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Abstract

This paper demonstrates that qualitative reasoning
plays a crucial role for both an efficient and physi-
cally correct approach to the automated formulation
of an accurate quantitative model which explains a
set of observations. The model which “best” repro-
duces the measured data is selected within a model
space whose elements are constructed by exploiting
specific knowledge and techniques of the application
domain. An automated search, performed at a pure
numeric level through system parameter identification
methods, may be inefficient because of the computa-
tional costs which significantly grow with the dimen-
sion of the model space. Even more importantly, a
“blind"search over the whole space may yield a model
which best fits the observations but does not capture
all of the qualitative features of the physical system at
study, such as for example discontinuities of the behav-
ior. We approach the selection problem by exploiting
a mixture of qualitative and quantitative techniques
which require both symbolic and numeric computa-
tions. This paper illustrates the suitability of such an
approach in the context of a computational environ-
ment for the automated formulation of the constitu-
tive law of an actual visco-elastic material.

Introduction

Automated model formulation is one of the major
problems in the Qualitative Physics research frame-
work (Addanki, Cremonini, & Penberthy 1991; Capelo,
Ironi, & Tentoni 1993; Crawford, Farquhar, & Kuipers
1992; Falkenhaier & Forbus 1991; Ironi & Stefanelli
1994; Iwasaki 1992; Low & Iwasaki 1992; Nayak 1994;
Weld 1992). Such an issue involves both the construc-
tion of the model space for a given application domain
and the selection, within such a space, of the most ap-
propriate model for a given task. The model space may
be built either manually or, possibly, automatically in
accordance with specific knowledge and techniques of
the considered domain, whereas the selection strategy
is suggested by the task for which the model is to be
used.

This paper deals with the problem of automated
model selection, with a focus on the task of finding the
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most accurate quantitative mathematical model which
explains a set of observations.

The accuracy of a model indicates how “closely”
the model predictions match the observations. The
model accuracy problem has been addressed by some
authors (Iwasaki & Levy 1994; Nayak 1994; Weld 1992)
in terms of simplification and refinement of models so
that the predicted behavior of the resulting model, ob-
tained by a simple search process through a graph of
models (Addanki, Cremonini, & Penberthy 1991) does
not present discrepancies with the observations. These
papers do not consider the resolution of model accu-
racy, i.e. they do not consider the numeric precision of
the model predictions versus the observations.

In accordance with our task, we look for a model
which is accurate from both the qualitative and nu-
meric point of view, i.e. a model which captures all
and none but the qualitative features of the physical
system at study and which best fits the experimen-
tal data. Therefore, the problem may be approached
in two stages: at first, qualitative techniques may be
properly exploited to select within the model space a
subset of models which describe the behavior of the
physical system at least qualitatively, and then, nu-
merical procedures may be used, in an optimization
loop, to identify, within such a set, the model which
best refines the quantitative properties of the observed
behavior. There are at least two reasons why the op-
timization loop should not be extended to the whole
model space. The most important reason is that the
“best” model obtained on the basis of a purely numer-
ical criterion could be not completely consistent, in
qualitative terms, with the observations, or, in other
words, that it could not capture some important phys-
ical features of the modeled system. For example, the
presence of discontinuities in the observed data may
be not properly represented because, in general, the
numerical procedures tend to smooth them. More-
over, the computational costs significantly grow with
the number of models which are to be considered.

This paper is mainly about model accuracy: it de-
scribes algorithms and problems related to model se-
lection and identification. Our approach is here de-
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scribed in the context of a prototype modeling envi-
ronment for the automated formulation of the consti-
tutive law of an actual visco-elastic material (Capelo,
Ironi, & Tentoni 1993; 1995). We consider linear visco-
elastic models, i.e. models whose visco-elastic behavior
is described by a linear Ordinary Differential Equation
(ODE) with constant coefficients. The space of possi-
ble linear visco-elastic models is characterized by four
classes of ODEs (Capelo, Ironi, & Tentoni 1993). Such
a model space has been automatically generated in
two steps: at first, following an enumerative procedure
and exploiting suitable filters in order to control the
combinatorial explosion, complex structures of materi-
als are generated by analogy with mechanical devices
where components which reproduce the fundamental
elastic and viscous responses are combined either in
series or in parallel. Then, the mathematical model
of each structure is generated by exploiting suitable
connection rules and mathematical models of the ba-
sic components, which are expressed through internal
state variables. It can be proved that the dimension
of the model space is equal to 2n, if n is the maxi-
mum number of components the structures are made
up. Of course, n determines the maximum order m of
the equations in each class as well.

Therefore, our problem may be reformulated as fol-
lows: given a set of observations obtained in response
to standard experiments on an actual material, we have
to identify the equation Ej ., where m is the order of
the equation, and ¢ an index between 1 and 4 which
marks the classes of ODEs in the model space. The
identification of the equation E;,, requires to deter-
mine i, m, and the numeric values of the parametric
coeflicients in the equation. The value of i is given
by the comparison of the qualitative properties of the
material, which are abstracted from the data, with the
simulated behaviors of the models of ideal materials
in the model space (Capelo, Ironi, & Tentoni 1995);
whereas m and the values of the coefficients are iden-
tified through an optimization loop so that both the
goodness of fitting and the significance of the numeri-
cal values of parameters are met at best in accordance
with the Akaike criterion (Akaike 1974).

This paper is organized as follows: the next section
gives a characterization of the model space. Then, the
model selection strategy is presented with particular
emphasis on the problems related to system parame-
ter identification (Ljung 1987) and on the advantages
which may derive from qualitative reasoning.

Model space characterization

Mathematical modeling process of most physical sys-
tems follows a reasoning flow whose fundamental in-
ferences are synthesized in Figure 1: first experimental
data are collected, then a set of models is chosen, then
the “best” model in the set is calculated.

The obtained model may be not adequate because:
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Figure 1: Basic inferences in the modeling process

1. the numerical procedure failed to find the “best” one
according to the fixed criterion;

2. the numerical methods and the fitting criterion were
not well chosen;

3. the chosen model set does not give “a good enough”
description of the physical system

If the model may not be considered as an adequate one,
the failure reason should be looked for in the various
steps in the procedure. Let us remark that the data
could be not informative enough to provide guidance in
selecting good models. The proper a priori knowledge
must be exploited in order to address all of the above
mentioned problems, among those the proper model
set selection is the most crucial one. Therefore, as a
first step towards an efficient automated selection of
the most accurate model, the characterization of the
space of candidate models is essential.

In (Capelo, Ironi, & Tentoni 1993) we gave a char-
acterization of the space of candidate models for visco-
elastic materials, automatically generated under the
assumption of linear basic models of elasticity and vis-
cosity, respectively s = Ee and s = né (s denotes the
stress, e the strain, £, n are constants and dot denotes
the time derivative), and proved that:

Theorem 1. The set FE& of all the admissible lin-
ear models can be partitioned into the following four

classes (FE€ = Ui, F&):

m m

ZDis = ZD'( , m>0}

i=0 i=0

FE = {FEym:
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m m+1

F& = {FEym: ZD"S = ZD'}' , m>0}
j =1 =1
m ) m+1 )

FE3 = {FEszp: ZD'.&‘ = z D'e , m> 0}
i=0 i=0
m41 m41

ff:4 = {FEq.mi

ZDis = ZD‘E , m>0}
i=0 =1
where D' denotes the i—th time derivative operator.

The linearity assumption is actually acceptable, al-
though the constitutive law of a material may be non-
linear and may contain non-constant coefficients. In
fact, most materials show a linear time dependent be-
havior in the limit of infinitesimal deformation and
even in finite deformation as long as the strain remains
below a certain limit, which depends on the material.

The elements in FE& are formal equations, that is
ODEs whose non-zero coefficients are given the sym-
bolic unitary value, and describe the mechanical be-
havior of ideal visco-elastic materials. The models
of actual materials are to be looked for in the set
£ = U:=IE,-, where & is a class of ODEs with the
same structure of F&; but whose coeflicients take value
in R — {0}. The numeric values of the non-zero co-
efficients are strictly dependent on the material, and
therefore they may be identified only from the experi-
mental data.

Let us remark that for m = 0, the equations FE; ,,
are limit cases and model respectively the elastic struc-
ture (H ), the viscous one (IV), and the simplest com-
posite structures (H|N, H — N, where | denotes the
parallel operator and — the series one; these two struc-
tures are known in the literature as Kelvin (K) and
Maxwell (M) models). If n is the maximum number
of basic components a structure is made up, the num-
ber of equations in each class &, F&, is equal to
n/2 if n is even and the integer part of n/2 + 1 other-
wise; whereas it is equal to the integer part of n/2 in
the classes F€3, F&4. The index m, which implicitly
defines the order of the ODE corresponding to a struc-
ture made up of n components, is equal to the integer
part of n/2 or n/2— 1 if n is odd or even, respectively.

The classes of equations are in correspondence one-
to-one with suitable classes of analogical structures,
which are called reference classes. We proved (Capelo,
Ironi, & Tentoni 1995) that the whole enumerated set
of analogical structures, with the exception of the limit
cases, can be partitioned into four equivalent classes
as well since any complex structure is equivalent to a
structure in one of the reference classes.

The first stage in the model selection process lies in
choosing a proper model set, i.e. the class F&; which
exhibits the same qualitative behavior of the real mate-
rial. Therefore, in order to compare the response to the
same kind of experiment (either creep or relaxation) of
an actual material with those of the ideal ones, we im-
plernented (Capelo, Ironi, & Tentoni 1995) algorithms
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Figure 2: Stress input signal for static creep test:
constant stress state is imposed for a time At = £, —¢,

t, "1 t

Figure 3: A typical strain response to a stress step
excitation

for both the interpretation of the observed responses
and the derivation of the profiles of the responses of
the ideal materials in terms of the qualitative proper-
ties which may characterize the mechanical behavior
of an, either ideal or actual, visco-elastic material.

As we have collected experimental data on differ-
ent visco-elastic materials, such as inks, rubbers, and
drugs, obtained by means of static creep experiments
only, let us concentrate on such kinds of tests. A static
creep experiment consists of applying an external force
on the material and observing the caused deformation.
However, the analysis of relaxation data, which are ob-
tained by imposing a deformation and measuring the
corresponding produced stress, is similarly carried out.
As far as the standard form of the applied stress input
signal is concerned, it is mathematically modeled by
‘i(f.) = Sg[H{t = t[}) . H(t o h)], where sg > 0 is
a constant, ty, t; are the significant time-points, and
H(t) is the Heaviside function (Figure 2).

The strain response e(t) to a step stress excitation is
characterized by either the presence or absence of one
or more of the strain properties, which are, namely.
an elastic instantaneous deformation, a delayed (still
elastic) one, and a viscous irrecoverable deformation
(Figure 3). The various combinations of such proper-
ties, respectively denoted by ey, eg, ey since they
feature the physical properties of the basic structures
H, K, N, characterize the prevailing properties of the
materials and may be correlated with the modality the
basic components are combined. Therefore, the quali-
tative profiles of the responses to static creep tests of
both ideal materials (Q By) and actual ones (Q B¢,) are



qualit.atively defined in terms of just three logical pa-
rameters ooy, ag, oy which take on either the value
TRUE (T) or FALSE (F) in accordance with the pres-
ence or absence of the corresponding strain properties
of the considered material.

Algorithms for deriving both QB; and QBp are
given in (Capelo, Ironi, & Tentoni 1995). More pre-
cisely, the qualitative behavior @By of each ideal ma-
terial in the model space is obtained through a sim-
ulation algorithm which builds the creep response of
the material directly from its structure. For any com-
plex structure C, its equivalent one C., in the suit-
able reference class is considered, and QB(Ce,) is
generated by exploiting suitable compositional rules.
Then, the association of QB;(C') with the appro-
priate class of equations is straightforward derived.
Let us remind that QB; =(T,T,F), @By =(F,T,T),
QB; =(F,T,F), @By =(T,T,T) respectively character-
ize structures whose correspondent differential mod-
els are in the classes F&;, F&2, FE3, FE4 when
m > 1. The QB; of the limit structures corre-
spond to the qualitative behavior of the limit equa-
tions, 1.e. QBI(H) = (T,F,F), QBI(N) :(FJF)T)I
QB;(K) =(F,T,F), @Br(M) =(T,F,T). Let us notice
that QB;=(F,T,F) characterizes all of the models in
FE4, and that seven different Q Bys, three of them be-
ing limit cases, allow us to classify a material according
to its prevailing physical features.

The observed strain properties QBp are captured
through the identification of characteristic shapes in
the experimental data plot. First, a qualitative curve
description is given in terms of regions which are ho-
mogeneous with respect to graphical features such as
steepness, convexity and linearity. Then, such features
are associated with the proper physical properties: in-
stantaneous elasticity is graphically identified by the
curve steepness in £, and t;, whereas delayed elasticity
and viscosity are assessed over a time segment where
the curve is concave and linear, respectively.

The most plausible candidate model set is given by
the class F&; whose ) By perfectly matches QBo.

Selection of an accurate model

We have seen how the qualitative interpretation of
creep experimental data allows us to select a class of
plausible models out of £ whose structure is character-
ized in Theorem 1. We will denote by & such a class,
and by E,(p) (boldface letters indicate vectors) the
m-th model in £, i.e.

£ = {(Em(p) : Y p{"D'e=) p'D's ,
i j

(e) x
- [gm] eRV™, p#0, m=0,.,M}

“.'hem M depends on the maximum number of ba-
Si¢ components which are used to generate the model

space; the ranges for ¢ and j — and consequently the
number N(m) of unknown model parameters p — de-
pend both on m and on the class, whose structure is
constrained by Theorem 1. The integer m indexes the
equations in & by increasing differential order and is re-
lated to the number of components the model is based
on.

After a parametrized set of plausible models has
been obtained, the System Identification (SI) (Ljung
1987) task is performed, i.e. the problemn of selecting
the “best” model within the class is addressed.

In order to identify the ODE which refines the quan-
titative properties of the given material, both the order
of the equation and the numeric values of its para-
metric coefficients must be determined. It is clear
that if m, and consequently N(m), is increased, the
goodness of fitting improves, though not indefinitely
because of both the numerical errors and the noise
on experimental data. However, the significance of
the numeric values of the model parameters may not
improve as well. As a matter of fact, a higher or-
der model may better fit the data while its coeffi-
cients lose significance, and their physical interpreta-
tion may consequently fail. Moreover, the information
about the number of retardation times (Ferry 1970;
Whorlow 1980), which is a feature of the material
strictly related to the order of the equation, can be
lost if our focus is only on the goodness of fitting. Let
us remind that the retardation times are parameters
associated with the state changes which subsequently
occur in the material. For example, in polymeric ma-
terials they can be associated with the break of either
the hydrogen or Van der Waals bonds which does not
occur at simultaneous times. From the modeling point
of view, the retardation times are specified in the argu-
ments of exponential functions whose sum defines the
solution of the ODE model.

The SI task is performed through an optimization
loop aimed at determining an index m* € {0,..,M}

and a vector p* € RV(™") 5o that both the goodness
of fitting and the parameter significance issues are met
at best. Figure 4 illustrates how this goal is achieved.
For each m, the tentative model E,(p) goes through a
parameter identification process (detailed in Figure 5)
and the values p* of its coefficients are computed in
such a way that E,,(p*) best fits the data. Then, the
adopted SI optimality criterion is checked for a min-
imum with respect to m: the resulting quantitative
model E,,-(p*) succeeds in balancing goodness of fit-
ting and parameter significance.

For the hierarchical structure of our search model
set, the problem of determining a model whose order
is optimal with respect to both the goodness of fitting
and the number of parameters finds a strict analogy
with the theory of time series (Choi 1992) where sev-
eral optimality criteria have been proposed. Among
those, we considered the Akaike Information Criterion
(Akaike 1974), which can be formulated as follows:
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Figure 4: System identification task: the quantitative
model is obtained through an optimization loop

Akaike Criterion: The model which best fits the ex-
perimental data and preserves parameter significance
corresponds to the minimum of the function:

AIC(m) = 2N(m) — 2log[maximized likelihood).

Since the experimental errors can be assumed to be
independent and normally distributed, the maximum
likelihood method corresponds to the least squares
method and AIC(m) may be rewritten as follows:

AIC(m) = 2N(m) + NexplogSz(m,p")‘

where N, is the number of experimental points and
5%(m, p*) the sum of squares of residuals performed by
the best fitting model E,,(p*). More precisely, for the
current m the optimal p* is the result of a parameter
identification process (see Figure 5) which provides a
numerical solution to the following minimization prob-
lem:

Find p* such that
2 - i 3 22
S5(m,p7) = perﬁg}m,b (mp) , (P

where

Nexp
-2 - 2 -
5*(m,p) = Z e(p, &) —ei)", {(Ei, €i)}i=1,... N, are
i=1 2
the experimental points (£, = ty) and, if De is the vec-
tor of the time derivatives of e and e” suitable initial
conditions, {e(p,t:)}i=1, n.,, is the numerical solu-
tion of the initial value problem:

Em(p), De(ty)=e" . (P2)
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Figure 5: Parameter identification process: given
En(p) and the experimental data, optimal values p*
are computed.

Since parameter identification problems are often ill-
posed, some attention must be paid to the choice of the
numerical schemes.

As regards the choice of the solver for (P2), we have
adopted a numeric differentiation scheme proposed by
Klopfenstein-Reiher (Klopfenstein 1971), which has
proved especially effective as a stiff ODE solver and
performs quite well also on non-stiff ODEs. As a mat-
ter of fact, traditional methods, such as explicit Adams
or Runge-Kutta (Gear 1971), are inadequate since the
ODEs which are solved during the process may be stiff
according to the extent of instantaneous elasticity fea-
tured by the modeled materials.

In order to obtain a good numerical performance
from both the ODE solver and the minimization al-
gorithms, equations have been scaled. To tackle the
non-linear least squares optimization problem (1), we
have adopted the Levenberg-Marquardt (Moré 1977)
method, which is efficient and robust. The main prob-
lem with optimization algorithms is that a “good”
guess p° of the solution must be provided in order to
ensure convergence to the true solution rather than to
a local minimum. This is generally a difficult task,
since p” may not have an explicit physical meaning.

Moreover, €’ must be given to completely define
problem (P1). A common way of dealing with un-
known initial conditions is to treat all or some of them
as parameters to be identified. The obvious drawback
of this approach is the increased computational coni-
plexity, i.e. higher costs and an augmented risk of nu-
merical instability due to the greater number of pa-
rameters involved.

In the light of the above considerations, the follow-
ing strategy, which exploits both the a priori knowledge



and the experimental data, has been implemented in
order to automatically provide a good guess of both
p? and e° so that the convergence to the global mini-
mum may be successfully achieved by the identification
proredure.

If QBo = (am,ak,ay) is the qualitative abstrac-
tion of the creep data, and x(a) =1 (or 0) if @ =T (or
F respectively), the experimental curve can be suitably
fitted by a function whose shape is suggested by QBo,
as well as by the linearity assumption:

Wt;QBo,e,A) = xlak)- Y ci(l —exp(=Ait)) +
i=1

+x(an) - ergrt + x(ag) - cr42

where ¢, A are “fine tuning” positive parameters, and
the number r of exponential components is related to
the current value of m. If y(t) is the function character-
ized by values of ¢, A which minimize the distance be-
tween y(t;) and &; (i = 1,.., Nexp), then € := Dy(to).
Finally, the initial estimate p° is obtained by collocat-
ing the ODE on the experimental grid, i.e. p° is the
least squares solution of the following linear system:

Y RD () = Y BV D s(te) , (k=1,.., Nep).
i b]

An example

In order to show how numerical accuracy by itself does
not guarantee that the qualitative physical features of
the material are correctly represented by the resulting
quantitative model, we consider the following example.

At first, we illustrate the result obtained when the
SI task is performed on a subset of plausible models,
preliminarily selected within the whole model space by
matching the qualitative observed behavior against the
ideal ones. Then, for the same experimental data, we
show the result obtained when the SI task is performed
blindly on the whole model space. In this example, the
dimension of the model space is equal to 20.

Let us consider a set of data related to a rubber-
like material; the creep experiment was carried out at
50°C over a time range of 141 s, keeping the stress at
a constant value of 200 Pa.

The experimental curve and the computer outcome
of its qualitative interpretation are illustrated in Fig-
ure 6. The system correctly identifies the qualitative
physical properties featured by the given material, i.e.
delayed elasticity and viscosity, and assesses its quali-
tative behavior at QBo = (F,T,T).

Consequently, the plausible model class

m+] m

}"c‘.'o_;:{z D‘e:ZDjs, m > 1}
=1 i=0

is identified within the model space as the subset of
models which are consistent with the observations.

QUALTTATIVE CURVE DESCRIPTION

: 4 CREEP: growing{i_0) concave(l_de_0) lirsarbgrowing{t_v)
RECOVERY: decreasing(t_1) convex(t_de_1) fargely-positive(t infty)
| ASSESSED QUALITATIVE BEWAVIOR: (F,T,T)

] Fearusen wvsicaL propeRTIES:

delayed elasticity
viscosity

Strain response of RUBBER BK/CL

Figure 6: Qualitative interpretation of the creep ex-
perimental response of a rubber-like material

Then, the SI optimization loop is performed on the
parametrized set of models

m+1 m
& = {Em(p) : pr-')D'ezz;;;'Jan .
=1 j=0

[

()
E [g(,)] eRM™ p£0, m> 1)}

which embodies F£,, in order to find the optimal nu-
merical values of m and p which identify the quantita-
tive model of the material.

For each m, optimal values p* of the coefficients
are determined, and AIC is evaluated for each ten-
tative quantitative model E,,(p*). The AIC val-
ues together with the relative errors of the computed
model solutions with respect to the experimental data
( /S%(m,p*) [ €2 ) are reported in the second col-
umn of Table 1. The minimum value of AIC (-1304.2)
is taken at m = 4. Therefore, the most accurate model
the system eventually associates with the given mate-
rial is a fifth-order ODE; for this model, the calculated
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Table 1: AIC values (and relative errors) corresponding to every tentative model identified in U;&;

& & £ £
938.4 -1024.0 1134.2 -1068.4
™= (0347 002) | (5.61702) | (2881 .02) | (@311 e02)
-1168.9 -1230.0 -1281 5 -1249.9
™2 2344e02) | (1631 02) | (1184 002) | (1446 002)
-1290.1 [1207.7 1304.1 -1300.6
m=3 ] (125 e02) | (1076 e02) | (1028 e02) | (1.057 e-02)
-1305.5 -1304.2 -1302.7 -1305.3
"= (Lots e02) | (1022e02) | (1020 e-02) | (1.016 e-02)
-1304.6 -1303.3 -1303.1 -1303.6
™= | (1008 -02) | (1016 e-02) | (1.005 e:02) | (1.014 002)

values of p(*) are: 9.248 Pa - s, 1.068e+03 Pa - s2,
1.466e+04 Pa - s®, 2.768e+04 Pa - s*, 4.966e+03 Pa
- s°. Figure 7 shows the strain response, computed
according to this model, versus the experimental data.

We have also performed a blind search over the whole
model space FE, in spite of the higher computational
effort (20 models were identified rather than the 5 mod-
els in &£). Table 1 shows the AIC values correspond-
ing to all the tentative quantitative models identified
in U;&. In this case, the minimum value of AIC is
taken at m = 4, but within £;, which is characterized
by @B;=(T,T,F). This means that the given mate-
rial would be eventually associated with a fourth-order
ODE model which is numerically accurate, i.e. opti-
mal with respect to goodness of fitting and order, but is
not qualitatively consistent with the observations as it
does not correctly capture the qualitative strain prop-
erties QBo =(F,T,T) featured by the material. The
application of the Akaike criterion to the whole search
space may fail as the criterion alone does guarantee nu-
merical but not physical accuracy. The implemented
selection procedure emulates the expert skills at limit-
ing the candidate search space to equations which are
suggested by her expertise in interpreting the observa-
tions.

Conclusion

This paper discusses, through a case study, the impor-
tance of qualitative reasoning techniques for a correct
approach to automated modeling even if the goal is the
formulation of an accurate quantitative model: numer-
ical accuracy by itself may be meaningless as it does
not guarantee that the physical features are properly
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system
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represented. The search model set is properly chosen
within the model space for the domain when it sat-
isfies a qualitative accuracy criterion, i.e. any of its
elements qualitatively represents the physical proper-
ties captured by the observations. Besides the evident
advantage which derives from this first selection, the
computational costs are significantly reduced because
of the reduced dimension of the search space. More-
over, the restriction of the search space to all and none
but the qualitative meaningful models allows us to bet-
ter delimit the a priori knowledge which could be con-
veniently exploited in the next steps of the automated
modeling process. More precisely, as we have shown in
our specific case, such knowledge may suggest a proper
choice of either the initial conditions needed for solv-
ing the initial value problem or a good initial guess
for the model parameters. In the context of a system
whose goal is to automate all steps in the modeling
process, the issue to suitably perform such choices is
crucial with respect to numerical costs (running time,
numerical instability).
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