently determined
to evaluate the truth of a temporal logic expression.

Discontinuous change expressions define when a par-
ticular discontinuity can occur and specify its imme-
diate effects (i.e. new values for the variables that
change discontinuously). This information is propa-
gated through the model to determine the variables af-
fected by the discontinuous change. Thus, the expres-
sion (disc-change (qvalue X (X* std)) ((inflow
(if* inf) :range (400 440)))) states that when
X reaches X* and is std that inflow will instanta-
neously change into the interval (if* inf) and that
the value will be within the range (400 440).

Finally, the declaration of external events allows the
modeler to provide a quantitatively bounded tempo-
ral correlation between the occurrence of these events
and distinctions predicted by the model. References
to external events included in both temporal logic
and discontinuous change expressions allow the mod-
eler to temporally constrain the information contained
within these expressions. For example, the discontin-
uous change expression (disc-change (event open)
((inflow if*))) states that the inflow changes to if#
when the open event occurs. Quantitative bounds on
when the open event can occur are included in the

Brajnik 23

Figure 2: Lake Travis and Mansfield Dam, Austin, TX.

event declaration statement.

A control problem

TeQSIM has been applied to a variety of problems to
address a range of tasks. This section provides a sim-
ple example to demonstrate how trajectory informa-
tion can be used to constrain a qualitative simulation
in a realistic setting. Operators of a dam restraining
a lake face the control problem of determining how to
react (in terms of operations on gates and turbines)
to a forecasted perturbation to the flow of water into
the lake. We assume that operators are involved in
risk assessment decision making instead of optimal re-
source management. A simple model of a lake, con-
sisting of a reservoir, an incoming river and an out-
going river is used. The lake level and the outflow
are regulated through a dam which includes a single
floodgate. The model implemented uses quantitative
information concerning Lake Travis, near Austin (see
figure 2) obtained from the Lower Colorado River Au-
thority. Information has been provided in numerical
tables which, in this specific case, are interpolated in a
step-wise manner to provide lower and upper bounds
for any intermediate point. Table 3 describes a portion
of the rating table of a floodgate of Lake Travis. Its
columns indicate the lake stage, i.e. level with respect
to the sea mean level, the gate opening, and the gate
discharge rate. A similar table correlates the lake stage
with its volume.

The steady-state description of the simulated sce-
nario consists of the lake having an initial stage of
676.25 feet, an inflow (called Colorade-up) in the
range [70, 75] millions of cubic feet per day (mcfd)
(or [810, 868] cfs) and a 1 foot opening of a single gate
that guarantees a steady outflow in the downstream leg
of the Colorado River(Colorado-dn). It is forecasted
that in 2-3 days the inflow will increase up to [1500,
1800] mefd (1.e. approx. [17000, 21000] cfs) and that
for the subsequent 15-21 days there will be no substan-
tial change. The task is to determine if there is any risk

24 QR-96

Stage (ft) | Opening (ft) | Discharge rate (cfs) |
665.00 1.00 638.82
665.00 2.00 1277.65
665.00 8.50 5430.00
670.00 1.00 721.82
720.00 500 586755
720.00 8.50 '[‘5200._0'0_J

Figure 3: Rating table for floodgates of Lake Travis.

of overflowing the dam and, if so, which actions could
be taken to prevent this.

We use TeQSIM to specify trajectory constraints on
input variables: input flow rate and gate opening. The
following trajectory constraints specify the perturba-
tion to the flow rate.

(event step-up :time (2 3))
(event step-down :time (17 24))
(disc-change (event step-up)
((colorado-up (ifs inf)
:range (1500 1800))))
(disc-change (event step-down)
((colorado-up if*)))

A simulation using these trajectory constraints
shows that an overflow of the lake is possible if no
intervening action is taken (figure ??). To guarantee
that an overflow does not occur, an opening action
is required. To this end, we postulate that an open-
ing action to at least 4 feet occurs after Stage reaches
the Top-of-conservation-pool threshold. We are in-
terested in knowing the latest time at which such an
action can occur to prevent an overflow. The previ-
ous trajectory specification is extended by including
an additional event (corresponding to the opening of
the gate), the corresponding discontinuous action (the
gate opening changes from its initial value op*=1 to
an intermediate value between (op* max) constrained
to be greater than or equal to 4) and the ordering with
respect to the threshold. By restricting the simula-
tion to behaviors that lead to an overflow condition,
TeQSIM determines a lower bound for the temporal
occurrence of actions leading to an overflow.

(event open)
(disc-change (event open)
((g1.opening (op* max)
:range (4 NIL))))
(before (qvalue stage (top NIL)) (event open))
(eventually (qvalue stage (top NIL)))

The simulation determines that an overflow is pre-
vented if the gate is opened to at least 4 feet within 15.5
days (figure 5). Using the results from this simulation
as an input, a third simulation derives an upper bound
of 6 ft for the size of the opening given a restriction on
the outflow rate expressed via the temporal logic ex-
pression (always (value-<= colorado-dn 350)).

= INF
$ressaBreacasesaemirreatooy 1500 1800)
b e-iiimiiiiad = 1F [0 75}
0 (ool
' u ' i
™ T ko) n
——
COLORADO-UP

- NP
'__,.-P'ror 714 714)
¥ A, = TOP-@F -CONSERVATION- POOL (681 €81)
ST Bovren - =g+ [476. 676.]
= (665 665)
o (ofor
L (1] L L
™ ™ = L ¢]

A TeQSIM simulation of the lake model with the specified perturbation and no control action results in three behaviors.
In the behavior shown above, Stage starts from its initial value (S#) and reaches the top of the dam (Top) before the end
of the perturbation. The other two predicted behaviors describe the overflow occurring at the same time as the end of the

perturbation and the situation where no overflow occurs.

Figure 4: Lake simulation with no action.

In this example, trajectory constraints are used to
control an exogenous variable via discontinuous change
expressions and the scope of the simulation is restricted
via temporal logic constraints. Due to the simplicity
of this example, only a small number of behaviors are
filtered out via the temporal logic constraints. In an
example such as the billiard problem presented previ-
ously, the number of behaviors filtered by the trajec-
tory constraints can be quite large.

Both components of the TeQSIM algorithm, qualita-
tive simulation and trajectory specification, are crucial
when solving a problem of this nature. Qualitative sim-
ulation provides a discretization of trajectories essen-
tial for supporting a search mechanism. In addition,
each qualitative behavior is refined via forward and
backward propagation of quantitative information con-
tained within the constraints. Trajectory constraints
are used to drive the system by specifying the behav-
ior of the exogenous variable (i.e. input flow rate) and
by specifying performance requirements. This infor-
mation cannot be represented within the QDE.

It is worth noting the amount of uncertainty present
in even such a simple problem: functions (especially
the discharge rate) may be non linear, numeric en-
velopes are based on a rough step—wise interpolation
of tables, the specification of input trajectories is un-
certain (i.e. ranges for times and values). Nevertheless
with three simple simulations a reasonably useful re-
sult has been determined.

TeQSIM Architecture and Theory

TeQSIM can be divided into two main components:
the preprocessor modifies the QDE model and decom-
poses the trajectory specification into temporal logic
and discontinuous change expressions; and the simula-
tion and model checking component integrates tempo-
ral logic model checking into the simulation process by
filtering and refining qualitative behaviors according to
a set of temporal logic expressions and injects discon-
tinuous changes into the simulation. Figure 6 provides
an overview of the system architecture.

— | ModelChecking |
i Preprocessor | 1\ e | Discoatinwous | |
! laete || Que |
oy syt || T (| m | l'
|
| Dbt || Trass | TLGoide |
|
| |
| .: ‘\\\ || e st Bietomdt
Wi | QDe ”"—ﬂ - ' QSIM |_____-mu‘r-
= L. Modtier | i
e PO v

Figure 6: TeQSIM architecture.

The user provides trajectory constraints to TeQSIM
in the form of a trajectory specification. The specifi-
cation consists of an external event list and a set of
extended temporal logic and discontinuous change ex-
pressions. An erternal event represents a distinguished
time—point not predictable by the model. The external
event list is a totally ordered sequence of named, quan-
titatively bound external events. Events are incorpo-
rated into the simulation by the addition of an aux-
iliary variable representing “real time” to the model
with a landmark corresponding to each event. The
addition of this variable causes QSIM to branch on
different orderings between external events and inter-
nal qualitative events identified during the simulation.
The occurrence of the external events is restricted
by their quantitative bounds and the trajectory con-
straints specified by the modeler.

Temporal logic and discontinuous change expres-
sions are extended within the trajectory specification
by allowing direct references to events within the event
list. These references are replaced by the appropriate
formula containing a reference to the real-time variable
and the landmark corresponding to the event. The ad-
dition of the real-time variable incorporates external
events into the simulation in a seamless manner that
does not require special handling during the simulation
and model checking component of the algorithm.

This section provides a description of how tempo-

Brajnik 25

3 =max](8.50 8.50) i i
+ LevTe-a) r289. 350)
- geeeeoeeromgad (4 6.00] i
: 1 =c-2] 1269. 350
e PP | - T il o =c-2{ r96.3 105.y
T e v ot =c-1f(70 78]
o (f o1
¥ " ' .] o g o
T0 ' T2 T T4 ! n A x :
T0 m T2 1 T4
G1.0PENING COLORADO-DN
- 57 i = mvF
I_r‘,.‘-’m 1714 714] - " oFre fis.s 24)
_— =gr-] 1702 714 et
o ¢ : - oL =73 J15.5 24]
+ s = TOPJOF ~CONSERVATION-POOL [681 681) oot
ey o i I =712 J2.96 5.83)
L scismieiigs -5+ 676, 75,1 st
R -
i = GAT]-BASE [665 665) g 1 f2 3)
L i =10 fo 0
1 " J . I Rl i " 1 1] [
0 T T2 T3 ™ TO T2 T3 T4
o Ra— =
STAGE TIME

TeQSIM produces two behaviors where Stage reaches Top. The first behavior is shown above. The opening action occurs at
T3. The numeric bounds on this time-point shows that an overflow can occur only if the opening action is performed after

15.5 days. The second behavior provides similar results.

Figure 5: Lake simulation with opening actions leading to overflow.

ral logic and discontinuous change expressions are pro-
cessed within TeQSIM. In addition, a summary of
the formal framework used when describing the model
checking algorithm is included. A more detailed treat-
ment of syntax and semantics of the language and
main theorems is given in (Brajnik and Clancy, 1996b).
Proofs of these and other theorems along with addi-
tional lemmas and corollaries are included in (Brajnik
and Clancy, 1996a).

Guiding and refining behaviors using
trajectory constraints

Model checking and behavior refinement is performed
by the Temporal Logic Guide (TL-Guide). Each time
QSIM extends a behavior by the addition of a new
state, the behavior is passed to the TL-Guide. The
behavior is filtered if there is sufficient information
within the partially formed behavior to determine that
all completions of the behavior fail to satisfy the set of
TL expressions. If the behavior can potentially model
the set of TL expressions, then it is refined by incor-
porating relevant quantitative information contained
within the TL expressions. Otherwise the behavior is
retained unchanged.

The following is an example of a state formula of the
trajectory specification language:

(qvalue v (gmag gdir)) where v is a QDE variable,
gmag is a landmark or open interval defined by a pair
of landmarks in the quantity space associated with v,
and gdir is one of {inc, std, dec}. NIL can be used
anywhere to match anything. Such a proposition is
true for a state exactly when the qualitative value of
v in the state matches the description (gmag qdir).

26 QR-96

Path formulae are defined recursively as either a
state formula or a combination of path formulae using
temporal and boolean operators. A state formula is
true of a path if it is true for the first state in the path.
The path formula (until p gq), where both p and g are
path formulae, is true for a behavior if p holds for all
suffixes of the behavior preceding the first one where ¢
holds, while (strong-next p) is true for a behavior if
the behavior contains at least two states and p holds
in the path starting at the second state. We extended
the temporal operators defined by Kuipers and Shults
(Shults and Kuipers, 1996) to provide a more abstract
language to simplify specification of assertions. These
abbreviations are described in figure 7.

Temporal logic formulae are given meaning with re-
spect to linear—time interpretation structures. These
structures are extended from their typical definition
(e.g. (Emerson, 1990)) in order to accommodate the
refinement of QSIM behaviors with quantitative infor-
mation. In addition to defining a sequence of states
and a propositional interpretation function, means for
representing, generating and applying refinement con-
ditions are provided. Such objects are needed because
the language provides a set of propositions which re-
fer to quantitative ranges and whose truth value can-
not always be determined. When ambiguity occurs for
a formula, then the interpretation is required to pro-
vide necessary and sufficient refinement conditions on
quantitative ranges of states to disambiguate the truth
value of the formula. A refinement condition is an in-
equality between the partially known numeric value
of a variable in a state and an extended real num-
ber, or a boolean combination of conditions. The tra-
Jjectory specification language contains two potentially

(raleases p q) (not (until (net p) (met gq)))

(before p q) (net (until (not p) q))
(eventually p) (until true p)
(alvays p) (releases false p)
(never p) (always (met p))

IO

(releases p (implies p (always q)))

(releases p (implies p (streng-next
(always g))))

(releases p (implies p q))

(releases p (implies p (strong-next
(until r q))))

The intuitive meaning for some of these forms is:
(releases p q) q is true up until and including the

first state in which p is true, if any.

g holds from the first occurrence of

(starts p q)
(follows p q)

(eccurs-at p q)
(between p q T)

(starts p q)

p.

similar to starts, but g should hold
just after the first occurrence of p.
q occurs at the first occurrence of p.
r holds in the open time interval be-
tween the first occurrence of p and
the subsequent first of g.

(follows p q)

(occurs-at p q)
(between p q r)

Figure 7: Temporal abbreviations.

ambiguous state formulae (in the following, R(v, s) de-

notes the range of possible numeric values for variable

v in state s, v, the unknown value of v in s, and

n,n; € RU {—o0, +o0}):

(value-<= v n) is true iff Vz € R(v,s) : z < n;it is
false iff Yz € R(v, s) : n < z; it is conditionally true
otherwise. In such a case the refinement condition is
that the least upper bound of the possible numeric
values of v is equal to n (i.e. v, < n).

(value-in v (n; n3)) is true iff R(v,s) C [n1,na);
it is false iff R(v, s)N[ny,ng] = @. It is conditionally
true otherwise, and the refinement condition is that
the greatest lower bound is equal to n; and the least
upper bound is equal to ny (i.e. n; < vy, Avy < na).

Applying a refinement condition to a state yields
a new, more refined state. For example, the formula
(value-<= X .3) may generate the condition X, <
0.3 when interpreted on a state s where R(X,s) =
[0,1.0]. Applying the condition to s leads to a new
state s’ where R(X,s') = [0,0.3].

Notice that ambiguity is not a syntactic property,
but rather it depends on state information. For ex-
ample, (value-<= X .3) is (unconditionally) true on
a state where R(X,s) = [0,0.25], but only condition-
ally true if R(X,s) = [0,1.0]. Due to potential ambi-
guity, two entailment relations are used to define the
semantics of formulae. The first one, called models,
characterizes non-ambiguous true formulae while the
second one, called conditionally models characterizes
ambiguous formulae.

To simplify the analysis of the refinement process,
the usage of ambiguous formulae must be restricted.
The problem is that an arbitrary formula may yield
several alternative refinement conditions. A disjunc-
tion of refinement conditions cannot be applied to

states without requiring the introduction of a new be-
havior which is qualitatively identical to the original
behavior in the tree. For example, when interpreted on
a particular state (or (value-<= X 0.5) (value-<=
Y 15)) may yield the condition (X, < 0.5V Y, < 15).
Applying such a condition yields a state in which X,
is restricted to be < 0.5 and a state where Y,» < 15.
The set of admissible formulae is a syntactic restric-
tion which excludes formulae which may result in dis-
junctive conditions. This restriction complies with the
general principle that all important distinctions in tra-
jectories are made explicit in qualitative information.
If such a principle is followed then the restriction to
admissible formulae does not reduce the applicability
of TeQSIM.

Discontinuous Changes

The injection of discontinuous changes into the qualita-
tive simulation process consists of identifying when the
change occurs and then propagating its effects through
the model to determine which variables inherit their
values across the change. The following expression is
used to specify a discontinuous change:

(disc-change preconds effects) where preconds is a
boolean combination of gvalue propositions and ef-
Jects is a list of expressions of the form (variable
gmag [:range rangel).

This expression is translated into the temporal logic

path formula

(occurs-at preconds (strong-next effects'))
where effects’ is a conjunction of formulae (qvalue
variable (gmag NIL)) and (value-in variable
range) derived from effects. This expression is true
for a behavior iff effects’ is true for the state imme-
diately following the first state in which preconds is
true. This formula is added to the list of temporal
logic formulae used to guide and refine behaviors.

The Discontinuous Change Processor monitors
states as they are created and tests them against the
preconditions of applicable discontinuous change ex-
pressions. A new state is inserted into the simulation
following state s if the preconditions are satisfied and a
discontinuous change is required to assert the effects in
the successor states. A new, possibly incomplete state
s’ is created by asserting the qualitative values speci-
fied within the effect and inheriting values from s for
variables not affected by the discontinuous change via
continuity relaration (see below). All consistent com-
pletions of s’ are computed and inserted as transition
successors of s. Each discontinuous change expression
can only be applied once within each behavior.

Qualitative reasoning uses continuity constraints to
restrict the possible changes that can occur within a
system. In order to predict the effects of discontinuous
changes, however, continuity constraints have to be re-
laxed leading to a combinatorial explosion of possible
outcomes. Continuity relazation (Brajnik, 1995) is a

Brajnik 27

technique that propagates the effects of a discontinu-
ous change through the model by identifying variables
that are necessarily continuous and variables that are
potentially discontinuous. If only one variable within
a non—differential constraint is not known to be con-
tinuous then it is inferred to be necessarily continu-
ous. Such a technique assumes that state variables
(i.e. those being integrals of model variables) and in-
put variables, unless mentioned in the discontinuous
change expression, are necessarily continuous.

Continuity relaxation is proven to be correct, but has
not been proved to be complete. No counterexamples
have been found, however, where continuity relaxation
is too a weak method.

Model checking

The temporal logic model checking algorithm is de-
signed to evaluate a QSIM behavior with respect to a
set of temporal logic formulae as the behavior is in-
crementally developed. This allows behaviors to be fil-
tered and refined as early as possible during the simula-
tion. Our algorithm is derived from the one described
in (Kuipers and Shults, 1994); however, it has been
modified to deal with conditionally true formulae and
to cope with behaviors which are not closed, i.e. which
are still to be extended by the simulator and it may be
still undetermined whether or not they satisfy a given
temporal logic formula. The algorithm, described in
(Shults and Kuipers, 1996), computes the function
7: Formulae x Behaviers — {T,F,U} x Conditions,
where Conditions is the set of all possible refinement
conditions including the trivial condition TRUE. A defi-
nite answer (i.e. T or F) is provided when the behavior
contains sufficient information to determine the truth
value of the formula. For example, a non—closed behav-
ior b will not be sufficiently determined with respect to
the formula (eventually p) if p is not true for any
suffix of b, since p may become true in the future.

A behavior b is considered to be sufficiently deter-
mined with respect to a temporal logic formula ¢ (writ-
ten b>) whenever there is enough information within
the behavior to determine a single truth value for all
completions of the behavior. If a behavior is not suf-
ficiently determined for a formula, then U is returned
by the algorithm? The definition of sufficiently de-
termined (omitted because of its length) is given re-
cursively on the basis of the syntactic structure of the
formula. We will write bt ¢ to signify that b is not suf-
ficiently determined for . Notice that indeterminacy
is a property independent from ambiguity: the former
is related to incomplete behaviors, whereas the latter

?Inferences within the model checking algorithm are
limited to the information contained within the behavior.
Thus, even though the constraint (constant X) is included
within a model, the model checking algorithm will not be
able to determine that the formula (eventually (qvalue
X (nil inc))) is F for all completions of a non-closed
behavior.

28 QR-96

deals with ambiguous information present in states of
a behavior.

When given a behavior b and an admissible formula
¢, TL-guide computes (¢, b) = (v,C). The behavior
b is refuted iff v = F; it is retained unmodified iff v #
F and C = TRUE; and it is refined using C iff v € {T, U}
and C # TRUE.

The following theorem justifies our use of temporal
logic model checking for guiding and refining the sim-
ulation.

Theorem 1 (TL-guide is sound and complete)
Given a QSIM behavior b and an admassible formula ¢
then TL-guide:

1. refutes b iff br> ¢ and there 1s no way to ertend b to
make 1t a model for .
2. retains b without modifying it iff
(a) br> ¢ and b 1s a model for p; or
(b) b ¢ and there is no necessary condition C for
refining b into a model for .
3. replaces b with b’ iff
(a) b and b conditionally models @ and there exists
C that is necessary and sufficient for refining b
into a model for ¢, or
(b) b ¢ and there is a necessary condition C for
refining b into a model for .

Proof. By induction on the formula ¢.

Problem Solving with Trajectory
Information

The ability to specify trajectory information, discon-
tinuous changes and external events provides a power-
ful extension to qualitative simulation broadening the
range of relevant dynamical system theory problems.
Trajectory specifications may refer to dependent or in-
dependent variables of a piecewise continuous dynami-
cal system described by ordinary differential equations.
The following classes of dynamical system theory prob-
lems are distinguished by the role that the constrained
variables play within the model. Both classes can be
addressed by incorporating trajectory information into
a qualitative simulation,

Simulation of non—autonomous systems:
Trajectory specifications are provided for the input
variables describing their time-varying behavior and
driving the simulation. The specification of discon-
tinuous changes in the input variables enables the
user to model external actions occurring at a faster
time-scale than the simulation. This is useful when
modeling

e situations where limited knowledge is available re-
garding the transient period during which the ac-
tion occurs;

e situations where the transient is by itself uninter-
esting;

o o e R

s A A AL SR AR Tl |

e a discrete event system (e.g. a digital controller)
acting upon an otherwise continuous plant.

Solution of boundary condition problems:
Trajectory constraints can be used to specify infor-
mation about the behavior of dependent variables at
various time points restricting the space of solutions
of the differential equation. Available boundary con-
dition information may include

¢ knowledge about intermediate or final states of the
system, or
¢ knowledge about observed variables.

Trajectory information combined with qualitative
simulation unifies these two classes allowing for the
solution of problems that combine features of both
classes. Table 1 describes some of the tasks that have
been addressed using trajectory information.

Related Work

While the incorporation of trajectory information into
a qualitative simulation has been investigated in the
literature, it has not been extensively explored. De-
Coste (DeCoste, 1994) introduces sufficient discrimi-
natory envisionments to determine whether a goal re-
gion is possible, impossible or inevitable from each
state of the space. This is performed by generating
the simplest state description that is sufficient for in-
ferring these discriminations. Discrete actions are han-
dled using the action-augmented envisionment method
reviewed below. Though similar in spirit, our work
is: (i) more general, because TeQSIM enables the user
to address a wide category of problems, not limited
to determining reachability of a state; (ii) semanti-
cally well-founded, based on temporal logic and (iii)
formally proven to provide guaranteed results if ap-
plied under certain conditions. Washio and Kitamura
(Washio and Kitamura, 1995) present a technique that
uses temporal logic to perform a history oriented enui-
sionment to filter predictions. TeQSIM, within a more
rigorously formalized framework, provides a more ex-
pressive language, it refines behaviors as opposed to
Just filtering them, and it incorporates discontinuous
changes into behaviors.

The integration of temporal logic model checking
and qualitative simulation was initially investigated by
Kuipers and Shults (Kuipers and Shults, 1994). They
use a branching-time temporal logic to prove prop-
erties about continuous systems by testing the entire
behavioral description against a temporal logic expres-
sion. The appropriate truth value is returned depend-
Ing upon whether or not the description satisfies the
expression. Our work focuses on constraining the sim-
ulation as opposed to testing a simulation after it is
completed.

Forbus (Forbus, 1989) explicitly introduces the con-
cept of discrete action, with pre and post-conditions in
the action-augmented envisionment. The purely qual-
1tative total envisionment that is generated includes all

possible instantiation of known actions. Forbus allows
only instantaneous actions and adopts heuristic crite-
ria (based on minimality of the change in the descrip-
tion) to handle discontinuities. No provision is made
to handle quantitative information, nor to prove cor-
rectness of the discontinuity handling mechanism. Dis-
continuities have been investigated also by Nishida and
Doshita (Nishida and Doshita, 1987), who describe two
methods for handling discontinuities caused by exter-
nal agents or generated autonomously within a system
(e.g. change in operating regime): (i) approximating
a discontinuous change by a quick continuous change
and (ii) introducing “mythical states” to describe how
a system is supposed to evolve during a discontinuous
change. The former requires a complex machinery to
compute the limit of the quick change, whereas the
latter is based on heuristic criteria for selecting appro-
priate states. Both methods are interesting, but their
effectiveness and formal properties are difficult to as-
certain. Iwasaki and colleagues (Iwasaki et al., 1995)
discuss the semantics of discontinuous changes that is
more appropriate when dealing with hybrid systems.
Their work leads to the adoption of a complex non-
standard analysis semantics for reals and the develop-
ment of a mechanism similar to continuity relaxation
but requiring user-supplied frame axioms.

The trajectory specification language can be com-
pared to other formalisms for specifying temporal con-
straints. Our language is similar in expressiveness
to both Allen’s integral algebra (Allen, 1984) and
Dechter, Meiri and Pearl’s temporal constraint net-
works (Dechter et al., 1991). The usage of the language
in TeQSIM, however, is quite different from these two
formalisms. Instead of asserting temporal constraints
in a database of assertions and querying if certain com-
binations of facts are consistent, TeQSIM checks that
a database of temporally related facts generated by
QSIM satisfy a set of temporal logic constraints.

Discussion and Future Work

TeQSIM supports a general methodology for incorpo-
rating arbitrary trajectory information into the qual-
itative simulation process. We are validating this
methodology in several control problems, including
some in the domain of risk assessment in water sup-
ply control, where models of lakes, rivers, and dams
are simulated with the purpose of evaluating poten-
tial actions (e.g. changing the power requested to a
turbine, or the opening of a floodgate).

The following extensions are being investigated to
increase the expressiveness of the trajectory specifica-
tion language.

Limited first order expressiveness — The tempo-
ral logic used is limited to propositional expressions
and is unable to quantify over attributes of states.
Certain trajectory constraints require the ability to
refer to values in other states within the behavior.

Brajnik 29

‘Input: A description of the desired (or undesired) behavior.
Output: Behaviors that are "consistent” with the goal specification.
Goal oriented Relation: By specifying the desired behavior a modeler can gain an understanding of these behaviors. Spec-
simulation ifying undesired behaviors allows the modeler to determine if these behaviors exist and to decide
how they can be avoided when they do exist.
Input: A list of discontinuous changes resulting from actions, and trajectory constraints specifying when
4 P the actions can be performed.
;::iy::;;:::“- Output: The behaviors resulting from the actions.
Relation: Multiple simulations can be performed to evaluate alternative courses of actions.
Input: Trajectory constraints specifying the desired closed-loop behavior of the system and an environ-
mental perturbation.
Output: A description of a controller response to the perturbations that is necessary for achieving the closed-
Analysis of loop behavior specified as input.
control Relation: All potential control responses satisfying the closed—loop behavior are included within the behavioral
responses description. If there is no consistent behavior, then the desired closed-loop behavior cannot be
achieved by any controller in response to the perturbation.
Input: A model containing a partial description of a controller and trajectory constrainta describing the
desired behavior of the controller and a perturbation.
Parameter Output: Behaviors containing quantitative bounds on the unknown controller parameters.
identification Relation: The range of potential values for unknown controller parameters that are necessary to achieve the
desired behavior.
Input: Specification of a control law using trajectory constraints.
Analysis of Output: A description of ‘the resulting closed-loop behaviors. _) . .
febdback con Relation: The control law is specxﬁed_ by relating the value of the monitored variable with the required value,
trol Tawa or trend, of the control variable.

Table 1: Tasks to which TeQSIM has been applied.

For example, the description of a decreasing oscilla-
tion requires the ability to compare the magnitude of
a variable across states. A limited form of first order
temporal logic may provide a sufficiently expressive
language while still giving satisfactory performance
with respect to complexity.

Metric temporal logic — Due to the introduction of
landmarks during the simulation process, TeQSIM
behaviors are potentially infinite structures. Getting
a definite answer for formulae such as (eventually
p) is not always possible when potentially infinite
behaviors are encountered since it is always possi-
ble for p to occur in the future. Metric temporal
logic (Alur and Henzinger, 1993) allows the defini-
tion of a horizon for a temporal logic expression.
This would allow statements such as “within 50 sec-
onds the tanks level reaches 70 inches.” These state-
ments are only expressible within our logic using an
externally defined event. Extending the logic would
allow the modeler more flexibility to express relevant
constraints.

Discontinuous change specification — In the cur-
rent version of TeQSIM we provide very simple
means for representing and reasoning about discon-
tinuous changes. While sufficient for certain kinds of
problems (e.g. driving the simulation by controlling
the behavior of an exogenous variable), other prob-
lems cannot be addressed (e.g. identifying repetitive
actions performed by a controller). Two possible ex-
tensions are being considered:

e supporting more complex relationships between
the precondition and the effect using additional
temporal logic operators. For example, the mod-
eler may want to identify a sequence of states over
which the action can be performed or express in-

30 QR-96

formation about the possibility of a discontinuous
change occurring.

¢ allowing preconditions to be specified using an ar-
bitrary temporal logic expression. This would ex-
tend the range of addressable feed—forward control
problems.

Partially ordered events — External events are cur-
rently restricted to a single, totally ordered set. Re-
laxing this restriction to allow for a partially ordered
set of events would significantly increase the expres-
siveness of the language. This extension in conjunc-
tion with an increase in the expressiveness of the
discontinuous change expressions would provide a
powerful mechanism for simulating hybrid discrete-
continuous systems and for planning control actions.

Finally, the current algorithm for incremental model
checking, though polynomial in the length of the be-
havior and the formula, is inefficient if compared to the
on-the—fly model checker algorithm developed by Bhat
and colleagues (Bhat et al., 1995).> We are planning
to incorporate it within TeQSIM.

Conclusions

Qualitative simulation and temporal logic are two al-
ternative formalisms for reasoning about change across
time. TeQSIM integrates these two paradigms. Tra-
jectory information is specified using temporal logic,
external events, and discontinuous changes and inte-

*In all the examples we have run the practical time-
complexity of a TeQSIM simulation is dominated by quan-
titative inferences as opposed to model checking. The total
run time of the simulations presented in the example sec-
tion is around 20 seconds on a Sun-20 workstation running
Lucid Lisp.

grated into the qualitative simulation process. Trajec-
tory constraints can be used to qualitatively restrict
the simulation to a region of the state space and to
refine individual behaviors quantitatively. Behaviors
that do not model the set of temporal logic expressions
are filtered during simulation. Numeric information
specified within the t.empqral logic e)'cpressions can be
integrated into the simulation to provide a more precise
aumerical description for the behaviors which model
these expressions. Semantically well-defined disconti-
nuities are integrated into trajectories and a sound and
general method is used to relax continuity constraints
and automatically determine variables affected by the
change.

The correctness of the TL-guide algorithm and of
the discontinuous change processor along with the cor-
rectness of QSIM guarantee that all possible trajecto-
ries of the modeled system compatible with the QDE,
the initial state and the trajectory constraints are in-
cluded in the generated behaviors. In addition, the
completeness of TL-guide ensures that all behaviors
generated by TeQSIM are potential models of the tra-
jectory constraints specified by the modeler.

Acknowledgments
We would like to thank Benjamin Shults for letting us use
part of his program to implement TeQSIM and and the
Qualitative Reasoning Group for many fruitful discussions.

QSIM and TeQSIM are available for research purposes
via anonymous ftp at ftp.cs.utexas.edu in the direc-
tory /pub/qsim. These and other results of the Qualitative
Reasoning Group are accessible by World-Wide Web via
http://wuw.cs.utexas.edu/users/qr.

This work has taken place in the Qualitative Reason-
ing Group at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Qualita-
tive Reasoning Group is supported in part by NSF grants
IR1-9216584 and IRI-9504138, by NASA grants NCC 2-
760 and NAG 2-994, and by the Texas Advanced Research
Program under grant no. 003658-242.

References

J. F. Allen. Towards a general theory of action and
time. Artificial Intelligence, 23:123-154, 1984.

R. Alur and T. Henzinger. Real-time logics: com-
plexity and expressiveness. Information and Compu-
tation, 104(1):35-77, 1993.

G. Bhat, R. Cleaveland, and O. Grumberg. Efficient
on-the-fly model checking for CTL*. In Proc. of
f-{'onference on Logic in Computer Science (LICS-95),
995.

G. Brajnik and D. J. Clancy. Temporal constraints
on trajectories in qualitative simulation. Technical
Report UDMI-RT-01-96, Dip. di Matematica e In-
{%rgrgatica‘ University of Udine, Udine, Italy, January
Git_)rgio_ Brajnik and Daniel J. Clancy. Guiding and re-
fining simulation using temporal logic. In Proc. of the

Third International Workshop on Temporal Represen-
tation and Reasoning (TIME’96), Key West, Florida,
May 1996. IEEE Computer Society Press. To appear.

G. Brajnik. Introducing boundary conditions in
semi—quantitative simulation. In Ninth International
Workshop on Qualitative Reasoning, pages 22-31,
Amsterdam, May 1995.

R. Dechter, 1. Meiri, and J. Pearl. Temporal con-
straint networks. Artificial Intelligence, 49:61-95,
1991.

D. DeCoste. Goal-directed qualitative reasoning with
partial states. Technical Report 57, The Institute
for the Learning Sciences, University of Illinois at
Urbana—Champaign, August 1994.

E.A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 995-1072. Elsevier Science Publish-
ers/MIT Press, 1990. Chap. 16.

K. Forbus. Qualitative process theory. Artificial In-
telligence, 24:85-168, 1984.

K. Forbus. Introducing actions into qualitative simu-
lation. In IJCAI-89, pages 1273-1278, 1989.

Y. Iwasaki, A. Farquhar, V. Saraswat, D. Bobrow,
and V. Gupta. Modeling time in hybrid systems:
how fast is “instantaneous”? In Proc. of the Inter-
national Joint Conference on Artificial Intelligence,
pages 1773-1780, Montréal, Canada, 1995. Morgan
Kaufmann Publishers, Inc.

B.J. Kuipers and B. Shults. Reasoning in logic about
continuous change. In J. Doyle, E. Sandewall, and
P. Torasso, editors, Principles of Knowledge Rep-
resentation and Reasoning, San Mateo, CA, 1994.
Fourth International Conference (KR-94), Morgan
Kaufmann Publishers, Inc.

B.J. Kuipers. Qualitative Reasoning: modeling and
simulation with incomplete knowledge. MIT Press,
Cambridge, Massachusetts, 1994.

T. Nishida and S. Doshita. Reasoning about discon-
tinuous change. In AAAI87, pages 643-648, 1987.

B. Shults and B. J. Kuipers. Qualitative simulation
and temporal logic: proving properties of continuous
systems. Technical Report TR AI96-244, University
of Texas at Austin, Dept. of Computer Sciences, Jan-
uary 1996.

T. Washio and M. Kitamura. A fast history-oriented
envisioning method introducing temporal logic. In
Ninth International Workshop on Qualitative Reason-
ing, pages 279-288, Amsterdam, May 1995.

Brajnik 31

