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Abstract

This paper deals with qualitative and structural
reasoning on linear interval systems whose pa-
rameters are specified by intervals. We formal-
ize the systems of reasoning about structures of
interval systems by the qualitative perturbation
principle: the interval system would have the in-
terval property when its underlying sign struc-
ture include the component that has the corre-
sponding sign property and the norm of the rest
of component (considered qualitative perturba-
tion) is small enough. Several interval properties
of interval matrix such as nonsingularity, rank
and inverse stability will be discussed by applying
the principle to the graphical conditions for the
corresponding sign properties. The Klein model
in economics is used as an illustrative example.

Introduction

In Qualitative Reasoning about dynamical systems, it
appears that depending upon only qualitative values
such as signs or landmarks may not suffice due to the
ambiguity ezplosion. Recently, semi-quantitative ap-
proach using intervals has been paid attention (Kuipers
and Berleant 1988; Berleant and Kuipers 1992; Kay
and Kuipers 1993; Vescovi et al. 1995; Nogi & Ishida
1995) aiming at analysis and synthesis on real problems
which are large-scale and complex. However, using in-
tervals as system parameters often causes the compu-
tation explosion. This paper presents another avenue
of research: using qualitative analysis (pure qualitative
approach in the sense of using sign directed graph) for
reasoning about interval systems.

~ Qualitative and structural analysis have been stud-
ied in many different areas: economic systems, ecosys-
tems, and system theory to mention only a few. Anal-
ysis and synthesis on systems with parameter un-
certainty has been studied in system theory (May-
bee 1981; Ishida et al. 1981; Maybee et al. 1989;
Rohn 1990; Mansour 1992; Rohn 1993a). The level of
uncertainty may be divided into four; numerical (most
specific) specification, interval specification, sign spec-
ification, and zero/nonzero specification of parameters
as shown in Figure 1. We call numerical, interval, sign

and structured systems respectively, corresponding to
these level of parameter specification. The motivations
for the study of systems with uncertain parameters are
as follows: (1) modeling errors are inevitable in mod-
eling real systems which are often complex and large-
scale, and (2) early phase of system design must allow
undetermined values in parameters.

These results have several implications in Qualitative
Reasoning about systems with qualitatively expressed
interactions and states. In this paper, we present prin-
ciples which can be used to reason about interval sys-
tems based on its sign structure. These principles have
been implicitly used in system theory, however, we for-
malize them as principles upon which theorems and
propositions in this paper depend. We briefly present
some theoretical results to demonstrate how the princi-
ple can be applied to the static properties of the system
matrix. This research aims to apply the results for one
level to the other level in Figure 1. Particularly, this
paper focuses on the results for sign matrices that can
be used to deduce the corresponding results for inter-
val matrices by the structural perturbation principle
(stated in the next section).

The next section presents qualitative perturbation
principle and some preliminary concepts required in
the subsequent sections. In the section of Sign Sin-
gularity Analysis by SDG, sign nonsingularity condi-
tions by signed directed graph (called SDG hereafter)
are stated. The section Singularity Analysis on In-
terval Matrices presents an algorithm for determining
the max/min values of the determinants of the interval
matrices. Some vertex matrices ! realizing max/min of
the determinants of the interval matrices can be fixed
based on the structural properties of signed digraph.
The section Properties of Static Systems: Rank, Non-
singurality, and Inverse Stability extends several prop-
erties such as nonsingularity, rank, and inverse stability
to sign and interval matrices. Several results associat-
ing sign properties with corresponding interval proper-
ties are also presented. The section The Klein Model
as an Illustrative Ezample demonstrates how the qual-

We use the word vertex for interval matrices and the
word node for graphs.
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Figure 1: Levels of Systems based on Parameter Spec-
ification

itative perturbation principle together with the results
stated in section Properties of Static Systems: Rank,
Nonsingurality, and Inverse Stability can be applied to
a specific system, taking the Klein model as an illus-
trative example.

Preliminaries

Sign matrix A% is a matrix whose elements are +, —, 0.
Interval matrix A’ is a matrix whose elements are spec-
ified by interval [a, b] where a and b are two terminal
values such that a < b. An interval matrix can be
considered a set of matrices whose elements are in the
intervals specified by the interval matrix.

For simplicity, we focus on interval matrices whose
intervals can be identified as +,0, or —. That is, we
do not consider such interval as [—2, 5|. This may not
be a strong limitation, since at least sign of system
parameters could be identified in most cases except
time varying systems. Further, when the matrix is re-
ducible 2, it can be reduced to irreducible components
to each of which the analysis in this paper can be ap-
plied independently. Thus, the matrix is assumed to be
irreducible in the rest of this paper. Graph theory has
been extensively used in search algorithms (e.g. (Tar-
jan 1972; Rose & Tarjan 1978)). We also use graph for
expressing the sign structure of systems.

Definition 1 (Signed Digraph for Matrices)
SDG (signed directed graph) of a matriz A € R**"
is a graph with n nodes and arcs directed from node 1

*Matrix A is called reducible if it can be decomposed
into upper (or lower) diagonal blocks by permutation ma-

trix P:
v _ [ An An
PAP" = ( o i )
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to node j with sign +(-) when a;; > 0(< 0) (i.e. the
interval is lying within 0,00).
Example 1

The SDG of the following interval matrix is shown in
Figure 2.

—2‘-1] [_21_1] IO,U]
-2,-1] [-4,-3] [-5,—-4]
=3,-1 [2,4] [-2, -1]

2
SAN

Figure 2: SDG of the Interval Matrix

Definition 2 (Sign Nonsingularity and Interval Non-
singularity)

Sign matriz is called sign nonsingular if all the ma-
trices having the sign structure is nonsingular. Interval
matriz is called interval nonsingular if all the matrices
whose elements are lying within the intervals are non-
singular.

As presented in the section of Properties of Static
Systems: Rank, Nonsingurality, and Inverse Stability,
(Maybee 1981) proved that sign structure with with all
the negative loop (with all the diagonal elements neg-
ative) and with no positive cycle is sign nonsingular.

In the following, we present a principle that is used
to reason about interval systems based on their sign
structures. First, Qualitative Inclusion Principle may
be stated as follows:

For a system matrix to have an interval property,
the system must contain a subsystem that has the
corresponding sign property.

This principle can apply to such properties as stabil-
ity, observability, nonsingularity, inverse stability (that
will be defined in the next section), solvability, etc. of
system matrix. For example, application of the above
qualitative inclusion principle to a system matrix for
a property of nonsingularity results in the following
statement; for an interval matrix to be interval nonsin-
gular, its SDG must contain the arc-subgraph 3 that is

¥ Arc-subgraph is the graph obtained by deleting some
arcs. Similarly, node-subgraph is the graph obtained by
deleting some nodes and all the arcs associated with the
nodes.



sign nonsingular.

Due to the above qualitative inclusion principle, sign
structures that generically * have the property may
be decomposed into two subsystems: subsystem (arc-
subgraph of the sign structure) that satisfies a sign
property and a set of interactions (arcs) whose removal
result in the system having the sign property. The set
of interactions being removed is considered a qualita-
tive perturbation imposed on the sign structure having
the sign property. With this decomposition, Qualita-
tive Perturbation Principle may be stated as:

If a sign structure generically have the property
but the interval system having the sign structure
fails to have the corresponding interval property
due to the qualitative perturbation, then the in-
terval system would have the interval property if
the qualitative perturbation is made small enough
relative to the rest of system.

Again, applied to nonsingularity of matrix, the next
statement follows; if the sign structure of an interval
matrix is generically nonsingular, then the interval ma-
trix can be made interval nonsingular by making the
qualitative perturbation (the set of arcs whose removal
leaves sign nonsingular graph) small.

This principle can be used not only in the analysis
on whether the given interval system satisfy an inter-
val property but also in the synthesis of parameters
to satisfy the interval property based on its sign struc-
ture as will be discussed in the section of Related Work
and Discussions. Although we explained the principle
applying from sign systems to interval systems, simi-
lar principle can be used from structured systems to
sign systems and from interval systems to numerical
systems.

We will be more specific about how the principle can
be used in the following sections by applying it to such
properties as nonsingularity and inverse stability.

In the next section, we will present more informa-
tive measure than nonsingularity for sign and interval
matrices, For singular matrices, rank would give infor-
mation of how singular the matrix is. For nonsingular
matrices, information of how many submatrices of or-
der n — 1 are nonsingular (and recursively for subma-
trices with the order n — 2,.-+,1 ) would indicate how
nonsingular the matrix is. The former singularity mea-
sure can be used to reason which arcs or nodes should
be removed (in case of sign matrix) or made small (in
case of interval matrix) to attain nonsingularity. The
latter nonsingularity measure can be used to assess the
properties stronger than nonsingularity such as inverse
stability and solvability.

Sign Singularity Analysis by SDG
Definition 3 (Cycle and G[n]-cycle)

“An interval (sign, or structured) system is said to have
a property generically when at least one instance of the
interval (sign, or structured) system has the property.

The cycle of length k denoted by c[tl, 12, ,1k] 18 a path
connecting the nodes iy,i7,- -+, 1, and 1y sequentially®.
The set of disjoint cycles is called G[n]-cycle if the total
length of these cycles is n.

All the pOSSIble G|[n]-cycles for A € R™*™ correspond
to all the terms in the expansion of determinant of A'.
Figure 3 shows all the possible G[3]-cycle for the graph
shown in Figure 2.

Let plci] denote the product of all the elements
in the cycle ¢; = ¢[i1,42,---,4x). That is, ple;] =
@iyiyQiziy " * Biy_yiy- Let Ci = {ci1,Ciz,7+,Cig, } be a
G[n]-cycle. Then a term in the expansion of the de-
terminant A can be written as follows by (Goldberg

1958):
(=1)*(=1)%plea]pleia] - - tcw ].

Definition 4 (Admws:ble
(Lancaster 1962))

(1) multiplying the sign in any rows by (-1).
(2) multiplying the sign in any column by (-1).
(8) interchanging any two rows.

(4) interchanging any two columns.

Qualitative Operations

For any sign matrix, sign solvability (hence sign non-
singularity) is known to preserve under any combina-
tion of above admissible qualitative operations (Lan-
caster 1962).

The admissible qualitative operations, however, do
not preserve the structure of graph.

Lemma 1 A cycle c[iy, iz, ,ix) of length k can be
transformed into a set of k loops (i.e. cycle with length
one) {clt1], 2], - - -, c[ik]} by the admissible qualitative
operations.

Sign structure of sign matrices has been studied ex-
tensively by (Maybee 1981; Maybee et al. 1989).

The following is a graphical characterization for a
sign matrix to be sign nonsingular quoted from (May-

bee 1981).

Theorem 2 (Sign Nonsingularity Condition (Maybee
1981))
Let A € R™*™ be a matriz withay;; <0 fori=1,---n
Then all terms in the expansion of det A are weakly of
the same sign if and only if all cycles of A are nonpos-
itive.

In fact, the condition that all the diagonal elements
are negative can be considered necessary.

Lemma 3 If a sign matriz is nonsingular then by
the admissible qualitative operations it can be put into
the form where all the diagonal elements are negative.
Such form is called standard form hereafter.

Theorem 4 By the admissible qualitative operations,
if an interval matriz can be put into the form:

(1) All the diagonal elements are negative, and

(2) There are no positive cycle.

“We use the word cycle to mean a simple cycle. That
is, the nodes 43,1z, -, i) are different.
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In the rest of paper, matrix is assumed to be trans-
formed into the form where all the diagonal elements
are negative.

Corollary 5 The sign of of a term in the ezpansion
of the determinant of the mairiz A € R™*™ is invari-
ant if any negative cycle of length k cfi1,i2,---, 1)) is
replaced with corresponding k disjoint negative loops:

{clia], cliz], - -, clin]} -

Definition 5 (Sign Conflict)

If all the cofactors of the element a;; of the matriz A
when its determinant is ezpanded is not of the same
sign, then the element a;; (or its corresponding arc in
SDG) is called sign conflict. Otherwise, it is called
sign non-conflict.

The next lemma follows directly from the definition
of sign conflict and G[n]-cycle.

Lemma 6 If an element of the matriz is both in the
G|[n]-cycle consisting of only negative cycles and in the
G[n|-cycle consisting of at least one positive cycle then
the element is sign conflict.

Whether or not the element is sign conflict can be
known in the SDG without decomposing it into G[n]-
cycle. The following is a graph theoretical condition
for an element to be sign conflict as follows.

Theorem 7 An element a;; is sign conflict, if and
only if (1) the arc a;; is both in a positive cycle and a
negative cycle, or (2)" the arc a;j is in the cycle disjoint
with a positive cycle.

Sign nonsingular matrix is such a matrix that does
not have any sign conflict element.

The element a;2 of the matrix of Example 1 is sign
conflict, since it satisfies the condition (lf of theorem 7
(it is included in the positive cycle ¢[1, 2] and the neg-
ative cycle c[1,2,3]). The element a3; is also known
to be sign conflict, since it satisfies the condition (2)
of theorem 7 (there is a positive cycle e ¢[1, 2] disjoint
with it). These are also known to be sign conflict by
applying above Lemma 6 to the G[3]-cycle decomposi-
tion shown in Figure 3.

Singularity Analysis on Interval
Matrices

Min/Max of the determinant of interval
matrices

Since sign nonsingularity requires that all the non-zero
terms of the expansion of determinant must be of the
same sign, the next lemma follows immediately.

Lemma 8 If the SDG of an interval matriz is sign
nonsingular, then the vertez that realizes the minimum
absolute value of determinant of the interval matriz is
that with smaller(greater) absolute value of two termi-
nal values for each interval.
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Since all the diagonal elements of the interval ma-
trices under consideration are assumed to be negative,
the determinant of the interval matrices have the term
plea]plea) - - - plen] in the expanswn We call the sign
of the term sgn(p[ei]p[ez] -« -plen]) = (=1)™ standard
sign, since all the other non-zero terms in the determi-
nant expansion of sign nonsingular matrices have the
same sign as this.

Even if an interval matrix is not stgn nonsingular,
the terminal value that realizes the maximum or min-
imum absolute value can be determined if the element
is sign non-conflict.

Theorem 9 The vertez that realizes the minimum ab-
solute value of determinant of the interval matriz is
that with smaller(greater) absolute value for the sign
non-conflict element when it is in the negative(positive)
cycle.

Obviously, results similar to lemma 8 and theorem
9 stating the vertex realizing the maximum absolute
value can be obtained with the word “smaller” and
“greater” exchanged.

Algorithm for finding minimum value of
the determinant

Based on the above theorem 9, the following algorithm
for finding the vertex that realizes determinant with
minimum absolute value is proposed.

Algorithm 10

STEP 1: Assign the terminal values to the elements
of sign non-conflict based on the theorem 9.

STEP 2: Find the element of sign conflict whose
cofactor does not have the element of sign conflict. If
found, assign the appropriate terminal value to the el-
ement of sign conflict depending on the sign of the
cofactor. Continue this step until there is no element
of sign conflict whose cofactor does not have the ele-
ment of sign conflict.

STEP 3: Find the element of sign conflict whose
cofactor has the elements of sign conflict, but the sign
of the cofactor does not change which terminal value
the element of sign conflict may take. If found, assign
the appropriate terminal value to the element of sign
conflict depending on the sign of the cofactor, and go
back to the STEP 2. If not found, proceed to the next
step.

STEP 4: Carry out a combinatorial search for the
remained elements of sign conflict.

Example 2

In the following, the above algorithm is demonstrated
for the same example as 1

In STEP 1 of the algorithm, ay3 is the sign conflict
element by the condition (1) of theorem 7. aj; is also



Table 1: Sample matrices Table 2: Processing time

Nonzero Conflicts (sec)

No. Size elements Cycles Nonsingularity No. A B
1 5 25 89 25 nonsingular 1 7,360 0
2 5 15 10 5 singular 2 F 0 0
3 8 22 15 0 nonsingular 3 0.1 0.1
B 8 39 104 9 nonsingular 4 0.1 0.1
5 14 42 30 0 nonsingular 5 0.2 5.5
6 14 42 30 37 nonsingular 6 0.2 6.8
7 14 82 69 0 nonsingular 7 8.9 9.0
8 14 118 105 0 nonsingular 8 11.9 5.7
9 14 109 105 0 nonsingular 9 7.3 5.1

10 14 44 35 18 nonsingular 10 0.3 6.4
1115 54 486 53 singular 11 1.3 174
12 20 60 42 40 nonsingular 12 0.4 904
13 20 62 47 59 nonsingular 13 0.4 1,051
14 20 94 47 94 nonsingular 14 F 602 1,174
15 20 72 1178 71 singular 15 7.4 1,383
16 20 82 4802 81 nonsingular 16 81.5 930

the sign conflict element by the condition (2) of the
theorem. All the other elements are sign non-conflict
and their terminal value can be determined. Sign con-
flict element is indicated by * symbol in the matrix.

Since a3z has the sign conflict element a3 in its dis-
joint cycle, and a;; has the sign conflict element a3
in its disjoint cycle, there is no sign conflict element
specified in the STEP 2. The terminal values so far
determined for the sign non-conflict elements are un-
derlined in the matrix. For example, as; takes the the
terminal value —2.

In STEP 3, the cofactor of ajz, i.e., (—4) x (-1) —
(=2) % [~2, —1] does not change the sign whichever the
terminal value ag3 = [—2, —1] may take. Hence the ter-
minal value of a;; can be determined. Since there is no
more sign conflict other than a33, the terminal value of
a33 can be assigned in the STEP 2. Thus, the terminal
value of -1 at a,, is taken for the minimum absolute
value of the determinant. Then, this will again deter-
mine the terminal value of -1 at a33. Thus the vertex
that realize minimum absolute value of determinant is
obtained. The value the determinant is -13, hence the
interval matrix is nonsingular (the determinant does
not cross 0).

[vz, -1 [-2,-1"  [0,0]
;2,—‘11 [-4,=8] [-5.=4]
[-3,=1 [24] [-2,-1

Checking interval nonsingularity

We have implemented the algorithm of checking inter-
val nonsingularity in the previous subsection or (Nogi
& Ishida 1995) in detail We will compare it with so
far known best algorithm. Table 1 lists the structural
character of 16 sample interval matrices used for the

comparison. Table 2 compares the processing time be-
tween A (our algorithm) and B (algorithm by (Rohn
1990) which uses solvability of a systems of linear inter-
val equations). In table 2, F indicates when the algo-
rithm fails to check the interval nonsingularity due to
many sign conflict (and number there indicating time
until the failure).

Clearly the processing time of our algorithm A heav-
ily depends on the structure of the system, however
algorithm B does not. Compare the sample matrices
5 and 8. The number of nonzero elements and other
structural features greatly differ, however the process-
ing time for these two samples by the algorithm B does
not differ much. Further, our algorithm seems to be
more efficient in most cases, however it fails to check
when many sign conflicts.

Properties of Static Systems: Rank,
Nonsingurality, and Inverse Stability

Sign matrices after put into the standard form with
all the diagonal elements negative is sign nonsingular
if the corresponding SDG does not have any positive
cycle ® (Maybee 1981). Thus, making all the positive
cycles small’” would make the interval matrix interval
nonsingular by the qualitative perturbation principle.

Although it is necessary to cut all the positive cy-
cles by deleting at least one arc from each positive
arc to modify sign matrix which is not sign nonsin-
gular but generically nonsingular (i.e. the SDG has

®Sign of a cycle is defined to be sign of the product of
all the elements in the cycle.

TCycle is said to be small(big) when the absolute value
of the product of all the elements in the cycle is small but
not zero(big). More specifically for interval matrices, when
b < eycle — product < a, the cycle is said to be small(big)
when |al, [b] # 0 are small(big).
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arc-subgraph that is sign nonsingular) into sign non-
singular one, only some set of disjoint cycles stated in
the following proposition 11 must be handled to control
the interval nonsingularity.

Proposition 11 (Control of Interval Nonsingularity)
Interval matriz that is generically nonsingular can be
made intervel nonsingular by making the elements cor-
responding to the following arcs big enough; the arcs
whose removal will cut all the cycles in the G[n]-cycle
{Ci1,- -+, Cip} such that the sign (—1)Psgn(Ciy-- - --Cip)
is positive.
One trivial set of cycles satisfying the conditions above
is the set of all the negative loops (diagonal elements).
Thus, making absolute value of all the diagonal ele-
ments big results in interval nonsingular matrices. This
result also comes from well-known nonsingularity con-
dition of diagonal dominance.

Nonsingularity indicates whether or not information
is preserved in the mapping by the matrix from a do-
main space to an image space. However, nonsingu-
larity does not provide any further information about
singular matrices. Rank of matrices is more informa-
tive property than nonsingularity, since it can provide
information about a kind of distance from nonsingu-
larity.

Definition 6 (Sign Rank and Interval Rank)

Sign (interval) rank of a sign (interval) matriz is the
order of its mazimal submatriz that is sign(interval)
nonsingular.

Obviously, the interval rank of an interval matrix is
greater than or equal to sign rank of the sign structure
of the interval matrix. Sign rank can be obtained by
SDG of the sign matrix as will be stated after propo-
sition 12,

Although rank is more informative than nonsingu-
larity, it cannot tell any further information for non-
singular (i.e. full rank) matrices. As it will be made
clear through this section, information of nonsingular-
ity of original matrix as well as submatrices of order
n — 1 is needed to characterize the concepts such as
inverse stability discussed in this section.

Proposition 12 (Sign Nonsingularity of Submatriz)
Let N be a set of integers {1,2,---,n} and I, J be a
subset of N. If, for all the positive cycles and paths of
opposite sign, there is at least one arc from the node
¢ € I or to the node j € J that will cut the positive cycle
or the paths of opposite sign, then the submatriz Ajj is
sign nonsingular where I and J are complement set of
I and J. Here, A;; denotes the submatriz obtained by
deleting all the i** row in 1 € I and all the j** column
ini € J from A.
The order of the maximal submatrix obtained by this
proposition is sign rank.

In order to analyze the relation between a matrix
and its submatrices, the relation between the graph
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corresponding to the original matrix and the subgraph
corresponding to the submatrices may be used. A
property of graph is said to be hereditary (Berge 1965)
if the property holds for its subgraph. For example,
the property of having no cycle is hereditary. Graph-
ical condition characterizing sign nonsingular matrix,
that is having no positive cycle, is also hereditary (in
the sense of node-subgraph). Thus, sign nonsingularity
(for irreducible matrices) is hereditary as in the next
theorem.

Theorem 13 (Sign Nonsingularity of Matriz and
Submatriz)

If a sign matriz of order n is sign nonsingular then
the submatriz A;; of order n — 1 are sign nonsingular
for 1,3 such that a;; # 0.

The above theorem 13 holds for only irreducible sign
nonsingular matrices. If a reducible sign matrix of or-
der m is sign nonsingular then its submatrix A;; corre-
sponding to a;; # 0 of order n — 1 are either sign non-
singular (i.e. sign rank is n—1) or structurally singular
(i.e. term rank® < n—1). Although the number of sign
nonsingular submatrices of order n — 1 is at least the
number of nonzero elements a;; # 0 for sign nonsin-
gular irreducible matrix of order n as known from the
above theorem 13, that for sign nonsingular reducible
matrix is at least n. This fact for reducible sign nonsin-
gular matrix can be known from the cofactor expansion
of A:

n
detA = Z[—l)""’a,}.d,-,-.
i=1
An example that has exactly n sign nonsingular sub-
matrices of order n — 1 would be the sign matrix with
all the diagonal elements negative and others zero.
This recursiveness of nonsingularity stated in theo-
rem 13 does not hold for interval matrix with interval
nonsingularity, That is, even if an interval matrix is in-
terval nonsingular its submatrices may not be interval
nonsingular as demonstrated in the next section.
The following condition for interval nonsingularity
also follows from the determinant expansion.

Proposition 14 (Interval Nonsingularity Condition
by Submatriz)

If there ezists i** row (or j** column) in the inter-
val matriz such that a;; # 0 always implies that A;;
is interval nonsingular and that (—1)"*a;;A;; are of
the same sign for j =1,---,n(ori= 1,---,n), then the
original interval matriz is interval nonsingular.

The following concept of inverse stability is related
to sign(interval) nonsingularity of submatrices with or-
der n — 1.

®Term rank for structured matrix where only zero/non-
zero pattern is specified for each element is the maximal
rank that the matrix satisfying the zero/non-zero pattern of
the elements can attain. In other words, term rank fails to
be full means that there is no non-zero term in its expansion
of the determinant.




Definition 7 (Inverse Stability)

A sign matriz AS (interval matriz AI} is called sign
(interval) inverse stable when AS (A) is sign (in-
terval) nonsingular, and [{A™1}i5| > 0 for all A €
AS(AT). That is, all the element of the inverse of
the given matriz does not become zero. A sign ma-
triz AS (interval matriz AT ) is called sign (interval)
inverse semi-stable when when AS (AT) is sign (inter-
val) nonsingular, and {A71}i; 20 0or {A71};; <O for
all A € AS(AT). Here, {B};; denotes ij-element of the
matriz B.

This inverse stability, originally defined on interval
matrices (as done in (Rohn 1990)), can be defined on
sign matrices as above. Obviously, the inverse stabil-
ity of sign (interval) matrices is equal to that all the
submatrices of order n — 1 as well as the original ma-
trix of order n is sign (interval) nonsingular. The in-
verse semi-stability of sign (interval) matrix is equal
to that the original matrix of order n are sign (inter-
val) nonsingular and that all the submatrices of order
n — 1 are either sign(interval) positive semi-definite®
or sign(interval) negative semi-definite. Condition for
inverse stability of interval matrices has been already
obtained by (Rohn 1993b). For sign matrices, the fol-
lowing result directly follows from theorem 13.

Corollary 15 A (reducible) sign mairiz is inverse
(semi-)stable if it is sign nonsingular and all the paths
from node i to node j corresponding to a;; = 0 are of
the same sign.

Result similar to corollary 15 does not hold for in-
terval nonsingularity and inverse stability of inter-
val matrices. Inverse stability condition for inter-
val matrix consists of interval nonsingularity of orig-
inal interval matrix and that of all the submatri-
ces of order n — 1. Inverse stability of interval ma-
trices plays an important role for specifying inter-
vals of inverse of interval matrices as well as solv-
ing interval systems of linear equations (Rohn 1990;
Rohn 1993b).

As known from the above corollary 15, irreducibil-
ity is necessary for inverse stability of sign matrices. In
order to make the given sign matrix inverse stable, cut-
ting the positive cycles and the paths of opposite sign
from node i to node j such that aj; = 0 does not always
suffice (it does, however, for inverse semi-stability).

Proposition 16 Irreducible sign matric with positive
cycles (hence not sing nonsingular) can be made in-
verse stable by deleting a set of arcs whose removal

1. leaves no positive cycle,

2. leaves no pair of paths of opposite sign from node i
to node j such that aj; = 0, and

*Sign matrix A% is sign positive (semi-)definite when
all matrices A € A% are positive (semi-)definite. Interval

Positive (semi-)definite can be defined in the same manner
for interval matrices.

3. preserves irreducibility.

When applying the qualitative perturbation princi-
ple to the above proposition 16, irreducibility need not
to be taken care of. Interval inverse stability can be
attained by making positive cycles and paths of oppo-
site sign from node i to node j such that aj; = 0 small,
since irreducibility is always preserved by the opera-
tion of making the absolute values of matrix elements
small. Table 3 summarizes the principle of perturba-
tions presented in this section.

The Klein Model as an Illustrative

Example

We use the Klein model in economics as an illustrative
example. Figure 4 shows the SDG of the irreducible
component of the Klein model corresponding to the fol-
lowing interval matrix. Intervals are assigned arbitrary
according to the sign structure of the Klein model.

[_3,—1] [0!0] [2! 3] [010] {_5' _3]
I_

[0’ 0] [-71 "4} [U! 0] [01 U} 1, _2]
[0’ 0] [01 0] [_81 '”3] [103 13} [0’ 0]
{2! 4] [21 5] lot 0] [_?a _5] i0$ 0]
{Ui 0] [01 0} [7!9] [_5! _3] [_4v"1]

Table 4 lists all the cycles of length greater than one

Figure 4: The SDG of the Irreducible Component of
the Klein Model

and the critical paths: paths from node i to node j
for i,j such that aj; = 0. In order to make the given
sign matrix (interval matrix) sign nonsingular (interval
nonsingular), all the positive cycles must be cut (made
small). In order to further make the sign nonsingular
(interval nonsingular) matrix sign inverse stable (in-
terval inverse stable), some arcs in the critical paths
listed must be cut (made small) to make critical paths
have the same sign, preserving irreducibility.

First, it is known that the sign structure of the inter-
val matrix is not sign nonsingular due to the existence
of positive cycles: azsas4a42, 213034041, 215054041.
Among the cut set of arcs whose removal will cut all
these positive cycles, the sets
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Figure 3: G[3]-Cycle Decomposition of SDG

Table 3: Summary of Effects of Deleting or Weakening Perturbations

[ Deleting or Weakening Perturbations

Effect of Deleting or Weakening |

Deletion of all the Positive Cycles(Maybee 1981)

Not Sign nonsingular —
Sign nonsingular

Making Positive Cycles Small

Not interval nonsingular —
Interval nonsingular

Making Arcs satisfy condition
stated in Proposition 11 b

Not interval nonsingular —
Interval nonsingular

i
Deletion of all the Paths JE Opposite Sign
of length smaller than k+1 (Proposition 12)

Sign rank < k —
Sign rank > k

Addition of Paths of Opposite Sign

Sign inverse stable —
Not si&n inverse stable

sa.tisfyin% the condition of Proposition 16
Making
satisfy the condition of Proposition 16 small

ositive Cycles and Paths of Opposite Sign

Not interval inverse stable —
Interval inverse stable

Deletion of Arcs resulting

in Reducible Matrix (Corollary 15)

Sign inverse stable —
Not sign inverse stable

Table 4: Cycles and Critical Paths

[ POSITIVE _

[NEGATIVE

[_Cycles of length greater than one ||

213034041, 01505404), 25054042 |ﬂzsﬁsaﬂuﬂu'ﬂlsﬂaaﬂnﬂu |

Paths from 1 to 2 Q15054042,313034042 015053034042
Paths from 1 to 3 a3 a15as3
Paths from 2 to 1 QA5a54041 Q25053034041
Paths from 2 to 3 Q25054041013 a25@353
Paths from 5 to 3 as3 A54Q41013
Paths from 5 to 4 as3a3q @54
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{0.54,541}1{054'33{};{3541513}1{041a342}s{a251541}
are the minimal set. Thus, making either of these
values small would make the interval matrix interval
nonsingular by the qualitative perturbation principle.
There is an arc contained only in the negative cycles;
as3. For example, the interval matrix obtained by re-
placing as3 of the above interval matrix with the in-
terval: [1,9]is not interval nonsingular. However, by
proposition 11, we can make this interval matrix in-
terval nonsingular by changing as; from the interval:
[1,9] to [5,9].

Although this strategy can work to control interval
nonsingularity, it does not work to control interval in-
verse stability. In fact, as; does not appear in the
submatrix Agz that is not sign nonsingular, hence may
not be interval nonsingular.

By proposition 12, the following submatrices of
order four turned out to be sign nonsingular;
Ajya, A1g, A2z, Az, Ags, Agg, Asy, Asa, Asq. Thus, the
sign rank of the given sign structure is known to be

fmgihce Asq and Agy are sign nonsingular, the interval
stability of the submatrix A4 implies interval nonsin-
gularity of the given interval matrix by proposition 14.
After As4 is known to be interval nonsingular either
by the combinatorial search of min/max of determi-
nant or recursively analyzing the sign structure of the
submatrix A4, the given interval matrix is judged to
be interval nonsingular. The status of entire submatri-
ces of order four follows:

INS INS SNS SNS INS
NotINS INS SNS SNS INS

INS NotINS NotINS INS NotINS
NotINS INS SNS SNS INS

SNS NotINS SNS SNS NotINS

where i** row and j** column indicates the status of
the submatrix A;;. NotINS, INS, and SNS, respec-
tively indicate not interval nonsingular, interval non-
singular and sign nonsingular.

Among the cut set of positive cycles, the removal of
only the set {as4,a13} will leave the graph irreducible
and no pair of paths of opposite sign from node i to
node j such that a;; = 0 as known from Table 4. Hence,
by proposition 16, the removal of these two arcs will
make the sign structure not only sign nonsingular but
also sign inverse stable. By the qualitative perturba-
tion principle, making these parameters small would
result in the interval matrix interval nonsingular and
interval inverse stable.

As known from the status of submatrices A;; above,
the given interval matrix is not interval inverse stable.
However, changing intervals from ay3 = [2,3],a5¢ =
[~5,-3] to a13 = [1/10,1/5],a54 = [-1/5,—-1/10]
\j’ould make it interval inverse stable. In this case,
sign of all the elements of A~ can be identified by the

signs of paths from node i to node j and the sign of
detA as follows 1°:
= o

"°Sign of ij-element of A~ is sgn(detA)sgn((—1)"17 A ;)
wherf: sgn(detA)is (—1)°74¢"°f =4 and sgn((—1)"*7 4;:) is
the sign of the path from node i to node j.

+
+

+
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Related Work and Discussions

In qualitative reasoning of dynamical systems, reason-
ing about behavior especially simulation that allows
parameters and/or initial values to be specified by in-
terval have been studied.

Since the envelope that contains possible evolutions
within the interval tends to be pessimistically large
when time progresses, several techniques are intro-
duced to restrict the upper and the lower bounds of
the envelope (Kay and Kuipers 1993; Vescovi et al.
1995).

In contrast to these approaches, our methods try
to explore the relation between parameters specified
by intervals and several system properties rather than
evolution through time. Thus our approach cannot di-
rectly deal with the question; what the next state will
be, given the current state and the parameter ranges?
Rather, our approach is meant to deal with the ques-
tion; what are the qualitative property (such as sta-
bility, solvability, controllability, etc.) of the behavior
specified by the system with some parameter ranges?

Our approach can be understood the interval version
of the qualitative and structural analysis on systems
by sign concepts defined on SDG (Ishida 1989; Ishida
1990; Ishida 1991; Ishida 1992; Ishida 1993).

Other than the field of QR, interval arithmetic or
more generally interval analysis is indispensable in
dealing with interval systems. Interval analysis pro-
vides several iterative procedures that will give the so-
lution specified by intervals and contain the exact solu-
tion within it (Moore 1979; Alwfeld & Herzberger 1983;
Neumaier 1990). However, many of these procedures
work under non-trivial conditions such as interval non-
singularity of the given matrix, which in turn can be
checked or reasoned by our method. Our approach
seems to be complementary to interval analysis; our
result may provide conditions under which the proce-
dure of interval analysis works.

The most relevant work has been done by (Brouwer
et al. 1987) that proposed two approaches for mixed
sign analysis: (1) the top-down approach: starting
from sign equations, then try to identify which and
how many equations have to be estimated numerically,
(2) the bottom-up approach: starting from fully esti-
mated numerical equations, then try to identify which
and how many equations can be specified in sign equa-
tions preserving sign properties.

We have demonstrated an alternative approach in
the previous section for the same example (i.e. the
Klein model) as (Brouwer et al. 1987). That is, (3)
the interval approach: starting from interval systems
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whose intervals are set rather wide, then try to make
the intervals narrower.

The qualitative perturbation principle discussed in
this paper can be applied to any sign properties whose
graphical conditions are known. The principle would
indicate which elements of interval systems are critical
to attain the interval properties.

Conclusion
It is shown that qualitative analysis on SDG can reduce
the computation required for reasoning about interval
systems. One example of reducing the reasoning about
interval linear static system has been demonstrated.
We presented the qualitative perturbation principle
that can be used to reason about interval properties
of interval systems based on their sign structures. By
the principle, it is known which interactions are criti-
cal or should be made small (or big) to attain certain
interval properties. Future problem includes character-
ization of interval versions of other important concepts
such as weak/strong connectivity; and integrating our
approach and interval analysis to enhance both effi-
ciency and flexibility in reasoning.
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