
Numbers Representable in Pure QSIM

Abstract
The standard number representation for
qualitative reasoning is shown to be more
powerful than commonly thought. We prove that
this scheme, based on ordered lists of symbols
for critical values and corresponding value

tuples fixing points on the curves relating
variables, is sufficient for representing the
equality of a landmark to any specified number
in the radical extension of the set of rational
numbers, as well as the numbers 7t and e. This
suggests that the perceived "weakness" of
qualitative reasoners stems not necessarily from
their representational setup, but from the nature
of the algorithms they employ on their input
models .

Introduction
The quantity space representation for numbers
is a standard feature of qualitative reasoning
[8,2] programs. This representation, in which
the value of a particular quantity is shown
either as a landmark (a symbol standing for an
interesting threshold) or an interval between
two consecutive landmarks, is commonly
regarded [1] as a quite weak (i.e . abstract) one.
The only obvious things one can say about a
value in the quantity space framework are its
sign and its ordinal relationships with other
points or intervals in the same quantity space.
One also employs corresponding values (tuples
of landmarks satisfying a known relation
between system- variables) to represent
additional knowledge about the curves of such
relations, and, in the same time, the relative
magnitudes of the landmarks involved. The
ability of qualitative reasoners to deal with
systems for which only this kind of incomplete
information is available is considered to be one
of their strong points, so this perceived degree
of abstraction is suitable in most cases.
However, the qualitative reasoning community
has recently come under criticism [5] for the
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supposed inadequacy of a typical example of
their programs in performing "expert
reasoning," and this problem has been
attributed to the employed "modeling language,
behavior representation, and algorithm."
Furthermore, certain applications require
number representations which allow somewhat
more exact statements and deductions to be
made about the values of the variables in the
system under consideration. In some cases, one
possesses more knowledge about the numerical
values of some individual landmarks, or the
ratios of two landmarks of the same variable,
and would like these facts to be taken into
account by the reasoner. In other cases, one
might want to inspect the output of a
qualitative reasoner to see whether new
information of this sort about the landmark
values has been produced. Several "extended"
schemes, which allow the representation of
these kinds of information by using "mixed"
qualitative-quantitative approaches, have been
devised. [3,4,11,2]
In the rest of this paper, we show that a well-

known and widely used quantity space- and
corresponding value-based representation,
namely that of Kuipers' original QSIM [2]
algorithm, is powerful enough to represent the
equality of a landmark to any specified rational
number, as well as elements of a sizable subset
of irrational numbers.

Table 1. The qualitative constraint types
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For a detailed explanation of QSIM, see [2],
which is the standard reference . In the
following, we use only the "pure QSIM"
constraints shown in Table 1 . "Multivariate"
constraints are not considered .

Numbers in QSIM
In this section, we will show that information at
a great level of detail about the numerical
values of landmarks is expressible in QSIM .
We start by showing that landmark equality
across quantity spaces is expressible, and end
up by proving that one can represent the
equality of a landmark to any specified number
within an important subset of R. As will be
seen, most of the proofs in this section are in an
algorithmic form, telling one what components
(variables and constraints) to add to an already
existing QSIM model, so that a specific item of
information will be "embedded" in the final,
augmented model. (In the exposition below,
equations like x = y for two landmarks x and y
are supposed to mean that the real numbers
represented by these two symbols are equal;
such equations do not assert that the two
symbols are one and the same .)

Proposition 1. Let x and y be landmarks in the
quantity spaces of variables X and Y,
respectively . The information x = y is
expressible in QSIM.

Proof. Define a new variable P with the basic
quantity space {--, 0, -1 . Insert the constraint
(add X P Y) with the corresponding value
(CV) tuple (x,0,y) to al'1 operating regions .
Since this is equival6lif to saying that
x + 0 = y, x = y has been 'shown .

Proposition 2. Let x and y be landmarks in the
quantity spates of variables X and Y,
respectively. The"'information x = -y is
expressible in QSIM.

Proof. Define a new variable P with the basic
quantity space 0, -o} . Insert the constraint
(add X Y P) with the CV tuple (x,y,0) to

all operating regions. Since this is equivalent to
saying that x + y = 0, x = -y has been shown.

These very simple facts are the building
blocks used to represent a variety of relations
between two landmarks in the same quantity
space.

Proposition 3. Let xi and x2 be landmarks of a
variable X. The information x, =-x2 is
expressible in QSIM .

Proof. Define a new variable P with the
quantity space {--, 0, p, -) . Assume, without
loss of generality, that, of x l and x2, x1 is the
negative one. Use the method of Proposition 2
to express p = -x, . Now, if we can say that x2
is equal to p, we will have expressed x, =-x 2 .
But Proposition 1 already established that this
is possible, so the fact that two landmarks in
the same quantity space are negatives of each
other is expressible in pure QSIM's notation.

Proposition 4. Let x, and x2 be landmarks of a
variable X. The information x 2 = 2* x, is
expressible in QSIM.

Proof. We will show how to express this fact
for the case where x, and x, are positive . The
method used when they are negative is trivially
similar. Define a new variable P with quantity
space 1-, 0, p, -1 . Insert the constraint
(add P P X) with the CV tuple (P,P,x2) to
all operating regions. This is equivalent to
saying that p + p = x, . Now, using the method
of Proposition 1, we can say that p = x, , which
yields 2* x, = x, .

This means that there is an easy way of
expressing x, = k* x, for cases where k = 2',
where i is any positive integer . For the more
general case where k is any integer, , several
approaches are possible, including the
following one.

	

`

Proposition 5. Let x, and x2 be landmarks of a
variable X. For any given integer k, where



lkl>l . the information x, = k*x, is expressible
in QSIM.

Proof. We show how to express this for the
case where x, and x2 are positive . Extension to
other cases is straightforward, making use of an
additional variable and the method of
Proposition 2. We start by defining three new
variables named P, S, and U. In addition to the
basic set, the quantity space of P includes k
positive landmarks named p l , P2, . . ., Pk, where
the ordering is so that, of two landmarks, the
one with the greater subscript is greater. The
quantity space of U similarly includes k
positive landmarks named ul , u2, . . ., uk, where
the ordering rule is the same as above. S has
the quantity space {--, 0, s i , -} . One first
uses Proposition 1 to express that p, = s, = u, .
Then we insert the constraint (add

	

P

	

S

	

U)
to all operating regions. The CV.A~st of this
constraint is formed by executing the following
loop :

FOR c :=2 TO k DO
BEGIN

add the CV tuples (pc,0,u,) and (pc_,,sl,uc)
to the CV list

(* i .e . establish that p,, = u, = c* u, . *)
END

At this point, we have expressed the fact that
p k = u k = k* u, . (Note that, by construction,
any two landmarks whose subscripts are
consecutive integers are one "unit" away from
each other in every quantity space.
Furthermore, this unit is the same for all the
variables and is equal to the magnitude of the
landmark with subscript 1 .) It remains to use
Proposition 1 to say .u, = x, and uk =X2 .

Once we have the power of representing
integer multiples, it is easy to express that the
ratio of two landmarks is a given rational
number.

Proposition 6. Let xt and x2 be landmarks of a
variable X. For any given rational number q,

such

	

that q =d , where

	

lnl

	

and ldl

	

are the

smallest integers which satisfy this equation,
and neither lnl nor ldl are equal to 1, the
information x, = q* x, is expressible in QSIM.

Proof. We show how to express this for the
case where 0 < x, < x, , the methods for the
other cases make simple use of additional
variables, Proposition 2, and the technique that
will be described here . Define a variable P with
quantity space {--, 0, p1, Pd, p�, -) .,(Note that

n
0 < x, < x,

	

and

	

x, = d * x,

	

together imply

that d < n .) Use the method of Proposition 5 to
express p,, = n* p, and Pd = d* p, . Clearly,
P,, = q* Pd has been expressed. It remains to
use Proposition 1 to say Pd = x, and p. = x, .

Having come this far making use of only the
add constraint, we now turn to the mult
constraint . It is easy to see that one can express
equations of the form x, = ° x, for integer n
using "cascades" of mu lt's. But this constraint
also allows us to express the equality of a
landmark to the number 1, which is essential if
we want to express information about the real
numerical values of individual landmarks,
rather than the ratios of two landmarks, as we
have done until now. We first provide a
definition to make the following statements
more concise.

Definition 1 . A real number r is said to be
representable in QSIM if a QSIM model (finite
set of quantity spaces, constraints and
corresponding values) containing a landmark x,
from which x's equality to r can be deduced,
can be constructed .

Proposition 7. All rational numbers are
representable in QSIM.

Proof. We will provide a method for .express-
ing the equality of any given rational number to
a landmark. Call the rational number,in consid-
eration q. Define a variable named X. If q = 0,
the standard landmark 0 is by definition equal
to it, and the proof is over . Otherwise, intro-
duce a landmark x which has the same sign as



the number q into X's quantity space . Define
new variables P and S with quantity spaces
{--, 0, p, -) and (--, 0, s, -}, respectively .
Express the fact that p = s using the method of
Proposition 1 . Define a new variable U. In
addition to the basic set, U will have a positive
landmark called "I" . Add the constraint
(mu1t U P S) to all operating regions . This
constraint will have the CV tuple ("I", p, s) .
Obviously, the numerical value of "1" has been
expressed to'be 1 . If q = 1, express the fact that
x = "I", and the proof is over . If q $ 1, the
variable U will have another landmark called

U's landmarks 0, "1" and "q" will have the
same relative ordering as the numbers 0, 1, and
q . Using the appropriate one of Propositions 3,
5, or 6, express the fact that "q"= q*" 1" = q,
and finish by expressing x = "q" .

In order to specify the power of our
representation precisely, it will be convenient
to state some "closure" properties :

Proposition 8. If r, and r2 are two given real
numbers representable in QSIM, their i) sum,
ii) difference, iii) product, and iv) quotient (if
r, # 0) are also representable in QSIM.

Proof. Assume that landmarks x and y of
variables X and Y have been shown to be equal
to r, and r2 , respectively. For each case, define
another variable P . Note that, since r l and r2 are
known, the signs of their sum, difference, etc .
are unambiguously known. For each case, let P
have a landmark p with the appropriate sign .
Do the following depending on the operation to
be applied :
i) To represent

	

r, + r2 l define the constraint
(add X -Y P) with CV tuple (x,y,p),

ii) To represent r, - r2 , define the constraint
(add P Y X) with CV tuple (P,Y,x),

iii)To represent

	

r, *r2 , define the constraint
(mu 1 t

	

X Y

	

P) with CV tuple (x,y,p),

iv)To represent define the constraint

(mu1 t

	

P

	

Y X) with CV tuple (p,y,x) .

We now expand our attention to a new
"operator," namely,

Proposition 9. If r is a given real number
representable in QSIM, then the number ° r (n
a positive integer) is also representable in
QSIM if it is real .

Proof. First, some well-known facts of algebra :
Each- nonzero real number r has n distinct
complex nth roots, at most two of which can be
real . All positive real numbers have two real nth
roots differing only in sign for even n, and a
single positive real nth root for odd n. Negative
real numbers have no real nth roots for even n,
and a single negative real nth root for odd n. For
odd n and positive r, °f__r = - " r . So we can
prove this proposition for positive r and with
the understanding that the ~_ "operator"
always yields a positive value without any loss
of generality ; the method of Proposition 2 can
be used to establish equality to the number's
negative, if needed . Define the new variable S,
with quantity space (--, 0, s i , -}, (s, will be

shown equal to " r ) and execute the following
loop :

FOR c :=2 to n DO
BEGIN
Define new variable S c with quantity space

(-(>O, 0, s c , 00) ;

Define the constraint (mu 1 t

	

Sc- 1
with CV tuple (s,_I,sl,sc)

S1 SC)

END;

By construction, landmark s� of variable S� is
equal to s,' . Now express equality of sn to r to
complete the chain .

Propositions 7 to 9 can be reformulated
together as follows :

Proposition 10. Any real number in the radical
extension of the set of rational numbers is
representable in QSIM .

In other words, any real number for which .we
can write a finite expression consisting only of



integers, parentheses, and the symbols +, -, *, /,
and ~F, where n is an integer, is representable
in QSIM.

Let us now examine the problem of
representing transcendental numbers. The
d / dt and M+ constraints, which have been
absent from our discussion so far, will be
useful in this regard.

Proposition 11 . The number e is representable
in QSIM .

Proof. Consider the variables X, Y, DXT, and
DYT. X has the quantity space

	

0, "1",
"e", oo) . Y has the quantity space

	

0, "1",
-) . Assume that the model has been
augmented with additional variables and
constraints so that both the landmarks named
"1" have been expressed to be equal to 1 .
Assume further that the constraints

(d/dt Y DYT),
(d/dt X DXT),

(mult X DYT DXT) and

(M+ X Y) with CV tuples (0, --), ("1", 0),

Integrating, we get

dY / dt

	

_1
dX / dt

	

X

_dY _1
dX X

Y=1nX+c,

where c is a constant .

("e�, "I"), (oo, oo)

have been asserted as well . From this
combination of constraints, "e"'s equality to e
can be deduced. The mu lt constraint, when
rearranged, simply means that

Since, by the definition of the M+ constraint, Y
is a differentiable function of X, the chain rule
for the derivative of a composite function
allows us to replace the left hand side by
dY/dX:

The corresponding values enable us to
determine that c is zero, so -

Y=1nX.

So "e" is the number whose natural logarithm
is 1, namely e .

The method we used in this proof suggests
that surprisingly detailed information about the
shape of the monotonic functions can be
represented in pure QSIM as well; see [6) for a
detailed discussion . In particular, it is easy to
see that this ability to represent the natural
logarithm function and its inverse enables us to
establish a new "closure" rule, which states that
any number of the form xy is representable in
QSIM whenever both x and y are representable
in QSIM and x is positive .

Proposition 12. The number n is representable
in QSIM.

Proof. Consider the variables X, Y, U, DXT,
DYT, X2, and P. Y has the quantity space
"-pi/2", 0, "pi/2", "pi�, -) . Assume that"-pi/2"
has been shown to be -"pi/2" by the method of
Proposition 3, and "pi" has been shown to be
2*"pi/2" by the method of Proposition 4 . U is
fixed at its positive landmark "1", which has
been expressed to be equal to 1 . The constraints

(d/dt Y DYT),
(d/dt X DXT),

(mult X X X2)
(add X2 U P),

(mult P DYT DXT),and

(M+ X Y) with CV tuples (--o, "-pi/2"),

(0,0), (o°, "pi/2")

have been asserted . From this model,
proceeding as we did in the previous proof, we
obtain

Y = arctan X.

Since lim arctan X = n/2, the value of "pi" hasx-+-
been expressed to be n.



Clearly, making use of the "closure" rules
mentioned earlier, we can obtain an immensely
rich set of numbers, including transcendental as
well as algebraic ones, which are representable
in QSIM.
Note that all the algorithms in this section

were designed so that the variables and
constraints that they add do not further
constrain the original system model. This issue
is best explained by an example. Consider
Proposition 2. A naive way of expressing
x = -y for landmarks of variables X and Y
would be to assert simply the constraint
(minus X Y) with CV tuple (x,y). This
seems more economical than the method we
used, since it does not involve the creation of a
new variable . (In QSIM, it is desirable to have
as few variables as possible for efficiency
reasons .) But this approach is wrong, since
(minus X Y) carries a much stronger
statement than x = -y , it means (see Table 1)
that at all times t, X(t) = -Y(t) . The addition of
such a constraint changes the system model;
specifically, it could prune some or even all of
the behaviors that QSIM would have predicted
for the original model. The algorithms
presented here contain additional, otherwise
unconstrained variables to avoid such
situations . They also refrain from adding
landmarks into quantity spaces about which
quantitative information is being expressed,
providing a neat separation of "real" model
items and those created by the quantitative
information incorporator .

Discussion

In [ I], Forbus presents a scale of "abstraction"
for the various ways of representing numbers
used in the field of qualitative reasoning, and
puts quantity spaces "high in this structure,
almost up to sign values." In this paper, we
have shown that -quantity spaces, when used in
conjunction with corresponding values, provide
a representation which is actually very strong in
the sense that one can express the equality of a
landmark value to any specified number in an
important subset ofthe real numbers employing
the vocabulary of this representation only .

Table 2. A spurious QSIM behavior prefix
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Although it may possess knowledge repre-
sented in this manner, pure QSIM does not
make use of such embedded quantitative in-
formation for pruning spurious behaviors
which may contain "quantitative inconsisten-
cies." This is because, although the QSIM
representation is strong enough for this job, the
qualitative arithmetic routines of the pure
QSIM algorithm are not adequate for using
such data to help disambiguate certain opera-
tions which lead to branchings in the state tree .
(In fact, as Wellman [9] points out, the filter
QSIM employs for checking the consistency of
(add X Y Z) constraints does not even dis-
tinguish between

Z(t) = X(t) + Y(t) ,

that is, the relation that it is supposed to
enforce, and the weaker

Z(t) = g(X(t),Y(t)) ,

where g is a continuous and differentiable
function, and both ag/aX and ag/aY are
positive throughout g's domain.)
The idea presented in this paper can thus

easily be used to define a class of spurious
behaviors ; namely, those which can be
generated by QSIM but contain inconsistent
items of embedded quantitative information.
One example of such a spurious behavior is
exhibited by the following model and presented
in Table 2 : (All variables except Z and Z2 have
a single positive finite landmark.)

(mult

	

P U S)

	

with CV tuple (pt,ul,sl),

(add U

	

Z

	

S)

	

with CV tuple (ui,0,s1),



(mult

	

R X Y)

	

with CV tuple (rj,xj,yl),

(add X Z2

	

Y)

	

with CV tuple (x1,0,yj),

(add P D R) .

The state at r, is spurious, since the
multiplication and addition constraints'
corresponding values can be used to show that

s,

	

11, + 0

	

x, +0

	

y,
11, 11,

	

x, x,

and thus

D(t,)=R(t,)-P(t,)=r,-p, =0#d�

so there is an inconsistency.
Modifying the algorithm to make use of

information embedded d la Propositions 1-12
to handle such problems is a nontrivial task,
and the resulting program would not
necessarily be better in terms of efficiency or
conceptual clarity than hybrid reasoners like Q2
[3] and Q3 (see [2]) . In particular, the new
variables, which have to be in the model only
to establish arithmetic relationships among
landmarks, and which do not "mean" anything
from the point of view of the system being
modeled, would cause "chattering" and other
problems . See [7] for a discussion of these and
proposals for tackling some of them.
One may also consider writing an

"extraction" algorithm to inspect all the
quantity spaces and CV lists for a model to see
if any quantitative knowledge item can be
found embedded in them. Unfortunately, this
task requires much more than just inverting the
methods of the previous section, since there are

(add A B C) with CV tuple (a i ,b,0)

(add A D B) with CV tuple (a2,0,b)

Here, it is easy to recognize the construct used
in the proof of Proposition 3, and one can
deduce that a, =-a2 . However, the same
information a, = -a2 is embedded in

in a different manner. Furthermore, it is easy to
see that, using only, say, the transitivity of = or
the properties of negation, one can construct
arbitrarily large sets of constraints involving
huge numbers of variables which imply the
same piece of information about al and a2 in
such a manner that no proper subset implies it.
Therefore, an algorithm which would_ simply
try to match constructs in the output with those
mentioned in the proofs of the previous section
could possibly miss some quantitative
information deducible from the output . Clearly,
a powerful qualitative algebraic reasoner with
capabilities similar to those of [ 10,11 ] has to be
incorporated into our algorithm if we wish to
squeeze the most from a given constraint-
quantity space set.
One promising direction for future work is the

integration of such a quantitative information
extraction scheme with a method of
quantitative propagation like that of [3] . This
could improve the overall power of semi-
quantitative reasoners like Q2 by allowing
them to utilize any available embedded items
of numerical information, as well as those
provided explicitly by the user .
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