
MLI

Abstract
We show that qualitative simulation algorithms can make
better use of their input to deduce significant amounts of
information about the relative lengths of the time intervals
in their output behavior predictions . Simple techniques
employing concepts like symmetry and periodicity, and
comparison of the circumstances during multiple traversals
ofthe same interval can enable the reasoner to build a list of
facts representing the deduced information about relative
durations . These facts are used by a new filter, which
eliminates proposed spurious behaviors leading to
inconsistent duration data. Surviving behaviors are
annotated with richer descriptions of the qualitative
properties of system variables, in addition to the extracted
relative duration information .

Introduction

The prediction of spurious solutions for some qualitative
differential equation systems is a major problem of
qualitative simulation. Improvements in this area involve
the development of methods which increase the
mathematical and representational sophistication of
qualitative simulators to eliminate different classes of
spurious predictions (Kuipers 1994) (Say & Kuru 1993)
(Say 1997b) (Say 1998) . In this paper, we show that
qualitative simulation algorithms can make better use, of
their input to deduce significant amounts of information
about the relative lengths of the time intervals in their
output behavior predictions . Simple techniques employing
concepts like symmetry and periodicity, and comparison of
the circumstances during multiple traversals of the same
interval can enable the reasoner to build a list of facts
representing the deduced information about relative
durations . These facts are used by a new filter, which
eliminates proposed spurious behaviors leading 'to
inconsistent duration data . Surviving behaviors are
annotated with richer descriptions of the qualitative
properties of system variables, in addition to the extracted
relative duration information .
We have implemented our technique in the framework

of the "standard" qualitative simulation algorithm QSIM,
details on which can be found in (Kuipers 1994) .
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Name

Extracting and Using Relative Duration Information in
Pure Qualitative Simulation

The Idea

As an example to the sort of problem solved by our work,
consider the following scenario : Two balls are thrown
upward from ground level with unknown speeds at time t o .
We are interested in enumerating all (and only) the
physically possible orderings of the time-points in which
the balls reach the highest points of their trajectories or hit
the ground . We simulate the simple QSIM model in
Table 1 . The simulator is set to stop extending a prediction
when either ball hits the ground, that is, at time-points
where H, or HZ has the value <0, 4,> .

Explanation
. upward_ gravitational acceleration-------------------

K,__ ;_upward velocity_of the_f rst ball
VZ_ _ ; _upward velocity_ of the_ second ball ; _ (d/dt VzA) . . . . . . . . .

; _ height of the first ball-----------------------------
height

	

; _ (d/dt Hl VO . . . . . . . .
of the second ball_ _ _ _ _-_ _ _ _ ;_ (d/dt HZ V~ . . . . . . . .

TABLE 1 . The Two-Ball System

Constraint
constant A

	

< 0
_ (d/dt _VA

The QSIM algorithm predicts 13 distinct behaviors in
this simulation . Table 2 depicts one of these predictions . It
is easy to see that this is a spurious prediction, since it
describes a behavior in which it takes the balls the same
time to reach their maximum heights, but then the first ball
overtakes the second ball in the next half of what is clearly
a symmetric trajectory . There are five other similarly
inconsistent predictions in this QSIM output .
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TABLE 2 . A Spurious Prediction for the Two-Ball System

What modifications have we made to avoid this error? In
this example, one can deduce that the heights are
symmetric functions of time around the point t, by
examining the constraint model and the qualitative state at
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Symmetric Functions

f( t i - s) =f(ti + s) ,

lim f(t i - A= lim f(t i + ,U) , and
,ups' N~s'

lim f(ti -FU) = lim f`ti+P)
U-4s_

t, . We have incorporated a routine, which checks the
current workspace to -discover such symmetry information
about variables after the creation of each time-point state
by the simulator. These symmetry data can be used later to
derive relative length information about the time intervals
in the computed behavior . For instance, during the creation
of the state labelled t, in Table 2, the symmetry property of
H, can be exploited to deduce that the time intervals (to , t,)
and (t,, tz ) should be of equal length . A similar reasoning
about H, indicates that (to , t,) is longer than (t,, t2) . The
relative duration facts about intervals obtained in this
manner are accumulated in a global data structure
associated with each behavior. Each candidate time-point
state has to pass our new duration consistency filter, which
is satisfied only if no inconsistency can be found in the set
of relative duration facts implied by the partial behavior
that would be constructed by the addition of this candidate
state . In the example of Table 2, the state tz would not pass
this filter because of the two inconsistent assertions about
It,, t, I and It,, tz j, and so that spurious behavior would not be
predicted .

In the following sections, we describe how to augment
the qualitative simulation algorithm so that it notices and
uses several different mathematical properties (including
symmetry) of the computed behavior prefixes to eliminate
a class of spurious predictions containing such durational
inconsistencies and to present relative length information
about the time intervals in the predicted behaviors .

Symmetry is an important qualitative property . In the next
section, we describe how the input model can be used to
deduce the existence of symmetric functions in a partial
behavior . This section is an introduction to the terminology
and mathematics that will be employed during that
procedure .

Definition 1 . If a functionf(t) has, for a given point ti in its
domain [a,b], the property that

for all s such that ti - s E

	

(a,b)

	

and

	

ti + s E

	

(a,b),
then f is said to be even symmetric around t;, denoted
even(f, ti ) .
The positive legal range for s described above, namely,

(0, min(ti - a, b - ti )), is said to be the symmetry radius
around ti .

Definition 2 . If a function f(t) has, for a given point ti in its
domain [a, b], the property that
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for all s such that

	

t; -s E

	

(a, b)

	

and

	

t; + s E

	

(a, b),
then f is said to be odd symmetric around t;, denoted
odd(f, ti ) .

If a function f is (even or odd) symmetric around t;, t; is
said to be fs symmetry point. In the remainder of this
section, all appearances of s are assumed to be universally
quantified over the symmetry radius around the symmetry
point under discussion .

Note that the function x(t) =_ 0 is both even
symmetric everywhere in its domain.
The following theorems establish the correctness of a set

of rules used by the symmetry recognition procedure
incorporated to QSIM. (Konik & Say 1998)

Theorem 1 . Iff(t) is continuous on the domain [a,b], then
(i)

	

even(f, ti)

	

H

	

f(t, - s) =f(t ; + s)
(ii)

	

odd(f, t i)

	

H

	

f(ti - s) = j(t; + s)

Theorem 2 . Given y(t) =f(x(t)),
even(x, t i) -). even(y, ti)
odd(x, ti ) n odd(f, 0) --> odd(y, ti )

Theorem 3. x(t) = k, where k is a nonzero constant, is even
symmetric at every point .

Theorem 4 . Given x(t) = y(t) + z(t),
even(y, t i) n even(z, ti ) -4 even(x, ti )
even(x, t i) n even(z, ti ) -~ even(y, ti )
even(x, ti) A even(y, ti) -~ even(z, ti )

(i)
(ii)

(iv)
(v)
(vi)

(i)
(ii)

(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)

flti - s) _ -f(ti + s) ,

lim f(ti - P) =- lim f (ti +P), and
N-->s`

	

lutes*

lim f(ti -

	

lim f(ti + p)
lu-->s_

	

Fins _

odd(y, ti ) A odd(z, ti) --> odd(x, ti )
odd(x, t i ) A odd(z, ti ) -~ odd(y, ti )
odd(x, t i ) A odd(y, t i) -~ odd(z, ti)

Theorem 5. Given x(t) = y(t) . z(t),
even(y, t;) A even(z, t i) -4 even(x, ti )
even(x, t;) A even(z, t i)

	

even(y, t,)
even(x, ti) A even(y, ti )

	

even(z, ti )
odd(y, ti ) A odd(z, ti ) -~ even(x, ti)
odd(x, ti) A odd(z, ti ) --~ even(y, ti)
odd(x, t;) A odd(y, t;)

	

even(z, ti)
even(x, ti) A odd(y, ti)

	

odd(z, ti)
even(x, ti) A odd(z, ti ) --> odd(y, ti )
even(y, ti) A odd(x, ti) -~ odd(z, ti )
even(y, ti) A odd(z, ti ) -> odd(x, ti)
even(z, t;) A odd(x, ti ) --~ odd(y, ti )
even(z, ti ) A odd(y, ti ) -~ odd(z, ti )

Theorem 6. Given y(t) =f(x(t)), where f E M' u M- ,
(i)

	

even(y, t;) H even(x, ti)

and odd



(ii)

	

If odd(f 0) (f(-x) = f(x)) then

Theorem 7. Given x = dt ,

This entails

odd(y, t;)H odd(x, t;)

even(y, ti) t-> odd(x, t;)
odd(y, t;) H even(x, t;) n Y(ti)=O

x(t; - s) = k

	

t->

	

x(ti + s) = k,

FIGURE 1 . An Even Symmetric Variable

A- s) = Ati+s)

How can symmetry information be exploited for
comparing durations? Note that the definition of a function
x being even symmetric around ti entails that

which, when translated to the QSIM representation, means
the following : If we "see" x to be at a landmark k at a time-
point to before t;, then x is "destined" to reach k again at
some point t, after t; (unless the simulation terminates for
another reason .) Furthermore, we can conclude that
jta, t ;l = lt;, tc l, and, of course, Ita, t ;l < It;, tbl for any tb in which
x has not yet reached k.

For example, assume that x, as illustrated in Figure 1,
has been discovered to be even symmetric at time-point tb ,
and the list of landmarks crossed by x in [to, t6) is
(xa, 0, xb, 0) .

"xc" is a new landmark discovered at the
symmetry point t, In the continuation of this behavior, it is
certain that x will cross the landmarks listed above in the
reverse order ; namely, {0, xb, 0, xa } . Whenever x arrives at
a landmark in this new list, we will be sure that exactly the
same amount of time has elapsed from ti as it took x to
reach the symmetry point from the corresponding
appearance of that landmark before the symmetry point .
(Note that no new landmarks can be created after the
symmetry point until all landmarks in that list have been
crossed.)

For odd symmetric functions, zero crossings contriSute
relative duration data . To see this, we consider the
definition of odd symmetry around t;, that is,

f(t; - s) = 0

	

H f(ti + s) = 0.
Qualitative directions of odd symmetric variables are

useful too . Since the derivative of an odd symmetric

variable f will be even symmetric around the symmetry
point t;, it must be the case that

f'(t i -s)=0 H f'(tj+s)=0,
which means that the qualitative direction of x becoming
steady s units before t; forces a "mirror-event" where x
stops again s units after t; .
The next section illustrates the algorithm for extracting

the relative duration facts in more detail .

Recognizing & Using Symmetries in QSIM
The theorems in the previous section describe the ways in
which symmetry information about functions can be
propagated through a model . The only way of obtaining
symmetry information from "scratch," as it were, is
provided by Theorem 3 . In our modifications which enable
QSIM to recognize symmetric variables, the results of
Theorems 3-7 are used as rules which add new symmetry
data whenever they are able to "fire" in a given state .
We will describe the working of the symmetry

recognition procedure in terms of our introductory
example about the two-ball system . Before the start of
simulation, a preprocessor checks the constraint model to
see if the rule of Theorem 3 can be applied to deduce any
symmetry information about the variables . At this stage,
the only constant function in the model, A is found to be
even symmetric (everywhere) by an application of that
rule . No such information about the other variables can be
deduced at this point . This single item of symmetry
information is placed into the symmetry list, a structure that
will be inherited by all behaviors, which are continuations
of this state .
An examination of the rules of the previous section

shows that new firings are possible only in time-points
where a variable has the value zero . Since zero-crossing
leads to a new time-point state in the qualitative simulation
setup, we can make maximum use of the symmetry
derivation rules if we run them just for each completed
time-point state . Our modified algorithm therefore submits
each time-point state to the set of symmetry rules, and any
new symmetry information obtained as a result is added to
the symmetry list associated with the current behavior .

In our example, the state t, causes the reasoning steps
described in Table 3 to be performed .

Trigger

	

:Fired rule
A is even everywhere and

	

:

	

7.ii
----------- VAtj) =-0

-
---------- --------------------------------

A

	

--------------------------------
A is even everywhere and

	

'

	

7.ii

	

Vz is odd around t,

_____

	

0

	

_____

	

----------- --------------------

Conclusion
V, is odd around t,

K is odd around t
-----------

7_i _ _ _ ; H , is_ even-around tL
~! is odd around ti ------ _ _ . _ 7 .i----- :_H,_is_even_around_1L

TABLE 3. Derivation of New Symmetries from the State at t,
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Further simulation of this model does not lead to the
discovery of any new symmetry information.
Each candidate time-point state is examined by our

algorithm to see if it contributes any new relative duration
facts due to previously discovered symmetries . For this
purpose, we make use of the fact that the behavior of a
symmetric variable up to the symmetry point determines a
prefix of that variable's future behavior, as explained in the
previous section .
Our algorithm uses the reasoning described in that

section to assert new relative duration facts . Each
symmetric variable past its symmetry point can contribute
one such fact at each time-point . For the even symmetric
variable of Figure 1, assume that we are considering a
candidate state for t8 , after a partial behavior in which x has
been simulated to move up to the interval marked by the
arrow in the figure . The algorithm first prepares a list of
<landmark, time-point> tuples crossed by x from the
beginning of the simulation up to the currently considered
time-point . This list, l<Xa, tp>, <0, t,>, <Xb+ t2>, <0, t3>,
<xv tb> ,< 0, t,>), is split through the symmetry point into
two lists representing the landmarks crossed before and
after the symmetry point, respectively . In our example, the
"before" list is (<Xa, to>, <0, t,>, <Xb, t2>, <0, t,>), and the
"after" list is (<0, t,>) . We then "subtract" the "after" list
from the "before" list (cancelling "mirror-image" landmark
appearances from both lists) to obtain the "reverse
expectation list" {<r,,, to>, <0, t,>, <x b , t2>) . This means
that the "expected landmark" to be crossed by x is xb, and
(t6, t8) will be deduced to be of the same length as (t2, tb) if
x(t,) is indeed xb. If, on the other hand, t, is created as a
result of another variable reaching a landmark and x is still
(xb, 0) at that time-point, the fact "it,, tbI > It,,

t,j" will be
asserted .
Odd symmetric functions, which contribute useful

duration information when they cross zero and/or "stop,"
as explained in the previous section, are treated using a
variant of the procedure described above .

Symmetries of "non-analytic" functions, which stay at
the same landmark value for a finite time interval during
their behavior, are handled in a somewhat more
sophisticated way by the duration fact extraction
algorithm .

Returning to our two-balls example, the duration fact
extraction procedure works as follows when it is called
during the creation of state t2 of Table 2 : Variable H, is
known to be even symmetric around t� and its "before" list
indicates that it is supposed to reach zero exactly It,-t,l

time units after t, . The proposed magnitude of zero for H,
causes the assertion of Ito, t,I = It,, t2l to the relative duration
fact list . A similar reasoning about H 2 adds It,, t, I > It,, t2l to
the same data structure .

Other Ways of Comparing Durations

Periodicity

Name :

	

Explanation
X_ . _ ; -displacementofmassfr_o_m__eequilibriuum ------------

-----V

	

velocity of mass------------------------ (d/dt X V)__
A

	

; acceleration of mass

	

(d/dt VA) ((M- XA) (0 0))---- ---- -

	

------------------------------------------

TABLE 4. A Periodic Subsystem Model

Multiple Traversals of the Same Interval

The QSIM algorithm already has a cycle detection feature
which lets it decide that a branch of the state tree
corresponds to a periodic behavior and therefore need not
be expanded any more . Every further traversal of the cycle
will be of the length It., tbl, where to and tb are the time-
points in which the two instances of the same state that
lead to the detection of the cycle appear for the first and
second times, respectively .
Some sets of constraints are known to model systems

with periodic behaviors, the most famous example being
tke spring-mass model (Kuipers 1994) ofTable 4 .
Assume that the three constraints in Table 4 appear in a

bigger model containing several other constraints and
variables . It is clear that the three variables X V, and A
now form three "clocks" with the same period . Barring the
case where all three have the value <0, O> at to , the
subsystem comprising them will oscillate throughout the
behavior of the overall system, "ticking" at time-points
where either V or both X and A reach their critical points .
This property can be exploited for our purposes . A
preprocessor would scan the constraint model for known
patterns to see if any embedded clock subsystems can be
identified . If such a clock were found, its variables would
be noted for future use . During the global filtering of each
time-point state, the current behavior prefix would be
examined to see if one of the noted variables has "ticked,"
contributing a new relative duration fact to be used by the
duration consistency constraint .

Yet another opportunity for comparing durations arises in
the following setup : Assume that the system contains four
variables x,, x2, v� and v2, such that v,=dx,/dt and v2=dx,ldt.

Two durations It,b, t,.1 and It,,, t2,l can be compared if the
"distance" covered by x, during (t,b, t,,) can be compared
with the distance covered by x2 during (t1b, t2,), and, the
average magnitude of v, during (t,b, tj can be compared
with the average magnitude of v2 during (t2b, t2J-
The basic reasoning process involved here is the one

behind intuitive statements such as "It takes longer to
traverse a longer path with a lower speed." We will now
formalize this approach . Let us start with the following
definitions :

JAX I I =I x l (t,e )- x,(tlb) j :

	

distance travelled by x, in (t,b, t,l)
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IAX21 = I x2 (t2e )- x2 (t2b ) I :distance travelled by x, in (t2,, t2d

length ofthe time interval (t,b, tj

length ofthe time interval (t,b, tee)

average speed ofx, in (t,b, t,e)

average speed ofx2 in (t2b, tee)

To compare these quantities, we make the following
definitions .

AIAXI=IAx21-IAX,I ,

	

AAt=At 2 -At, ,

	

AIvI=Iv2I-Iv1I

At, = 11 le - tlb1 :

Ate = It2e -t2bI
Iv, I = JAX, I l At,

Iv2I = IAx 2 I / Ate

We now derive the comparison formula .

AIAXI

	

=

	

IAx2I - IAx, I

	

=

	

Iv2 I .Ate - ITI I . At,

	

_

Iv2I . At e - Ivl I . Ate + Ivl I . Ate - Ivl I . A,

	

=

( Iv2 I - IT, I ) . Ate + IT, I ( At,

	

- At, )

	

= AIvI . At,

	

+ Ill I . AAt

Since we are interested only in the signs of these
quantities,

[AIA-XI] = [AIvI] . [At2 ] + Gv,I] . [AAt], and, since [At2 ]=[+],

[AIAxI] =

	

[AIvI] + IT. 1] . [AAt],

	

yielding

[AAt]

	

=

	

[AIAxI] - [AIvI]

	

if Iv, I >0 .

Note that we can now check the correctness of the
statement "It takes longer to traverse a longer path with a
lower speed" by seeing whether it satisfies Equation (1) :
The assignment of signs results in [+] = [+] - [-],which is
indeed correct. ([TI I >0 in this case, since the sentence

implies that Iv2I is less than 1vl I .)
Applying Equation (1) for duration fact extraction in

QSIM is possible when [AIAxI], [AIvI], and Iv,I can be

unambiguously computed from the information at hand,
which is feasible in certain restricted cases :

[AIAxl] can be evaluated when x, and x2 are the -same

variable, say x, (which forces v, and v2 to be a single
"velocity' variable as well,) and the landmark interval
spanned by x in one of (t,b, t,,) and (t1b, t2J is a subset of
the other one . So our technique boils down to comparing
two traversals ofthe same interval by the same variable .

Comparison of the average speeds is performed via
ordinal comparisons on upper and lower bounds . For
example, if we know that the velocity is positive in Moth

(t,b, t,j and (t2b, tee) (meaning IT, I >0,) and the minimum

value attained by it during (t,b, t, e) is greater than its
maximum value during (t2b_

	

t2J, we can conclude that

Iv, I > Iv2 I , and hence

	

AIvI = [-] .

In certain (rather unlikely) circumstances, it is possible
to compare landmark intervals of separate variables in pure
QSIM; see (Say 1997a) for a discussion of these issues .

The Duration Consistency Constraint
The duration consistency constraint operates on the relative
duration fact lists accumulated as a result of the application
of the methods explained in the previous sections . Each
such fact can be in one of two forms : "It., t1I = Ito td i", or
"Ite, tbI > It, tdl" . The consistency-checking problem at hand
is transformed to a problem of the determination of the
satisfiability of linear inequalities as follows : Time-points
appearing in the relative duration facts are sorted to a
linear list . Each minimal interval in this list is given a
name . The relative duration facts are rewritten in terms of
these interval names . Inequalities asserting that each
interval length is greater than zero are incorporated to this
set of linear inequalities .

After this transformation is complete, a consistency
analyser based on (Clarke and Zhao 1992) is run on the
obtained constraint set . If an inconsistency is discovered,
the filter routine fails, and the candidate state is eliminated .

In our two-ball example, the relative duration facts
available during the preparation of t2 are, once again,

Ito, t1l= 1t1, t2l and Ito , t,I > It� t2l . The interval names are 1, .
representing It,, t,I, and 12, representing It,, t2l . The system
of inequalities 1, =12, 1,>I2 , I,>0, 1 2>0 is easily found to be
inconsistent, and Table 2 is eliminated from the output .

Richer Behavior Descriptions
Our modified simulator annotates the output predictions
with the additional information about variables and
intervals that it extracts during the computation of each
behavior . Table 5-6 illustrates this for one of the seven
surviving predictions for the two-ball system .

Variable ;Symmetry ; Symmetry

	

;Comparisons
Type Point ,

.__

	

A------ _

	

_ even_ . .-

	

_ everywhere--------------------
H,

	

even

	

- _

	

1,

	

;
(0

	

t I
> It,, t:l

-----------

	

-------------_________________-------------------
odd--------------------- 1 _________

	

_______________
Hz____~___even_____ .._______ t2__________ Ita ~ZL'_Lt2~_t~1__
V2 odd

	

12

TABLE 6 . Additional Information for Prediction of Table 5

time A V

	

VZ

	

H,

	

HZ

(9=°_~~__`, __(0"1"__ 0=_'r __T

__(to! 1J~_Ya

	

__

	

(0,~9__(0=---

0,

"
-= (0

0 , ~"

	

_ __ __ (0_00)_ 'I' ~

	

_ h l *

	

O

	

(0,°0):
T_

__(tJ=

	

_

t~1_l;.a ~l
_(=°_°1(0_,r)-y ;

_(O,hl*)=~''

____02

	

_(O,_hl * )z

	

--- ?_*,
t , t

	

O ;

	

o0 0 , ~L

	

-00,0 ,~L~

	

0, hl*

	

~

	

0, h2*),y

t < x~

	

O ;

	

0, y

	

0, h2* ,___~~ _

	

__

TABLE 5 . A Surviving Prediction for the Two-Ball System
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Related Work
Relative duration fact extraction was first implemented by
Qivi (1992), who presents a postprocessor which annotates
QSIM outputs with deduced temporal interval
comparisons . Qivi's work does not deal with spurious
behaviors noticeable due to these items ofinformation .

Weld's differential qualitative (DQ) analysis (1988)
technique involves conceptually comparing two behaviors
of the same variable for purposes of perturbation analysis .
When comparing multiple traversals of the same interval,
we make use of the same simple mathematical foundations,
albeit for a different purpose .
Some of the simulations improved by the duration

consistency constraint involve occurrence branching, in
which multiple branches are added to the behavior tree to
represent different possible time-orderings of two
"unrelated" variables reaching their respective landmarks .
"History"-based reasoners like Williams' TCP (Williams
1986) were designed with the purpose of eliminating this
phenomenon. There has been some work (Tokuda 1996) to
modify the QSIM framework in this direction . Our
approach would be useful in cases where the distinctions
created by the "global state"-based branching mechanisms
are relevant from the user's point of view, and incorrect
predictions in this format need to be minimised .
Hybrid qualitative-quantitative reasoners (Kuipers and

Berleant 1990) enable the association of numerical values
with the time-points in the qualitative simulation output,
rendering the comparison of interval lengths trivial . Our
work shows that such comparisons are possible and useful
in pure qualitative simulation as well .
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Conclusion
We have presented methods of eliminating a class of
spurious predictions from the output of qualitative
simulators . Predictions of this class are identified by
inconsistencies in the sets of conclusions, which can be
drawn about the relative lengths of the time intervals that
they contain . Duration comparisons of this nature can be
soundly based on several mathematical properties of the
simulated functions, including symmetry and periodicity .
The symmetry recognition and analysis procedure, as well
as the duration consistency constraint itself, have been
implemented and tested in our PROLOG version of QSIM.

Just as multiple traversals of the same landmark interval
leads to conclusions about temporal length comparisons,
relative duration information can be used for inferences
about the relative "distances" among various landmark
pairs in the same quantity space . This can, in turn, lead to
the detection and elimination of a class of spurious
behaviors containing inconsistencies involving landmark
distances . We plan to extend our research in that direction,
so that qualitative simulators with even greater predictive
performance can be built .
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