
Automated Decomposition of Model-based Learning Problems

Abstract

A new generation of sensor rich, massively distributed
autonomous systems is being developed that has
the potential for unprecedented performance, such
as smart buildings, reconfigurable factories, adaptive
traffic systems and remote earth ecosystem monitor-
ing . To achieve high performance these massive sys-
tems will need to accurately model themselves and
their environment from sensor information . Accom-
plishing this on a grand scale requires automating the
art of large-scale modeling . This paper presents a
formalization of decompositional, model-based learning
(DML), a method developed by observing a modeler's
expertise at decomposing large scale model estimation
tasks . The method exploits a striking analogy between
learning and consistency-based diagnosis . Moriarty,
an implementation of DML, has been applied to ther-
mal modeling of a smart building, demonstrating a
significant improvement in learning rate .

Introduction
Through artful application, adaptive methods, such
as nonlinear regression and neural nets, have been
demonstrated as powerful modeling and learning tech-
niques, for a broad range of tasks including environ-
mental modeling, diagnosis, control and vision . These
technologies are crucial to tackling grand challenge
problems, such as earth ecosystem modeling, which
require an army of modeling experts . In addition,
hardware advances in cheap sensing, actuation, corn-
putation and networking have enabled a new category
of autonomous system that is sensor rich, massively
distributed, and largely immobile . These "immobile
robots" are rapidly being deployed in the form of net-
worked building energy systems, chemical plant con-
trol networks, reconfigurable factories and earth ob-
serving satellite networks . To achieve high perfor-
mance these massive systems will need to accurately
model themselves and their environment from sensor
information . However, the labor and skill involved
makes these adaptive methods economically infeasi-
ble for most large scale modeling, learning and con-
trol problems . Our goal is to automate the exper-
tise embodied by a skilled community of modelers at
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decomposing and coordinating large scale model esti-
mation or learning tasks, and to develop these meth-
ods both in the context of data analysis and hybrid
control problems . The approach we call decomposi-
tional, model-based learning (DML, and is embodied
in a system called Moriarty . DML is a key element of
a larger program to develop model-based autonomous
systems (MBAs. MBAs achieve unprecedented per-
formance through capabilities for self-modeling (e .g .,
DML) and self-configuration . A complement to Mo-
riarty, called Livingstone, performs discrete modeling
and self-configuration(Williams & Nayak 1996), and
will fly a deep space probe in 1988 .
Our work on DML was developed in the context of

synthesizing an optimal heating and cooling control
system for a smart, self-modeling building . To study
this synthesis process we built a testbed for fine grained
sensing and control of a building, called the respon-
sive environment (et. al . 1993b ; 1993a), and used this
testbed to study the manual art of our control engi-
neers at decomposing the model estimation and opti-
mal control components of the overall control problem
(Zhang, Williams, & Elrod 1993) .
A key insight offered by our study is that the pro-

cess of decomposing a large model estimation problem
is analogous to that used in model-based diagnosis to
solve large scale multiple fault diagnosis problems . The
decomposition of a diagnostic problem is based on the
concept of a conflict - a minimal subset of a model
(typically in propositional or first order logic) that is
inconsistent with the set of observations(de Kleer &
Williams 1987 ; Reiter 1987) . Decompositional learn-
ing is based on the analogous concept of a dissent - a
minimal subset of an algebraic model that. is overde-
termin.ed given a set of sensed variables .
The model decomposition task begins with a system

of equations, including a set of sensed variables, and
a set of parameters to be estimated from sensor data .
DML generates the dissents of the equations and uses
these dissents to generate a set. of estimators that to-
gether cover all parameters . It then coordinates the
individual estimations, and combines the shared re-
sults . This paper focuses on the task of generating a
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set of dissents and a corresponding estimator for each
dissent . A number of strategies are possible for com-
bining the generated estimators, and will be analyzed
elsewhere .
The next two sections summarizes model-estimation

and the informal process of model decomposition . Sec-
tion introduces the concept of a dissent used to decom-
pose a model into simple fragments . Section develops
a local propagation algorithm used to generate a re-
stricted form of dissent . Section describes an algo-
rithm for turning the set of dissents into a sequence of
estimators that cover the model parameters . Section
presents experimental results . The paper closes with a
discussion of related work and future directions .

Statistical modeling involves estimating the parame-
ters of a system from sensor data ; more precisely :
Definition 1 A system is a pair (e(c ; v), s), where
e(c; v) is a vector of rational expressions over the vec-
tor of variables v and constants c, e(c; v) = 0 is a
vector of independent equations, and the sensed vari-
ables s C v are exogenous . 1,2 An estimation problem is
a pair (M, p) where model M is a system (e(c ; v), s),
and the unknown parameters p, is a vector such that
p C c .
For example, an office's energy and mass flow (heat,
air and water) is modeled by a vector e(c ; v) of 14
equations involving seventeen state variables v :3

Fdmpr

Qrm
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Model Estimation

Pd-pr (Xdmpr) Pd'411)
Rd~t

QsPiy + QegP + Qsir (t)
-Qwau - Qrtrn

	

(12)

'Variables in bold, such as e denote vectors . VT trans-
poses a row vector to a column vector . We apply set. rela-
tions and operations to vectors with the obvious interpre-
tation of vectors as sets .

2The exogenous variables are those whose values are de-
termined independent of the equations .

3X, F, T, q and P denote position, air flow, temperature,
heat flow and pressure, respectively.

Qrm

	

Crne ddtm

	

(13)

Qwall = wuau(Trm - Text) (14)
Nine of the state variables are sensed s, and the con-

stants c consist of seven unknown parameters p, and
four known constants c' :

s =

Fsply, Pdct)T

P

	

=

	

(Rdrt, Crht, Qrhtmax, Crm, Qwall, Qe,P, Qslr(t))T
(/Rkg, Pdmpr(Xdmpr), CO, Xrhtmax)

T

dTsp l y d7,_ , Xrht, Xdm r,(Text, Tsply, Tm

	

dt

	

'

	

dt

	

P

Estimation involves adjusting the set of model pa-
rameters to maximize the agreement between a spec-
ified model and the sensor data using, for example, a
Bayesian or a least-squares criteria with a Gaussian
noise model . Using least-squares4 would involve se-
lecting one of the sensed variables y from s, and ma-
nipulating equations e(c; v) to construct an estima-
tor y = f(x ; p' ; c') that predicts y from parameters
p' C p, other sensed variables x C s and constants
c' C c . The optimal estimate is then the vector, p*',
of parameter values that minimizes the mean-square
error between the measured and predicted y : 5

p* ' = arg min

	

) `

	

(yi - J (xi ; P , ; C' )) 2P' (y�X .)ED

where yi and the xi are in the ith sampling of sensor
values D for s .
The modelers first attempted to estimate all param-

eters of the thermal problem at once, which required
solving a 7-dimensional, nonlinear optimization prob-
lem involving a multi-modal objective space . Using
arbitrary initial values, a Levenberg-Marquardt algo-
rithm was applied repeatedly to this problem, but con-
sistently became lost in local minima and did not con-
verge after several hours .

The Art of Model Decomposition
it is typically infeasible to estimate the parameters
of a large model using a single estimator that cov-
ers all parameters . However, there is often a large set
of possible estimators to choose from, and the num-
ber of parameters contained in each estimator varies
widely . The art of modeling for data analysis (and
DML) involves decomposing a task into a set of "sim-
plest" estimators that minimize the dimensionality of

4The least-squares estimate is effective and pervasive in
practice . It is the Maximum Likelihood Estimate under ap-
propriate assumptions, but, in general, it is not probabilis-
tically justifiable . Our method is independent of the op-
timality criteria, but we illustrate using least-squares here
for clarity .

5We illustrate here for a single response variable y . A
vector of response variables y and estimators f pertains to
the coordination of generated estimators, to be developed
elsewhere .

F, .xt = Fsply (1)

F.Ply Frtrrz
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the search space and the number of local minima, hence
improving learning rate and accuracy . Each estimator
together with the appropriate subset of sensor data
forms an estimation subproblem that can be solved
separately, either sequentially or in parallel .

For example, our modelers estimated the seven pa-
rameters of the thermal problem far more simply by
manually decomposing the model into three small sub-
sets, used to generate three estimators . The first esti-
mator, fl, is :

Fext

	

V Fdct- (l~Ikg + f~dmpr(Xdmpr))
Rdct

where

	

4,/1

	

=

	

Fext,

	

X1

	

=

	

(pdct, Xdmpr)T ,Ci

	

=

(Plkg,Pdmpr(Xdmpr))T and p1 = (Rd rt )T . Estimating
parameter Rdet using f1 and sensor data involves just
searching along one dimension . The second estimator,
f2, is :

dTs ly _ Co F`ply (Text -T9Ply) + (xrht
_
) Xrht

P
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T
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X2 - (Tspty, Fsply,TextXrht)
C'2 = (Xrhtmax, CO)T and p2 = (Crht, Qrhtmax) T . This
results in a 2-dimensional search, again a simple space
to explore . Finally, f3 is :

where y2

dTrm
dt =

	

[CoFs,ly (Teply - 7rm) + Qegp +

Qslt-(t) + Qwall (Teat - Trm)]Crm -t

where y3 = d
dtm , X3 = (Trm FSpIy Tcp(y, Text )T ' C/

(Co )' and p3 = (Crm, Qegp, C'waf7, Q,,Ir(t))T . This in
volves exploring a 4-dimensional space, a task that is
not always trivial, but is far simpler than the original
7D problem . Using the derived estimators', the es-
timation of the seven parameters converged within a
couple of minutes, in sharp contrast to the estimation
of all parameters using a single estimator .
The remainder of this paper concentrates on auto-

matically decomposing a model into a set of these esti-
mators . The equally important problem of combining
estimators with shared parameters is touched on only
briefly .

Decomposition Using Dissents
To automate the process of constructing a decomposi-
tion we note that the central idea behind estimation is
to select. those parameters p that minimize the error
between a model e'(p ; v) = 0 and a set of data points
D = (s ;) for sensed variables s' . What is important is
that the existence of this error results from the model
being overdetermined by the sensed variables .

r'In an additional stage, not presented here (see (Zhang,
Williams, & Elrod 1993)), these three estimators were in
turn simplified using dominance arguments (in the spirit of
(Williams & Raiman 1994)) to a set of six estimators, one
requiring two unknown parameters to be estimated, and
the remaining involving only one unknown .

e' and s' need not be the complete systern of equa-
tions and sensed variables (e, s) . Any subsystem 7
(e', s') that is overdeterrnined may be used to perform
an estimation . Of course, not. all subsystems are equal .
Roughly speaking, the convergence rate is best reduced
by minimizing the number of parameters mentioned in
e', and the accuracy of the estimation is improved by
minimizing the number of sensed variables s' per es-
timator . The key consequence is that the most. useful
overdeterrnined subsystems are those that are mini-
mal (i .e ., it has no proper subsystem that is overde-
termined) . At, the core of DML is the generation of
minimally overdetermitied subsysterns, called dissents .

Definition 2 The dissent of a system (e, s) is a sub-
system (ed, sd) of (e, s), such that. ed(c ; v) = 0 is
overdetermined given sd . (ed, sd) is a minimal dis-
sent if no proper subsystem (e', s') of (ed, sd) exists
such that (e', s') is a dissent of (e, s) .
For example, the thermal estimation problem has eight
minimal dissents, a small fraction of the complete set
of overdetermined subsystems, which is on the order of
tens of thousands . The dissent with the fewest equa-
tions and sensed variables is :

((E9 - I1) T (Feat, pdct, Xd_Pr)T)

This dissent involves only one unknown parameter,
Rdct, hence a one dimensional search space . The error
in the parameter estimation is influenced by noise in
only three sensors . Solving for Fext results in the first.
estimator of the preceding section . In contrast, the
largest dissent is :

((E 2 - 14) T , (dT-m , dTspty F~pjy Pd,t,Trm,T,ply, Xrht, Xdmpr)T )dt dt

This dissent contains all 7 parameters and hence in-
volves a 7-dimensional search . The accuracy of the
estimation is influenced by noise from eight V sensors .
Solving for d¢a results in the estimator that was de-
rived manually by our modelers to estimate all 7 pa-
rameters at once .

Note that there is a close analogy between the al-
gebraic concept of dissent and the logical concept of
a conflict used in model-based diagnosis (de Kleer &
Williams 1987 ; Hamscher, Console, & de Kleer 1992) .
A conflict summarizes a logical inconsistency between
a model and a set of observations, while a dissent iden-
tifies a potential for error between a model and a set.
of sensor data . Both are a measure of disagreement
between a model and observations . For conflict.-based
diagnosis this is a logical disagreement ; a conflict is
a minimal set of mode literals, denoting component
modes (e.g ., {ok(driverl),open(valve 1)}), whose con-
junction is inconsistent with a theory. For DML the
disagreement is a continuous error (on a euclidean met-
ric), and a dissent is a minimally over-determined sub-
system . There is an important distinction between the

''A (proper) subsystem of (e, s) is a pair (e', s') such that,
e' Us' is a (proper) subset of e Us.
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two concepts . The inconsistency indicated by a conflict.
i s unequivocal, while a dissent merely indicates the po-
tential for error, hence, our use of a more mild term -
"dissent" - in naming this form of disagreement .
We exploit this analogy to develop our dissent gen-

eration algorithm . It also suggests a much more rich
space of connections between model-based learning and
model-based diagnosis . In essence conflict,based diag-
nosis is a discrete, somewhat degenerate, form of learn-
ing involving the identification of the discrete modes
of a system from data(de Kleer & Williams 1989 ;
Williams & Nayak 1996) .

Dissent Generation Algorithm DG1
To generate the set of dissents we identify subsystems,
called support, which uniquely determine the values of
particular variables :
Definition 3 Given system S = (e(c ; v), s), a support
of variable v, E v is a subsystem (e', s') of S, such
that (e', s') determines v� and no proper subsystem of
W, s') determines v, .
A pair of support for variable v, provide two means of
determining v, . Hence the union of the pair overde-
termine v� and if minimal constitutes a dissent (e ., 1 U
es2,Ss1 U Ss2)-

The concept of an environment in conflict-based di-
agnosis (or more generally a prime implicant(de Kleer,
Mackworth, & Reiter 1992)) parallels that of support .
An environment. i s a minimal set of mode literals (e.g .,
stuck-off(valvel)) that entail a value for some variable
(e .g ., v = 6), given a propositional model . If two pre-
dictions are inconsistent (e.g ., v = 6 and v = 5), then
the union of their two environments form a conflict .
Thus while an environment entails a prediction for x,
a support determines the value of x, given sensor data .

For dissents, by further presuming that the equa-
tions of the system are invertible, it follows trivially
that all dissents can be generated just from the sup-
port of the sensed variables s .
Proposition 1 S is the complete set of dissents for
system (e, s), where :

S = {(e', s' U {si1)Isi E s&(e', s') supports si} .

Note, however, that the analogue does not hold for
propositional systems, and hence not for conflicts .
To generate supporters and dissents we need a con-

dition for identifying when a subsystem is uniquely de-
termined or minimally over determined, respectively.
A standard presumption, made by causal ordering re-
search (see (Kayak 1992 ; Iwasaki & Simon 1986)), and
frequently for analyzing models of nonlinear physical
systems, is that n independent model equations and
exogenous variables uniquely determine n unknowns .
Assumption 1 Given

	

estimation

	

problem
((e(c ; v), s), p) ; let (e'(c' ; v'), s') be any subsystem of
(e(c ; v), s), let. n = je'(c' ; v')j, m = Is'l and l = ~v'j .
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We assume that (e'(c' ; v'), s') is (a) overdetermined if
n + rn > 1, (b) dissenting if n + m = l + 1, (c) uniquely
determined if n -1. rn = 1, and (d) underdetermined if
n+m<l.
Note that this condition holds universally for linear
systems . It is typically true of physical systems that
are nonlinear, although not universally true . For ex-
ample, x2 = 4 is underdetermined, while x2 = -4 is
overdetermined . It is not true, for example, for systems
of equations in boolean algebra .
The power of this condition is that it doesn't require

knowledge of the form of an equation, just the vari-
ables each equation interacts with . Hence using this
condition DML is able to decompose a graph of inter-
actions (Williams 1990) into estimation subproblems,
without restriction on, or further knowledge about, the
form of the underlying equations . This is in the spirit
of graphical learning methods, such as (Buntine 1994 ;
Shachter, Anderson, & Poh 1990) . An additional fea-
ture of the condition is that it is trivial to evaluate,
much easier, for example, than determining whether
or not an inconsistent propositional clause is minimal
during conflict-based diagnosis .
DML generates candidate support by exploiting the

analogy to environments, and by using the above con-
dition to quickly test the candidate . Environments can
be generated by propagating them locally through a
network of clauses, starting at the mode literals, com-
bining and then propagating a new set of environ-
ments after each traversal of a clause(de Kleer 1986 ;
de Kleer & Williams 1987) . Analogously, a support can
be generated by propagating support locally through
the network of equations, starting at the sensed vari-
ables, combining and then propagating a new set of
support after each traversal of an equation . This algo-
rithm is given in Figure 1 .
The function

	

CreateDecomposition kicks off the.
propagation, while AddSupporl recursively propagates
through successive local equations, and turns the sup-
port of sensed variables s into dissents . The core of
the algorithm is the function Propagate, which passes
a new support through an equation e . It uses the func-
tion WeaveSupport to combine a newly added support
of a variable with a support for each of the other vari-
ables of e, save one (v), producing a composite subsys-
tem c (we call v an effect and x - {v) the causes) . It
then adds e to c to produce a candidate support s for
v . The function CausalOrientations is used by Propa-
gate to select all possible pairs of causes and effect for
each local equation .

With respect to soundness, note that a candidate s
does not. necessarily constitute a support . First, if any
of the support si contains e, then s will not be a mini-
mal subsystem determining v . Otherwise, if the equa-
tions in c include v, then the addition of e will overde-
termine v, and hence s . Finally, if two support selected
for causes share a variable, and the variable is deter-
mined by different sets of equations in the two support,



function CrcaleDecomposition(sT)
/*system ST */
Initialize dissents of ST
for si E s do
AddSupport(si,({}, fsi)),ST)

endfor
return dissents of sT

end CreateDecomposition

to erripty

function Propagate(v,(e, s), (y, e, x), ST)
/*equation e, y its effect, x its causes,
v E x, w support. (e, s) & system ST */

if e ~ e then
S�, = WeaveSupport(v, {(e, s)}, e, x)
for (e,,,, s,,) C- S,,

if .y V variables of e�, then
AddSupport(y,(ew U {e}, sw),sT)

end Propagate
function WeaveSupport(v,S,e,x)
/*equation e, its causes x, v E x,
& its supporters S */

if x is empty, then
return S

else
h = a variable in x
R=x-{h)
if h = v, then
return WeaveSupport(0,S,e,R)

else
S2 = { (e, s) I (e, s) E Support(h), e

	

e)
Sr = {(eUe2,SUs2)1

(e, s) E S, (e2, s2) E S2)
S,', = {sIs E S,, -Overdetermined?(s))
Return WeaveSuppori(v,Sc',e,R)

end WeaveSupport

Figure 1 : Decomposition generation algorithm DGl for DML

function AddSupport(v,(e,s),sT)
/-variable v, support (e, s) & system ST */
if t' E s of ST then
Add (e, s U {v}) to dissents of ST
Add v to dissenting vars . of (e, s U {v})

endif
Add (e, s) to the support of v
for e E equations of v do

if e ~ e then
C� = CausalOrientations(e,v)
for cEC�
do Propagate(v,(e, s),c,5T)

end AddSupporl

function CausalOrientaiions(e,v)
/*equation e, with v selected as a cause */
V = variables of e
return {(y, e,X)jy E V, X = V - {y), v E X)

end CausalOrienialions
function ConslruciEshmator(y, (e,s)T )

/*dissenting variable y & its dissent (e, s) */
x=s - {y}
d = variables of e not in
estimator f = `y'
repeat until all d are eliminated from
find dCdandCEesuch that
d occurs in f & e and
d doesn't occur in e - {e)

endfind
e=e-{e)
Solve for d in e,
Substitute g for
Simplify f

endrepeat
return (y, f, x, parameters of f)

end ConstructEstimator

f do

producing `d = g'
all occurrences of d in f
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Figure 2: Eight dissents generated by DGI

then that variable will be overdetermined, hence c and
s will be overdetermined . Otherwise s constitutes a
support of v . Each of these cases is detected and elim-
inated by testing for the membership of e within c or
overdeterminacy as c and s are constructed . These
tests ensure the soundness of the algorithm .
Next consider completeness . For model-based di-

agnosis, the set of environments generated by local
propagation is incomplete for general caausal theories .
However, it is complete for horn clause theories . Anal-
ogously, if a support is a system of simultaneous equa-
tions, then it will not be identified through the above
local propagation algorithm, since the simultaneity
represents a codependence between variables . The al-
gorithm does, however ; generate all support that are
simultaneity-free . More precisely, we build the concept
of simultaneity-free inductively from the concept of a
causally-oriented equation .

Definition 4 A

	

causally-oriented equation of sys
tem S

	

=

	

(e(c; v), s)

	

is a pair

	

(e e (c ; xc), ve ),

	

where
e,,(c ; xc) E e(c ; v) is the equation, v, E xc is the ef-
fect, and vc = xc - {v,} are the causes . Then for each
vi E vc there exists a support (e', s') of vi such that
(e', s') does not determine ve .

Definition 5 A support (e, s) of variable v., is simul-
taneity free, if v, E s, or there exists a causal equation
(ei,vti)T of (e, s) such that each variable in (ei,-oi)T, s
causes has a support in (e, s) that. does not contain ei
and is simultaneity free . Otherwise (e, s) is simultane-
ous . A dissent (e, s) is simultaneity free if there exists
a v i E s such that (e(c ; v), s - {vi})T is a simultaneity
free support .

Using these definitions, soundness and completeness is
summarized as :
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for the thermal problern . Each is of the form dissent =::> parameters .

Proposition 2 Given
system

	

(e(e; v), s),

	

CreateDecomposition((e(c ; v), s))
identifies all and only those subsystems (e'(c' ; v'), s') of
(e(c ; v), s) that are simultaneity-free support for some
variable vi E v .

Proof: This proposition follows as a straightforward
inductive proof on the size of the support . We use
the earlier case analysis for function propagate to prove
soundness . In addition it is straight forward to show
that, every simultaneity-free support is a candidate s
for v, generated by Propagate .

Returning to the thermal problem, the support gen-
erated by DG1 for the sensed variables s result in eight
dissents, listed in Figure 2 in the form dissent =* pa-
rameters . Note that the number of parameters vary
from 1 to 7 per dissent .

Generating Estimators from Dissents
A dissent, Di, is converted into an estimator (yi =
fi(xi ; pi ; ci)) by selecting one of the sensed variables as
yi, and solving for yi in terms of the other sensed vari-
ables . A dissent denotes a system of nonlinear equa-
tions, which can be extremely difficult to solve in gen-
eral ; however, the fact that the system is simultaneity-
free makes this process straightforward . This is imple-
mented by function ConstructEstimator which takes
as input a dissent and a dissenting variable, a sensed
variable si E s, where the dissent was identified by
Propagate . Using Fext,

ddtlY and ddt- as dissenting
variables for dissents D2, D1, and D6, respectively,
results in the three estimators given in Section .
A variety of strategies are possible for selecting and

coordinating the set of estimators to be used for data
analysis . The appropriate strategy depends on the use
of the estimators . For example, either the strategy

D1 :

D2 :

((El, E3 - 4, E6 - 8),

((E1, E9 - 11),

(
dTsPIY

t ,T,sply,Faply,Text,X,ht))
::> (Crht " Qrhtmax)
(Fsply, Pdct, Xdmpr))
=> (Rdct)

D3 ((E3 - 4, E6 - 11), (
aT=fl,Y

~̀t , Fsply, Pdct,Text,Trm,7aply, Xrht, Xdmpr))
`Crht, Rdct, Qrhtmax)

D4 : ((E2 - 3, E5 - 14), ( dT s
dt
dT, -

' dt 'F,Ply,Pdct,Text,TrmiXrht,Xdmpr))
(Crht, Gm, Rdct, Qrhtmax, Qeqp, Qslr(t), O"wall)

D5 : ((E1 - 3, E5 - 8, E12 - 14), (
dim dTsn'Y
dt ' dt ,FsP1y'Text, Trm,Xrht))

TCrht, Crm, Qrhtmax, Qeqp, Qslr(t), O"wall)
D6 ((E1 - 3, E5 - 8, E12 - 14), ( d~r, Trrra,f'sply,Tsply,Text))

(Crm, Qegp, Qslr(t), 1Twall)
D7 : ((E2 - 14), dt

(dT,- dTf n , y
' dt 'F'sply)Pdct)TrmiT.sply,Xrht,Xdmpr))

(Crht, Crm, Qrhtmax, Qeqp, Qslr(t), (7wall, Rdct)
D8 : ((El - 8, E12 - 14), (

dT,- dTsDtY
dt ' dt 'Fsply,Trm,Tsply,Xrht))
(Crht, Crm, Qrhtmax, Qeqp, Qslr(t), O"wall)



must insure sufficient accuracy-, given that. i t. may only
be using a subset of the sensed variables and hence
sensed data, or it can be used to generate a good ap-
proximation of parameter values . which are used as
initial values for a second, snore accurate estimation
stage on the complete data set . The appropriate strat-
egy requires careful analysis, and as mentioned earlier
is beyond the scope of this paper . However, we touch
on a simple approach in the next section, for complete-
ness .

Implementation and Experiments
We have developed a system, called Moriarty, that
implements decompositional, model-based learning .
Given an estimation problem ((e(c ; v), s), p), Moriarty
automatically generates code to perform the required
parameter estimation . A symbolic algebra package,
Mathematica, is currently used as the source language
and also handles much of the algebraic manipulation
required to generate estimators from dissents . Mo-
riarty's target language is presently S-PLUS, a data
analysis package . The DG1 algorithm is implemented
in Allegro Common Lisp .

Moriarty generates a "simplest" sequence of estima-
tors using a greedy algorithm . This algorithm selects
an estimator at each step in the sequence so that at.
least. one new parameter is being estimated that wasn't
estimated at an earlier step in the sequence, yet mini-
mizes the number of new parameters being estimated
at each step . If two estimators have equal numbers
of new parameters, then the estimator is selected that.
contains the fewest number of sensed variables . The
first condition drives the convergence time downwards
by reducing the dimensionality of the search space,
while the second condition improves accuracy, by re-
ducing the combined sensor error introduced . Applied
to the example this algorithm selects dissents D2, D1
and D6, in that order, which contain one, two and four
parameters, respectively . In this sequence no parame-
ters are shared . This sequence corresponds to the three
estimators of Section .
We now quantify the benefits of autornated decom-

position in the context of the thermal example . First,
note that Moriarty generates the parameter estimation
code required to solve the thermal problem in about
10 seconds on a Sparc 2 . Now refer to Figure 3 . To
obtain a feel for the improvement in learning rate that.
decomposition provides in this example, the estimators
corresponding to the 8 dissents returned by DG1 were
run against data sets ranging in size' from 10 to 200 .
The plot labeled F7 is for the original 7-dimensional
estimator, while plots F2, F1, and F6 are for the sim-
plest estimators that Moriarty found to cover all pa-
rameters . The estimators were provided with ball-park

8 We employ the rule of thumb that the size of the data
set should be roughly 10-fold the dimension of the param-
eter space . We attribute the anomaly in the convergence
rate of F7 to insufficient data .
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Figure 3 : Convergence rate vs data size. for the gen-
erated estimators . The plots are labeled F1--F8 and
correspond to the estimator constructed from dissents
Dl--D8, respectively

initial parameter estimates to allow convergence in the
higher dimensional cases, and decomposition lead to
significant speed-up even when good initial estimates
were available . Note the improvement in learning rate
provided by the decomposition over all trial sizes : fo-
cussing on trial size 200, for instance, the original es-
timator requires 166 seconds, while the total time to
estimate all parameters using F2, F1, and F6 is under
9 seconds . The estimations produced by the decompo-
sition also demonstrated an improvement in estimation
accuracy . For example, the 95F2, F1 and F6 were 75

Related Work and Discussion
In addition to model-based diagnosis, there is a va-
riety of related work in the areas of machine learn-
ing, qualitative reasoning, and problem decomposi-
tion . Of particular note in the area of model-based
learning is recent, work on Bayesian learning which
uses a graphical model to strongly bias the esti-
mation process, substantially improving convergence
(see, for example, (Buntine 1994 ; Heckerman 1995 ;
Russell et al . 1995 ; Spiegelhalter & Lauritzen 1990 ;
Shachter, Anderson, & Poh 1990 ; Shachter, Anderson,
& Szolovits 1994)) . Work on inferring independence
of decision variables provides a means of decompos-
ing the Bayesian learning task . The focus there is
on graphical models representing probabilistic influ-
ence, where the graphical information implicitly used
by DML represents deterministic influences . More re-
cent work on Bayesian learning incorporates connec-
tives representing deterministic relations . Recent work
in the qualitative reasoning community has also fo-
cussed on autornated modeling for estimation . (Kay
& Ungar 1993) uses a deterministic monotone influ-
ence diagram to bias estimation, (Bradley & Stolle
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presents a series of symbolic methods for generat-
ing model-bsed estimation codes . Finally, a variety of
methods are being developed for decomposing control
problems, including work on decomposing phase space
(Zhao 1994 ; Yip & Zhao 1995), and on decomposing
optimal Markov decision problems (Dean & Lin 1995 ;
Boutilier, Dean, & Hanks 1995) .
To summarize, formalizing the art of large-scale

modeling will be crucial to fully exploiting a new gener-
ation of sensor rich, massively distributed autonomous
systems, and to solving many grand challenges, such
as earth ecosystem monitoring . With a focus on mod-
eling deterministic physical systems described by non-
linear equations, this paper developed the decomposi-
tion phase of our decomposition al, model-based learn-
ing approach . The insights underlying the decomposi-
tion process were gained by observing the manual pro-
cess of modelers on a thermal modeling task of a smart
building . This suggests a striking analogy between a
model decomposition, which we name a dissent, and a
minimal conflict, used extensively in the model-based
diagnosis community to tackle diagnosis problems on
the orders of thousands of components. A dissent is
a minimal subsystem of equations that is overdeter-
mined . Identifying the minimal subsystem improves
convergence time by minimizing the number of param-
eters involved, and improves accuracy by minimizing
the number of sensed variables, hence reducing error .
Following this analogy we developed a dissent gener-
ation algorithm DG I that parallels the conflict recog-
nition phase of model-based diagnosis . This algorithm
is sound and complete with respect to generating a
restricted form of dissent, which is simultaneity free .
Preliminary experimental results on the smart build-
ing thermal model demonstrates an order of magnitude
improvement in convergence rate achieved by using the
smallest dissents to cover the parameter space . DML is
currently being considered in a variety of exciting ap-
plications, including NASA's next generation of filly
autonomous space probes, and a "biosphere- like" habi-
tat, called a closed loop ecological life support system .
Finally the strong analogy here between model-based
diagnosis and learning highlights an opportunity for
a rich interaction between the subdisciplines and the
potential for a more unified theory.
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