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Qualitative Spatial Reasoning a la Allen:
An Algebra for Cyclic Ordering of 2D Orientations

Abstract

We define an algebra of ternary relations for cyclic
ordering of 2D orientations, which is a refinement of
the CYCORD theory . The algebra (1) contains 24

atomic relations, hence 224 general relations, of which
the usual CYCORD relation is a particular relation ;
and (2) is NP-complete, which is not surprising since
the CYCORD theory is . We then provide the follow-
ing : (1) a constraint propagation algorithm for the
algebra; (2) a proof that the propagation algorithm is

polynomial, and complete for a subclass including all
atomic relations ; (3) a proof that another subclass, ex-
pressing only information on parallel orientations, is

NP-complete ; and (4) a solution search algorithm for
a general problem expressed in the algebra . A com-
parison to related work indicates that the approach is

promising .

Introduction
Qualitative spatial reasoning (QSR) has become an
important and challenging research area of Artificial
Intelligence . An important aspect of it is topologi-
cal reasoning (e .g . (Cohn 1997)) . However, many
applications (e.g ., robot navigation (Levitt & Law-
ton 1990), reasoning about shape (Schlieder 1994)) re-
quire the representation and processing of orientation
knowledge . A variety of approaches to this have been
proposed : the theory of CYCORDs for cyclic order-
ing of 2D orientations (Megiddo 1976 ; Rohrig 1994 ;
1997), Frank's (1992) and Hernandez's (1991) sec-
tor models and Schlieder's (1993) representation of a
panorama .
A cyclic ordering problem can be seen as a ternary

constraint satisfaction problem of which :
the variables range over the points of a circle, for
example the circle of centre (0, 0) and of unit radius ;
and
the constraints give for triples of variables the order
in which they should appear when, say, the circle is
scanned clockwise .
In real applications, information expressed by CY-

CORDs may not be specific enough . For instance, one
may want to represent information such as "objects A,
B and C are such that B is to the left of A ; and C is to
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the left of both A and B, or to the right of both A and
B", which is not representable in the CYCORD theory .
This explains the need for refining the theory, which is
what we propose in the paper . Before providing the
refinement, which is an algebra of ternary relations,
we shall define an algebra of binary relations which is
much less expressive (it cannot represent the CYCORD
relation) . Among other things, we shall provide a com-
position table for the algebra of binary relations . One
reason for doing this first is that it will then become
easy to understand how the relations of the refinement
are obtained .

So far, constraints based approaches to QSR have
mainly used constraint propagation methods achiev-
ing path consistency . These methods have been bor-
rowed from qualitative temporal reasoning a la Allen
(Allen 1983), and make use of a composition ta-
ble . It is, for instance, well-known from works of
van Beek that path consistency achieves global con-
sistency for CSPs of Allen's convex relations . The
proof of this result, given in (van Beek & Cohen 1990 ;
van Beek 1992), shows that it is mainly due to the 1-
dimensional nature of the temporal domain . The proof
uses the specialisation of the well-known, but unfor-
tunately not much used' in QSR, Helly's theorem to
n = 1 : "If S is a set of convex regions of the n-
dimensional space IR." such that every n +l elements in
S have a non empty intersection then the intersection of
all elements of S is non empty" . For the 2-dimensional
space (n = 2), the theorem gets a bit more compli-
cated, since one has to check non emptiness of the in-
tersection of every three elements, instead of just every
two . This suggests that constraint-based approaches
to QSR should, if they are to be useful, devise prop-
agation methods achieving more than just path con-
sistency . The constraint propagation algorithm to be
given for the algebra of ternary relations achieves in-
deed strong 4-consistency, and we shall show that it has
a similar behaviour for a subclass including all atomic
relations as path consistency for Allen's convex rela-
tions .

VVe first provide some background on the CYCORD
theory ; then the two algebras . Next, we consider CSPs

'Except some works by Faltings such as in (Faltings
1995).
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on cyclic ordering of 2D orientations . We then provide
the following : (1) a constraint propagation algorithm
for the algebra of ternary relations ; (2) a proof that the
propagation algorithm is polynomial, and complete for
a subclass including all atomic relations ; (3) a proof
that another subclass, expressing only information on
parallel orientations, is NP-complete ; and (4) a solution
search algorithm for a general problem expressed in the
algebra . Before summarising, we shall discuss some
related work .

CYCORDs
Given a circle centred at 0, there is a natural iso-
morphism from the set of 2D orientations to the set
of points of the circle : the image of orientation X is
the point PX such that the orientation of the directed
straight line (OPX ) is X . A CYCORD X-Y-Z repre-
sents the information that the images PX, PY, PZ ofori-
entations X, Y, Z, respectively, are distinct and encoun-
tered in that order when the circle is scanned clockwise
starting from PX .
We now provide a brief background on the CYCORD

theory, taken from (Megiddo 1976 ; Rohrig 1994 ; 1997) .
For this purpose, we consider a set S = {Xo, . . . , Xn} .

Definition 1 (cyclic equivalence) Two linear or-
ders (Xio , . . . , Xi n ) and (X~o, . . . , X~ � ) on S are called
cyclically equivalent if there exists to E 11V such that:
dk E {0, . . ., n}(.7L~ _ (i~ ~- rn)mod(n -{- 1)) .

Definition 2 (total cyclic order) A total cyclic or-
der on S is an equivalence class of linear orders on
,S modulo cyclic equivalence; Xio- . . .-Xi � denotes the
equivalence class containing (Xio , . . ., Xz � ) .
Definition 3 (partial cyclic order) A closed par-
tial cyclic order on S is a set T of cyclically ordered
triples such that :
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The algebra of binary relations
The algebra is very similar to Allen's (1983) temporal
interval algebra . We describe briefly its relations and
its three operations (converse, intersection and compo-
sition) .
Given an orientation X of the plane, another orienta-

tion Y can form with X one of the following qualitative
configurations :
1 . Y is equal to X (the angle ( .k, Y) is equal to 0) .
2 . Y is to the left of X (the angle (X, Y) belongs to

(0> ~))~
3 . Y is opposite to X (the angle (X,Y) is equal to ~r) .
4 . Y is to the right of X (the angle (X, Y) belongs to

UbEB{bv } .
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Figure 1 : The converse b" of an atomic relation
6 (Left), and the composition for atomic relations
(Right) .

We denote the four configurations by (Y e X), (Y l X),
(Y o XJ and (Y r X), respectively . Clearly, these con-
figurations are Jointly Exaustive and Pairwise Disjoint
(JEPD) : given any two orientations of the plane, they
stand in one and only one of these configurations .
Definition 4 (relations of the algebra) The alge-
bra contains four atomic relations: e, l, o, r. A (gen-
eral~ relation is any subset of the set BIN of all four
atomic relations when a relation is a singleton set
(atomic), we omit the braces in its representation). A
relation B = {b l , . . . , bn}, n <_ 4, between orientations
X and Y, written (Y B X), is to be interpreted as
(Yb1X ) V . . . V (Ybn X) .

Definition 5 (converse) The converse of an atomic
relation b is the atomic relation b" such that :

dx,Y((Y b x)~,(x b" Y))
The converse B" of a general relation B is the
union of the converses of its atomic relations: B" _

Definition 6 (intersection) The intersection of two
relations Bl and Bl is the relation B consisting of the
set-theoretic intersection of Bl and BZ : B = Bl fl B2 .
Definition 7 (composition) The composition of two
relations Bl and B~, written Bl ~z B~, is the strongest
relation B such that :

vx,Y, z((YBi x) n (zB~Y) ~ (zBx))

Figure 1 gives the converse of each of the atomic rela-
tions, as well as the composition for atomic relations .

Definition 8 (induced ternary relation) Given
three atomic binary relations b i , b2 , b3,

	

we define the
induced ternary relation bl b2b3 as follows (see Figure

dX,Y, Z(61b2b3(X, Y, Z) q (Yb 1X)~(ZbZ Y)~(Zb3X))

The composition table of Figure 1(Right) has 12 en-
tries consisting of atomic relations, the remaining four
consisting of three-atom relations . Therefore any three
2D orientations stand in one of the following 24 JEPD
configurations : eee, ell, eoo, err, lel, lll, llo, llr, lor, lre,
lrl, lrr, oeo, olr, ooe, orl, rer, rle, rll, rlr, rol, rrl, rro,
rrr. According to Definition 8, rol(X, Y, Z), for instance,
means

(YrX)n(Zo Y)n(ZlX)

(1) X-Y-Z E T ~ X ~ Y (irreflexivity)
(2) X-}'-Z E T ~ Z-Y-X ~ T (asymmetry)
(3) {X-Y-Z, X-Z-6t'} C T ~ X-Y-W E T (transitivity)
(4) X-Y-Z ~ T ~ Z-Y-X E T (closure)
(5) X-Y-Z E T ~ Y-Z-X E T (rotation)



b3

Figure 2 : (1) The ternary relation induced from
three atomic binary relations : bi b2b3 (X,Y,Z) iff
((Y bl X) A (Z b2 Y) A (Z b3 X)). (11) The conjunc-
tion b 1b2b3 (X, I , Z) nbib2b3(X, Z, ITV) is inconsistent if
b3 $ bi .

The composition table for atomic binary relations
rules out the other, (4 x 4 x 4)-24, induced ternary rela-
tions b1b2b3 ; these are inconsistent : no triple (zl, z2, z3)
of orientations exists such that for such an induced re-
lation one has

(z2 bi zl) A (z3 b2 z2) A (z3 b3 zl)

Refining the CYCORD theory : the
algebra of ternary relations

The algebra of binary relations introduced above can-
not represent a CYCORD. However, if we use the idea
of what we have called an "induced ternary relation",
we can easily define an algebra of ternary relations of
which the CYCORD relation will be a particular rela-
tion .
Definition 9 (ternary relation) An atomic ternary
relation is any of the 24 JEPD configurations a triple
of 2D orientations can stand in . We denote by TER
the set of all atomic ternary relations :
TER = {eee, ell, eoo, err, let, 111, llo, l1r, lor, Ire, lrl, lrr,

oeo, otr, ooe, orl, rer, rle, rll, rlr, rol, rrl, rro ; rrr}
A (general) ternary relation is any subset T of TER:

VX,Y, Z(T(X,Y, Z)

	

V I(X,Y, Z))
t ET

As an example, a
CYCORD X-Y-Z can be represented by the ternary
relation CR = IN, orl, rll, rol, rrl, rro, rrr} (see Figure
3) :

VX, Y, Z(X-Y-Z ~ CR(X, Y, Z))
Definition 10 (converse) The converse of an atomic
ternary relation t is the atomic ternary relation t"
such that :

VX,Y,Z(t(X,Y,Z) <*tv(X,Z,Y))
The converse T" of a general ternary relation T is

the union of the converses of its atomic relations :

T" = U {t" }
tET

X

Figure 3 : The CYCORD relation is a particular rela-
tion of the algebra of ternary relations : X-Y-Z if and
only if 11rl, orl, rll, rol, rrl, rro, rrr} (X, Y, Z) .
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T- = U {t-}
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VX,Y,Z(t(X,Y,Z) at-(I ," Z' X))

X

Figure 4 : The converse t" and the rotation t" of an
atomic ternary relation t .

The converse of an atomic ternary relation t = ca/3-y
can be expressed in terms of the atomic binary relations
a, 13, 7 and their converses in the following way :

so because if (ao-y)" = a'o'-y' then
a~7(X,Y, Z) iff a'p'-y'(X, Z, Y) . But a07(X,Y, Z)
stands for the conjunction ((YaX) n (ZQY) A (ZyX)),
and a'0'7'(X, Z, Y) for the conjunction ((Zce'X) A
(Y,3'Z) A (Y-y'X )) . A simple comparison of the atomic
binary relations in the two conjunctions leads to ct' _
7,~'=0-,7,=a .
Definition 11 (rotation) The rotation of an atomic
ternary relation t is the atomic ternary relation t"
such that :

The rotation T^' of a general ternary relation T
the union of the rotations of its atomic relations :

is

Similarly to the converse, the rotation of an atomic
ternary relation t = a/37 can be expressed in terms of

lsh 67

t t'" t~ t t` t"^ t t"
t- l

eee eee eee for rot olr rer rer ell
ell Ire Ire Ire ell rer He err let
coo ooe ooe lrl 111 rrr rtl lrr lrl
err He He Irr rll rlr rlr rrr Ill
let let err oeo oeo coo rot for orl
Ill lrl lrr olr rro Ito rrl llr rrl
Ito orl for ooe coo oeo rro olr rot
It?- rrl llr orl Ito rro rrr rlr rll



the atomic binary relations o,,3, y and their converses
in the following way :
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Figure 4 gives the converse and rotation for each of
the 24 atomic ternary relations .

Definition 12 (intersection) The

	

intersection of
two ternary relations T1 arid T2 is the ternary rela-
tion T consisting of those atomic relations belonging to
both T'1 and T2 (.set-theoretic intersection :

VX,Y, Z(T(X,Y", Z) a T, (X, Y, Z) ATZ (X,Y, Z))

Definition 13 (composition) The composition of
two ternary relations T1 and T2, written Tl 03 7), is
the most specific ternary relation T such that :

VX, Y, Z, W(TI (X, Y, Z) AT2 (X, Z, W) => T(X, Y, IV))

If we know the composition for atomic ternary re-
lations, we can compute the composition of any two
ternary relations Tl and T2 :

Ti 03 TZ

	

U

	

tl ®3 t2
tiET1,t2ET2

In other words, what we need is to give a com-
position table for atomic ternary relations, similar to
Allen's (1983) composition table for temporal interval
relations .

Given

	

four 2D orientations .Y, Y, Z . If' and two
atomic ternary relations tl = b l b,,b 3 and t2 = bib'b3,
the conjunction tl(X, Y, Z)At 2 (X, Z, ITV is inconsistent
if b3 t bi (see Figure 2(II) for illustration) . Stated oth-
erwise . when b3 0 bi we have tl 0'3 t 2 = 0 . Therefore,
in defining composition for atomic ternary relations, we
have to consider four cases :

1 .

	

Case 1 :

	

b3 = bl

	

= e (tl

	

E

	

{eee, Ire, ooe, rle) and
t2 E {ere, ell, eoo, err}) .

2 .

	

Case 2 :

	

b 3 = bi

	

= I (ti

	

E

	

{ell, lel,111, lrl, ors, rll,
rol, rrl) and t 2 E {lel,111, llo, llr, lor, Ire, lrl, lrr)) .

3 . Case 3 : b3 = bi = o (ti E {coo, Ilo, oeo, rro) and
t2 E {oeo, olr, ooe, ors}) .

4 .

	

Case 4 :

	

b3 = VI = r (t 1 E {err, llr, lor, lrr, olr, rer,
rlr, rrr) and t2 E {rer, rle, rll, rlr, rol, rrl, rro,
rrr}) .

Composition for the CYCORD theory as introduced
in (iblegiddo 1976 ; Rohrig 1994 -1 1997) (see Definition 3,
rule (3)) consists of one single rule . Again, this is due
to the fact that the theory is not specific enough . The
algebra of ternary relations has a much finer level of
granularity, and hence is much more specific : compo-
sition splits into many more cases, which are grouped
together in four composition tables (one composition
table for each of the above four cases) . See Fig-
ure 5 for details : the entries E l , E2, E3, E.1 stand for

03

	

eee

	

ell

	

Coo err l

,dg

	

oeo olr ~oo~or~

Figure 5 : The composition tables for ternary relations :
case 1, case 2, case 3 and case 4, respectively, from top
to bottom .

the relations {lel, III, Irl}, {llr, lor, lrr}, {rer, rlr, rrr),
{rll, rol, rrl), respectively . 2
The unique CYCORD composition rule can be

checked using the four composition tables :

VA" Y, Z, W

(CR(X, Y, Z) ACR(-x, Z, IV') =:>~ CR(X,Y,1/1"))
CR, as we have already seen, stands for the ternary

relation {lrl, ors, rll, rol, rrl, rro, rrr) .
Definition 14 (projection) Let T be a ternary rela-
tion . The 1st, 2nd and 3rd projections of T, which we
shall refer to as projl(T), proj2(T), proj3(T), respec-
tively, are the binary relations defined as follows :

projl(T) = {bl E BINI(3b 2 , b3 E BINJb1 b2 b3 E T)) ;

proj2(T) = {62 E BINI(3b 1 , b 3 E BINJb1 b2 b3 E T)) ;
proj3(T) = {b3 E BIN 1(3b l , b 2 E BIN Ib,b2 b3 E T)) .
Definition 15 (cross product) The cross product of
three
binary relations B1, B2 , B3, written n(B1, B2, B3), is
the ternary relation consisting of those atomic relations
b 1 62b3 such that b l E B1, b2 E B2 , b3 E B3 :

n(B1 , B2, B3) =

{b1b2 b3J(b l E B1,b2 E Bz,b3 E B3)} n TER

2 Alternatively, one can define a single composition table
for the algebra of ternary relations . Such a table would have
24 x 24 entries, most of which (i .e ., 24 x 24-(16+64+ 16 -}
64)) would be the empty relation .
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CSPs of 2D orientations

A CSP of 2D orientations (henceforth 2D-OCSP) con-
sists of

1 . a finite number of variables ranging over the set 2DO
of 2D orientations3 ; and

2. relations on cyclic ordering of these variables, stand-
ing for the constraints of the CSP.

A binary (resp . ternary) 2D-OCSP is a 2D-OCSP of
which the constraints are binary (resp . ternary) . We
shall refer to binary 2D-OCSPs as BOCSPs, and to
ternary 2D-OCSPs as TOCSPs.
We now consider a 2D-OCSP P (either binary or

ternary) on n variables X1 . . . . , Xn .

Remark 1 (normalised 2D-OCSP) If

	

P
is a BOCSP, we assume that for all i, j, at most one
constraint involving Xi and Xj is specified. The net-
work representation of P is the labelled directed graph
defined as follows:

1 .

	

The vertices are the variables of P .

2.

	

There exists an edge (Xi,Xj), labelled with B, if and
only if a constraint of the form (XjBXi) is specified .

If P is a TOCSP, we assume that for all i, j, k, at most
one constraint involving Xi, Xi , Xk is specified.

Definition 16 (matrix representation) If P is a
BOCSP, it is associated with an n xn-matrix, which we
shall refer to as P for simplicity, and whose elements
will be referred to as Pij, i, j E {1, . . ., n} . The matrix
P is constructed as follows:

l. Initialise all entries of P to the universal
BIN: Pij := BIN, Vi, i E {1, . . ., n} .

2. Pii := e, Vi = I . . . n .
3. For all i, j E {1, . . .,n} such that P contains a con-

straint of the form (Xj B Xi) : Pij := Pij fn B; Pji :=
Pij .

If P is a TOCSP, it is associated with an n x n x n-
matrix, which we shall refer to as P, and whose el-
ements will be referred to as Pijk, i, j, k E
The matrix P is constructed as follows:
1. Initialise all entries of P to the universal relation

TER: Pijk := TER,Vi, j, k E {l . . . . 1 n} .
2. Piii := eee,Vi = 1 . . . n .
3.

	

For all i, j, k

	

E

	

11, . . ., n)

	

such

	

that
constraint of the form T(Xi, Xj, Xk) :

(a) Pijk

	

= Pijk n T; Pikj

	

= Pijk ;
(b) Pjki = Pijk ; Pi ik := Pjki ;

Pkij := Pjki ; Pkji := Pkij,

3The set 2DO is isomorphic to the set [0, 2a) .

relation

P contains a

4 .

	

For all i, j E {1, . . . , n}, i < j:
(a) B := nk=1 prod (Pijk) ;
(b) Piij := II(e, B, B) ; Piji := Piij ; Pjii := Piji ;

Pjji - II(e, B", Bv) ; Pjij := Pjji ; Pijj :

	

P

Definition 17 (closure under projection) The
TOCSP P is closed under projection if

Vi, j, k, I(proji (Pijk) = proj i (Pijl))

A TOCSP P can always be transformed into an
equivalent TOCSP which is closed under projection .
This can be achieved using a loop such as the follow-
ing:

repeat

(a) consider four variables Xi, Xi, Xk,Xi such
proji(Pijk) :A proj1(Pijl)

(b) B :=proji(Pijk) nproji(Pijl)
(c) If B = 0 then exit (the TOCSP is inconsistent)
(d) Pijk := II(B, proj2(Pijk), prOJ3(Pijk)) n Pijk .

(e) Pijl :_ rl(B,proj2(Pijl),projs(Pijl)) n Pij,
until(Vi, j, k, l(proj1(Pijk) = Projl(Pijl)))
From now on, we make the assumption that a

TOCSP is closed under projection .
Definition 18 (Freuder 1982) An instantiation of P
is any n-tuple (zl, z2, . . . , zn ) of [0, 27r)n, representing
an assignment of an orientation value to each variable .
A consistent instantiation, or solution, is an instantia-
tion satisfying all the constraints . A sub-CSP of size k,
k <_ n, is any restriction of P to k of its variables and
the constraints on the k variables . P is k-consistent if
every solution to every sub-CSP of size k - 1 extends
to every k-th variable ; it is strongly k-consistent if it is
j-consistent, for all j < k .

1-, 2- and 3-consistency correspond to node-, arc-
and path-consistency, respectively (Mackworth 1977;
Montanari 1974) . Strong n-consistency of P corre-
sponds to global consistency (Dechter 1992) . Global
consistency facilitates the exhibition of a solution by
backtrack-free search (Freuder 1982) .

Remark 2 If we make the assumption that a 2D-
OCSP does not include the empty constraint, which in-
dicates a trivial inconsistency, then :

1 . A BOCSP is strongly 2-consistent :
(a) A 1-variable BOCSP has no constraint, so its

unique variable can be consistently instantiated to
any value in [0, 27r) (I -consistency) .

(b)

2. A

On the other hand, a 2-variable BOCSP has two
variables, say X1 and X2, and one constraint, say
(X2BX1 ) . If X1 is instantiated to any value, say
z1, then that instantiation is a solution of the 1-
variable sub-CSP consisting of variable X1, and we
can still find an instantiation to X2, say z2, in such
a way that the relation (x2Bz1) holds. Similarly,
any instantiation z2 to X2 is solution to the 1-
variable sub-CSP consisting of variable X2 ; and
this can always be extended to an instantiation z 1
of X1 such that (X1, X2) = (z1, z2) satisfies the
constraint (X2BX1 ) .

TOCSP is strongly 3-consistent :

Isli
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We now assume that to the plane is associated a ref-
erence system (0, x, y) ; and refer to the circle centred
at O and of unit radius as Co, 1 . Given an orientation
z, we denote by rad(z) the radius (0, PZ ] of Co,1, ex-
cluding the centre 0, such that the orientation of the
directed straight line (OPz ) is z . An orientation z can
be assimilated to rad(z) .

Definition 19 (sector of a binary relation)
The sector determined by an orientation z and a bi-
nary relation B, written sect(z, B), is the sector of cir-
cle Co,1, excluding the centre 0, representing the set of
orientations z' related to z by relation B :

Remark 3 The sector determined by an orientation
and a binary relation does not include the centre O of
circle Co,1 .

	

Therefore, given n orientations z 1 , . . ., zn
and n binary relations BI, . . ., Bn ,

	

the intersection
n

sect (zi, B;) is either the empty set or a set of raddi:
i=1
this cannot be equal to the centre 0, which would be
possible if the sector determined by an orientation and
a binary relation included 0.

Since a BOCSP is strongly 2-consistent, it follows
that if it is path-consistent (3-consistent then it is
strongly 3-consistent . The atomic relations of the
algebra of ternary relations are obtained from the
composition table of the algebra of binary relations,
which records all possible 24 3-variable BOCSPs of
atomic relations which are strongly 3-consistent .
Strong 4-consistency of a TOCSP follows .

sect(z, B) = {rad(z')Iz' B :)

Definition 20 The projection, proj(P), of a TOC,SP
P is the BOCSP P' having the same set of variables
and such that :

A ternary relation, T, is projectable if T =
II(projl(T),proj2(T),Proj3(T)) . A TOCSP is pro-
jectable if for all i, j, k, Pick is a projectable relation .

Definition 21 The dimension of a binary relation is
the dimension of its sector. A binary relation, B, is
convex if the sector determined by B and any orienta-
tion is a convex part of the plane; it is holed if
1 . it is equal to BIN ; or
2. the difference BIN \ B is a binary relation of dimen-

sion 1 (is equal to e, o or {e, o}).
The subclass of all binary relations which are either
convex or holed will be referred to as BCH . There are:
1 . eight convex binary relations:

	

e, l, o, r, {e,1), {e, r),
{l, o}, {o, r) ; and

2. four holed binary relations:

	

{l, r), {e, l, r}, {l, o, r),
{e, l, o, r} .

A ternary relation is {convex,holed} if

1 . it is projectable; and
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Vi, j, k(Pi'j = hroj1(Pijk))

X1

X2

x4

X3

Figure 6 : (1) The `Indian tent' ; and (II) its associated
BOCSP : the BOCSP is path consistent but not con-
sistent (path consistency does not detect inconsistency
even for BOCSPs with atomic labels) .

2. each of its projections belongs to BCH.

The subclass of all {convex,holed} ternary relations will
be referred to as TCH .

Example 1 (the `Indian tent') The 'Indian tent'
consists of a clockwise triangle (ABC), together with
a fourth point D which is to the left of each of the di-
rected lines (AB) and (BC) (see Figure 6(1)).

The knowledge about the `Indian tent' can be rep-
resented as a BOCSP on four variables, XI, X2,
X3 and X4 , representing the orientations of the di-
rected lines (AB), (AC'), (BC) and (BD), respec-
tively. From (ABC) being a clockwise triangle, we get a
first set of constraints: {(X2rX1), (X3rX1), (X3rXf .
From D being to the left of each of the directed lines
(AB) and (BC), we get a second set of constraints:
1('y4lXl) , (X4lX3)}-

If we add the constraint (Xy rX2) to the BOCSP,
this clearly leads to an inconsistency . Rohrig (1997)
has shown that using the CYCORD theory one can de-
tect such an inconsistency, whereas this cannot be de-
tected using classical constraint-based approaches such
as those in (Frank 1992; Herndndez 1991) .

The BOCSP is represented graphically in Figure
6(II). The CSP is path-consistent; i.e . : Vi, j, k(Pij C_
(Pik '~D2 Pk1)) .4 However, as mentioned above, the CSP
is inconsistent . Therefore :

Theorem 1 Path-consistency does not detect incon-
sistency even for BOCSPs of atomic relations.

The algebra of ternary relations is NP-complete :
Theorem 2 Solving a TOCSP is NP-complete.

Proof: Solving a TOCSP of atomic relations will be
shown to be polynomial . Hence, all we need to show is
that there exists a deterministic polynomial transfor-
mation of an NP-complete problem to a TOCSP.
The CYCORD theory is NP-complete (Galil &

Megiddo 1977) . The transformation of a problem ex-

'This can be easily checked using the composition table
for atomic binary relations .



procedure s4c(P) ;
repeat{
get neat triple (X� X3 , Xk) from Queue;
form := I to n{
Temp := P,jm n (P,,k ®3 Pik-) ;
if Temp * P,jr�
{add-to-queue(X � Xj, X,) ;change(,, j, m, Temp) ;}

1 .
2.
3.
9.
5 .
6 .
7 .
8 .

	

Temp := P,krn n (P,kj 03 P,j-);
9 .

	

if Temp 96 P,k-
10 .

	

{add-to-queue(X� Xk, X, r,) ;change(i, k, m, Temp);]
11 .

	

Temp := Pjk- n (P, k, ®3 Pi,-) ;
12 .
13 .
19 .

	

)
15 .
16 .
1 .
2.
3.

if Temp ¢ Pjk-
{add-to-queue(X,, Xk, X,) ;change(j, k, m, Temp);}

until Queue is empty ;
procedure change(e, j, k, T) ;

P,jk := T; Pjk, := T_ ; Pkij = P,-k, ;
P,kj := T- ; Pkj, := P,k,i Pj,k := Pkii ;

Figure 7 : A constraint propagation algorithm .

pressed in the CYCORD theory (a. conjunction of CY-
CORD relations) into a problem expressed in the alge-
bra of ternary relations (i .e ., into a TOCSP) is imme-
diate from the rule illustrated in Figure 3 transforming
a CYCORD relation into a relation of the ternary al-
gebra .

A constraint propagation algorithm
A constraint propagation procedure, s4c(P), for TOG
SPs is given in Figure 7 . The input is a TOCSP P on
n variables X1 . . . . . X,,, given by its n x n x n-matrix .
When the algorithm completes, P verifies the following :

Vi, j, k, l E {1, . . ., n) (Pijk C Piji 03 Pilk)

The algorithm makes use of a queue Queue . initially,
we can assume that all variable triples (Xi, Xj , Xk )
such that 1 _< i < j < k <_ n are entered into Queue .
The algorithm removes one variable triple from Queue
at a time . When a triple (Xi, Xj, Xk) is removed from
Queue, the algorithm eventually updates the relations
on the neighbouring triples (triples sharing two vari-
ables with (Xi, Xj, Xk)) . If such a relation is success-
fully updated, the corresponding triple is sorted, in
such a wav to have the variable with smallest index
first and the variable with greatest index last, and the
sorted triple is placed in Queue (if it is not already
there) since it may in turn constrain the relations on
neighbouring triples : this is done by add-to-queue() .
The process terminates when Queue becomes empty .

Theorem 3 When applied to a TOCSP of size (num-
ber of variables) n, the constraint propagation algo-
rithm runs into completion in 0(n4 ) time .
Proof (sketch) . The number of variable triples
(X i , Xj, Xk) is 0(n3) . A triple may be placed in Queue
at most a constant number of times (24, which is the
total number of atomic relations) . Every time a. triple
is removed from Queue for propagation, the algorithm
performs 0(n) operations . 0

Complexity classes
Theorem 4 The

	

propagation

	

procedure

	

s4c(P)
achieves strong 4-consistency for the input TOCSP P .

X1

Figure 8 : (I) Illustration of the proof of Theorem 5 .
(II) Illustration of non closure of TCH under strong
4-consistency .

Proof.

	

A TOCSP is strongly 3-consistent (Remark
2) . The algorithm clearly ensures 4-consistency, hence
it ensures strong 4-consistency .
We refer to the subclass of all 28 entries of the

four cofnposition tables of the algebra of ternary re-
lations as CT. We show that the closure under
strong 4-consistency, CT`, of CT is tractable . We
then show that the subclass PAR = {{oeo, ooe),
{eee,oeo,ooe),{eee,eoo,ooe},{eee,eoo,oeo,ooe}},
which expresses only information on parallel orienta-
tions, is NP-complete .

Definition 22 (s4c-closure) Let S denote a subclass
of the algebra of ternary relations . The closure of S
under strong 4-consistency, or s4c-closure of S, is the
smallest subclass S' of the algebra such that :

1 . S C S` ;
2 . VT1,T2 E Sc (TI , TI, T1 f1 T2 E S') ; and

S . VT1,T2,T3 E S ° (pro73(Ti) = proji(T2) n
proji(T1) = projl(Ty) Aproj3(T2) = proj3(T3) =>
T3 n (Ti 03 T2) E S°) .

Theorem 5 Let P be a TOCSP expressed in TCH . If
P is strongly 4-consistent then it is globally consistent .

Van Beek (1992) used the specialisation to n = 1 of
Helly's convexity theorem to prove a similar result for
a path consistent CSP of Allen's convex relations . The
proof of Theorem 5 will use the specialisation to n = 2 :

Theorem 6 (Helly's Theorem (Chvatal 1983))
Let S be a set of convex regions of the n-dimensional
space IRn . If every n -F I elements in S have a non
empty intersection then the intersection of all elements
of S is non empty.

Proof of Theorem 5 . Since P lies in the TCH sub-
class and is strongly 4-consistent, we have the following :

1 . P is equivalent to its projection, say PP", which is a
BOCSP expressed in BCH .

2 . The projection Pp' is strongly 4-consistent .

So the problem becomes that of showing that
Pp' is globally consistent . For this purpose, we
suppose that the instantiation (Xi,, Xi . . . . . . Xik )

	

=

(zl, z2, . . ., zk), k

	

>_

	

4,

	

is

	

a

	

solution

	

to

	

a

	

k-
variable sub-CSP, say S, of Pp' whose variables
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are Xi, . Xi 2 , . . . , Xi k .

	

We need

	

to prove that the
partial solution; can be extended to any (k -+ 1)st
variable, say Xik+,, of ppr .5 This is equivalent
to showing that the following sectors have a non
empty intersection (see Figure 8(I) for illustration) :
sect(z1,PPik+ , ), sect(Z2,PPik+i), . . ., sect (Zk,Pp2 k+1 ) .

Since the PP'k+1, j = 1 . . . k, belong to BCH, each of
these sectors is :
1 . a convex subset of the plane ; or
2 . almost equal to the surface of circle Co,1 (its topo-

logical closure is equal to that surface) .
We split these sectors into those verifying condition (1)
and those verifying condition (2) . We assume, without
loss of generality, that the first m verify condition (1),
and the last k - m verify condition (2) . We write the
intersection of the sectors as I = Il n 12, with Il =

l sect (zj, Ppik+1), 12 = n;-m+1 sect(zj, PPr, k+l ) .
Due to strong 4-consistency, every three of these sec-

tors have a non empty intersection . If any of the sectors
is a radius (the corresponding relation is either e or o)
then the whole intersection must be equal to that ra-
dius since the sector intersects with every other two .
We now need to show that when no sector reduces

to a radius, the intersection is still non empty :
Case 1 : m=k. This means that all sectors are

convex . Since every three of them have a non empty
intersection, Helly's theorem immediately implies that
the intersection of all sectors is non empty .
Case 2 : m=0. This means that no sector is convex ;

which in turn implies that each sector is such that its
topological closure covers the whole surface of CO , 1 .
Hence, for all j = i . . . k:
1 .

	

the sector sect (zj , Pp k+l ) is equal to the whole sur-l j l
face of CO,1 minus the centre (the relation Pi,ik+, is
equal to BIN) ; or

2 . the sector sect(zJ, PP k+1 ) is equal to the whole sur-
face of C0,1 minus one or two radii (the relation
Pijik+, is equal to {e, l, r), 11, o, r} or {l, r}) .
So the intersection of all sectors is equal to the whole

surface of Co,1 minus a finite number (at most 2k) of
radii . Since the surface is of dimension 2 and a radius
is of dimension 1, the intersection must be non empty
(of dimension 2) .
Case 3: 0 < m < k. This means that some sec-

tors (at least one) are convex, the others (at least one)
are such that their topological closures cover the whole
surface of C0,1 . The intersection 11 is non empty due
to Helly's theorem, since every three sectors appearing
in it have a non empty intersection :
Subcase 3.1 : 11 is a single radius, say r. Since

the sectors appearing in 11 are less than 7r, there must

'Since the TOCSP P is projectable, any solution to any
sub-CSP of the projection Pp' is solution to the correspond-
ing sub-CSP of P . This would not be necessarily the case
if P were not projectable .
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H(1, r, l)
H(l, r, r)
H(o, e, o)
H(o, l, r)
H(o, o, e

Figure 9 : Enumeration of the CT' subclass .

exist two sectors, say sl and s2, appearing in It such
that their intersection is r . Since, due to strong 4-
consistency, sl and s2 together with any sector appear-
ing in 12 form a non empty intersection, the whole in-
tersection, i .e ., I, must be equal to r .
Subcase 3.2 : h is a 2-dimensional (convex)

sector . It should be clear that the intersection 12 is
the whole surface of CO,1 minus a finite number of radii
(at most 2(k - m) radii) . Since a finite union of radii
is of dimension 0 or l, and that the intersection 11 is
of dimension 2, the whole intersection I must be non
empty (of dimension 2) .
The intersection of all sectors is non empty in all

cases . The partial solution can hence be extended to
variable Xik+ , (which can be instantiated with any ori-
entation in the intersection of the k sectors) . 0

It follows from Theorems 3, 4 and 5 that if the TCH
subclass is closed under strong 4-consistency, it must be
tractable . Unfortunately, as illustrated by the following
example, TCH is not so closed .
Example 2 The BOCSP depicted in Figure 2(II) can
be represented as the projectable TOC,SP P whose
matrix representation verifies :

	

P123

	

=

	

Ill, P124

	

=
H(l, 11, r},11, r}), P134 = P234 = H(l,1,11, r}) .

	

Apply-
ing the propagation algorithm to P leaves unchanged
P123, P134, P234, but transforms P124 into the relation
1111, llr, Irr), which is not projectable: this is done by
the operation P124 := P124 n (P123 03 P134),
Enumerating CT` leads to 49 relations (including the
empty relation), all of which are {convex,holed) rela-
tions . Therefore :
Corollary 1 (tractability of CT`) The

	

subclass
C'Tc is tractable.

Proof.

	

Immediate from Theorems 3 . 4 and 5 . m
The enumeration of CT` is given in Figure 9 .

Fl (0, r, l)
H r, e, r)
11(r, 1,e
H r,l,1)
H r, l, r
H r,o,l
H r,r,l
H r,r,o
H r, r, r)

l, r , l
H l, l, o, rl, r)
H r, e,1,r ,r
H r, l, o,r ,l)
lI e,l,r r, r)
H l, o,r ,l,r
H e, l, rJ ' l, l)
H(l, r l, l, r



Example 3 Transforming the BOCSP of the 'In-
dian tent' into a TOCSP, say P', leads to P123 =
rrr, P124 = rrl, Pi34 = rll, P234 = rlr. P' lies in CT`,
hence the propagation algorithm must detect its incon-
sistency . Indeed, the operation P124 := P124 fl (Pi23 03
Pi34) leads to the empty relation, since rrr 03 rll = rll .

We now show NP-completeness of PAR .

Theorem 7 (NP-completeness of PAR) The sub-
class PAR is NP-complete.

Proof. The subclass PAR belongs to NP, since solving
a TOCSP of atomic relations is polynomial (Corollary
1) . We need to prove that there exists a (deterministic)
polynomial transformation of an NP-complete problem
(we consider 3-SAT : a SAT problem of which every
clause contains exactly three literals) into a TOCSP
expressed in PAR in such a way that the former is
satisfiable if and only if the latter is consistent .

Suppose that S is a 3-SAT problem, and denote by :

2 .
3 .

Lit (S) _ {f l , . . . , f, } the set of literals appearing in
S;

Cl(S) the set of clauses of S ; and
BinCl(S) the set of binary clauses which are sub-
clauses of clauses in Cl(S) .
The TOCSP, PS, we associate with S is as fol-

lows . Its set of variables is V = {X(c)1c E Lit(S) U
BinCI(S)} U {Xo} . Xo is a truth determining vari-
able : all orientations which are equal to Xo correspond
to elements of Lit(S) U BinCl(S) which are true, the
others (those which are opposite to X0) to elements of
Lit(S) U BinCl(S) which are false . The constraints of
PS are constructed as follows :

2.

3 .

4 .

for

	

all

	

pair

	

(X(p), X(p))

	

of variables

	

such

	

that
{p,P} C_ Lit(S), p and p should have complemen-
tary truth values ; hence X(p) and X(p) should be
opposite to each other in PS :

{oeo, ooe}(X(p), X(P), X0)

for all variables X(cl ), X (e2) such that Cl V c2 is a
clause of S, cl and c2 cannot be simultaneously false ;
translated into PS, X(cl) and X(C2) should not be
both opposite to X0 :

{eee, oeo, ooe} (X (c l ), X(c2 ), X0)

for all variables X(fl V f2), X(f l ), if fl is true then
so is (fl V f2) :

{eee, eoo, ooe} (X (fl Vf2), X(fl ), Xo)

for all other triple (X, Y, Z) E V3 of variables, add
to PS the constraint

{eee, eoo, oeo, ooe} (X, Y, Z)

The transformation is deterministic and polynomial .
If M is a model of S, it is mapped to a solution of PS
as follows . Xo is assigned any value of (0, 27r) . For all
f E Lit(S), X(f) is assigned the same value as X0 if

Input : the matrix representation of a TOCSP P;
Output : true if and only if P is consistent ;
function consistent(P) ;

1 . s4c(P) ;
2.

	

if(P contains the empty relation)return false ;
3. else
4.

	

if(P contains triples labelled with non atomic relations){
5.

	

choose such a triple, say (X ;, Xj, Xk);
s.

	

T := Pijk ;
7.

	

for each atomic relation t in T{
8.

	

instantiate triple (X� Xj,Xk) with t (Pijk := t) ;
9.

	

if(consistent( P)) return true ;
10 .

	

}
11 .

	

PrJk := T;
12 .

	

return false ;
13 .
14 . else return true ;

Figure 10 : A solution search algorithm for TOCSPs .

M assigns the value true to literal f, the value opposite
to that of Xo otherwise . For all (f l V f2 ) E BinCl(S),
X(fl V f2) is assigned the same value as Xo if either
X(fl ) or X(f2 ) is assigned the same value as X0, the
opposite value otherwise . On the other hand, any solu-
tion to PS can be mapped to a model of S by assigning
to every literal f the value true if and only if the vari-
able X(f) is assigned the same value as Xo . M

A solution search algorithm
Since the constraint propagation procedure s4c of Fig-
ure 7is complete for the subclass of atomic ternary re-
lations (Corollary 1), it is immediate that a general
TOCSP can be solved using a solution search algorithm
such as the one in Figure 10, which is similar to the one
provided by Ladkin and Reinefeld (1992) for temporal
interval networks, except that :

it instantiates triples of variables at each node of the
search tree, instead of pairs of variables ; and

which achieves2 . it makes use of the procedure s4c,
strong 4-consistency, in the preprocessing step and
as the filtering method during the search, instead of
a path consistency procedure .

The other details are similar to those of Ladkin and
Reinefeld's algorithm .

Related work
Representing a panorama
In (Levitt k Lawton 1990), Levitt and Lawton dis-
cussed QUALNAV, a qualitative landmark navigation
system for mobile robots . One feature of the system is
the representation of the information about the order
of landmarks as seen by the visual sensor of a mobile
robot . Such information provides the panorama of the
robot with respect, to the visible landmarks .

Figure 11 illustrates the panorama of all object
S with respect to five reference objects (landmarks)
A, B, C, D, E in Schlieder's system (Schlieder 1993)
(page 527) . The panorama is described by the to-
tal cyclic order of the five directed straight lines
(SA), (SB), (SC), (SD), (SE), and the lines which are
opposite to them, namely (Sa), (Sb), (Sc), (Sd), (Se) :
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(1)

Figure 11 : The panorama of a location .

12North
Nor,h-West\ / North-East

li

Figure 12 : Frank's system of cardinal directions .

(SA)-(Sc)-(Sd)-(,5[3)-(Se)-(Sa)-(SC)-(SD)-(Sb)-(SE) .
By using the algebra of binary relations, only the five
straight lines joining S to
the landmarks are needed to describe the panorama :
{(SB)r(SA), (SC)r(SB), (SD)r(SB), (SD)r(SC),
(SE)l(SB), (SE)l(SA)) ; using the algebra of ternary
relations, the description can be given as a 2-relation
set : {rll((SA), (SB), (SE)), rrr((SB), (SC), (SD))} .

Schlieder's system seems to make an implicit assump-
tion, which is that the object to be located (i .e ., S) is
supposed not to be on any of the straight lines joining
pairs of the reference objects . The use of the algebra of
binary relations rules out the assumption (the relations
e(qual) and o(pposite) can be used to describe object S
being on a strainght line joining two reference objects) .
Note that Schlieder does not describe how to reason
about a panorama description .

Sector models for reasoning about
orientations
These models use a partition of the plane into sectors
determined by straight lines passing through the ref-
erence object, say S . The sectors are generally equal,
and the granularity of a sector model is determined
by the number of sectors, therefore by the number of
straight lines (n straight lines determine 2n sectors) .
Determining the relation of another object relative to
the reference object becomes then the matter of giving
the sector to which the object belongs .
Suppose that we consider a model with 2n sectors,

determined by n (directed) straight lines et, . . ., e,t
which we shall refer to as reference lines . We can as-
sume without loss of generality that (the orientations

of) the reference lines verify : ii is to right of e; (i .e .,
(e i rej)), for all i E {2, . . .,n}, for all j E {1, . . .,i-1}_
We refer to the sector determined by fi and ei+i,
i = 1 . . . n-1, as si, to the sector determined by en and
the directed line opposite to e l as s, . For each sector
si, i = 1 . . . n, the opposite sector will be referred to as
s,t+ i . Figure 12 illustrates these notions for the sys-
tem of cardinal directions presented in (Frank 1992),
for which n = 4 :
1 . The reference lines et, . . . , e4

figure .
are as indicated in the

2 . The

	

sectors

	

Si,....s2x4
are North,North-East, East,South-East, South,South
West,West and North-West, respectively .

Hernandez's (Hernandez 1991) sector models can also
benefit from this representation .

Suppose that a description is provided, consisting of
qualitative positions of objects relative to the reference
object S . S may be a robot for which the current
panorama has to be given ; the description may con-
sist of sentences such as "landmark 1 is North-East,
and landmark 2 South of the robot" . We refer to such
a description as a sector description of a configuration .
A sector description can be translated into a BOCSP

P in the following natural way . P includes all the rela-
tions described above on pairs of the reference lines .
For each sentence such as the one above, the rela-
tions (X(rob,l) r e2), (X(rob,l) 16), (X(rob,2) l E l ) and
(X(rob,2) r e2) are added to P . X(ro b, l ), for instance,
stands for the orientation of the directed straight line
joining the reference object `robot' to landmark 1 .
An important point to notice, which is not hard to

show, is that a sector description is consistent if and
only if the corresponding translation into a BOCSP
is consistent . The 'only-if' is trivial . The `if' can be
shown by exploiting the fact that if the BOCSP is con-
sistent then any solution to it can be mapped into a
solution of the sector description by appropriate rota-
tions of the values assigned to the variables which bring
the reference lines to the desired positions .

Reasoning about 2D segments
In his paper "Reasoning About Ordering", Schlieder
(1995) presented a set of line segment relations . These
relations are based on the cyclic ordering of endpoints
of the segments involved . We believe that reasoning
about 2D segements should combine at least orienta-
tional and topological information . Orientational in-
formation would be information about cyclic ordering
of the orientations of the directed lines supporting the
segments ; on the other hand, topological information
would be the description of the relative positions of the
segments' endpoints . For instance, using the algebra of
binary relations on 2D orientations, as defined in this
work, we could define an algebra of 2D segments, which
would have the following segment relations (given a seg-
ment s, we denote by s, and sr its left and right end-
points, respectively, i .e ., s is the segment [sisr ] ; by z,



the orientation of the directed line (sis r ) supporting
segment s) :

1 . If the orientations
points of s2 are :

(a) both to the left of the directed line supporting seg-
ment s l (one relation) ;

(b) both on the line supporting segment sl (13 rela-
tions : see Allen's (1983) temporal interval alge-
bra) ; or

(c) both to the right of the directed line supporting
segment sl (one relation) .

2 . If zs2 is to the left of z,s , , this leads to 25 segment
relations, which are obtained as follows :

3 .

4 .

zs , and zs2 are equal, the end-

The endpoints of sl partition the directed line sup-
porting the segment into five regions : the region
strictly to the left of the left endpoint, the region
consisting of the left endpoint, the region strictly
between the two endpoints, the region consisting
of the right endpoint, and the region strictly to
the right of the right endpoint . Similarly, the end-
points of s2 partition the directed line supporting
the segment into five regions .
The lines supporting the segments sl and s2 are
intersecting ; and the intersecting point is in either
of the five regions of the first line, and in either of
the five regions of the second line . This gives the
25 segment relations .

if z,, and z52 are opposite to each other, we get 15
relations in a similar manner as in point 1 . above .
if zs2 is to the right of z,s � we get 25 relations in a
similar manner as in point 2 . above .
Therefore the total number of segment relations

would be 80 .

Summary and future work
We have provided a refinement of the theory of cyclic
ordering of 2D orientations, known as CYCORD theory
(Megiddo 1976 ; Rohrig 1994 ; 1997) . The refinement
has led to an algebra of ternary relations, for which
we have given a constraint propagation algorithm and
shown several complexity results .
We have discussed briefly how this work relates to

some others in the literature ; in particular, the discus-
sion has highlighted the following : (1) Existing sys-
tems for reasoning about 2D orientations are covered
by the presented approach (CYCORDs (Megiddo 1976 ;
Rohrig 1994 ; 1997) and sector models (Frank 1992 ;
Hernandez 1991)) ; (2) The presented approach seems
more adequate than the one in (Schlieder 1993) for the
representation of a panorama .
There has been much work on Allen's interval algebra

(Allen 1983) . For instance, Nebel and Burckert (1995)
have shown that the ORD-Horn subclass of the algebra
was the unique maximal tractable subclass containing
all 13 atomic relations . Most of this work could be

adapted for the two algebras of 2D orientations we have
defined .

Finally, a calculus of 3D orientations, similar to what
we have presented for 2D orientations, might be devel-
oped .
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