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Abstract

This paper presents a Monte Carlo method for
analyzing the space of trajectories entailed by a
qualitative differential equation and deriving sta-
tistical properties of qualitative behaviors. Esti-
mates of the occurrence probability of behaviors
and estimates of parameters defined over numeri-
cal trajectories can be computed and used in sev-
eral ways. For example, behavior probability can
be used to rank behaviors and discard those be-
low a significance threshold. Parameter estima-
tion can be used to determine the average max-
imum response of a controller to a given pertur-
bation. An example of a second-order oscillatory
system is discussed.

Introduction

Formalisms, methods and tools developed by the
Qualitative Reasoning community have the potential
to represent and deal with levels of uncertainty that
are unpaired by those developed within other commu-
nities. For example a Qualitative Differential Equa-
tion (QDE) and the QSIM simulator (Kuipers, 1994)
can represent and deal not only with a specific (linear
or non-linear) dynamical system, but can handle a
family of systems characterized by uncertainty affect-
ing both parameter values (parametric uncertainty)
and functional relationships between two or more pa-
rameters (functional uncertainty).

While several methods (e.g. linearization, sensitiv-
ity analysis, stochastic differential equations) can be
used when dealing with parametric uncertainty (since
functional forms are known), very few methods ex-
ist that can deal with functional uncertainty. Not
only qualitative simulation can be used in such cases
to generate some prediction, but it predicts all the
possible outcomes of all the systems belonging to the
family denoted by the QDE. This constitutes a solid
foundation for tackling robustness analysis problems,
i.e. proving that certain properties — like stability —
hold for an entire family of systems. These problems
arise often and in many tasks: in diagnosis, to test
a fault hypothesis; in monitoring, to predict a risky

situation; in design, to determine the dynamics of a
partially-specified device.

But a free lunch is a very rare opportunity, and this
case is no exception. In fact, the uncertainty present
in the problem may lead to results affected by ambigu-
ity hindering their practical usefulness. This is due to
qualitative simulation being very conservative, yield-
ing extremely accurate results (in the sense that they
are valid representations of reality). Often, however,
such a level of accuracy is not required by practical
applications (as definitely shown by the broad and ef-
fective application of approximate methods, that are
precise but inaccurate). We could then trade some
accuracy for some precision. .

Stochastic differential equations and stochastic sim
ulation methods (e.g. (Doyle and Sacks, 1989)) can be
used to achieve similar results. However, they require
as input a level of knowledge about the dynamical
system that is higher than that required by a QDE.
In fact, probability distributions for system variables
have to be given in the former case, and transition
probabilities between states in the latter.

Alternatively, as shown by Gazi and colleagues
(Gazi et al., 1996; Gazi et al, 1997), Monte Carlo
methods can be used to sample the trajectory space
entailed by a QDE and derive conclusions for the
whole family of systems without reducing the uncer-
tainty level.

In this paper we describe a Monte Carlo method for
analyzing such a space and deriving statistical prop-
erties of qualitative behaviors. In this way we get an
estimate of the occurrence probability of qualitative
behaviors and estimates of parameters of the numeri-
cal trajectory. This information can be used in several
ways. For example, behavior probability can be used
to rank behaviors and discard those having a very low
probability. Parameter estimation can be used, for ex-
ample, to determine the average maximum response
of a controller to a given perturbation.

This work extends the previous work (Gazi et al.,
1996; Gazi et al., 1997) centered on comparing nu-
merical trajectories against temporal logic statements
for verification purposes. We compare trajectories
against qualitative behaviors, achieving the follow-
ing three results. First, getting the a-priori proba-



bility of occurrence of a set of exhaustive behaviors
sheds considerable light on the qualitative features
of trajectories that are practically plausible. Second,
qualitative behaviors usually contain information that
is not available in numerical trajectories (e.g. quies-
cence, stability, equality between two maxima) that
can be used to extract data of interest (e.g. average
time to reach quiescence). Finally, concrete examples
of systems exhibiting a qualitative behavior can be
generated and examined in detail.

Outline of the method and its usage
Within a QDE parametric uncertainty is represented
by symbolic landmarks denoting unknown real num-
bers, possibly bounded by numeric ranges; functional
uncertainty by monotonic (or variations like S— or U-
shaped) relationships, possibly bounded by a pair of
functions.

Monte Carlo methods solve mathematical problems
via simulation based on random numbers (Rubinstein,
1981). In our case the user defines a QDE, provides
numerical envelopes bounding the monotonic relation-
ships used in the QDE, and specifies some control pa-
rameters for the Monte Carlo process. Then random
numbers are used to generate instances of monotonic
relationships. These instances are inserted into the
QDE which is numerically integrated yielding a tra-
jectory that is compared to qualitative behaviors ob-
tained from qualitative simulation of the QDE.

This comparison yields a boolean answer: the tra-
jectory is an instance of a behavior, or it is not. By
computing the proportion of instances that satisfy a
behavior, standard statistical techniques can be used
to estimate the probability of occurrence of a qualita-
tive behavior (i.e. the probability that the trajectory
of a random instance of the QDE matches the be-
havior). In addition, if the value of some parameter is
sought among the instances of a behavior (like average
settling time for an overdamped oscillatory system),
then it can be determined by collecting its value from
each instance of the behavior.

In general, this information can be used for a num-
ber of decision making processes.

Occurrence probability can be used for ranking the
behaviors. In this way most probable ones, or those
with the highest risk (cost times probability, where
the cost is given by the user) can be given the highest
priority. For example, in analyzing the outcomes of
a lake-dam system, the behavior where the lake level
crosses a watch—out threshold presumably has a high
cost. Even with a very low probability, such a be-
havior may be worth of further analysis. In a design
context the occurrence probability of each behavior
can be used to perform a robustness analysis of the
effects of some change in the model (the value of the
controller gain, for example). The change will affect
the probabilities of behaviors. This method could be

234

used, for example, to determine a value for the pa-
rameter that maximizes the occurrence probability of
a selected behavior.

Occurrence probability can also be embedded within
hypothesis testing. For example, to find out which
behaviors have an occurrence probability lower than
a given threshold. These behaviors can then be re-
garded as either impossible (i.e. spurious) or practi-
cally impossible (like the behavior of the “classical”
filling bathtub model where the level asymptotically
reaches the top of the tub and settle there: highly un-
likely for any height). In a monitoring context such
an information can be used to neglect predictions that
would lead to costly resource utilization. In a design
task, to determine for example that the only behaviors
violating some performance requirements are practi-
cally impossible.

Statistical estimations of parameters defined over
numerical trajectories can be used in several ways.
These values may distinguish a faulty from a normal
situation, or may give important design insights. A
simple thing is to look within the instances of a be-
havior to find out the numerical values corresponding
to symbolic landmarks used in the QDE. For example,
to determine the average time needed by a variable to
reach a specific value.

Parameters are not limited to landmarks. In fact,
any parameter that can be defined on a trajectory can
be obtained. For example, one could determine the
average frequency of a family of oscillatory systems;
or the average of the maximum response of a controller
to a perturbation.

An example

We present now an example based on a second or-
der oscillatory system: while easy to understand, it
is representative of many interesting real-world sys-
tems and sufficiently complex to pinpoint many issues
raised by the method.

Suppose a designer wants to analyze the effect that
the damping factor has on the global dynamics of a
very poorly known system. In particular the designer
is interested in determining the likelihood for the par-
tially known system to reach the equilibrium point
after a given number of cycles and in knowing what
is the period and settling time for such a system (i.e.
the time needed by z to enter the region £1.0-9).

The model is £ = F(z) + G(z) where F(z) de-
notes the “force” exerted towards the equilibrium
point when the “position” is z, whereas G(z) is the
“friction” force due to “velocity” z. F and G de-
note two families of functions {f} and {g} that are
monotonically decreasing, passing through the origin,
and bounded by f(z) < f(z) < f(z) and g(z) <
g(z) < g(z). In this specific case bounds are defined
using pairs of linear functions specifying an error band
around the (nominal) value of the parameter. That is



F(z) = —a(lxe)z+d, G(z) = =b(1 £ e)z = d, where
e =25%. a=10.0, b= 2.0 and d = 5.0. Notice that
F and G include non-linear functions in a rather large
uncertainty band (50% + 10 for both functions).

The QDE can be defined straightforwardly from
such specifications. A qualitative simulation from an
initial state where z € [0.9,1.1],Z = 0 (with a limit on
the number of states being examined) leads to 6 qual-
itative behaviors (figure 1): in all except the last one
the system follows a spiraling trajectory of zero, half
or more cycles and then approaches the equilibrium
point.

Such a prediction cannot be used to infer that be-
haviors 1 to 5 are highly unlikely nor to get sufficiently
precise values for the sought parameters. In fact, when
facing a significant uncertainty semi-quantitative sim-
ulation techniques are unable to discriminate between
alternative qualitative behaviors. While each qualita-
tive behavior is possible for some (unknown) instance
of the QDE, the numerical information added to the
QDE induces a probability distribution among these
behaviors. Our method statistically estimates such a
distribution.

The Monte Carlo simulation method, where 100
random samples f and g from F and G are gen-
erated and simulated with random initial states in
[0.9,1.1] x [0,0], leads to 100 trajectories all match-
ing only behavior 6, where equilibrium is not reached
before 3 cycles. In addition, the average oscillation pe-
riod is 0.450 £ 0.018 (at 95% confidence level) which
is quite precise compared to the value computed on
the basis of ranges predicted by QSIM.

Results change when b = 5.0. In this case the prob-
ability of occurrence of each behavior is given in table
1. It can be seen that the chances of approaching
equilibrium before 3 cycles is getting higher. In addi-
tion, the average settling time for behaviors 2 to 5 is
5.667 £0.114, while the period for behavior 6 becomes
5.726 + 0.106.

Behavior Probability -
1 0.070 £ 0.050 = [0.020, 0.120]
2 0.160 £ 0.072 = [0.088, 0.232]
3 0.230 £ 0.082 = [0.148,0.312)
4 0.260 £ 0.086 = [0.174, 0.346)
5 0.270 £ 0.087 = [0.183,0.357)
6 0.280 + 0.088 = [0.192, 0.368]

This table gives an estimate of the proportion of 100
trajectories that match a given behavior. The 95%
confidence intervals give the likely variation of such a
proportion when different samples are explored.

Table 1: Occurrence probabilities when b= 5.0

Finally, setting b = 5.5 and running another experi-
ment yields the table (2). Settling in behavior 1 occurs
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in an average of 5.52 + 0.16, while for behaviors 2 to §
in 6.87 & 0.534. The average period for behavior 6 is
5.96 + 0.292.

Furthermore for behaviors-5 and 6 the hypothesis
“probability < 0.10” is supported by the data with a
95% significance level. If 0.10 is the threshold below
which a behavior is deemed negligible, then both can
be discarded with only 5% chances of error.

These results have been obtained from running
100 Monte Carlo trials which took around 3 minutes

elapsed time’.

Behavior Probability _
1 0.210 % 0.080 = [0.130, 0.290]
2 0.260 = 0.086 = [0.174, 0.346]
3 0.280 % 0.088 = [0.192, 0.368]
4 0.200 & 0.078 = [0.122,0.278]
5 0.050 + 0.043 = [0.007,0.093]
6 0.050 + 0.043 = [0.007,0.093]

It is very likely that the system will not exhibit 2 or
more cycles (i.e. behaviors 5 and 6).

Table 2: Occurrence probabilities when b = 5.5

The simulation method: main issues
and adopted solutions

The Monte Carlo simulation method is based on gen-
eration of random instances and classification of their
trajectories.

Generation of random QDE instances

The problem of generating random instances of QDE'’s
has been discussed in detail by Gazi and colleagues
(Gazi et al., 1997). The basic idea is to generate
a random ordinary differential equation by replacing
each monotonic relationship of the QDE with a ran-
dom instance of it. A random function satisfying the
monotonicity and envelope constraints is constructed
by generating a sequence of monotonic random points
satisfying the envelope (f, f) and then interpolating
these points (with straight lines or splines).

The problem of generating these points with a
uniform probability distribution, however, is not as
simple as it might seem. One of the simplest al-
gorithms consists of generating k random points
z1,Z3,...,Zk within the domain of the function and
then, for each z;, selecting a random y; from the
interval [f(z;), f(z;)]. The problem with this algo-
rithm is that when two successive intervals overlap
(ie. [f(zi-1),f(zi-1)] and [f(2:), f(=:)] are not dis-
joint), then (assuming the function has to be increas-
ing) the selection of y; occurs within the top part

'On a Sun-20 running Lucid Lisp; the bulk of the time
is due to numerical integration.
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Figure 1: Qualitative behaviors for the oscillator

of [i(:r,-),?(z,-)], precisely in [yi—1, f(zi)]. In other
terms, the random selection performed at stage i is
dependent on the value selected at stage i — 1.

As shown in (Gazi et al., 1997) the potential overlap
of the envelope at two consecutive points has the ef-
fect that the resulting generated points (and the corre-
sponding interpolated function) cluster towards f(-).
The authors suggest another algorithm that gives
more uniformly distributed points. The algorithm we
used is derived from that one. At the endpoints zg
and z4) of the domain two values yo and y,4; within
the envelope are randomly generated; then the follow-
ing steps are repeated h times: (i) random selection
of a pair of consecutive points (z;,y;), (Ti+1,¥i+1), (ii)
splitting of the interval (z;, z;4+,) with a random point
z*, and (iii) random selection of a point y* such that
Vi < ¥ < yis1 and f(z*) < y* < f(z*). Result-
ing piece-wise linear interpolated functions are quite
uniformly distributed and have widely changing shape
(see figure 2).

Depending on the curvature of the functions (f, f)

an invalid interpolated function f can be generated
if f crosses either bound. To overcome this, the test
f(z) < f(z) < f(z) is performed each time the func-
tion is evaluated. If it fails then the instance of the
QDE is discarded. So far we found that the chances of
failing such a test are sufficiently low to justify the use
of such a run-time check. In the situation described
by the example the problem cannot occur, since en-
velopes are linear.

At this point the differential equation can be nu-
merically integrated from a randomly chosen initial
state satisfying the qualitative specification (up to a
predefined time limit and using a given integration
time-step; our implementation uses a Runge-Kutta
method), yielding a trajectory for each variable. The

48 02 04 o8 (1] 1

Fifteen instances of the monotonic relationship —G
used in the previous example, restricted on the inter-
val [-1, 1], passing through the origin and generated
by interpolating ten randomly chosen points.

Figure 2: Sampled instances for function G(x)

trajectory can then be compared to qualitative behav-
iors. -

Comparison of trajectories with behaviors

The aim of this process is to determine if a numeri-
cal trajectory (up to time limit ¢*) is an instance of a
qualitative behavior (up to qualitative time 7"*). This
is achieved by comparing the trajectory of each vari-
able, separately, with the sequence of qualitative val-
ues prescribed for that variable in the behavior and
then constructing a global interpretation of the be-
havior against the system trajectory.

It is worth noting the differences between the in-
formation present in the two descriptions of the dy-
namics. A trajectory of variable v is a sequence of



numerical events <t;,v;>, where t; is a time point,
v; is the numerical value of v(t;), t;’s are increasing
and t;4; —t; is the integration time-step. Conversely,
the behavior of a variable consists of: (i) a sequence
of alternating time-point and (open) time-intervals
qualitative events <T;, <gmag;, qdir,>>, where T; is
either a time landmark or a pair of adjacent land-
marks, gmag; is a landmark (or pair of landmarks)
denoting the value v(T};) (or an open interval contain-
ing it), gdir; € {dec, std, inc} denotes the sign of
o(T;); (i) numeric ranges (possibly [—oc,+00]) as-
signed to each landmark; and (iii) a labeling of T;
(saying whether the corresponding state is quiescent,
stable or if it triggers a transition to a new operating
region).

Time-point qualitative events may correspond to:
(a) the variable reaching one of its landmarks, (b) its
derivative changing sign, or (c) some other variable
being involved in situations (a) or (b) (like the event
at T1 for variable z in behavior 1 of figure 1).

The comparison process is based upon two steps:
event extraction from each variable trajectory and a
behavior interpretation against extracted events.

Event extraction

The aim is to extract from the trajectory a sequence of
qualitative events that can be later compared to those
included in the behavior. Event extraction should be
correct, i.e. all relevant qualitative events correspond-

_ing to situations (a) and (b) discussed above must be
generated as well as intermediate interval-time events.
It should also detect asymptotic trends towards limit
points (like when the oscillator position approaches its
equilibrium value).

The extraction mechanism is based on the following
principles.

Each numerical event <t;,v;> is analyzed together
with its neighbors and those of the derivative of v. If ¥
has not been computed during numerical integration,
it is estimated using the formula ti;[vi-2 — 8v;_; +
8vi41 — vi4+2) (h is the time step) whose error is O(h*)
(Comincioli, 1992). Whenever 7 reaches or crosses
0 an event is generated, as well as when v reaches
or crosses 0 or any other interesting landmark value
given as input.

“Holes” between numerical events (i.e. v; —v;—1 be-
ing finite) and roundoff may hamper the detection of
relevant events (that is, the event defined by v = a
may be missed if no v; is ever equal to a). For this
reason the extraction mechanism detects not only if
a variable reaches a given value, but also if it crosses
the value (i.e. if v; — a changes sign). Similarly when
detecting changes in the gdir of a variable. When a
variable v crosses a value a between t;_; and t; then
the detected event abstracts the time instead of ap-
proximating it: the resulting event states that there

237

exists ¢ € [ti-1,t;] such that v(t) = a, without com-
mitting to a precise value of t.

To cope with floating point roundoff errors, all com-
parisons between values are performed with a toler-
ance ¢ (for the example discussed in previous section
€ = 1.07%). When |v; — a| < € an event stating that
v = a is created. This solution enables detection of
asimptotic trends towards limit values (for example
to detect that the level of the bathtub is approaching
asimptotically an unknown limit).

The value of £ is the threshold below which any
change in a variable is neglected. As a consequence
there may be a multiple detection of the event v = a
even if v is monotonic: consider the case where v;_;
and v; are both in an e-neighborhood of a. For asimp-
totic trends there is actually an indefinite number of
v;’s that are all within the neighborhood of the limit.
To ensure conciseness these events have to be merged
into a single one, by extending the time range of the
event.

If there is a time point beyond which all the state
variables of the system stay within the e-neiborhood
of some value and their derivatives stay within the
e-neighborhood of 0, then the system is approaching
quiescence. An appropriate gquiescence event is cre-
ated to represent such a situation.

Finally, notice that while a variable may enter the
neighborhood of some value at some point, its deriva-
tive may still be outside the neighborhood of 0. The
variable’s gdir may therefore change even though its
magnitude doesn’t. Since gdir # std implies a change
in the magnitude such a situation is inconsistent and
such events could never match a QSIM behavior. To
overcome this an insignificant change event is created
indicating that the variables may change an indefinite
number of times but always within a neighborhood of
some value. This is the situation illustrated in figure
3.

Behavior interpretation

This process determines whether a trajectory is an
instance of a behavior and, if so, yields a numerical
interpretation of landmarks of the behavior.

Since the trajectory and the behaviors cover a finite
amount of time? they may include not enough infor-
mation to support the conclusion that the trajectory
is an instance of the behavior. We adopt a conserva-
tive approach: unless the contrary can be proven, the
trajectory is considered instance of the behavior. Of
course, the longer is the numerical simulation and/or
the qualitative behavior, the greater is the amount of
information that can be used to get a definite answer.
Thus one way to increase the resolution power of the

?Not necessarily the same since qualitative time rarely
is sufficiently precise to be unambiguously compared to
values of the real line.
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When z enters the neighborhood of 0 (t > A), its
derivative z’ is still changing significantly (i.e. 2’ ¢
[—¢,€]). This portion of trajectory yields the following
events:

time | description

> A insignificant change for z = 0
[B,C] | &' =0, dec

D z' at a minimum, std

> E z and z' quiescent at 0

Figure 3: Insignificant change events

method is to extend the temporal horizon(s), at the
cost of an increased complexity.

Construction of behavior interpretation is based on
the following steps. First, to each extracted event (for
variable v) is assigned a sequence of qualitative states
of the behavior (called segment) consisting of those
consecutive states that qualitatively correspond to the
event (i.e. the gmag of the state has the same sign as
that in the event and gdir's are the same). Addition-
ally, insignificant—change events match any state and
quiescence events match only quiescent states. In this
way situations like those depicted in figure 3 are cor-
rectly matched with behaviors showing synchronous
events of variables z and z. If at the end of the anal-
ysis an event has an empty segment then the match
fails.

Second, numerical information in an event is used
to restrict ranges of variables’ magnitudes in states
included in the event’s segment. By assigning values
to variable TIME a global consistency among different
variables is achieved. If a landmark results with an
empty range the match fails.

Finally, total order between adjacent landmarks of
a variable is enforced by requiring that they differ for
at least € (unless they are involved in insignificant-
change events, where by definition the variable mag-
nitude is constant).

The complexity of event extraction and behavior
interpretation is O(k(n+m)), where k is the number of
variables being analysed, n is the number of numerical

events of the variable trajectory, and m is the number
of qualitative states in the behavior.

Statistical analysis

Statistical experiment are based on generating N in-
stances of the QDE, simulating them against K initial
states and comparing these NK trajectories against
M behaviors®. The aim is to obtain an estimation of
(i) the occurrence probability of a behavior b: the prob-
ability that a random instance of the QDE simulated
against a random initial state satisfying the qualita-
tive initial state generates a trajectory T that is an
instapce of b; and of (ii) the average value of some
function u(7) of the trajectory.

To obtain the first kind of information the problem
could be in principle formulated as a multinomial ran-
dom variable X, whose values <z;,zs,...,zp> give
the number of trajectories that match behavior 1,2,
wy M, with 3" z; = NK. The choice of such a r.v.
is justified by the fact that the M behaviors are ex-
haustive and mutually exclusive and the samples are
independent (since we’re drawing them from an infi-
nite population and one instance is independent from
the preceding ones).

However this is not possible because of multiple
classifications. In fact, due to insufficient informa-
tion, a trajectory can match more than one behavior,
invalidating thus the choice of such a r.v.

To get around this obstacle we define M binomial
r.v. Xi, ..., Xup, where each X; gives the number
of trajectories that match behavior i. In this way M
different experiments are run using the same sample
of trajectories. Notice that in this way each behavior
is treated as being independent from the others.

Standard statistical tests can then be run to get the
required information and an estimate of its accuracy.
In particular, the proportion p of sampled trajectories
that match a behavior is an unbiased estimator of the
occurrence probability for the behavior and a large-
sample confidence interval or hypothesis test can be
easily derived.

Though not shown in the previous example, one
could define other binomial r.v. that cover sets of
behaviors, and in this way overcome the limitation due
to the inability to use a multinomial r.v. For example,
to estimate the probability of occurrence of behaviors
1 to 5 but not behavior 6 for the oscillatory system one
could define the r.v. X;_s: “number of trajectories
matching behavior 1 or behavior 2 or ... behavior 5
and not behavior 6”. By appropriately collecting the
samples that satisfy such a specification and running
the same tests described above, the desired answer
can be determined.

To estimate the average value of some parameter
4 it is necessary first to collect the sampled trajecto-

3In the example presented above K = 1.



ries that satisfy some requirements (for example those
exhibiting an overdamped dynamics, i.e. matching be-
havior 1 of our example) and then extract from them
samples of u. If the sample size is sufficienty large
the average value of 4 can be assumed to be normally
distributed (central limit theorem) and from the sam-
ple average and deviation a confidence interval can be
derived for pu.

Discussion and related work

The Monte Carlo method just described is relatively
independent from the features used to generate the
qualitative behaviors. It can also be used with
TeQSIM, a simulator based on QSIM that generates
only behaviors that satisfy trajectory constraints spec-
ified in temporal logic (Brajnik and Clancy, 1996).
TeQSIM can be employed as a means to reduce the
number of behaviors used for classification. Only
those satisfying certain requirements will be compared
to sampled trajectories, with substantial resource sav-
ing. Of course, behaviors will not be exhaustive any
more, and some trajectory will not be instance of any
behavior.

The method can also be used with purely qualita-
tive behaviors (i.e. without using QSIM to generate
absolute bounds for landmarks). Since the matching
process is based on qualitative features of trajectories
and behavior states, the numeric information present
in behaviors plays a minor role.

Finally, this method could also be applied to clas-
sify trajectories with respect to temporal logic state-
ments. In fact, a behavior can be represented as a
(quite complex) conjunction of logical statements de-
scribing each state. With a conceptually simple exten-
sion the method could then determine the probability
that a temporal logic statement is true for members
of the QDE by checking that events extracted from
trajectories satisfy the temporal logic formula. Ex-
cept for statistical processing, this is similar to the
work that is being carried on by Gazi, Ungar and col-
leagues cited above. They sample instancesof a QDE
in order to verify properties of the dynamics of those
instances without performing a qualitative simulation.
In particular they extract from trajectories minima
and maxima events and check them against tempo-
ral logic statements (using propositional linear-time
temporal logic) to verify invariant properties of con-
trollers for chemical plants. While sharing the same
techniques for sampling the QDE, our method:

* refers to qualitative behaviors and properties iden-
tified by QSIM (like quiescence, stability). Since
trajectories are matched to behaviors these proper-
ties are then associated to matching trajectories as
well. Using only numerical information this can be
difficult or impossible;

* does a detailed analysis of trajectories to extract
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events that support behavior matching; more de-
tailed than just extracting minima and maxima;

¢ provides a statistical characterization of behaviors
and of parameters of trajectories/behaviors;

e provides actual concrete instances of behaviors and
of differential equations generating them. In addi-
tion, precise and sound numerical interpretation of
symbolic landmarks is derived.

Conclusions

The Monte Carlo method presented above derives sta-
tistical data about qualitative behaviors. It is concep-
tually and algorithmically simple and quite effective.
We believe it represents a viable way to couple qual-
itative representations of trajectories with numerical
ones in a way that relaxes absolute accuracy to get sta-
tistically significant bounds without requiring strong
assumptions on uncertainty.

The program implementing the method has been
tested on several first— and second—order systems with
satisfactory results. We are currently using it in con-
troller design problems to study global changes of dy-
namics caused by changes in the controller.

The main limitation of the method, as for all Monte
Carlo techniques, is the computational effort neces-
sary to get statististically significant results. However,
for off-line analysis of incompletely known dynamical
systems (like controller design) the tool is viable and
practically useful. It can be used whenever QSIM can,
and being independent from the latter, it can take ad-
vantage of all the enhancements added to QSIM.
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