
Abstract

The paper presents a tutorial overview of the main
problems arising from (quantitative) system
identification . The fundamental issues of
identifiability, overparametrization and model
comparison are addressed within a probabilistic
framework . After having classified models according
to their linearity with respect to the unknown
parameters, it is explained why system identification
is definitely easier for linear-in-parameters models .
The paper also illustrates some speck features of
dynamic system identification, namely the distinction
between output error and equation error models, the
need for persistently exciting input signals and the use
of prefiltering .

Identification : From data to models

Mathematical models of natural and man-ma e systems play
an essential role in today's science and technology . The
applications of models range from simulation and prediction
to control and diagnosis in heterogeneous fields such as all
branches of engineering, economics, medicine, physiology,
geophysics, and many others . It is therefore natural to pose
the question where mathematical models come from . If we
depict a model as a box containing the mathematical laws
that link the inputs (causes) with the outputs (effects), the
three main modelling approaches can associated-with the
"colour" ofthe box .

inputs

	

outputs
-~ model

White box modelling : The model is derived directly from
some first principles by taking into account the connection
between the components of the system . Typical examples
are found in mechanical and electrical systems where the
physical laws (F = ma, for instance) can be used to predict
the effects given the causes. Rather than white, the box
should be termed "transparent", in the sense that we know
the internal structure of the system

Grey box modelling : Sometimes the model obtained by

System Identification:
Problems and perspectives

G. De Nicolao
Dipartimento di Informatica e Sistemistica, Universiti di Pavia,

Via Ferrata 1, 27100 Pavia, Italy,
denicolao @conpro.unipv.it

invoking the first principles is incomplete because the value
of some parameter is missing . For instance, a planet is
subject to the gravitation law but its mass is unknown . In
this case, it is necessary to collect experimental data and
proceed to a tuning of the unknown parameters until the
outputs predicted by the model match the observed data .
The internal structure of the box is only partially known
(there are grey zones) .

Black box modelling: When either the internal structure of
the system is unknown or there are no first principles
available, the only chance is to collect data and use them to
guess the links between inputs and outputs . For instance,
this is a common situation in economics and physiology.
However, black box modelling is also useful to deal with
very complex systems where the white box approach would
be time consuming and expensive (an example : modelling
the dynamics of an internal combustion engine in order to
develop the idle-speed controller) .

System identification is concerned with the development and
analysis of methods for performing grey and black box
modelling (Ljung, 1987), (Sbderstrom and Stoica, 1989),
(Haber and Unbehauen, 1990) (Juditsky et al ., 1995),
(Sjtiberg et al ., 1995) . Differently from white-box
modelling that is intimately related to the specific knowledge
domain (mechanics, thermodynamics, electromagnetism,
. . . ), system identification covers a number of
methodological issues that arise whenever data are
processed to obtain a quantitative model .

The present contribution is an attempt at giving a tutorial
overview of the main problems arising from quantitative
model identification . It is hoped that this could be a stimulus
towards aprofitable interaction between the quantitative and
qualitative viewpoint.

Identification as hypersurface reconstruction

A mathematical model can be thought of as a mapping f(-)
that expresses the dependent variables (the outputs y) as a
function of the independent ones (the inputs u) :

To make a simple example, consider the fundamental law of



dynamics F=ma, that predicts the acceleration (the effect)
as function of the applied forceF (the cause) given the mass
m. Then, y = a, u = F, and f(u) = u/m.

In general, both y and u can be vectors : y
_ [y! y2 . . . yp]', u = [u] u2 . . . u m ]' . For the sake of
simplicity, hereafter it will be assumed that y is scalar
(p = 1) . Then, in the simplest case (m = 1), the map (1)
corresponds to a curve in the (x,y)-plane a curve. If m = 2,
then (1) represents a surface . For m > 2, (1) is an
hypersurface in a suitable space .
When performing identification, only a finite number of

noisy samples are available :

y(k) = f(u(k)) + v(k), k = 1,

	

2,

	

. ..,

	

N

	

(2)

where the term v(k) accounts for the (unavoidable)
measurement errors . If we postulate the existence of a
model (1) that explains the data, then the identification
process is equivalent to reconstructing ("learning") the
hypersurface f(u) from the pairs (u(k),y(k)) ("examples",
"training set") According to this viewpoint, there are clear
connections with function approximation theory (Poggio
and Girosi, 1990), learning theory, neural networks
(Narendra and Parathasarathy, 1990) and, last but not least,
statistics (Beck and Arnold, 1977) whenever the
measurement errors are given a probabilistic description.

Linear vs . nonlinearmodels

At first sight there is no hope to reconstruct the hypersurface
flu) from a finite set of pairs (u(k),y(k)) unless some further
assumptions are introduced. In this respect it is common to
assume that fu) belongs to a family of functions that share
the same structure and differ for the values taken by suitable
parameters . In other words, f(u) = f(u,0), e
= [61 92 - ep]' . To make an example, one may assume
that a good approximation for f(u) is a third-order
polynomial, i .e .

f(u,6) = 61 + 02u + 63u2 + e4u 3	(3)

In this case, the identification problem boils down to
estimating the values of the four parameters 6i .

As will be discussed later on, the identification problem
is harder for models that are nonlinear in parameters . Note
that this has little or nothing to do with the possible linearity
of the model with respect to the input u . For instance,
f(u,e), in (3) is clearly nonlinear with respect to u, but
linear with respect to the parameter vector e . Conversely,
the model

y =f(u,0) = exp(-0 u)

	

(4)

is nonlinear with respect to e . Letting y = !n(y), model (4)
can be reduced to a linear one, i .e.

y=-eu (5)

This kind of trick, however, is not always possible .

Moreover, there are statistical reasons that may suggest the
use of the nonlinear model (see "The nonlinear case"
section) .

The probabilistic paradigm

If the data y(k) were error-free, it would be relatively easy
to estimate the parameter vector e . In the most favourable
case, it would suffice to take q measurements in order to
uniquely determine (through the solution of a system of q
equations) the q parameters 61, 62, .. ., eq .

Given the unpredictable nature of the measurement error,
it is rather natural to model the errors as random variables .
They are usually assumed to be zero-mean and incorrelated .
If the imeasurements have not the same precision, it is
important to know their variances a2,t = Var[v(k)] or at
least their ratios . In conclusion, the probabilistic paradigm
amounts to assuming that the data are generated according to

y(k) = f(u(k),e°)+v(k), k = 1, 2, . . ., N

where e° is the "true" parameter vector and v(k) are errors
with some known statistical properties .

The advantage of using a probabilistic formulation, is
that the identification problem can be rigorously solved
following the guidelines of statistical estimation theory. For
instance, if the probability distribution of the errors is
known (Gaussian, for instance), one can resort to the
maximum likelihood estimator.
An important point of the probabilistic paradigm is that

any parameter estimate b, being a function of the measured
data y(k), is a random variable itself. This reflect the fact
that repeating the identification procedure on a set of newly
collected data (with different measurement errors) would
lead to a different model . Due to such randomness, no
identified model is 100% reliable so that it is indispensable
to complement all estimated parameters with their
confidence intervals . An estimator is good if the probability
distribution function of the estimated parameters is centered
around the true parameter values (i .e. E[b] = e°) and has
small variance .

The linear case

Consider a linear-in-parameters model . Letting Y= [y(1)
y(2) . . . y(N)I' and V = [v(1) v(2) . . . v(N)J' be the
observations and errors vectors, it is always possible to
write

where ~b = 4~(u(1),u(2),. . .,u(N)) is a suitable Nxq matrix
called sensitivity matrix . Hereafter it is assumed that
N > q, i .e . there are more data than unknown parameters .
It is also assumed that the errors are incorrelated and have
all the same variance : Var[v(k)] = cr2 o O, b'k .



Under the above assumptions, one can look for the so-
called BLUE (best linear unbiased estimator), namely the
estimator that has minimum variance among all linear
estimators such that EM = 6° . If the errors are Gaussianly
distributed such an estimator coincides with the maximum
likelihood one and, more importantly, has the minimum
variance among all (linear and nonlinear) unbiased
estimators .

Let E = [e(1) E(2) . . . E(N)]' = Y-06 denote the
residuals vector. It turns out (Beck and Arnold, 1977) that
the BLUE 6 is the vector 6 that minimizes the sum of
squared residuals

N
SSR(6) = (Y-06)'(Y-fib) = T, £(k)2

k=1

The values of 8 that minimize SSR(6) satisfy the so-called
normal equations

If (D has no linearly dependent columns, i .e . rank(d)) = q
(identifability condition), the unique solution of the normal
equations is the linear IS (least squares) estimator

6 = (4 .(DrIvy

From a numerical point of view care must be used in the
solution of the normal equations . However, this is not a
major problem for the user as ready-made specific
algorithms are available in commercial software packages.

It is also possible to assess the variance of the estimated
parameters . Indeed, the variance of the j-th entry of 6 is
given by thej-th diagonal entry of the matrix

Cov[b] = (4)'(D)-1a2

If a2 is not known, it can be estimated as

62
_ SSR(6)

N-q

Normal equations

Identifability

When the identifiability condition is not satisfied, O'D is
not invertible and the normal equations admit an infinite
number of solutions so that the identification procedure fails
to provide a unique solution. This is a symptom of
overparametrization in the sense that some parameters (or
linear combinations of them) are superfluous . In practice,
rather than being singular, 0') will be close to be singular.
Nevertheless, overparametrization can still be detected from
the condition number of VO (a measure of how far a
matrix is from being singular) as well as from the SD's
(standard deviations) of the estimated parameters (if the SD

is more than twice the parameter estimate, there is a
reasonable suspect that the parameter is not significantly
different from zero)

There are two possible causes of overparametrization .
First, it may be that an unnecessarily complex model has
been chosen for describing the physical behaviour of the
system at hand (example : a first-order electric circuit has
been described by a second-order model) . This calls for the
comparison of different models in order to choose the
"right" one (see the "Occam razor" below) .

The second cause of overparametrization has to do with
inadequate data collection . Even if the model is correct, it
may be impossible to uniquely estimate all its parameters
because the data do not bring sufficient information
(example : in a linear model y = 01+62u, if u(k) = a, Vk,
it will be impossible to estimate both 61 and 62). The only
possible remedy is an accurate experiment design in order to
thoroughly explore all significant regions of the
hypersurface f(u). In the dynamic case this has to do with
the use of "persistently exciting" input signals (see "The
dynamic case" section) . When the experiment design cannot
be changed, one will have to estimate a lower order model
even if it is known that the "true" model is more complex.

Mamoshka models and the Occam razor

When performing black-box modelling, it is a common
practice to identify several models which have different
complexity and then compare their performances in order to
select the "best" one .

To make an example, in order to model the curve
y =f(u), one could consider as candidate models all
polynomials in u with order ranging from 0 to 3 . Then,
there are four possible model structures :

MI : Y=61
M2 : y = 61 + 62u
M3 : y = 81 + 62u + 63u2
M4:

	

y = 61 + 62u + 63 u2 + 64u3

It is apparent that Mk is a particular case of Mk+t, i .e . the
models are nested as matrioshka dolls (the technical
definition is "hierarchical models") . Note by passing that the
problem of comparing matrioshka models can arise also
within the context of grey box identification . An example
could be the problem of assessing whether the kinetics of a
certain drug is better described by a single- or two-
compartment model .

Coming back to our example, after having computed the
LS estimator in the four cases, the problem of finding the
best model has to be addressed . Recalling that SSR
minimization has been used as a criterion for estimating the
parameter vector within a given model structure, one could
be tempted to use the same criterion in order to compare
model structures . However, this is a nonsense since it is
easily seen that, letting SSRk be the SSR of the IS estimate
relative to the k-th model, it always holds that
SSRk+1 < SSRk (Beck and Arnold (1977), (Ljung, 1987),
(Soderstrom and Stoica, 1989) . In other words, an increase



of the model complexity inevitably leads to smaller
residuals . In particular, it is well known that fittingNdata
by means of an (N-1)-th order polynomial yields null
residuals .

At this point one could ask what is wrong with a model
that interpolates the observed data or, compatibly with the
desirable complexity, approximates them as closely as
possible . The answer is that such a model would be good
only in absence of measurement errors . When noise is
present and "too many" parameters are estimated, the
identified model uses the extra parameters to learn the noise
in the data. This can be practically checked by testing the
identified model on a set of "fresh" data (validation data) not
used in the identification phase . A model that fits too closely
the identification data will be unable to satisfactorily predict
the validation data where the noise takes different values .
When the data are abundant, it is convenient to use only a

part of them for identification leaving aside a validation set
for model selection purposes. Then, after a set of models
having different structure has been identified, one will select
the model that minimizes the sum of squared residuals
SSRv computed on the validation data.

For a more formal analysis, assume now that there is a
"true" model of order q, in the sense that the observed data
are generated according to (6) . Then, if an unnecessarily
complex model of order q+r has been identified (for
instance, (6) corresponds to a quadratic function of u and a
cubic polynomial has been identified, i .e . q = 3, r = 1), it
can be proven that (Ljung, 1987), (Sbderstr6m and Stoica,
1989)

E[SSRv] = a2(N+q+r)

	

(7)

Therefore, the presence of superfluous parameters
deteriorates (on the average) the predictive performance of
the identified model. Expression (7) can be regarded as the
mathematical formulation of the principle ofparsimony ("do
not use additional parameters if they are not necessary"),
which is a particular case of the so-called Occam razor
("entia non sunt multiplicanda praeter necessitatem") .

In some cases there are no sufficient data to form an
identification and a validation set . Then, a number of
alternative criteria have been proposed for finding the best
model within a set of matrioshka models. Among them, the
most popular ones are based on the minimization of the
following cost functions (Ljung, 1987), (Soderstr6m and
Stoica, 1989) :

FPE =
4

SSR

AIC

	

=N +ln(SSR)

MDL = In(N) 9

	

+In(SSR)

FPE, which stands for Final Prediction Error, is an estimate
of (7) . AIC (Akaike Information Criterion) and MDL
(Minimum Description Length) are based on information
theoretic principles. Note that all the above criteria penalize
the SSR but also include a penalty on the order q of the
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model . For instance FPE -* - as q -+ N. In general, the
optimal model order according to the different criteria is not
necessarily the same although it does not usually change too
much . In particular, FPE andAIC are roughly equivalent (at
least for large N), whereas MDL is more parsimonious in
the sense that it leads to the choice of models with less
parameters.

N
E(k)2

WSSR(6) = ,
k=1 62k

Other errormodels

So far, it has been assumed that the measurement errors
have the same variance . If, on the contrary,
Var[v(k)] =02k , just let Ev = diag (a2k) denote the
covariance matrix of vector V. Then, it is possible to prove
(Beck and Arnold, 1977) that the BLUE 9 is the minimizer
of the-weighted sum of squared residuals

The closed-form expression of 9 is the WLS (weighted least
squares) estimator

8 -_ ($yV 1~)_l~ yY JY

Then, by suitable adjustments, all the results relative to the
(unweighted) LS case can be extended to the WLS case.

The nonlinear case

Under the probabilistic paradigm, it is always possible to
write

Y = 4)(e °) + V

	

(8)

where Y, V, e° have been defined before and Off') is a
suitable NxI vector of functions (dependence of 4) upon u
is omitted for the sake of notation) . Hereafter it is assumed
that N> q and the errors v(k) are independently and
identically distributed Gaussian variables . All assumptions
about v(k) can be easily relaxed except for Gaussianity.
Nevertheless, the following identification procedure is likely
to provide satisfactory results also in the non-Gaussian case
if the size of the errors is not too large.

The maximum likelihood estimator

Let E = [E(1) E(2) . . . E(N)]' = Y-4)(e) denote the
residuals vector. Then, the ML (maximum likelihood)
estimator 6 can be shown (Beck and Arnold, 1977) to be
the vector e that minimizes

N
SSR(e) _ (Y-~(e))'(Y-~(e)) _ Y, E(k) 2	(9)

k=1

Although the analogy with the linear case is apparent, there
is a major difference in that SSR is no more a quadratic



function of 6 . Hence, in general, there exists no closed-
form formula for the ML estimate which, rather, must be
searched through the numerical solution of the "nonlinear
least squares" problem (9) .
As already mentioned, some nonlinear models can be

made linear by suitably transforming the output variable, see
e.g . (4) and (5) . In so doing however, also the errors are
transformed so that minimizing the SSR for (5) will not
yield the same estimate obtained by minimising the SSR for
(4) (obviously, the differences tend to vanish if the errors
are small) . Nevertheless, the estimate obtained from the
linear model (5) can prove very useful as initialization of an
iterative algorithm that calculates the ML estimate for (4) .

Skiing in the fog

Nonlinear optimization is usually performed by means of
iterative schemes of the type

0k+1 = ek + &(ek)

	

(lo)

where ek denotes the approximation of the parameter vector
at the k-th step of the algorithm. In (10), the correction term
o(ek) depends on SSR(ek) and possibly also on
dSSR(9)/de and d2SSR(eYde2 evaluated at e = ek . Some
classic iterative algorithms (Dennis and Schnabel, 1983),
(Fletcher, 1987) are the gradient (not very efficient), Gauss-
Newton, and Newton-Raphson (more efficient but
computationally expensive) . Other possible algorithms
include simulated annealing, pattern search methods, and
genetic algorithms .

Differently from the linear case where the numerical
issues are not a major concern, nonlinear optimization is
made nontrivial by the possible presence of multiple local
minima where the estimate can get trapped . A good way to
appreciate the difficulty of the minimization problem (9) is
to consider a model with two parameters . Then,
SSR(e1,62) is a surface whose absolute minimum must be
searched for . The iterative algorithm is similar to a person
skiing on that surface who aims at reaching the lowest point
in the valley . Since at each step the available information is
of local type, this is like skiing in the fog .

	

_
In view of the possibility of ending trapped in a local

minimum, it is clear that the result of the algorithm will be
affected by the starting point . Sometimes, the algorithm may
even fail to converge if the initialization is not sufficiently
close to a local minimum. In order to maximize the
probability of finding the absolute minimum it may be
convenient to repeat the execution of the algorithm with
different initializations but this obviously increases the
computational effort. It is worth stressing that the
availability of a good initial guess of 6 can play an essential
role for the successful solution of the problem

Confidence intervals, identifrability, model comparison.

Once, the ML estimate 6 has been computed, a number of
issues including confidence intervals, identifrability and
model comparison can be addressed by linearization (Beck
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and Arnold, 1977) . Indeed, let Y = Y-41(6) , 9 = 6-9,
and d) = d4) (6)/d6 evaluated at e = O k . Then, in a
neighbourhood of 6 = 6,

Y- 66 + V

so obtaining, at least locally, a linear model to which the
results of the previous section can be applied .

About neural networks

In the last decade there has been a growing interest for
identification methods based on neural networks (Poggio
and Girosi, 1990), (Narendra and parathasarathy, 1990),
(Sj6berg et al ., 1955) . As a matter of fact, they are just
particular classes of models which, depending on the type
of neural network, can fall into the linear or the nonlinear
case .

It is worth pointing out that the neural network
community uses a particular jargon . Below, the main terms
are reported together with their "translation" in the system
identification terminology :

Radial basisfunction neural networks

The output of an RBF (radial basis function) neural network
(Poggio and Girosi, 1990) is just a linear combination of
functions with radial symmetry centered in points ak e Rm
called centers

v
y = f(u) _ Y, eA(JJU-QkJJ)

k=1

A typical choice for h(-) is a Gaussian function:

Once the radial function h(-) and its parameters (e.g. c in the
above Gaussian function) have been selected, the model
parameters are the centers rik and the amplitudes 6k . Note
that, if the Gaussian functions are interpreted as
membership functions, there is some analogy with fuzzy
models .

In practice it is rather common to assign the location of
the centers by means of some heuristic algorithm Once the
centers have been fixed, the model is linear in the
parameters ek, so that all the considerations made for the
linear case can be applied.

network H model
weights H parameters

train H identify
examples, training set H observations

overtraining H overparametrization



The output y of a single perceptron (Haykin, 1994) is given
by

d

y = f(u) = h (I w ;u ;) = h(w'u)
,_o

where w = [WO wl w2 . . . wdl is the weights vector and
the so-called "activation function" h(z) is a sigmoidal type
nonlinearity, e.g .

h(z) = (1+exp(-Pz))-'

Multilayerperceptions

Once h(z) has been selected, the free parameters are given
by the weights wi . A multilayer network of perceptron is
obtained by connecting the outputs of the perceptron
belonging to a given layer with the inputs of the perceptrons
of the subsequent layer . The inputs of the perceptrons of the
first layer are the model inputs ul u2 . . . u,n , whereas the
model outputs yl Y2 . . . yp are the outputs of the
perceptrons of the last layer.

Differently from RBF neural networks, multilayer
perceptrons are nonlinear in parameters . In fact, it is well
known that their training can be difficult and time
consuming due to the presence of local minima.

Identification of dynamic models

A dynamic model is characterized by the fact that the present
output does not depend only on the present input but also on
its past history. Such models are typically described by
means of ordinary differential or difference equations and
pose the most challenging identification problems .

In principle, the identification of a dynamic model can
always be reduced to the schemes already analyzed in the
previous sections . For instance, consider the first-order
differential equation

X = ex, X =Xo

x(t) = xo exp(-8t)

ln(y) = ln(xo) - 9u

where 9 is an unknown parameter and yo is the (known)
initial condition (this problem could typically stem from
grey box modelling) . The solution is

so that, letting y = x, u = t, f(u,6) = xo exp(-9u), the
model has been written in the form (1) . The observations
could be the values y(k) = x(tk) observed at the times
u(k) = tk . Although (11) is a linear differential equation,
the model to be identified is nonlinear in 6 . In this case it
may be useful to refer to the linear model

in order to obtain initial guesses for 6 (see "The nonlinear
case" section) .

Although the identification of dynamic models can be
reduced to the general framework, they have some specific
features that deserve to be discussed separately . To keep the
exposition at an acceptable level of complexity it is assumed
that both the input u and the output y are scalar signals
which are uniformly sampled, so that reference is made to
the sampled values uk = u(tk), yk = y(tk), k = 1, . . .,N,
where T is the sampling period . Then, a fairly general
dynamic model is represented by the difference equation:

Yk =f(Yk-1, . . .,Yk-ny .uk_1, . . .,uk_ �u)

	

(12)

where, as usual,f. ) is a hypersurface to be reconstructed .

Output errorvs. equation error models

The most natural way to allow for the presence of the noise
vk is to assume that at each discrete-time instant k a noisy
measuremc ~- :

zk = Yk + Vk

	

(13)

is available . Since the error has been added to the output,
this is called OE (output error) model (Ljung, 1987),
(S6derstr6m and Stoica, 1989) . Note that yk is updated
according to (12) where no noise term is present.

Alternatively, one can add the noise term within the
difference equation (12) yielding

Yk =f(Yk-1, . . .,Yk-ny,Uk-l, . . .,Uk-nu) + Vk

which is an EE (equation error) model (Ljung, 1987),
(Sbderstrom and Stoica, 1989) . Now, the value yk depends
(through yk_1 . . . .,yk_ny) also on the past values of the noise .
In many cases this model is less natural but, as seen below,
it may be far easier to identify .

As a particular case,f . ) may have a linear structure, i .e.

f = ajyk_I+ . . .+anyyk-ny
+bluk-1+ . . .+bn4uk-au

	

(15)

Then, the model is characterized by the parameter vector

B = [al a2 . . . any bl b2 . . . bnul'

In the linear case, the EE model is better known as ARX
(AutoRegressive eXogenous) model . By analogy, nonlinear
EE models are also known as NARX (nonlinear ARX)
models.

Simulation vs. prediction

(14)

For a given OE model, the residuals are obtained by
simulating the model using the inputs uk and computing the
difference between the measures zk and the calculated output
yc More precisely,



Yk =f(yk_1, . . .,Yk.nyuk_I,. . .,uk_nu)

Ek = Zk - Yk

Then, the SSR is defined in the usual way and identification
can be performed using standard algorithms. In general,
even when f is linear as in (15), it turns out that the
residuals are not a linear function of 6 . Consequently, one
has to cope with nonlinear estimation and all related
problems (convergence, initialization, local minima, . . . ) . A
notable exception is whenfin (15) does not depend on past
values of yk but only on Uk_),. . .,Uk_�u Then, the model is
linear-in-parameters and can be identified by linear least
squares . In such a case, the coefficients bl b2 . .. bnu
coincide with the impulse response of the system, so that
this is called a FIR mite impulse response) model . The
main drawback is that a large number n� of coefficients may
be necessary to describe systems with slowly decaying
impulse responses and this can cause overparametrization
problems .

Conversely, for a given EE model, the residuals are the
difference between yk and the predicted output 9k calculated
using past values of Yk and uk. More precisely

Yk =f(Yk-I, . . .,Yk-ny,Uk-1, . ".,Uk-nu)

Ek = Yk- h

If an ARX model is considered,

Ek = Yk - a1Yk-1

	

anyyk_ny
- b1Uk_I -. . .- bnuuk_nu

Yk = 81Yk-1+ 02Yk-12 + g3uk.12 + vk

(16.a)
(16.b)

so that the residuals linearly depend on the vector 6 .
Consequently, ARX models fall within the linear case and
can be easily identified by linear least squares . Remarkably,
from (16) it is seen that also NARX models are linear-in-
parameters provided thatfis a linear function of 0 (Chen et
al ., 1990) To make an example, the NARX model

is linear in 01, 82, e3 .
In conclusion, ARX (and also some NARX) models

enjoy the advantage that their parameters can be directly
computed by solving the normal equations . Their drawback
is that they aim at minimizing the prediction error rather than
the simulation one . In general it is easier to predict than
simulate . In fact, a simulator calculates the output using
only the past inputs, whereas the one step-ahead predictor
can take advantage of the knowledge of the past values of
the output. It may well happen that a model provides good
one-step-ahead prediction but is largely unsatisfactory for
what concerns simulation . For some applications such as
the design of control systems, it may suffice to have a good
predictor but this is not always the case . It is worth noting
that the difference between the parameters estimated via the
OE and EE approaches vanishes if the measurement errors
are close to zero .

Persistent excitation

Assume that the observed data have been generated by a
"true" ARX model having the same structure as the model to
be identified. Even in this idealized case, identifiability is
not guaranteed unless the input uk is properly chosen . To
make a limit example, no parameter can be identified if
Uk = 0, b'k, since (assuming zero initial conditions) this
implies that Yk = vk, i .e . the output is pure noise.
A formal analysis of the identifiability condition for ARX

models leads to the definition of order of persistent
excitation of a signal (Ljung, 1987), (Sbderstr6m and
Stoica, 1989), which, roughly speaking, is equal to the
number of spectral lines in the Fourier spectrum of the
signal . For periodic signals np is not greater than their
period, whereas, if uk is a sequence of independent random
variables, then np =-. A necessary condition for
identifiability is that uk has order of persistent excitation np
at least equal to the number of bk parameters in the ARX
model.

More in general, the moral is that it is not possible to
identify complex systems unless they are properly excited
by their inputs which should contain as many harmonics as
possible .

P'elilterin8

As already mentioned, if the errors vk are "small", the
identification of the EE ARX model (14), (15) is roughly
equivalent to identifying the linear OE model (13), (15) but
is much more efficient . As a matter of fact, the possibility of
approximating an OE model passing through a EE one is not
restricted to the case of negligible errors .

Very often, one is interested with the dynamic behaviour
of the system at "low frequencies" and the input uk has a
low-pass spectrum Therefore, although the noise vk is not
negligible, it is likely that at low frequencies it will be
dominated by uk . Then, if both uk and yk are low-pass
filtered, the resulting filtered signals will be practically
independent of the values taken by vk . Consequently, an
ARX model identified using the filtered input and output
will provide a good approximation (at low frequencies) of
the dynamics of a linear OE error model identified from uk
and yk (Ljung, 1987), (Sbderstrbm and Stoica, 1989) .

Otherissues

There are a number of topics concerning the identification of
dynamic models that have not been treated for the sake of
conciseness . Among them, one could mention alternative
model structures such as the ARMAX (AutoRegressive
Moving Average eXogenous) models, and adaptive
identification algorithms (Ljung and Sbderstrbm, 1983)
which perform on-line adaptation of the model parameters in
order to track variations of the system dynamics.
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