
Abstract

understanding and reasoning about the physical
world is a task that is implied in large portions
of both practical and theoretical education and
training . In this paper we present techniques for
the automated generation of domain knowledge
models that support ITS functions for coaching
these tasks . On the basis of a qualitative sim-
ulator (GARP), a complete reasoning network is
generated for each exercise in a domain . However,
a serious problem with such a network is that it
easily becomes huge : it contains all necessary and
grounded reasoning steps . In particular, complex
coaching tasks like cognitive diagnosis (CD) soon
become intractable . A solution can be found in
'summarising' the network into a hierarchical one
by applying aggregation methods . The results
these methods produce show similarities to the
outcomes of learning mechanisms such as compil-
ing out and chunking in human skill acquisition
and in machine learning . The aggregated models
present a more abstract view on the domain, in a
way comparable to the result of a simulation us-
ing more abstract models . The major advantage
of our approach, however, is that all different ab-
straction levels, plus their interconnections (i.e .,
the abstraction operations) are available to the. tu-
tor . The hierarchical reasoning networks are thus
not only relevant for making CD more tractable,
but also, and in particular, for enabling an ITS to
communicate with the student about the reason-
ing at different grain size levels . A worked-out
example is presented .

Introduction

Reasoning in a qualitative way about the behaviour
of a physical system involves making inferences about
quantities on the basis of given or earlier derived quan-
tities . The dependencies between all possible inference
steps that enable the prediction of the behaviour of the
system form a network (directed graph) . This net-
work thus represents both the domain knowledge (a
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behavioural model of a physical system) and the re-
quired inferences to derive this behaviour . In an intel-
ligent coaching system such a domain representation
is a model par excellence for interpreting the reasoning
of a student in solving such problems .

Qualitative simulation can be used to construct such
a model automatically on the basis of a model of
the system (scenario) and model fragments that re-
flect the behavioural principles of the system involved .
Since SOPHIE-111 (Brown et al ., 1982), there seemed
a bright future for using qualitative reasoning in ITSs .
However, thus far only a few ITSs have been con-
structed using qualitative models . An important rea-
son is that the construction of a correct qualitative
simulation at the right level of detail is a laborious
task (e.g ., Schut, 1996) . In addition, there are two
more principle problems in applying qualitative rea-
soning in teaching systems .

1 . There is no one to one correspondence between the
way a qualitative simulator generates its derivations
and the way students do (de Koning and Bredeweg,
1996) . A simulator usually generates all deriva-
tions in a breadth-first way, while students may rea-
son backwards from otherwise predictable marked
states .

2 . The derivation models as resulting from qualitative
simulation are relatively large, and contain too lit-
tle internal structure to be directly applicable in
a teaching environment . For instance, our origi-
nal motivation for developing these models was to
use them for model-based diagnosis : by conceiv-
ing the model (network) as consisting of compo-
nents (inferences) and connections (input-output re-
lations), one can use model based diagnosis tech-
niques for the cognitive diagnosis (CD) of student's
errors (Self, 1992 ; Bredeweg and Breuker, 1993;
de Koning et al ., 1995) . However, even for small
physical systems such models become easily in-
tractable for model-based diagnosis .

Both problems are addressed in this paper . A solution
for the first problem is to have a qualitative simulator
(GARP, Bredeweg, 1992) generate for each problem



situation the behavioural descriptions and then recon-
struct derivation chains from these data on the basis of
human interaction protocols . This way, we exploit the
(correct) declarative knowledge generated by the simu-
lator, but avoid its cognitively less plausible reasoning
process . This is in line with earlier research on the
cognitive plausibility of representations for qualitative
prediction : we found that the declarative knowledge
representation sufficiently covers the vocabulary that
humans use in qualitative prediction of behaviour, but
that indeed the reasoning patterns employed by human
reasoners differs substantially from the simulator's (de
Boning and Bredeweg, 1996) . In the next section, we
describe the generation of this model, referred to as
the base model, from the simulator's output .
The tractability problem is tackled by the use of

aggregation . This way, the base model becomes a hi-
erarchical one, thus drastically reducing the complex-
ity . We describe the techniques employed to dynam-
ically generate such hierarchical models . The aggre-
gation procedures implemented are not only benefi-
cial for model-based diagnosis, but also facilitate ad-
vanced knowledge communication by structuring the
knowledge at different abstraction levels . We present
an example of the procedures implemented, as well as
the hierarchical set of models that is generated for a
simple physics system .

The Base Model

Quantity inferences (such as "because this pressure
difference is zero, the resulting force is also zero") are
shown to cover a major part of the reasoning reported
in interactions between students and teachers (de Kon-
ing and Bredeweg, 1996) . So, if we want a computer
to teach about device behaviour, modelling quantity
inferences is a good place to start . By focussing on
quantity manipulation, we do not address another im-
portant aspect in qualitative reasoning, namely the
conceptualisation of a domain : the first step in quali-
tative prediction is always the construction of a model
of the system at hand.
The quantity inferences modelled are dependent

upon one another . The input for an inference is some
quantity expression that is either given in the problem
description or depiction, or derived by a preceding in-
ference . These dependencies form a graph, which is
automatically generated on the basis of the simulator
output using types of inference steps as observed in
interaction protocols of student's solving qualitative
prediction problems . As an example domain, consider
the piston system shown in Figure 1 .
The piston system consists of a movable piston in

a container . In the container, there is some gas, and
under the container there is a heater which heats the
gas . The student's task is to predict what will happen
to the piston system . Some (but not all) of the quan-
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Figure 1 : The Piston System

piston

tities needed in predicting the behaviour of the piston
system are presented in Figure 1 .
At the initial state of the system, the temperature

of the gas (Tg ) and that of the outside world (T,,,) are
given to be equal (Tg = Tw ), and the heater is just
turned on, expressed by the fact that its temperature
(T,) is higher than that of the gas (T, > Tg) . Further-
more, the temperature of the outside world is given not
to change (JTw = 0), and the piston is in its starting
position (Pos - s) .
A small part of the network for the behaviour pre-

diction of this system is depicted in Figure 2 . All the
given expressions are printed in bold face . A rectan-
gle represents an inference, and the arrows at the left,
top, and right represent respectively the dynamic in-
put, the generic knowledge, and the output of the infer-
ence . In line with the main motivation for building the
models, namely (model-based) diagnosis, we conceive
the network as consisting of components and connec-
tions. A reasoning step is modelled as a component,
whereas the data transported over the connections are
the quantity values, derivatives, and relations that are
manipulated by the reasoning steps . From the given
information (in bold face), the student should be able
to derive Tg > Tw : the temperature in the container
will become higher than the temperature of the sur-
rounding world . A verbalisation of the deduction of
Tg > T�, by a student could be as follows :

"Because the temperature of the heater is higher
than the temperature of the gas, there will be a
heat flow from the heater to the gas, which will
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increase the temperature of the gas . Therefore,
the temperature of the gas will no longer be equal
to the temperature in the outside world, but will
become higher ."

Hierarchical models

dHg > 0

The four component types mentioned in Fig-
ure 2 (value determination, quantity influence,
quantity proportionality, and inequality ter-
mination) are examples of the total of 16 different
types we defined . This set is based on experimental
research on how students and (human) teachers com-
municate about prediction problems (de Koning and
Bredeweg, 1996) . The model is automatically gener-
ated from the output of CARP. An important aspect
of the transformation is its 'reverse-engineering' na-
ture . We do not translate the reasoning steps made
by the simulator, but instead only use the bare results
(facts) of the simulation . Then, we start from the set
of 16 model component types and insert all compo-
nents that make a valid (in terms of the component's
behavioural rules) derivation . In other words, we start
with the set of all facts that should be derived, and add
all inference steps connecting them, where the set of
possible inference steps (components) is not based on
the simulator's reasoning, but on observed human rea-
soning . Figure 3 illustrates the process, including the
hierarchical aggregation discussed in the next section .

A complete model of a behaviour prediction-.for sys-
tems like the contained piston in Figure 1 contains
824 components (representing reasoning steps) and
802 points (holding domain expressions to be com-
municated) . For our first application of the models,
i .e . in model-based diagnosis, this number is already
too large to handle in reasonable time . Therefore, we
need some kind of focussing of the diagnostic process .
The solution we choose is based on the ideas of hierar-
chical diagnosis (e.g ., Mozetic, 1991) : by defining ab-
stract components that represent a set of components
at a lower level of abstraction, we reduce the initial
size of the model. We start diagnosing at the set of
highest-level models, and only when a diagnosis has
been found there, we decompose the abstract compo-
nent into a lower level . Now we only have to diagnose
within the model of the decomposed abstract compo-

pos_prop(Hg, Tg)

Figure 2 : An Example Model
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nent, hence drastically reducing the search space .
The initial applications of hierarchical diagnosis

were in the field of electronics, for which the choice
of the higher-level, abstract components was mostly
guided by the function of a set of components (e.g .,
a set of electronical components comprise an ampli-
fier) and/or by the structural grouping on individual
circuit boards (i.e . a mother board in a PC) . In the
case of a reasoning network there is no such thing as
a blue print or a physical device to guide the hier-
archical organisation . Hence, if we want to generate
hierarchical models automatically, we need a set of op-
erational criteria of which sets of components can be
abstracted to a higher-level component . An important
requirement is that these abstractions should result in
models for which the points are still `measurable', i .e .,
the remaining domain knowledge indeed facilitates a
communication with the student at a higher abstrac-
tion level .
We employ three different principles for combining

different components, which are based both on the
structural properties of the reasoning network and on
theories about human learning (cf. the next section) .

Hiding of Irrelevant Details results in some com-
ponents and points of the model to be discarded at
a higher level, because they are less important for
the main prediction at hand .
A first form of hiding consists of leaving out all in-
ference steps that do not strictly contribute to the
right solution : although needed in the reasoning
process to ensure completeness, they do not belong
to the shortest path in the network from the givens
to the final behavioural state . For instance, if the
container is heated for some time, a second heat flow
from the gas to the outside world will emerge. When
we are reasoning about a state in which this effect
is smaller than the flow from the heat source (i.e .,
the effect is `qualitatively negligible'), we can also
leave out the components representing this effect in
the model . We also hide all termination inferences
that do not actively contribute to the actual transi-
tions) executed . Reasons may for instance be that
a termination is preceded by another one, and hence
will not be active yet .

Hiding also abstracts from fully-corresponding
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quantities, like volume and amount of the gas in the
piston example : if two quantities are completely in-
terchangeable in the model, then one of them can be
left out (a definition of full correspondence is given
below) . At the higher level, one quantity [volume,
amount] remains .

Chunking amounts to compiling subsequent transi-
tive reasoning steps into one abstract inference . In
natural language, this means that an inference like
"the heat is increasing, therefore the temperature is
increasing, and the pressure as well" can be replaced
by "the heat is increasing, therefore the pressure in-
creases as well" . First, only chains of components
of equal type are chunked . However, also differ-
ent types can be chunked . For instance, the chain
formed bv the value determination, quantity
influence, and quantity proportionality in
Figure 2 can in principle be compiled to one in-
ference component deriving JTg > 0 from T, > Tg
immediately (called a combined influence) . Im-
portant to note is that chunking does not reflect
generic abstractions : the resulting reasoning leap
may be only applicable, . in that specific situation .

Grouping composes the different states and transi-
tions between these states . Actually, grouping re-
sults in the top-level view on the state transition
graph generated by the simulator . All components
belonging to the specification of a state are grouped,
as well as all components belonging to a transition
between two states .

Figure 3 : Building the Models

4 chunking

4 hiding of irrelevant details

aggregated
models

These three principles form the basis of the abstraction
algorithm . First, hiding is applied to the base model,
removing fully-corresponding quantities and 'irrele-
vant' branches in the reasoning paths . Then, different
forms of chunking are applied, starting with equal-
type chunking, and then combining pairs and triples
of different types . Finally, the model is grouped into
states and transitions . The aggregation algorithms,
as well as the algorithm for generation of the base
model from GARP's output, are implemented in SWI-
Prolog (Wielemaker, 1994) . A detailed example of the
whole process is presented in a later section .

Roles of aggregated knowledge
models in ITS

Hierarchical structuring of the base model, a reasoning
network, provides shortcuts and fly-overs that have a
number of general functions :

Compilation
The reasoning trajectories are shortened and can be
performed with less effort . This role is the same as
to what purpose reasoning trajectories are compiled
out in knowledge compilation (Anderson, 1983), in
chunking (Laird et al ., 1986), or in explanation
based generalisation (EBG, Mitchell, 1982) . The
mechanisms (simplification and chunking) are the
same as applied in these learning procedures, but
there are two important differences :

" There is no generalisation over cases . Per case
(problem state) the aggregation is constructed .



Of course, it is possible to use the same (EBG)
mechanisms to generalise over cases, in particu-
lar when all possible cases can be generated, or
all cases that are used in teaching are known be-
forehand .

. The aggregation covers all possible correct rea-
soning paths of a case . In EBG and knowledge
compilation the chunking is only over one specific
reasoning trace per case .

Hierarchical decomposition
is a means for efficient control of complex problem
solving . This was also our original motivation to
come to grips with the complex reasoning 'compo-
nents' network . However, in our case, the network
is not a structural model of a device (e.g ., the piston
and container), but a network of (instantiated) in-
ference steps . Therefore, the hierarchical decompo-
sition is rather to be viewed as a problem decompo-
sition, i . e . an instantiated problem solving method
(PSM) or task structure (Breuker, 1994) . In this
context, CD-by-MBD means finding out which of
the (set of) primitive reasoning steps has gone wrong
to explain some error of the student .

Focussing and context in communication
In discourse, aggregation of 'reasoning' plays an im-
portant role too . When we understand discourse,
we construct a macro structure (van Dijk, 1980) .
Macro structures are used to retrieve more specific
information, or to orientate partners in a dialogue
onto the more specific topics of discourse . The ag-
gregated components of the reasoning network may
perform this role when the student and the system
engage in a diagnostic or explanatory dialogue . The
aggregate components can serve to provide the con-
text for diagnostic probes, or for detailed explana-
tions to remedy the student's problem .

The two latter roles of hierarchically organized do-
main knowledge in an ITS support the two major
functions in coaching : performance interpretation and
communication (explanation, remedial) (Salles et al.,
1997) . The first role, knowledge compilation, reflects
the acquisition of a problem solving skill (Anderson,
1983) .

However, the question is whether our aggregation
procedures correspond to what happens to a student
when becoming experienced . The inferences in the
base model are based upon empirical data, but this
does not guarantee, cognitive plausibility of the aggre-
gations constructed . This'is difficult to assess . In the
protocols we found many statements that reflect higher
level, aggregated (correct) inference, but they look in-
cidental rather than systematic . Indeed, one may ex-
pect that chunking is not an all or nothing process,
but occurs by bits and pieces . This is not a problem
because these bits and pieces can easily be recognized

in performance interpretation or discourse . The ques-
tion is whether the bits and pieces are the same as we
have constructed by our procedures . The data in our
protocols are too scarce to come to a conclusion : at
least they do not contradict our automatically gener-
ated chunks . It should be noted that cognitive plau-
sibility is more important for the communication role
than for the hierarchical decomposition required for
diagnosing, because this role is in the first place for
computational efficiency .

An Example
To exemplify the ideas from the previous sections, re-
call the piston system from Figure 2 . The qualita-
tive model we built correctly predicts the different be-
havioural states of the system, assuming there is no
friction, and no heat path between the gas in the con-
tainer and the outside world.'

The Piston Base Model
An excerpt of the model, representing part of the ini-
tial behavioural state plus the transition to the next
state (there is only one successor state from the first
state), is depicted in Figure 4 . The model is an ex-
tension of the part depicted in Figure 2, covering the
same derivation in more detail . Even within one state,
the amount of knowledge involved is considerable, and
we need structuring and filtering mechanisms to guide
communication with a student . This is exactly what
the aggregation algorithms aim at .
The reasoning traces represented are roughly as fol-

lows . At the left side, the bold face expressions like
Pos = s (the position of the piston is in the starting
position) represent the inputs of the model, i . e . the
information that is given to the student, and hence
can be assumed known . The movement of the pis-
ton is modelled as influenced by a `move force' F� ,,
which is the difference between the outward force F,,
and the inward force Fi . Because no friction is mod-
elled, these two forces are equal to the pressure of
the gas and the pressure of the surrounding world, re-
spectively . What happens in the model part shown is
that, because the temperature difference between the
heat source and the gas, T, > Tg, there is a heat flow
Fl > 0, which ultimately causes the outward force to
increase (JF, > 0) . Furthermore, because there is no
pressure difference between the inside and the outside
of the container (Pg = P.), the position of the pis-
ton is stable (SPos = 0), and hence the volume of the
container-piston assembly and the gas do not change
(SV, = 0 and SVg = 0) .2

'The latter assumption was originally not made in the model,
but is only used here to reduce the complexity for reasons of
presentation .

2For reasons of presentation, not all derivationsfor the initial
state are depicted ; most notably missing are derivations about
quantity values that remain constant over the whole prediction.
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IC = inequality correspondence
VD = value determination
QI = quantity influence
QP = quantity proportionality

As described earlier, the base model was generated
by mapping inferences on the set of facts derived by
the simulator . That is, an inference is added if there
is some (set of) input(s) A, some (set of) relation(s)
.-1 ---y B, and some output B . This method works as
long as relations A -> B that hold in a state indeed
produce the expected result B in that state . How-
ever, this is not always the case : for instance, in
Figure 4, the termination component (labeled SIT)
at the bottom does not apply . Although T, > Tg ,
JT, = 0, and 3Tg > 0 hold, the termination is not
effectuated because it is preceded by the termination
Pg = Pu, --~ Pg > Pw (cf. the e-ordering rule (de Kleer
and Brown, 1984)) . The same goes for the second
component from the upper right (labeled SQP) : a pro-
portionality between the volume and the pressure of
the gas holds (neg-prop(Vg , Pg)), but both derivatives
are different .
To represent such non-effective relations, we intro-

duce submissive component types . A submissive in-
equality termination component thus represents a ter-
mination inference that does not deliver an output ac-
cording to its behavioural rule, because it was over-
ruled . In the case of competing causal relations (influ-
ences or proportionalities), the situation is more com-
plex . There are three possible reasons for a causal
relation from A to B to have no effect :

I the derivative of A is zero . In this case, any other
causal effect on B will overrule this one, as was

Figure 4 : Base Model: First State and Transition

SOP =submissive quantity proportionality
IT = inequality termination

SIT = submissive inequality termination
QCy = quantity continuity

shown by the second example above;

II the effect of A is blocked by an explicit constraint .
This is the case when another quantity C is also
influencing B in the opposite direction, and a con-
straint C > B holds ;

III the effect is blocked by an implicit constraint . When
two or more causal relations are competing, and no
explicit constraints are available to resolve the am
biguity, then different behavioural states are gener-
ated that represent the different possible outcomes .
In such a state, an effect can be blocked without an
explicit justification within that state .

Figure 5 illustrates the base model representation of
all three possibilities . In the second and third case,
inference components for competitive relations have
an extra knowledge input, representing the (set of)
constraint(s) that was needed to resolve the conflict .
When no explicit constraint is available (case III), we
generate one, but also label it as being in fact im-
plicit . This way, the teaching system has available
all information needed for explaining the competitive
effects . In the case of explicit constraints, an arbi-
trarily complex set of constraints may be applied to
resolve the ambiguity. Therefore, the additional in-
put can carry any set of constraints . We chose not to
model the actual knowledge needed for applying this
set of constraints to this situation-pure mathematical
reasoning falls outside the scope of our model .



Aggregating the Base Model
Before discussing the different aggregation steps in
more detail, the resulting numbers of components for
the complete model after each successive step are
shown in Table 1 . The table shows that grouping

Table 1 : Numbers of Components after Different Hi-
erarchical Techniques

has the biggest effect ; this is because the network is
reduced to one component for each behavioural state
and one for each transition (in this example both eight
components), no matter how big a state or transition
is .

Hiding of Irrelevant Details The first principle
applied to the base model is that of hiding `irrelevant'
details . For hiding, the effect is particularly strong
in this example because there are a lot of quantity
values involved that never change value in the whole
simulation .' E.g., both the temperature and the heat
of the heat source (T, and H,), as well as those of
the surrounding world (T�, and H,,,), have the value
plus in every behavioural state . At the base level,
this kind of `staying the same' from state to state is
modelled by continuity components, which are ab-
stracted from by the hiding algorithm . As an exam-
ple, consider the quantity continuity component
assigned to the quantity Pos : because its derivative is
zero, its value is the same in the next state . The same
procedure is used for all submissive component types :

3 At the base level, these values are indeed derived, but they
are left out of Figure 4 for clarity of presentation .

Figure 5 : Three Variants on Competitive Relations

dB >0

both submissive termination and submissive causal re-
lation components are abstracted from .
A rather separate part of the hiding algorithm

is concerned with simplifying the model by merg-
ing quantities that are fully-corresponding . In model
terms, two quantities A and B are fully-corresponding
iff two opposite proportionality relations as well as an
undirected correspondence relation exists between A
and B. From a qualitative reasoning point of view,
this definition is too strong : especially the double pro-
portionality can be circumvented by adding additional
constraints on the role of the quantities in the prob-
lem solving process (see for example Schut and Bre-
deweg, 1993 ; Falkenhainer and Forbus, 1991 ; Levy et
al ., 1992 ; Subramanian and Genesereth, 1987) . For
our purposes, however, we merely want to apply data
simplification as a mechanism for abstracting from
what one could call qualitative synonyms : those quan-
tities that are, in the context of this specific simulation
(teaching situation), behaving identically.' We could
weaken the requirements for full correspondence by
adding more complex criteria . However, this would
make the process of explaining this to the student too
complicated and confusing for data simplification to be
worthwhile (see (Schut and Bredeweg, 1993) for more
details) . In our example, the outward force and the
pressure of the gas are modelled as fully correspond-
ing, but also the volume of the gas and the volume of
the container-piston assembly .

In Figure 6, the same model part is shown after ap-
plication of the hiding algorithm . The merged force
and pressure quantities are replaced by the pressure
quantity for reasons of readability ; however, actually
a merge of A and B delivers a new quantity named

4 In fact, we would like another definition of full correspon-
dence in between equality and the current one, which would be
strong enough to derive Pg = PW -+ Fo = F; without modelling
the pressure and force as being quantitatively equal, as is now
required . However, this is not possible in current qualitative
reasoning frameworks . See (Bredeweg et al., 1995) for more
details .

technique nr. of comps nr . of points
(base model) 824 802
hiding 403 517
chunking 220 408
grouping 16 9
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[A, B] . This way, both names can still be used-only
their (similar) roles are no longer separately modelled .
Note also that the proportionality between the volume
and the pressure of the gas (neg-prop(fig, Pg)) has dis-
appeared, because it does not matter for the reasoning
in this state : the volume does not change, hence it has
no effect on the pressure . Therefore, the derivation of
the volume (which is actually merged with the volume
of the container-piston assembly) is removed, because
as a `dead end' it is not vital for the prediction . How-
ever, in later states, when the volume is increasing, its
effect on the pressure becomes relevant, and hence the
derivation of [6'g, VC ] is not abstracted from . This is a
clear example of the first difference with typical ma-
chine learning algorithms : there is no generalisation
over cases (states) .

Chunking The second technique applied is chunk-
ing. This is first done based on transitivity of pro-
portionality and correspondence relations, resulting in
combinations of components of the same type . The
idea is that these kind of chunks of similar compo-
nents, just as fully-corresponding quantities, are most
easily abstracted from . Secondly, we combine those
inferences that are considered more central to the pre-
diction, namely computation of influences and deter-
mination of values from sums or differences, with their
predecessors and successors . This last step reduces
the chains within each state to a minimum . In the
implementation, these two steps (first chunking simi-
lar components, and then chunking different ones) are
done separately, and hence result in two separate levels
of abstraction ; however, Figure 7 shows the result after
both steps in the chunking algorithm . The chunking
algorithm also incorporates a procedure for cleaning
up `dead ends' in the model after the actual chunking .
This is exemplified by the disappearance of the deriva-
tion of Tg > T,, : although this is a valid termination in
this state, its result is not used in the next state, and
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QP = quantity proportionality
IT = inequality termination

Figure 6 : Same Model Part after Hiding of Irrelevant Knowledge

Pg = Pw

OP = quantity proportionality
IT = inequality termination

COI =combined quantity influence

Figure 7 : Same Model Part after Chunking

hence it is considered irrelevant to the main reasoning
trace .

Grouping Finally, grouping selects the different
states and transitions, and creates one component for
each . As a result, the format of the data flow be-
tween the components changes from single expressions
to sets of expressions, representing complete state de-
scriptions at the previous hierarchical level . However,
because we already abstracted from a large part of the
quantities, here the expression sets are small, and con-
tain only those expressions that are essential to that
specific state or transition .

SS = state specification
ST = state transition

Figure 8 : Same Model Part after Grouping
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Employing the Models

Having built the models bottom-up, starting from the
output of GARP, the important question is whether
the result is useful in a teaching environment . For
the mere purpose of model-based diagnosis of student
behaviour, it is obvious that the complexity can be re-
duced drastically by focussing the diagnostic process
using the higher-level components . But also for sup-
porting the communication with the student about his
or her reasoning on different grain size levels, the hi-
erarchy of models may prove useful . As is indicated
by the example model presented above, the abstrac-
tions hide less relevant information from the model,
and hence delivers the central pieces of the prediction
task at the higher levels .
As a first example, consider the model after group-

ing (Figure 8) . The remaining expressions are exactly
those needed to derive that the pressure difference be-
tween the gas and the outside world will change . Al-
though other things happen, such as the changing tem-
perature difference between the gas and outside world,
this is the most important derivation because it is the
trigger for the movement of the piston in the next state .
In fact, this is not a coincidence : the algorithm takes
into account the role an expression plays in a succes-
sor state S by looking at whether the derivation stops
in a dead end in S or not . Important to note is that
a central issue like heat is not present in the most ab-
stract model : this is caused by the fact that the heat
is not at the inputs, nor at the outputs of the model .
That, is, it is not a given (because these are adapted
to more common sense knowledge to avoid confusing
the student), nor an important `end product' of the
reasoning like the position of the piston . This way, we
can use the top level model to communicate about the
core behaviour of the system in common sense terms
like temperatures and pressure, and hide the concept
of heat . This is not to say that the concept of heat
is not a key notion in understanding what is going
on-only that we have the choice of abstracting from
it .
As a second example, consider the model after appli-

cation of the hiding algorithm (Figure 6) . The 'addi-
tional' knowledge compared to the highest hierarchical
level is that it shows the complete correct path that is
needed for calculating all changes : the changing pres-
sure ratio as well as the changing temperature ratio
between the gas and the ntitside world . Here, we can
also talk about the heat flow, the increasing heat of
the gas, etcetera . `Irrelevant' reasoning, like deriving
that the inequality T, > Tg does not change at the
moment, is still abstracted from .
On the basis of one example model, we can not claim

that the aggregation algorithms described will always
yield cognitively plausible abstractions . However, the
example shows that the main principles on which the

algorithm is based allows for starting with only the
main aspects of the correct simulation, thereby de-
creasing the size and complexity of the network dra-
matically . If the teaching process requires so, we can
gradually zoom in on the underlying details .

Related Research
Within the field of qualitative reasoning, some re-
search has been done on summarising the results
of qualitative simulations . In (Gautier and Gruber,
1996), an approach is described to collapse chains
in a causal order graph of quantity relations for the
purpose of simplifying explanations . This approach
uses two salience heuristics to collapse chains . The
first one collapses a chain equalities of the form Vl =
V2, V2 = V3 , . . ., V�_1 = V� into one equality Vi = V� .
Collapsing equality chains shows some resemblance to
our notion of fully-corresponding quantities, because
in both cases the idea is to dispose of sets of quan-
tities (quantity values) that do not play distinctive
roles in the simulation . In addition, chunking corre-
spondence components is also a form of combining re-
lated quantity values, although this does not apply
only to equalities : correspondence relations can also
be defined between different values in different quan-
tity space . The second heuristic is to collapse paths of
indirect influences into single ones, comparable to the
process of chunking proportionalities .
The major difference between our approach and the

one described in (Gautier and Gruber, 1996) lies in
the main application of the technique : while they fo-
cus on explanation, we focus on teaching a reasoning
process . As such, we do not aggregate the relations in
the causal order graph itself, but a model that repre-
sents the reasoning steps that can be made with these
relations . This way, we can locate those reasoning
steps that a student did not yet master, and not only
the causal relations they do not know.
Most other approaches that are aimed at simplify-

ing simulation outputs are at the level of states . For
instance, Mallory et al . abstract complex behaviour
graphs by reducing the number of states to be consid-
ered (Mallory et al ., 1996) . This approach is comple-
mentary to ours, where we take the number of states
and state transitions as a given, and try to abstract
from less relevant details in the reasoning that is done
`within' these states and transitions .

Conclusions
In this paper we have described a two step process to
construct a cognitively plausible domain representa-
tion for coaching problem solving in qualitative physics
in a semi-automatic way. All procedures have been
implemented in SWI-Prolog (Wielemaker, 1994) and
tested . These procedures are fully generic for all types



of domains that lend themselves to qualitative mod-
elling . For instance, we have applied the procedures
to physics (like the piston domain), but also to eco-
logical behaviour (succession in the Brazilian cerrado
vegetation, Salles, 1997) . The tools developed, a qual-
itative simulator GARP and the aggregation machin-
ery, allow the semi-automatic generation of fully de-
tailed and hierarchical reasoning networks that can be
used as very efficient domain model(s) in an ITS. Of
course, not all knowledge acquisition `by hand' has
been abandoned . The model fragments (behavioural
description of the parts of a physical system) have to
be specified . This is not trivial as modelling is still
an important issue in QR research (Schut and Bre-
deweg, 1996) . However, once the generic knowledge
has been modelled, specifying the other inputs to the
qualitative simulator, i .e ., the problem descriptions, is
indeed trivial, and may also be automated . The gen-
eration of the base model and aggregation process are
fully automatic .

The most important results from this work can be
summarized as follows :

" The use of qualitative reasoning models in learning
environments, including cognitively plausible rea-
soning steps resulted from 'reverse engineering' on
the basis of data from human reasoning protocols ;

" The automatic generation of hierarchical structure
in the domain model (a reasoning network) by hid-
ing less relevant knowledge, chunking and grouping,
and use of this hierarchical model for communica-
tion purposes ;

" The availability of reasoning traces at different lev-
els of abstraction, plus the decomposition relations
between these levels . This is a major advantage over
abstraction of the qualitative knowledge before the
simulation, which would result in separate models
at fixed levels of abstraction .

Results from two domains (balances, pistons) are
currently evaluated in a stripped version of an ITS .
The ITS consists mainly of an adapted model based
diagnoser, that has been described earlier (de Koning
et al ., 1995 ; de Koning et al ., 1996) . To this diagnoser,
a simple communication component (discourse gener-
ator) is added to enable the diagnoser to ask questions
(probes) to the student .
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