
A Customized Logic Paradigm for Reasoning about Models

Reinhard Stolle and Elizabeth Bradley*

Abstract

Modeling is the process of constructing a model of a
target system that is suitable for a given task . Typ-
ically, in the hierarchy from more-abstract to less-
abstract models, the model of choice is the one that is
just detailed enough to account for the properties and
perspectives of interest for the task at hand . The main
goal of the work described here was to design and im-
plement a knowledge representation framework that
allows a computer program to reason about physical
systems and candidate models (ordinary differential
equations, specifically) in such a way as to find the
right model at the right abstraction level as quickly as
possible .
A key observation about the modeling process is the
following . Not only is the resulting model the least
complex of all possible ones, but also the reasoning
during model construction takes place at the highest
possible level at any time . Because of this, the knowl-
edge representation framework was designed to allow
easy formulation of knowledge and meta knowledge
relative to various abstraction levels .
Candidate models are constructed via simple, pow-
erful domain rules . The customized knowledge rep-
resentation framework is then used to generate new
knowledge about the physical system and new knowl-
edge about the candidate model . A candidate model
is valid if the facts about the system that is to be mod-
eled are consistent with the facts about the candidate
model . Any inconsistency is a reason to discard the
candidate model .
The implemented framework is the core of PRET, a
program - currently under development - that au-
tomates the modeling process .

Introduction
Models are powerful tools that are used to understand
physical systems . Abstract models are simple : they
account for major properties of the physical system .
Less-abstract models are more complicated, allowing
them to capture the features of the physical system

*Supported by NSF NYI #CCR.-9357740, NSF MIP
#9403223, and a Packard Fellowship in Science and En-
gineering from the David and Lucile Packard Foundation .

University of Colorado at Boulder
Department of Computer Science
Boulder, Colorado 80309-0430

{sto11e,lizb} Qcs .colorado.edu

kl ml k2 m2 k3

Figure 1 : "Three Springs" example .

more accurately and in more detail . The level of ab-
straction that a model-builder chooses within this hi-
erarchy is typically just detailed enough to account for
the properties and perspectives that are useful for the
task at hand . This paper describes a framework, based
on a logic paradigm, that facilitates reasoning about
properties of physical systems and candidate models
in such a way as to quickly find the right model in the
abstraction hierarchy.
The task of finding a model that matches the ob-

served behavior of a target system is often called
system identification (Astrom & Eykhoff 1971 ; Ljung
1987) . The first stage of this task, structural identi-
fication, identifies the form of the model or skeleton
of the equation, such as a8 + b sin 0 = 0 for a simple
pendulum . In the second system identification stage,
parameter estimation, the parameter values a and b
are determined.
PRET is a program that is an attempt to automate

a useful part of the system identification process ; its
goal is to find a system of ordinary differential equa-
tions (ODES) that models a given physical system . In-
puts are observations about that system, user-supplied
hypotheses about the desired model, and specifications .
Observations are measured automatically by sensors or
interpreted by the user, symbolically or numerically, in
varying formats and degrees of precision . Hypotheses
about the physics involved are supplied by the user ;
these may conflict and need not be mutually exclusive,
whereas observations are always held to be true . Fi-
nally, specifications indicate the quantities of interest
and their resolutions . Figure 1 shows a physical sys-
tem that consists of two masses and three springs and

Stolle 235

(find-model
(domain mechanics)
(state-variables <ql> <q2>)
(point-coordinates <ql> <q2>)
(hypotheses

(observations
(autonomous <ql>)
(autonomous <q2>)
(damped-oscillation <qi>)
(damped-oscillation <q2>)
(numeric
(<time> <ql> <q2>)
((0 .1 .1) (.1 .1099 .1103) . . .)))

(specifications
(resolution <time> absolute le-6 (0 120))
(resolution <ql> absolute le-3 (0 1))
(resolution <q2> absolute le-3 (0 1))))

Figure 2 : Instructing PRET to model the physical sys-
tem of Figure 1 .

Figure 2 exemplifies how one might instruct PRET to
construct a model of that system . In this example, the
user first sets up the problem, then hypothesizes nine
different force terms, makes five observations about the
position coordinates ql and q2, and finally specifies res-
olutions and ranges for three important variables . It is
important to note that this simple example is not by
any means a true indication of PRET'S power .

Candidate models are generated by combining the
user's hypotheses into ODEs. These candidate models
are checked against the observations about the physical
system . PRET incorporates two types of knowledge :
" ODE rules that formulate mathematical precepts

that are true for all ODES, such as the definition
of an equilibrium point, and

" domain rules that apply in individual domains, such
as Kirchhoff's voltage law for electronic circuits .

Domain rules and ODE rules play different roles ; do-
main rules are used to combine hypotheses into mod-
els, while ODE rules are used to infer facts from models
and from observations .
The high-level control flow of PRET can be described

as a variant of "generate-and-test ." While many mod-
eling programs derive the model from the observations
about the physical system, our approach generates can-
didate models independently of the observations . It is
only in the "test" part of the "generate-and-test" cy-
cle where the observed behavior of the physical system

236 QR-96

currently plays a role .' The behavior of each candi-
date model is compared to the observed behavior of
the physical system ; discrepancies between a model
and the observations cause that model to be ruled out .
The first model in this generate-and-test sequence that
is consistent with the observations is currently returned
as the result .
This paper focuses on the "test" part of the "gener-

ate-and-test" cycle, which checks generated candidate
models against the observations about the physical sys-
tem . We describe the basic paradigm of the reasoning
framework used in this "model checker" and discuss
how this framework can be expanded to incorporate
additional reasoning mechanisms .
The next section outlines the major features of the

modeling program PRET. For a more elaborate discus-
sion consult (Bradley & Stolle 1996) . Then we describe
how the paradigm "valid if not proven invalid" is able
to combine several heterogeneous mechanisms into a
powerful framework that is well suited for reasoning
about models of physical systems . After describing
the current status of the reasoning framework, we illus-
trate the reasoning process with an example . Finally,
we briefly review related literature and summarize the
paper .

Structure of PRET
Generating Candidate Models
PRET generates candidate models by combining user
hypotheses into ODES of the form f(i, t) = 0 . Hy-
potheses are ODE fragments that contain special key-
words that provide links to the domain and ODE rules .
In the example shown in Figure 2, PRET uses the do-
main rule (point-sum <force> 0) about the keyword
<force> to generate all different combinations of the
nine force hypotheses . The current implementation
first tries models that consist of only one term . If all
one-term models fail, two-term models are tried, and
so on . 2
A human expert quickly assesses the important fea-

tures of a physical system and translates these into
model fragments . This is akin to the "generate" phase
of PRET's generate-and-test cycle . Currently, there is
no high-level reasoning involved in this process : mod-
els are simply generated in strict order of increasing
complexity as defined by a simple metric : the com-
plexity of a model fragment is the number of operators
in its symbolic representation . This order is a handle
that can be used to make the program smarter and we
are investigating how best to use it .

'Future incarnations of the program will simplify and/or
refine the model returned by the generate-and-test cycle .
The simplifier and refiner modules will also be guided by
the observations .

'We are working on more sophisticated reasoning about
what models to try next .

(<force> (* mi (deriv (deriv <q1>))))
(<force> (* m2 (deriv (deriv <q2>))))
(<force> (# k1 <qi>))
(<force> (* k2 (- <ql> <q2>)))
(<force> (* k3 <q2>))
(<force> (+ rl (deriv <ql>)))
(<force> (* r2 (square (deriv <q1>))))
(<force> (* r3 (deriv <q2>)))
(<force> (* r4 (square (deriv <q2>)))))

If the system has more than one degree of freedom
- as is the case in the example in Figure 2 - ev-
ery point coordinate (degree of freedom) is a potential
source of a force-balance equation, but all coordinates
may not play roles in the model (e.g ., if k l is so large
to effectively fix ql) . To account for this possibility,
PRET first tries to use only one point. coordinate . If
all models that result from single-point force balances
fail, the program generates candidate models by using
two force-balance equations, and so on .

If PRET cannot. find an appropriate model in this
sequence of hypothesis combinations, it admits failure
and asks the user to supply additional hypotheses . We
are developing power-series techniques for automatic
term synthesis to be invoked if the user's list of hy-
potheses is exhausted before a valid model has been
found .
Note that it is easy to extend the program to

other domains and paradigms (e.g ., fluid mechanics,
volume-change ; electronics, loop-sum ; etc .) . One
need only think of a new keyword and code a new rule
that uses it, much as (point-sum <force> 0) cou-
ples to hypotheses that include the <force> keyword.
Finally, the concepts of loop and point sums are not
only appropriate for this example, but also generaliz-
able well beyond mechanics .
The next subsection gives an overview of how a can-

didate model is checked against the set of observations
about the physical system . The rest of the paper then
describes this reasoning process in more detail .

Checking Models Against Observations
Observations about a target system have two poten-
tial sources - the user and the sensors - and may
be descriptive, graphical, or numeric . The former use
special descriptive keywords, the second are sketches
drawn on a computer screen with a mouse, and the
third simply specify data points . Only the first and the
last are currently implemented . Keywords in descrip-
tive observations (damped-oscillation, linear with
[slope, intercept], chaotic, autonomous, etc .) re-
semble terms in qualitative physics .
PRET's goal is to find a model that accounts for all

given observations . The test part of the generate-and-
test loop around which the program is built uses a
logic-based knowledge representation framework to in-
fer facts about the physical system and about the cur-
rent candidate model . Some of the ODE rules that
play roles in the inference process trigger calls to a
number of Scheme' functions that identify mathemat-
ical properties of the current candidate model, e.g .,
"the ODE is linear in x ." Some of these functions in
turn make use of other tools . The current implementa-
tion of PRET uses symbolic algebra facilities from the
commercial package Maple (Char ei al . 1991), calls
upon the public-domain package ODRPACK (Boggs

3 PRET is written in Scheme .

et al. 1989) for parameter estimation, and will soon
incorporate qualitative simulation (Kuipers 1986) .
The collection of Scheme "model observer" functions

that. identifies mathematical properties of the current
candidate model essentially implements the basic op-
erations found in any mathematics text ; some repre-
sentative examples are shown in Figure 3 . Mathe-
matical properties of both the model and the physi-
cal system are represented declaratively . Henceforth,
the two sets of properties are called knowledge about
the model and the physical system, respectively . A
logic system expands both sets of properties, inferring
new properties from known ones by applying domain-
independent ODE rules ; for example, if the system is
known to be autonomous, its model cannot explicitly
contain the variable <time> . If the knowledge about
the ODE model does not conflict with the knowledge
about the physical system, the model passes the check .
Otherwise, it fails .

Figure 4 gives some examples of descriptive obser-
vations and the facts that the logic system infers from
them . This is only a small sampling of rules . Many
other possibilities exist ; because of the logic system's
structure, implementing them is only a matter of a
few lines of Scheme code and/or a call to Maple . This
is one of the advantages of the declarative reasoning
framework: an expert user of PRET can easily extend
the ODE theory represented in the knowledge base and
specialize it for typical applications .

In order to keep the architecture of the program
modular, in order to keep the paradigm uniform, and
in order to not replicate information, we intend to keep
the process that generates candidate models as simple
as possible and incorporate all of the knowledge that
makes the modeling process intelligent in the process
that checks candidate models against observations . An
example of an intelligent reasoning policy is the fol-
lowing : if it is possible to rule out a model by purely
qualitative techniques, one should not even attempt to
match the model to the observations numerically.
A model constructed by a human expert matches,

minimally, a particular set of observations ; the model
builder does no more work than is necessary to effect
the match, and does not try to anticipate extensions
or further developments until forced to do so by model
failure or requirement escalation . PRET does exactly
the same thing, expending the least possible effort to
corroborate models and observations by using the high-
est possible level of information and reasoning at all
times .

Verification of a valid candidate model with respect
to a numeric observation requires point-by-point com-
parison with a numeric integration of the ODE . How-
ever, invalid models can often be ruled out without
performing such an expensive numeric comparison .
Many inappropriate models can be discarded by rea-
soning about purely qualitative information that can
be inferred from numeric information . In order to

Stolle 237

238 QR-96

Figure 3 : Some observer functions that infer facts from models .

Figure 4 : Some observations and the corresponding inferences drawn by the logic system .

achieve this behavior, PRET preprocesses the obser-
vations - curve fitting, recognition of linear regions,
and so on - using Maple functions and simple phase-
portrait analysis techniques (Bradley 1995), both of
which yield high-level results that can then be used
much as qualitative observations .
The next section describes, in more detail, the

paradigm that underlies the reasoning framework that
is used to check candidate models against observations .

The Reasoning Paradigm: Valid if not
Proven Invalid

A programming style is the way one states the problem
that a program is supposed to solve, the way one thinks
about it, and the way one formulates the solution . Pro-
gramming styles are tailored to certain application do-
mains and are usually enhanced by programming lan-
guages that support that style . Al researchers often
go one step further and design frameworks (paradigms)
that are tailored to certain classes of problems . The
more theoretical and the more general a paradigm is,
the more uniform, clean and understandable it is . The
closer a paradigm is to an actual problem, on the other
hand, the bigger, less uniform, and less clean it is .
As an example, consider the difference between pure
first-order logic and the programming language PRO-
LOG ; the "predicates" assert and retract, for example,
and most importantly the cut are supposed to expedite
programming, but they certainly have no equivalent in

first-order logic .
Applications require compromises and exceptions

that complicate system implementation and mainte-
nance . This is especially true in our case, where the ap-
plication integrates many techniques at many abstrac-
tion levels . For our application, pure first-order logic is
too neat because abstraction levels are hard to model
in first-order logic . Formulae are either true or false in
pure logic, but in our application facts can be true with
respect to one abstraction level, but false with respect
to another . On the other hand, we needed some sort
of declarative knowledge representation framework be-
cause PRET's reasoning skills are too complex to be
controlled operationally . One of the goals of the work
described in this paper was to find the right balance of
uniformity and practicability of the paradigm .
PRET incorporates two types of knowledge . For each

of these types, we had to find a suitable knowledge rep-
resentation framework and a useful control regime that
processes the represented knowledge . The first type of
knowledge is the set of domain rules that combine hy-
potheses into candidate models . These rules, such as
(point-sum <force> 0), are used in the model gen-
eration process, which is not the main focus of this
paper . Here we concentrate on the second type of
knowledge, which is used to check models against ob-
servations . The next few paragraphs give an overview
of the asssociated knowledge representation framework
and control regime .

Examples of the second type of knowledge are the

ODE property Method Consequences
linearity Maple jacobian model is linear

model is nonlinear
time dependence Scheme/symbolic model is function of time

model is not a function of time
divergence Maple mixed algebraic equation for divergence
order Scheme symbolic order of model is n
roots (Maple/eigenvals 1 algebraic equation forroots

Observation about statevariable xi I Implicationsforthemodel f(:i, t) =0
autonomous cannot explicitly contain t i .e ., f i = 0)
chaotic cannot be linear
chaotic and autonomous order > 2
oscillation and autonomous imaginary part of one pair of roots > 0
oscillation and autonomous order >_ 2
linear should satisfy ii = 0
constant should satisfy ii = 0
conservative 0 f = 0
damped oscillation and autonomous V f < 0
growing oscillation and autonomous 0 f>0

ODE rules
(2 (<- (constant (var Variable))

((degrees-of-freedom 1)
(autonomous (var Variable))
(order (var Variable) 0))))

(1 (<- falsum
((constant (var Variable))
(not-constant (var Variable))))) .

A rule consists of a number and an implication . The
number indicates the level of abstraction of the rule :
the lower the abstraction level number, the more ab-
stract the rule . The implication is a Horn clause of the
form (<- head body) . The first example above has ab-
straction level two and expresses that a state variable
xi is constant. if the physical system has one degree of
freedom, the system is autonomous with respect to xi,
and xi does not appear in the ODE (i .e ., its order is
zero) . The second example simply states that no state
variable can be constant and non-constant at the same
time .
ODE rules encoded in this form are used when can-

didate models are checked against observations accord-
ing to the paradigm "Valid if not Proven Invalid ." This
paradigm corresponds to the minimalistic approach a
human modeler takes : if there is no indication that
the model is wrong, we assume it is right . This resem-
bles the closed world assumption that underlies many
logic systems . Thus, the program returns a model that
cannot be proved invalid . Models are ruled out if and
only if a contradiction exists between a mathematical
property of the physical system (e .g ., (oscillation
<x>)) and a mathematical property of the model (e .g .,
(no-oscillation <x>)) .
Figure 5 illustrates the reasoning process involved in

establishing contradictions between a candidate model
and the physical system . The observations about the
target system form the initial knowledge about the sys-
tem to be modeled . Additional knowledge is gener-
ated from these observations by applying ODE rules
(like those in Figure 4) to known properties . A similar
"knowledge growth" process is also performed for the
model. Various Scheme functions (see Figure 3) are ap-
plied to the model, yielding an initial set of properties .
These model properties play the role of "observations"
about the behavior of the model, which are then com-
pared to the behavior of the target system . As with the
body of knowledge inferred from the observations, ad-
ditional knowledge is obtained by applying ODE rules
to these model properties .
The current. implementation uses breadth-first for-

ward reasoning with a user-specified maximum infer-
ence depth . As previously mentioned, our goal was to
let the program reason at the highest possible abstrac-
tion level at all times ; typically, the higher the level of
reasoning, the faster it performs the check . In order
to accomplish this, dominant mathematical properties
must be used first, more subtle features later . The ab-
straction level numbers are used to approximate this
"high-level-first" control flow . The reasoning proceeds

to a less-abstract level only if the inference engine has
not been able to prove a contradiction using only the
rules that are more abstract .

In this abstraction hierarchy, ODE rules that con-
cern numeric information are considered "concrete"
whereas ODE rules that deal with qualitative infor-
mation are considered "abstract ." We are working on
an intermediate level that uses constraint logic pro-
gramming techniques (Cohen 1990) in order to reason
about ranges (instead of symbols or single numbers) .
For example, if a physical system oscillates, the imag-
inary parts of at least one pair of its roots must be
nonzero . Thus, if the model A l i + A2-i -}- A3x = 0 is
to match an oscillation observation, the coefficients
have to satisfy the inequality 4A, A3 > A2.
The syntax in which properties and rules are rep-

resented is similar to first-order logic - the "descrip-
tive keywords" in the observations are first-order logic
predicates.' A mathematical property of the physical
system or the candidate model is a list that represents
an atomic formula (predicate arg, arg2 . . . arg�) .
The special atomic formula falsum may only appear

as the head of an implication . Such an integrity con-
straint (<- falsum (goal, goa12 . . . goal�,)) asserts
that the conjunction of goal, , . . . , goal�, is inconsis-
tent . This concept of negation as inconsistency (Gab-
bay & Sergot 1986) is the only form of negation in our
paradigm . Negation as failure, for example, which is
the standard form of negation in PROLOG, is partic-
ularly undesirable for our purposes . Since we do not
require the user to supply all possible s observations,
the absence of knowledge cannot be used to generate
new knowledge .

Variables in the formulae have the form (var sym-
bol) ; they are (implicitly) universally quantified . A
new property can be inferred by a rule if the body
of the rule can be instantiated with known properties .
Since this prototype of the program emphasizes cor-
rectness over efficiency, the unification algorithm in-
cludes the occurs check .

Note that knowledge about the physical system is
global, whereas knowledge about a candidate model is
local to that model. Every time a model is ruled out
because of a contradiction and a new candidate model
is chosen, the Scheme functions that determine the ini-
tial model knowledge must be applied anew . In order
to facilitate reuse of the knowledge that has been in-
ferred about the physical system, every formula carries
a tag that is either from-observations or from-both .

'We could have decided to implement the reasoning
framework as a meta interpreter in PROLOG, for exam-
ple . However, because of PRET's heterogeneous nature the
choice of any programming language would have advan-
tages and disadvantages . We chose to implement the rea-
soning framework in Scheme in order to facilitate interac-
tion with other parts of PRET .

'Here, possible means expressible with the implemented
observation vocabulary .

Stolle 239

240 QR-96

CODE model

The former indicates that the formula is independent
of the current candidate model - it is a mathematical
property of the target system and thus can be reused .
The latter tag indicates that knowledge about the cur-
rent candidate model has been used during the deriva-
tion of the formula. These formulae cannot be reused .
More precisely,
" observations about the physical system are tagged
from-observations ;
the set of initial mathematical properties of the cur-
rent candidate model that are established by various
Scheme functions are tagged from-both ;

" an instantiation of head that is derived by the im-
plication (<- head (goal, . . . goal,)) is tagged
from-observations if all used instantiations of the
goals goal,, . . . , goal, are tagged from-observati-
ons ; otherwise, it is tagged from-both .
To see how the Scheme "model observer" func-

tions (Figure 3) provide links between the ODE model
and the logic inference system, consider the following
clauses

(<- (no-oscillation (var X))
((scheme-eval (all-roots-real?

(var X) current-model))))
(<- (linear (var X))

((scheme-eval (linear-system?
(var X) current-model))))

The special constant current-model refers to the cur-
rent candidate model . This allows the current model

Figure 5 : A candidate model is valid if there is no contradiction between the knowledge about the model and the
knowledge about the physical system .

to be passed as an argument to Scheme functions that
are invoked by the special predicate scheme-eval . A
scheme-eval goal fails if the corresponding Scheme
function call returns the symbol fail. Otherwise,
it returns a list of substitutions for the variables in
the goal . In a manner analogous to current-model,
the special constants current-state-variables and
current-specifications refer to the list of state vari-
ables and the list of specifications, respectively. 6
As an example, consider an ODE model that is

linear in the state variable <q> . Application of the
Scheme function linear-system? will establish the
model property

(from-both (linear <q>)) .
If there is an observation about the physical system
that implies the fact

(from-observations (chaotic <q>)),
application of the rule that captures the mathematical
relationship between nonlinearity and chaos :

(<- (non-linear (var X))
((chaotic (var X))))

will yield the physical system property :
(from-observations (non-linear <q>)) .

'In the current implementation the values of cur-
rent-state-variables and current-specifications do
not change. Therefore, the prefix "current-" may appear
to be misleading . However, later versions of PRET will use
techniques that can discover new state variables or create
additional specifications "on the fly."

Scheme/Maple
(Figure

functions
3)

I
I basic I

I

I
I I

I I
I I

model I
I I

I
I
I
I
I
I
I

I
knowledge I

I
I
I
J

I I

I I

I
I I

I I

I
I
I

I
I inferences using ODE rules

I I
I I
I
I I

I I
I
I
I
I

(Figure 4) I I

I
I I

I I

I
I
I

I I

I I

J I
I

knowledge about the ODE I
J

Then, by applying the rule
(<- falsum

((non-linear (var X)) (linear (var X))))
the inference system will detect an inconsistency in the
union of the set of properties of the physical system
and the set of properties of the candidate model . In
this case, the derived falsum is tagged from-both . In
the case where the falsum can be derived from obser-
vations alone, PRET aborts and informs the user that
the supplied observations are inconsistent . ?

Currently, the search for a contradiction performs
breadth-first forward reasoning : the knowledge about
both the physical system and the candidate model
grows step by step . First, only the most abstract ODE
rules (abstraction level number 1) are used . In each
step, all ODE rules of this abstraction level are applied
once to all known properties . This step is repeated
until the falsum has been derived or the maximum in-
ference depth has been reached . If this depth has been
reached without derivation of the falsum, the infer-
ence engine increments the abstraction level number
and repeats the process . If this algorithm reaches the
maximum inference depth of the least abstract level,
the candidate model passes the check ; otherwise, it
fails .

Breadth-first forward reasoning was chosen for two
primary reasons . First, it avoids infinite search paths .
Second - and of arguable importance - forward rea-
soning seems to emulate the reasoning of a human ex-
pert more closely than does backward reasoning . The
next version of the inference system will use SLD res-
olution, a form of backward reasoning that has the
advantage of being goal-directed . SLD resolution the-
orem provers act on a "current set of literals ." The
control strategy of a SLD resolution theorem prover
is defined by the function that selects the literal that
is resolved and by the function that chooses the re-
solving clause . PRET will provide meta-level language
constructs that allow the implementer of the ODE
theory knowledge base to specify the control strategy
that is to be used (Gallaire & Lasserre 1979 ; 1982)-
Beckstein, Stolle, & Tobermann 1995), such as the for-
mula (ruleorder H (Nl . . . N,y)) which specifies the
order in which ODE rules must be applied to resolve
a certain subgoal of the current goal . Here, H speci-
fies the head of rules for which this control rule applies
and Ni are names of ODE rules . For example, a use-
ful meta-level control rule might specify that an ODE
rule that symbolically determines the order of a model
must be applied before an ODE rule that triggers the
numeric point-to-point comparison of a numeric ob-
servation and a numerical integration of the candidate
ODE. An example of a construct that allows specifi-
cation of the order in which subgoals are resolved is

It is also possible that the set of ODE rules is incon-
sistent . However, PRET assumes that this is not the case
because an inconsistent ODE theory is useless .

r

(before G1 GZ) where Gi are subgoals . For exam-
ple, a control rule can specify that the inference engine
must attempt proofs for formulae with the predicate
order before it tries to prove formulae with the pred-
icate oscillation . The intuition here is, again, that
the search should be guided towards a cheap and quick
proof of a contradiction . Therefore, control predicates
will typically be used to force cheap tests to be per-
formed before expensive tests and test that are likely
to lead to a contradiction to be performed before oth-
ers . Finding such good heuristics is a non-trivial task .

Abstraction levels statically express control informa-
tion . An ODE rule with an abstraction level num-
ber n is used before ODE rules with abstraction level
numbers that are greater than n . The theorem prover
proceeds to a higher abstraction level number only if
the attempt to prove the falsum with ODE rules with
lower abstraction level numbers fails . We are working
on replacing the abstraction level number by a more
meaningful qualitative categorization . Given that the
underlying inference system (resolution with negation
as inconsistency) is logically complete, $ and given that
the implementation of control rules preserves complete-
ness, the resulting reasoning process is complete rela-
tive to the set of ODE rules that are in use . How-
ever, reasoning performed at abstraction level number
n is typically incomplete with respect to an abstrac-
tion level number greater than n . That means that a
model that fails at a detailed level might pass the check
at a more abstract level . This is exactly the intended
behavior of the program .
As described earlier, facts that are tagged from-ob-

servations can be reused when another model is
tried . The standard logic programming tool for reuse
of knowledge that has already been proved is called
truth maintenance or reason maintenance . We are in-
corporating an assumption-based truth maintenance
system (ATMS) (de Kleer 1986) in order to general-
ize the tagging approach . Rejecting a candidate model
and considering another candidate model then simply
amounts to a context switch of the ATMS. Further-
more, truth maintenance systems can generate expla-
nations for facts that can be derived in the current
context . In our application, an explanation for the
formula falsum can be interpreted as the reason for
failure of the current candidate model . This explana-
tion can be passed to the candidate model generator,
which may then use this information in order to decide
what model to try next .

An Example
Figure 6 shows a sample call of PRET on the "Three

'SLD resolution is not necessarily operationally com-
plete . Logical completeness means that every logical con-
sequence of the logic program can be proved under some
control regime . Operational completeness means that ev-
ery logical consequence of the logic program can be proved
under the control regime that is currently in use .

Stolle 24 1

(find-model
(state-variables <ql> <q2>)
(point-coordinates <ql> <q2>)
(hypotheses

(observations
(autonomous <ql>)
(autonomous <q2>)
(oscillation <ql>)
(oscillation <q2>)
(numeric (<time> <ql> <q2>) (eval *data*)))

(specifications
(resolution <ql> absolute 0 .1)
(resolution <q2> absolute 0 .1)))

Figure 6 : A sample call of PRET on the "Three
Springs" problem .

Springs" problem of Figure 1 . The keyword eval in
the numeric observation causes the variable *data* to
be evaluated in the calling environment . Bound to this
variable is a time series that was generated by Runge-
Kutta integration of the system

242 QR-96

Figure 7 illustrates the resulting modeling process .
PRET examines combinations of hypotheses in order
of increasing complexity . The first candidate model
tried is kjg1 = 0 . A Scheme function called on the
ODE establishes the fact (order <ql> 0) which ex-
presses that the order of the highest derivative of ql
in this model is zero . This fact conflicts with facts in-
ferred from the observation (oscillation <ql>), so
this model is ruled out . The way PRET handles this
first candidate model demonstrates the advantage of
its abstract-reasoning-first approach ; only a few steps
of inexpensive qualitative reasoning suffice to quickly
discard the model .
PRET tries all combinations of <force> hypotheses

at single point coordinates, but all these models are
ruled out for qualitative or numeric reasons . It then
proceeds with ODE systems that consist of two force
balances - one for each point coordinate . One exam-
ple of a candidate model of this type is

k141 + m141

	

=

	

0
m242 = 0

None of the implemented rules discards this model by
purely qualitative means . PRET transforms these two
second-order ODES into a system of four first-order

ODEs and calls the ODRPACK parameter estimator
on the system . The parameter estimator finds no ap-
propriate values for the coefficients k1, mi , and m2
such that the ODE solution matches the numeric time
series . Therefore, this candidate model is also ruled
out .

After having discarded a variety of unsuccessful can-
didate models in a similar manner, PRET tries the
model

k1 q1 + k2(g1 - q2) + 'm141

	

=

	

0
k3g2 + k2(gl - q2) + m242

Again, it transforms the ODES and calls the parameter
estimator, this time successfully . It then substitutes
the returned parameter values for the constants kl ,
k2, k3, ml, and m2 and integrates the resulting ODE
system with fourth-order Runge-Kutta, comparing the
result to the numeric time-series observation .9 The
difference between the integration and the observation
stays within the specified resolution, so the numeric
comparison yields no contradiction and this candidate
model is returned as the answer .
We have chosen this simple, clear, and obvious exam-

ple only to illustrate PRET's operation . Linear systems
of this type are easy to model ; no engineer would use a
software tool to do generate-and-test model generation
and guided search to find an ODE model of a system
so simple and well-understood . This example is repre-
sentative neither of the power of the program nor of its
intended target applications ; PRET's true targets are
nonlinear, high-dimensional black-box systems . Mod-
eling these types of systems is where PRET'S mixture
of exact and approximate techniques, quantitative and
qualitative reasoning, and precise and heuristic knowl-
edge will become truly powerful .

= 0

Related Work
PRET's techniques fall mostly in the category of qual-
itative physics or qualitative reasoning (QR) (Weld &
de Kleer 1990 ; de Kleer & Williams 1991 ; Faltings &
Struss 1992) . In general, modeling (Falkenhainer &
Forbus 1991 ; Kuipers 1993) underlies most approaches
to reasoning about physical systems . Strictly speak-
ing, every formalization of the properties of a physical
system constitutes a model of that system . The spec-
trum ranges from models and tools that use a language
that is very close to the physics of the system (e.g .,
QPT/QPE (Forbus 1984 ; 1990)) to models that use
a language that is well suited to describe the system
mathematically (e.g ., ODEs). QSIM (Kuipers 1986)
is a qualitative realization of the mathematics end of
this spectrum . PRET resides somewhere in the middle .
Its inputs are partially expressed in terms of physics
and its reasoning uses concepts from physics . How-
ever, its output - the model of the physical system
that it constructs - is purely mathematical : an ODE.

'The discrete data points that are generated by the nu-
meric integration are connected by splines .

q1 P1
q2 P2
pi -0 .1 q1 - 0.2 (ql - 42)
P2 0.2 (41 - q2) - 0 .3 q2 .

(<force> (* kl <ql>))
(<force> (* k2 (- <ql> <q2>)))
(<force> (* k3 <q2>))
(<force> (* ml (deriv (deriv <q1>))))
(<force> (* m2 (deriv (deriv <q2>)))))

Trying model (model ((= (+ (* k1 <ql>)) 0))) .
Contradiction established by rule (<- falsum ((oscillation (var x)) (no-oscillation
I .-
Trying model (model ((_ (+ (* k1 <ql>) (* ml (deriv (deriv <q1>)))) 0)

(_ (+ (* m2 (deriv (deriv <q2>)))) 0))) .
Checking first-order system

Could not find coefficients for system .
Contradiction established by rule (<- falsum ((numeric-comparison (fail (var
[. . .
Trying model (model ((_ (+ (* k1 <ql>) (* k2 (- <ql> <q2>)) (* ml

(_ (+ (* k3 <q2>) (* k2 (- <ql> <q2>)) (* m2
Checking first-order system
((_ (deriv d<ql>) (/ (- 0 (* (const k1)
(_ (deriv <ql>) d<ql>)
(_ (deriv d<q2>) (/ (- 0 (* (const k3)
(_ (deriv <q2>) d<q2>)) numerically .
((model ((_ (+ (* k1 <ql>) (* k2 (- <ql> <q2>)) (* ml (deriv (deriv <q1>)))) 0)

(_ (+ (* k3 <q2>) (* k2 (- <ql> <q2>)) (* m2 (deriv (deriv <q2>)))) 0)))
(((const k1) .10000007) ((const k2) .20000001) ((const k3) - .29999989)
((const ml) 1 .)

	

((const m2) -1 .)))

PRET aims to integrate quantitative and qualita-
tive information . Many good papers have reported
work in this extremely active research area among
which are (Forbus & Falkenhainer 1990; Williams 1991 ;
Berleant & Kuipers 1992 ; Farquhar & Brajnik 1994 ;
Gao & Durrant-Whyte 1994 ; Zhao 1994 ; Kleiber &
Kulpa 1995 ; Vescovi, Farquhar, & Iwasaki 1995) .
Truth maintenance systems were already being used

in some of the earliest QR/modeling work (Falken-
hainer & Forbus 1991) . Their purpose there was
slightly different, however, from their function in our
approach . Context switches in (Falkenhainer & Forbus
1991) amount to choices of model fragments, whereas
context switches in our approach occur when a new
candidate model is checked . The graph-of-models ap-
proach (Addanki, Cremonini, & Penberthy 1991) is
similar in many regards to (Falkenhainer & Forbus
1991), but represents the space of possible models as
a directed graph of models where edges between nodes
(models) are approximations .
Using reasons for failure to improve the model is

called discrepancy-driven refinement . Algorithmic de-
bugging of logic programs (Shapiro 1983) detects dis-
crepancies between a logic program and its intended
interpretation . Recently, model-based diagnosis has
been based on these ideas (Console, Friedrich, & Dupre
1993) .

Summary
PRET is a program that automates a useful part of
the system identification process : modeling physical
systems with ordinary differential equations . Our focus

<qi>) (* (const k2) (- <ql>

<q2>) (* (const k2) (- <ql>

reason)))))

(var x)))) .

(deriv (deriv <q1>)))) 0)
(deriv (deriv <q2>)))) 0))) .

<q2>))) (const ml)))

<q2>))) (const m2)))

Figure 7 : The transcript generated by the sample call of Figure 6 .

is not to construct a cognitive model of the thought
process of an engineer when he or she builds a model
of a physical system, but rather to build a useful tool
that obtains the same result as a human expert would.

In this paper, we described PRET's reasoning frame-
work, which uses ODE rules to check candidate mod-
els against observations about a physical system . This
framework is well suited to the representation of knowl-
edge about physical systems and their ODE models
with respect to various abstraction levels, and it al-
lows smooth transition between these abstraction lev-
els . The framework also supports heterogeneity : var-
ious very different existing system identification tools
and techniques have been smoothly integrated .

PRET's use of qualitative techniques proves partic-
ularly powerful in the structural stage of the system
identification process . Parameter estimation required
integration of lower-level numerical techniques which
also raised some interesting AI issues : how to integrate
these techniques, how to interact with them, and how
to interpret their results on the structural level . Like
any numerical integrator, Runge-Kutta has advantages
and disadvantages in particular problems . Automating
the choice of a numerical integrator and its parameters
raises similar AI issues as the integration of the param-
eter estimator . Our answers to these questions will be
the topic of a later paper.

Experimentation with the current implementation of
the reasoning framework - which includes about a
dozen ODE theory rules - shows that the paradigm
"valid if not proven invalid" is well suited for the mod-
eling task .

Stolle 243

((_ (deriv d<ql>) (/ (- 0 (* (const k1) <ql>)) (const ml)))
(_ (deriv <ql>) d<ql>)
(_ (deriv d<q2>) (/ (+ 0) (const m2)))
(_ (deriv <q2>) d<q2>)) numerically .

Acknowledgements
We thank Janet Rogers of NIST for making ODR-
PACK available and for instructions on its use . We
would also like to thank the referees for helpful com-
ments.

References
Addanki, S . ; Cremomm, R. ; and Penberthy, J . S .
1991 . Graphs of models . Artificial Intelligence
51 :145-178 .
Astrom, K . J ., and Eykhoff, P . 1971 . System identi-
fication - a survey . Automatica 7:123-167 .
Beckstein, C . ; Stolle, R . ; and Tobermann, G . 1995 .
Declarative meta level control for logic programs . In
Proceedings of the 1 . Russian-German Symposium
on Intelligent Information Technologies in Decision
Making.
Berleant, D ., and Kuipers, B . J . 1992 . Combined
qualitative and numerical simulation with Q3 . In
Faltings, B., and Struss, P., eds ., Recent Advances
in Qualitative Physics . Cambridge MA: MIT Press .
Boggs, P . T . ; Donaldson, J . R . ; Byrd, R. H . ; and
Schnabel, R. B . 1989 . Algorithm 676 - ODRPACK :
Software for orthogonal distance regression . ACM
Transactions on Mathematical Software 15:348-364 .
Bradley, E ., and Stolle, R. 1996 . Automatic construc-
tion of accurate models of physical systems . Annals
of Mathematics and Artificial Intelligence . Forthcom-
ing .
Bradley, E. 1995 . Autonomous exploration and con-
trol of chaotic systems . Cybernetics and Systems
26:299-319 .
Char, B . W. ; Geddes, K. O . ; Gonnet, G . H . ; Leong,
B . L . ; Monagan, M . B . ; and Watt, S . M . 1991 . Maple
V Language Reference Manual. New York : Springer .
Cohen, J . 1990 . Constraint logic programming lan-
guages . Communications of the ACM 33(7) :52-68 .
Console, L . ; Friedrich, G . ; and Dupre, D . T . 1993 .
Model-based diagnosis meets error diagnosis in logic
programs . In Proceedings IJCAI-93, 1494-1499 .
de Kleer, J ., and Williams, B . C., eds . 1991 . Artificial
Intelligence, volume 51 . Special Volume on Qualita-
tive Reasoning About Physical Systems II .
de Kleer, J . 1986 . An assumption-based TMS . Arti-
ficial Intelligence 28(2) .
Falkenhainer, B ., and Forbus, K. D . 1991 . Composi-
tional modeling : Finding the right model for the job .
Artificial Intelligence 51 :95-143 .
Faltings, B ., and Struss, P ., eds . 1992 . Recent Ad-
vances in Qualitative Physics . Cambridge MA: MIT
Press .
Farquhar, A ., and Brajnik, G . 1994 . A semi-
quantitative physics compiler . In Proceedings of
the International Workshop on Qualitative Reasoning
about Physical Systems . Nara, Japan .

244 QR-96

Forbus, K . D., and Falkenhainer, B. 1990 . Self-
explanatory simulations : an integration of qualitative
and quantitative knowledge . In Proceedings AAAI-90,
380-387 .
Forbus, K . D . 1984 . Qualitative process theory. Ar-
tificial Intelligence 24:85-168 .
Forbus, K . D . 1990 . The qualitative process engine .
In Weld, D . S ., and de Kleer, J ., eds ., Readings in
Qualitative Reasoning About Physical Systems. San
Mateo CA : Morgan Kaufmann .
Gabbay, D. M ., and Sergot, M . J . 1986 . Negation as
inconsistency I . The Journal of Logic Programming
3(1):1-36 .
Gallaire, H., and Lasserre, C . 1979 . Controlling
knowledge deduction in a declarative approach . In
Proceedings IJCAI-79, S1-S6 .
Gallaire, H ., and Lasserre, C . 1982 . Metalevel control
for logic programs . In Clark, K. L ., and Tarnlund,
S . A ., eds ., Logic Programming. London : Academic
Press .
Gao, Y., and Durrant-Whyte, H. F . 1994 . Integrating
qualitative simulation for numerical data fusion meth-
ods . In Proceedings of the International Workshop on
Qualitative Reasoning about Physical Systems. Nara,
Japan .
Kleiber, M ., and Kulpa, Z . 1995 . Computer-assisted
hybrid reasoning in simulation and analysis of phys-
ical systems . Computer Assisted Mechanics and En-
gineerind Sciences 2(3):165-186 .
Kuipers, B . J . 1986 . Qualitative simulation . Artificial
Intelligence 29(3) :289-338 .
Kuipers, B. J . 1993 . Reasoning with qualitative mod-
els . Artificial Intelligence 59:125-132 .
Ljung, L ., ed . 1987 . System Identification ; Theory for
the User. Englewood Cliffs, N.J . : Prentice-Hall .
Shapiro, E. 1983 . Algorithmic Program Debugging .
Cambridge, MA : MIT Press .
Vescovi, M. ; Farquhar, A. ; and Iwasaki, Y. 1995 .
Numerical interval simulation : Combined qualitative
and quantitative simulation to bound behaviors of
non-monotonic systems . In Proceedings of the Inter-
national Workshop on Qualitative Reasoning . Ams-
terdam, Netherlands .
Weld, D . S ., and de Kleer, J ., eds . 1990 . Readings in
Qualitative Reasoning About Physical Systems . San
Mateo CA: Morgan Kaufmann .
Williams, B . C . 1991 . A theory of interactions : Unify-
ing qualitative and quantitative algebraic reasoning .
Artificial Intelligence 51 .
Zhao, F . 1994 . Intelligent computing about com-
plex dynamical systems . In Proceedings of the In-
ternational Workshop on Qualitative Reasoning about
Physical Systems . Nara, Japan .

