
1 Introduction

Qualitative Reasoning about Electrical Circuits
using Series-Parallel-Star Trees

Abstract
Qualitative reasoning about electrical circuits is often
formalized as constraint propagation . We demonstrate a
certain weakness of this reasoning scheme in deriving
useful information for certain but not uncommon circuits
and argue that the stated problem can be overcome by
exploiting global structural information . Reasoning is not
primary formalized as constraint propagation here but as a
graph analysis task . We present an algorithm to derive
and organize structural information based on series-
parallel-star reduction of circuits and use the resulting sps
tree to guide qualitative-algebraic reasoning about
resistances, voltage drops and currents . We prove that the
approach works for arbitrary resistive nets . The developed
technique may be applied to model-based diagnosis, model
aided fault tree development, failure mode and effect
analysis or related application fields .

Qualitative reasoning about electrical circuits or in general
about attributed diagrams representing a technical device
has many useful applications such as model based
diagnosis, model aided fault tree development (cf. (Mauss
& Neumann 1995)), or failure mode and effect analysis
(FMEA, cf . (Lee & Ormsby 1992), (Struss et al . 1995)) .

Reasoning about technical devices is often formalized as
constraint propagation . The device model or set of
constraints is often derived from a given device diagram
by connecting generic component models .
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A component model is a set of constraints relating local
variables of a component with each other . A connection is
an equation relating two variables of the two connected
components with each other . Thus, the task of building a
device model from given component models and a given
topology is quite simple: It consists basically in
instantiating predefined component constraints and
generating a set of port equations .

However, this naive modeling approach has well known
limitations . Consider e.g . the series connection of two
resistances given in Figure 1 . Propagation of the local
component constraints will derive ul = 0, and u4 = U, and
nothing more . In particular, we cannot derive in this way
that i0 = il = i2 = i3 = i4 = i5 = U/(Rl + R2) . To derive
this, we would need an additional constraint u4 - ul =
(RI + R2) il . Such missing information can be derived by
taking equivalent circuits into account, sometimes called
�grey boxes", or �slices" in (Sussmann & Steele 1980), by
exploiting additional laws (e.g . Kirchhoff s voltage law,
the sum of the voltage drops in a loop is zero), or - in
some cases - by propagating connectivity information
through the circuit (Struss et al . 1995) . In any way, to
derive the missing information we will have to take the
structure of the given circuit into account in the one or the
other way. For such a task, a global topology analysing
processing scheme seems more natural to us than local
constraint propagation using component models that have
to observe the no-function-in-structure principle.

u2 - u1 = R2
i2 =
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Figure 1 : Two resistances Rl and R2 connected in series

u0=u1
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In this paper we present a technique for qualitative
circuit analysis that generates the above missing structural
constraints for arbitrary resistive nets . Our method is a
qualitative one since we exploit the topology of a given net
and do not use any additional quantitative information .

In Section 2 we present an algorithm that reduces a
given resitive net to a single total resistance with respect
to a given source using series and parallel reduction and
star-mesh conversion . We proof that the algorithm reduces
arbitrary networks. In Section 3 we demonstrate, how the
trees resulting from net reduction can be used to derive
numeric, symbolic, or qualitative descriptions of the
resistances, voltage drops, and currents observable in the
given network .

2

	

SPS Reduction for Resistive Nets
In this paper we assume that the device under
consideration can be represented as a resistive net . A
resistive net consists of resistances and an ideal voltage
source . Further we assume that all relevant assumptions
about faulty or operational states of the device's
components can be translated to assignments of certain
values to the resistances and the source . For example,
"wire broken" might translate to "r = -", and "switch
closed" to "r = 0" in the net . As illustrated in Figure 2, a
resistive net can be represented as a graph G = (E, V)
where V is a finite set of nodes and E c_ VxV is a set of
directed edges labeled with the resistance or source it
represents . The direction of an edge e defines the sign of
the current through e and of the voltage drop across e .
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Figure 2 : A resistive net represented as a directed graph

2.1 Some Definitions
Let e = (v0, vl) be an edge. The edge e is called directed
from v0 to vl, v0 = start(e) is called the start node of e and
v1 = end(e) is called the end node of e . Let nodes(e) be the
set { start(e) } u ( end(e) ) .

An edge e with start(e) = end(e) is called a self-loon .
Two edges e0 and el with nodes(e0) = nodes(el) and e0 is
not a self-loop are called parallel with each other .

An edge set E containing no self-loops and no parallel
edges is called edge reduced .

For every node v E V of a graph G = (E, V), edges(v) is
the set of edges starting or ending at v, and degree(v) is
the number of edges contained in the edge set edges(v) . A
node v with degree(v) = 0 is called isolated.

Examples : In Figure 2, r6 and r7 are parallel edges, r10
is a self-loop, edges(v3) = {r4, r5, r10), degree(v3) = 3,
and v8 is isolated .

2.2 Basic Operations on Graphs

Edge removal An edge e can be removed from the graph .
As a result, one or all of the nodes in nodes(e) may
become isolated .

Node removal A node v can be removed from the graph
by removing v and all the n = degree(v) edges starting or
ending at v .

An edge can be removed from the graph by applying
one of the two edge removal rules :

SELF-LOOP An edge that is a self-loop can be
removed from the graph .

PARALLEL

	

If an edge e0 = (v0, vl) is parallel to an
edge el then e0 and el can be replaced by an edge e with
e= (v0, vl) or e = (vl, v0), i .e . the direction of the
replacing edge e can be chosen .

If a node v has a reduced edge set edges(v), v can be
removed from the graph using one of the four node
removal rules depending on the number n = degree(v)
only :

ISOLATED NODE n = 0 . Remove v.



END BRANCH n = 1 . Because edges(v) = {e} is edge
reduced, e is not a self-loop . Remove v. Following the
definition ofnode removal, this will also remove e .

SERIES

	

n = 2. Let edges(v) = {el, e2} with node(el) =
{vl, v} and nodes e2 = {v2, v} . Because edges(v) is edge
reduced, v 1 and v2 are no self-loops, i .e . v 1$v and v2#v,
and they are not parallel, i .e . vl#v2. Remove v . This
removes also el and e2 . Add a new edge e with
e = (v 1, v2) or e = (v2, v I) . Again, as for the PARALLEL
removal rule, the direction of e can be chosen .

STAR

	

n > 2. Let edges(v) = {el, e2, . . ., en} with
nodes(ek) = {vk, v} for all k with 1 S k <_ n . Because
edges(v) is edge reduced we have vk#v (no self-loops) and
vj#vk (no parallel) for all j and all k with 1 <_ j < k <_ n .
Remove v . This will also remove all the edges
e1, e2, . . ., en . Add n (n-1) / 2 directed edges ejk = (vj, vk)
with 1 <_ j <k<_ n .

Figure 3 gives some examples of the star removal rule,
also known as star-mesh conversion or generalized star-
delta conversion .

i2 = i12-i23
u2 = r2 (i12 - i23)

n - 6

	

/ \

	

r12 = rl r2 ((1/r1)+(1/r2)+(1/r3))

Figure 3 : Some instances of the star removal rule and
details for the case n = 3 .

2.3 An Algorithm for SPS Reduction
We are now ready to present an algorithm that reduces any
graph G = (E, V) representing a resistive net to a single
edge e representing the total resistance of the net with
respect to a given source s E E . The reduction algorithm is
given in Figure 4 . The abbreviation sps stands for series-
parallel-star because of the fact that every net can be
reduced using series, parallel, and star reduction . We state
this important property of the algorithm in the following
theorem .

reduce-sps(E, V, a)
for each edge e e E, e # s

apply an edge removal rule
to e if possible

end for

for

end for
end reduce-spa

each node v E V, v 0 nodes(s)

remove v by applying the node
removal rule R(degree(v))

for each new edge e added
by the application of R

apply an edge removal
rule to e if possible

end for

Figure 4 : The reduction algorithm

Theorem : Let G = (E, V) be an arbitrary not neccessary
connected graph that may contain isolated nodes, self-
loops and parallel edges . Let s e E be an edge, called the
source . Then the application of the procedure sps-
reduce(E, V, s) as given above will reduce G to a graph G'
= (E', V) with V'= nodes(s) and E'= {s} or E'= {s, e} .

Proof: It is not hard to see that if a graph G = (E, V) has a
reduced edge set E, i .e . contains no self-loops and
parallels, every node v E V can be removed from G using
one of the node removal rules, resulting in a smaller node
set V = V \ {v} . Hence, every node v E V \nodes{s}
chosen in the for-each-node loop for removal can infact be
removed by a node removal rule since the edge set E \ {s}
has been edge reduced in the initial for-each-edge loop and
remains edge reduced, since all edges added by a node
removal rule are checked for self-loops and parallels in the
for-each-new-edge loop . Edge removal cannot introduce
new nodes . Therefore, after the for-each-node loop, all
nodes except nodes(s) have been removed from V
resulting in a reduced node set V = nodes(s) .

If the corresponding reduced edge set E' would contain
more than two edges, say E' = {s, e1, e2}, el and e2 would
have to be self-loops or parallel, since V contains only one
or two nodes . This would contradict the fact that E' \ {s} is
edge-reduced . Hence, E' can contain only one or two
edges, i .e . E'= {s} or E'= {s, e} .

To illustrate the reduction procedure, Figure 5 shows the
reduction of the graph GO given in Figure 2 to a graph G6
containing only two edges sO and PA5 .
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The reduction algorithm does not define an ordering for
removing nodes from the graph, any ordering is possible .
However, it turns out that always choosing a node with
minimal degree has some advantages : First, this strategy
leads often to shorter reduction sequences .
Moreover, if a graph can be reduced using series-

parallel reductions only the reduction algorithm will find
such a reduction when minimal-degree ordering is
applied. This avoids unneccessary star reductions .
Minimal-degree ordering can be implemented by
representing the node set V of a graph G = (E, V) as a list
of nodes, sorted by the degree of the nodes and always
choosing the first node of the list for removal . Adding and
removing an edge will cause a reordering of that edge's
start and end node .

3

	

Reasoning using SPS Trees
In the previous section we have presented an algorithm
that decomposes an arbitrary resistive net using series,
parallel and star-to-mesb reductions . In this section we
show how the resulting sps trees - comparable to a tree
resulting from syntax analysis in natural language
processing - can be used to guide quantitative and
qualitative reasoning about the decomposed net .
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Figure 5 : Sps reduction of a sample resistive network

Figure 6 : Sps trees resulting from the reduction given in
Figure 5



3.1

	

Deriving Symbolic or Numeric Values
Each removal of an edge or node during sps reduction is
represented by a non-leave node in the corresponding sps
tree as illustrated in Figure 6 . The arrows in the tree
decode the sign of the currents and voltage drops .
Downarrow represents a factor 1 and uparrow represents a
factor -l .We are interested in the currents and voltage
drops at the edges of the original unreduced graph . These
edges are represented by the leaves of the sps trees .

The basic idea is now to propagate any request for a
symbolic or numeric expression for a current or a voltage
drop at a leave of a sps tree upwards to its root where the
answer is known, since the root is e.g . given by the source

edge . Propagation of a request is done using the algebraic
relations given in Figure 7 .

As one can see, the recursion for currents and voltages
proceeds in a bottom-up manner from the leave of a sps
tree to its root, while the recursion for a resistance leads in
a top-down manner from the root to the leaves . To
summarize, if we have generated the sps trees for a given
resistive net, we can derive symbolic or numeric
expressions for all voltage drops and currents in the net by
recursively applying the algebraic relations in the table .
The sps tree depends on the topology of the net only, i .e .
has to be derived only once for a given net .

Figure 7 : Graph reductions, corresponding sps trees and algebraic relations
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3.2 Deriving Qualitative Values
Often, we are interested only in qualitative descriptions .
For this purpose we define three sets of qualitative values,
ordered with respect to < as indicated below and
representing qualitative resistance and signed qualitative
current and voltage drop .

R = (

	

ZERO, POS, INF)
I = (MINF, NEG, ZERO, POS, INF)
U = (MMAX, NEG, ZERO, POS, MAX)

Voltage drops occuring in a resistive net are bounded to
a finite value MAX or minus MAX = MMAX, since we
are assuming an ideal voltage source. As a consequence,
the current through a ZERO resistance might be infinite,
i .e . INF or MINF. We can now interprete the sps tree of a
circuit as a constraint net . Every node of the tree holds
three qualitative values qu, qr and qi . These values are
related with each other by qualitative abstractions of the
algebraic relations given in Figure 7 . These abstractions
turn out to be surprisingly simple . For example, in star-
mesh conversion, the algebraic relation between rj, rk in
the star and rjk in the mesh,

n
rjk = rj rk 2: (1 / ri)

simplifies in its qualitative version to

qrjk = Min(qrj, qrk)

where Min(gl,g2) is the minimum of the qualitative
values ql and q2 with respect to the qualitative < relation
defined above .

We have implemented sps reduction and constraint
propagation for the resulting sps trees . Figure 8 shows the
qualitative values for the currents derived by propagation
where all resistances of the unreduced resistive net were
initially set to POS and the voltage source was set to
MAX. Qualitative analysis cannot derive a unique value
for the current through the bridge resistor between nodes
vl and v4, i .e. the current can be NEG, ZERO, or POS.
Only INF and MINF could be defintely excluded by the
qualitative analysis . This is what we expect, since to
determine the current through the bridge, we have to take
the exact values of the resistances into account . However,
if this quantitative information is known, we can derive a
numeric value for the missing bridge current from the sps
tree as described in Section 3.1 .
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Figure 8 : Qualitative currents derived from the sps trees

4

	

Related Work

ZEROI
ZERO

In (Struss et al . 1995) the starting point is the same as in
this paper : The authors demonstrate the limitations of
local propagation with a three-resistance circuit
concluding that global structural information should be
exploited . For that purpose they introduce the notion of
�connectivity of a component to sources and sinks of a
circuit" . They develop a component model that observes
the no-function-in-structure principle but is able - to a
certain degree - to derive the connectivity information for
a component by local propagation only. The local
connectivity information is used in turn to determine e.g .
the sign of the current through the component. However,
the method works only for circuits not containing certain
loops and not containing too many series connections .

(Lee & Ormsby 1992) use series-parallel reduction of
resistive nets in a way similar to the approach presented
here . However, their approach is limited to series-parallel
reducable networks, since they do not use star-mesh
conversion . As a consequence, they cannot cope with
resistive nets containing bridges, as for example the net
given in Figure 8 .

Bond graphs (cf. (Karnopp, Margolis, & Rosenberg
1990)) provide an elegant framework for representing
dynamical systems . It turns out that a circuit's sps tree. as
used in this paper is isomorph to the circuit's bond graph
if the circuit is series-parallel reducable, i .e . is reducable
without star-mesh conversion . Otherwise the
corresponding bond graph contains a loop, i .e . is not a
tree.

(Chen 1976) presents an elaborated theory about the
relations between graphs and linear systems representing
e.g . general RLC-networks . These relations might proof to



be useful for qualitative reasoning . However, it is still an
open question - at least to the authors - how this work
relates to the sps approach for resistive networks presented
here .

5 Conclusion
We developed a method for reasoning about analog
circuits or other devices whose behaviour can be modeled
by resistive networks . The given network is first reduced to
a total resistance using series- and parallel reduction, and
star-to-mesh conversion . We proved that these three rules
suffice to reduce arbitrary networks . We showed how the
resulting sps tree (actually a dag - a directed acyclic graph)
can be used to derive numeric, symbolic and qualitative
values for the quantities occuring in the net .

Reasoning is not exclusively viewed as constraint
propagation here but as a graph analysis task too . This
enables us to exploit global structural information in a way
that would be hard to achieve with traditional local
propagation techniques only, i .e . without explicit graph
analysis .
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