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Abstract

This paper develops a classification of transition be-
haviors for hybrid dynamic systems . Physical sys-
tem behaviors often comprise of multiple temporal
and spatial scales. A hybrid system model abstracts
the operational domain of a continuous system into
patches of similar behaviors . Behaviors in each patch
are described by simpler models . When state variables
cross threshold values, the system makes discrete tran-
sitions from one patch to another . We assign physi-
cal semantics to the transition behaviors in order to
develop a compositional modeling framework and self-
consistent simulators for hybrid systems .

Introduction
Physical systems, governed by the principles of conser-
vation of energy and continuity of power (Mosterman
& Biswas 1998b), exhibit continuous behaviors made
up of multiple temporal and spatial scales . Some of
the behavioral phenomena can be attributed to fast,
nonlinear effects that are hard to characterize . How-
ever, these phenomena may not require detailed analy-
sis if one is only interested in the gross, overall system
behaviors . For example, consider the cam follower sys-
tem in Fig . 1 . In automobiles the cam-axis translates
rotational motion into a linear movement. A push-
ing rod driven by the linear displacement opens the
engine valves . For a valve to close, it is important
that the pushing rod follow the cam base . This is
ensured by a spring that presses the rod against the
cam. However, due to wear of the spring, reduced
lubrication in the passages, and the fast revolutions
of the engine, the rod may exhibit bouncing behav-
ior that is governed by the small elasticity effects in
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Figure 1 : A cam mechanism opens a valve.

the rod and cam . From a system modeler's viewpoint,
the detailed collision process is not of much impor-
tance in terms of the overall engine behavior, there-
fore, it can be abstracted and replaced by a phenom-
ena where the rod undergoes instantaneous reversals
in velocity . Previous work (Mosterman & Biswas 1996;
1998b) developed a formal hybrid modeling formalism
to analyze such phenomena in a number of different
types of dynamic physical systems .

Hybrid modeling techniques simplify complex con-
tinuous nonlinear behaviors to piecewise continuous
behaviors interspersed with discrete transitions . Non-
linear effects associated with fast behaviors are re-
placed by discrete transitions, and this alleviates the
numerical problems caused by steep gradients . Model
generation is also simplified because parasitic param-
eters have been abstracted away. Discrete transi-
tions are linked to configuration changes in the sys-
tem model, and result in the system operating in a
number of different modes . To achieve composition-
ality, discrete changes are modeled as local switching
functions defined in terms of system variables crossing
threshold values . A local transition can trigger ad-
ditional, instantaneous changes which continue till no
further local transition functions are active, and the
system behavior resumes continuous evolution in time .
In a global modeling framework, these sequences of
instantaneous changes can be replaced by direct tran-
sitions . However, for large systems composed of many
primitive switching elements this is a daunting task



that is complicated because mode transitions depend
on the present mode as well as the state values . There-
fore, to support compositional modeling approaches
(e .g ., hybrid bond graphs (Mosterman & Biswas 1996;
1998b)), it is pragmatic to develop a semantics that
preserves the physical correctness of these instanta-
neous transitions .

Sometimes, the new continuous mode achieved is de-
parted in an infinitesimally small time interval, and
the system goes through a new sequence of discrete
changes . This occurs when system variables in the new
mode are exactly at their threshold values (Moster-
man & Biswas 1997x ; 1997c) . In certain situations,
this may cause the system to exhibit quick oscilla-
tions between two modes of operation, i .e ., the system
behavior chatters (Mosterman, Zhao, & Biswas 1997 ;
Zhao & Utkin 1996) .

More formally, hybrid systems' (Alur et al . 1994 ;
Deshpande & Varaiya 1995 ; Guckenheimer & John-
son 1995 ; Mosterman & Biswas 1996 ; 1997x; 1998x)
combine piecewise continuous behaviors with discrete
mode transitions . Continuous behaviors in individ-
ual modes, governed by ordinary differential equations
(ODEs) or differential and algebraic equations (DAEs),
evolve in regions of real space . At well-defined points,
discrete transitions defined by finite state machines or
Petri nets, invoke instantaneous mode changes that
may produce discontinuities in the system variables .
Hybrid modeling techniques are becoming increasingly
popular in analyzing embedded systems (physical sys-
tems with discrete controllers) and complex physical
systems that exhibit fast and slow behaviors .

This paper develops a taxonomy of transitions in
hybrid models of complex physical systems and a uni-
fied semantics that combines the normal continuous
modes with mythical, pinnacle, and sliding behavior
modes . The semantics forms the basis for develop-
ing a consistent simulation algorithm for hybrid sys-
tems . Simulation results have demonstrated the ef-
fectiveness of this approach . This work builds on
top of two existing strands of work that studied in-
dividual mode transitions : (i) analysis of hybrid sys-
tems models with instantaneous mode and state vector
changes (Mosterman & Biswas 1996 ; 1997x), and (ii)
analysis of hybrid system models which exhibit chat-
tering, i .e ., fast transitions between two modes of op-
eration (Mosterman, Zhao, & Biswas 1997 ; Zhao 1995;
Zhao & Utkin 1996) . The unique contribution of this
paper lies in the systematic treatment of transitions be-
tween different modes . Defining the precise guards for
each transition type and its corresponding semantics

'See also the Hybrid Dynamic Systems Web site at
http://www.op.dlr.de/ - pjm/hds .

Figure 2 : Bouncing rod phase space .

Discontinuities in Phase Space

Hybrid System Definition

enables the implementation of a unifying simulation
algorithm for hybrid system models .

Mode Transitions in Hybrid Systems
Behaviors of a dynamic system can be conveniently
described by an n-dimensional space spanned by the
state vectors of the system called the phase space . As
the system evolves over time, the consecutive states
that define system behavior appear as a trajectory in
phase space .

Building simulation models for analyzing physical sys-
tems exhibiting behaviors at multiple scales is com-
putationally complex . An approach to simplifying
this task is to approximate a complex trajectory by
piecewise continuous segments, where the system of
equations describing the behavior in each segment is
simpler than the original set of nonlinear equations .
This requires additional mechanisms in the simulation
scheme to detect transition boundaries and switch sys-
tem models when transitions occur . Transitions may
cause discontinuous changes in systems . The phase
space behavior representation of the bouncing rod in
the cam-follower system, illustrated in Fig . 2, shows
the complex nonlinear behavior upon collision being
replaced by an instantaneous transition, i .e ., a discon-
tinuous jump in the rod's velocity (indicated by the
double arrow-heads) .

Hybrid dynamic system behaviors evolve over time
with no gaps on the time line, i .e ., system behaviors
are dense on the time line . Hybrid system behavior
consists of three distinct subdomains :

" A continuous domain, T, with time, t E T, as the
special continuous variable .

" A piecewise continuous domain, V,,,, where sys-
tem behavior is governed by well-defined continuous
functions f called fields, specified by a set of ODES
or DAEs. The set of temporal behaviors in a field
is called a flow, T, which specifies the state vectors
xc,(t) uniquely on the time-line .
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Figure 3 : A planar hybrid system.

A discrete domain, I, that captures all the operative
piecewise continuous domains, Va .

We adopt a notation similar to Guckenheimer and
Johnson (Guckenheimer & Johnson 1995) and specify
I to be a discrete indexing set, where a E I represents
the mode of the system . .F,, is a continuous C2 flow on
a possibly open subset Va of R°, called a chart, with
a corresponding field fo (Fig . 3) . The sub-domain of
V,, where a continuous flow in time occurs is called a
patch, Ua C Va . The flows constitute the piecewise
continuous part of the hybrid system. The trajectory
of the system is specified by the state vector xa (t) .
The set of valid state vectors for an operational patch
corresponding to mode a defines the state space Xa
for that mode. The discrete switching function ya is
defined as a threshold function on Va . If ya <_ 0 in
mode a, the system transitions to )3, defined by the
mapping go : Va - Vp . The piecewise continuous level
curves ya = 0, denoted as SO, define patch boundaries .
If a flow .Fa includes the level curve, SO, it contains
the boundary point, t3a (see Fig . 3) . A hybrid dynamic
system is defined by the 5-tuple 2

A trajectory in the system starts at an initial point
xQ ,(t) and if d tr , ya; > 0, the point flows in a l as
specified by -Fa, until the minimal time t, at which
ya2(xa ,(t)) = 0 for some a 2. Computing xa,(tJ) _
limtlt, .Fa, (t) the transformation ga; takes the trajec-
tory from xa ,(t,) E Va, to xa ,(t,) E V,,, . The point
xa,(t,) = gai(xa,(ta )) is regarded as a new initial
point .

2 Guckenheimer and Johnson refer to the respective
parts as < V~, X~, .Fo , h3, T3 > (Guckenheimer & Johnson
1995 ; Mosterman & Biswas 1998a) .

An Illustration: The Falling Rod

Figure 4 : Redirected trajectory because the
transported point is not in the domain of the
new patch.

If there exists a3 E I, such that ya3(xa,(t,)) _<
0, the trajectory is immediately transferred to
ga3(xas(t,)) E Va, (see Fig . 4) . A characteristic of
hybrid systems is the possibility of a number of these
immediate changes occurring before a new patch is ar-
rived at, where again a flow defined by a field governs
system behavior (Alur et al . 1994 ; Guckenheimer &
Johnson 1995 ; Mosterman & Biswas 1996 ; 1997b) . In
general, this situation occurs if yak` transports a tra-
jectory to ak+i, and the initial point is transported
by gak+' to a value that results in yak+; < 0, i .e .,
ga° 't̀+ ' (xak) V Uak+i, and another mode ak+2 is instan-
taneously arrived at . These immediate transitions con-
tinue till a mode a�, is arrived at where the initial point
is within Ua_ . Details of the mathematical model for
hybrid systems appear in (Mosterman & Biswas 1997a ;
1998a) .

Consider the ideal rigid body collision between a thin
rod and a floor in Fig . 5 . Upon collision, small de-
formation effects may occur which forces the vertical
velocity of the rod-tip, A, to quickly become 0 . If
this phenomenon occurs on a time scale much smaller
than the time scale of interest, these effects can be
abstracted away. As a result, the model will show a
discontinuous change when computing VA,y , the verti-
cal component of the rod velocity at the point of con-
tact . Given the existence ofCoulomb friction (Lotstedt
1981) between the rod and floor, the rod may stick and
rotate around the point of initial contact (mode at in
Fig . 5) .

Alternately, if the rod-tip exerts a force in the hori-
zontal direction that is larger than the product of the
normal force and friction coefficient, i .e ., (FA,x I > pF� ,
the rod may slide (mode a2 in Fig . 5) . When the ve-
locity along the surface, VA, ., falls below a threshold
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Figure 5 : Possible scenarios after collision .

Center of Mass Velocities

vertical

Figure 6 : A trajectory in phase space of the col-
liding rod, p = 0.004, wi th = 0.0015, 0 = 0 .862,1 =
-0.1, yo = 0.23 .

value, vth, the rod may get stuck .

Entry Points
`I-ansitions

horizontal

in Phase Space After Mode

A simulated trajectory of the rod in phase space is
shown in Fig . 6 . The coordinate system for the rod
is centered at the middle point of the rod as shown
in Fig . 5 . The system is initialized with zero angular
and linear velocities ((0, 0, 0)) . Once the rod is released
from height yo , flow 17,, o applies, and the magnitude
of its vertical velocity increases in time . When the
rod-tip, point A, touches the floor the rod may start
to slide, governed by flow The mode a2 where
the rod slides is activated immediately after ao be-
cause a force balance computation indicates that the
stuck mode al is departed instantaneously, i .e ., it is
beyond the patch of a new mode. Also, the discontin-
uous jumps between flows are illustrated in Fig . 6 .

If the simulation is repeated with a longer rod, ini-
tially the rod may slide on hitting the ground, but
when sliding starts, the balance of forces indicates
that the rod disconnects and lifts off the ground (i .e .,
the normal force of the floor would become negative
F� < 0) . In this case the rod is in the sliding mode, a2,
for a point in time, after which it transitions back to

Summary

Center of Mass Velocities

Figure 7 : A boundary in phase space of the col-
liding rod, p = 0 .5, wi t h = 0 .0015, 0 = 0.862,1 =
-10, yo = 23 .

the free mode of operation, ao . Note that this occurs
even though the collision is modeled to be perfectly
non-elastic, i .e ., there is no restitution of momentum
difference in any of the operational modes (c = 0) . A
simulation result for this example is shown in Fig . 7 .
This simulation demonstrates how the boundary point
B,, changes the state vector for the flow in ao (Moster-
man & Biswas 1997a) . Note that in a2 a field governs
behavior at a point in phase space .

When a mode change occurs, the system behavior
ters a new region of phase space . As discussed earlier, a
portion of this region, the patch (region 1 in Fig . 8) de-
fines continuous behavior evolution . Surrounding the
patch is a boundary region marked 2 in Fig . 8, and the
region outside the boundary is marked 3 in Fig . 8 where
no real behaviors can occur . In terms of transitions,
three scenarios are possible in behavior evolution :

en-

Transition to patch interior : This occurs when the
derived state vector after a mode change does not
result in an immediate further transition within an
infinitesimal period of time. For convenience, we call
this an interior mode .

Transition to a boundary point : This occurs when
the derived state vector after a mode transition is
at the boundary of a patch, and, therefore, a new
mode change occurs after an infinitesimal period of
time (e.g ., mode a2 in the falling rod example) . This
point is called a boundary .

Transition to a point outside of patch and boundary :
A mode change is immediately followed by another
transition, because the derived state vector is beyond
the patch and boundary of that mode (e.g ., mode al

Mosterman 99



Figure 8 : Possible entry points in phase space
after mode transitions : (1) interior; (2) bound-
ary; (3) beyond patch.

in the falling rod example) . In such situations, the
mode is called a mythical mode.

A Detailed Study
Hybrid system models resulting from systematic ab-
stractions of complex physical systems approximate
continuous behaviors as piecewise patches with dis-
crete transitions between them . A study of the differ-
ent forms of abstraction that can be applied and their
links to defining mode transitions in hybrid models are
analyzed . Appropriate semantics have to be developed
for the different classes of transition behavior (Moster-
man & Biswas 1997a ; 1998a) .

Two Abstraction Types
Discontinuities in behaviors of hybrid models of phys-
ical systems have been attributed to two general ab-
straction techniques : (i) time scale and (ii) parameter
abstraction (Mosterman & Biswas 1997c ; Mosterman,
Zhao, & Biswas 1997) . Time scale abstractions repre-
sent complex behaviors over a small time interval by a
discontinuous change at a point in time . An example
is the model of a bouncing rubber ball, where the ball
velocity reverses instantaneously upon collision with
the floor . In reality, the the initial kinetic energy of
the ball is stored on impact as elastic energy within
the ball and the floor for a very small time period,
and then returned back as kinetic energy to the ball,
which causes it to fly back up . Time scale abstrac-
tion reduces the process of energy storage and return
to a point in time. 1n contrast, parameter abstractions
eliminate small, parasitic dissipation and storage pa-
rameters from the system model. In case of a steel
ball, the elasticity coefficient of the ball may be small
enough to be abstracted away . The implication is that
the collision between the floor and ball becomes non-
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Physical Semantics

elastic (there is no energy storage at collision), and the
ball comes to rest at the point of contact .

Discontinuities may manifest as discontinuous changes
in field gradients and as jumps in system variables .
The corresponding transitions may generate a number
of mode classes that require the development of sys-
tematic semantics to define consistent behavior mod-
els .
Mythical Modes

	

Parameter abstractions cause loss
of behaviors, which may result in transitions through
mythical modes, i .e ., modes that have no real exis-
tence on the time line . Transitions through a se-
quence of mythical modes do not affect the system
state . This is expressed as the principle of invariance
of state (Mosterman & Biswas 1996 ; 1997a) . In phase
space, they correspond to a new computed state vec-
tor that is beyond the patch in the mode that is just
arrived at . Therefore, there is an immediate further
transition out of this mode.
An example of a mythical mode is al in case of the

falling rod that starts to slide upon contact (Fig . 5) .
Because the rod starts to slide, upon contact the sys-
tem moves to mode a2 . To infer whether the condi-
tion for sliding IFA,zl > . pF� is satisfied, the balance
of forces in mode al has to be computed based on the
redistribution of momentum in mode al . However,
once sliding is inferred, redistribution of momentum in
mode a2 is not affected by the redistribution in the
now mythical mode al . To make this clear, consider
p = 0 . Upon collision the stuck mode al prescribes
that VA, ., = 0, and, therefore, the center of mass has a
velocity that cancels the effect of the rotation on VA,S,
i .e ., vx = lwsinO . Because p = 0, the system moves to
the sliding mode a2, with no friction force present and
there never is a horizontal force in the system . There-
fore, vt should equal 0 . This is derived properly from
the v., = 0 state immediately before contact with the
floor, mode ao, whereas the mythical mode al would
mandate vz :~ 0 .
Sliding Mode Parameter abstractions can also
cause sliding mode behavior (Mosterman, Zhao, &
Biswas 1997 ; Zhao 1995 ; Zhao & Utkin 1996) . Con-
sider two adjacent modes (a and /3), and assume the
system of interest transitions between these two modes
(Fig . 9) . If a transition leads the system to the bound-
ary of the adjoining mode, and the direction of the
field vector is toward the first mode, the system may
switch from the second mode back to the boundary
of the first . If the gradient of the field is again to-
ward the second mode the first transition may re-
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Figure 9: Types of phase space behaviors near a
switching surface.

Figure 10 : Sliding mode simulation during an in-
terval of time.

peat (see Fig . 9c and Fig . 9f) . If this phenomenon
continues, one observes chattering behavior (e.g ., the
behavior of the anti-lock braking system in automo-
biles) . Chattering is best-handled by introducing slid-
ing mode behavior on the surface at the boundary of
the two modes . Mathematically, the switching surface
is a singularity, and behavior on the surface is unde-
fined . In reality, small parameters are present that
prevent the system from immediately switching back
and forth, which induces a smooth motion along the
switching surface (Mosterman, Zhao, & Biswas 1997 ;
Zhao & Utkin 1996) . In the limit as these parameter
values tend to 0, the system moves exactly along the
switching surface, which is called a sliding regime .

Sliding mode behavior is illustrated for the cam-
follower system in Fig . 1 . As discussed earlier, wear
and tear in the rod and cam system may cause the
rod to disconnect from the cam during deceleration,
but they may reconnect within an infinitesimal period
of time. This results in chattering behavior, i .e ., fast
back and forth transitions between two modes, in the
simulation process . This causes computational ineffi-
ciency in that it slows down behavior generation . As
AT --" 0, the system would move smoothly along the
sliding surface, Vrod = v...n, and, therefore, a larger
simulation step can be taken along this surface .
The sliding mode algorithm replaces chattering be-

havior by an equivalent dynamics to derive the time-
varying nonlinear behavior from the linearized phase
space under the assumption of small physical inertial
and hysteresis effects (Mosterman, Zhao, & Biswas

w~_i-.
100 200 300

t~

Figure 11 : Simulation of the cam-follower sys-
tem.

1997) . Fig . 10 illustrates its application to a cam-
follower mechanism . The simulation results on the left
do not apply equivalent dynamics . The cam and rod
alternately have equal and nonequal velocities . When
the rod disconnects from the cam the velocity differ-
ence builds up . However, because the cam decelerates,
at the next simulation time step a nonelastic collision
occurs and the rod and cam velocities are instanta-
neously forced to be equal . The simulation on the right
applies equivalent dynamics to remove this simulation
artifact . The system slides on the switching surface
and there is no error due to chattering . This conforms
with true physical behavior, where unmodeled higher
order physical phenomena such as adhesive forces be-
tween the rod and cam would result in the rod and
cam having the same velocity .

Pinnacles

	

Time scale abstractions lead to compres-
sion of behaviors in small intervals to a single point
in time, i .e ., they give rise to pinnacles (Mosterman &
Biswas 1997a ; 1998a) . In Fig . 1, after the cam-base
has reached its highest point, it starts to move down .
In extreme cases, the rod may disconnect and bounce
back onto the cam-base (Fig . 11) . The collision can be
modeled by Newton's elastic collision rule which states

V+ - -EVrod,rod -

where e represents the coefficient of restitution . It
equals 1 in case of a perfect elastic collision . This colli-
sion rule captures the elasticity parameters that are ac-
tive for a short period of time on collision, and collapses
that effect (the collision) into a point in time . Change
in the state vector is governed by algebraic equations,
which hold only for that point in time, called a pin-
nacle . A pinnacle shows up as a jump in the phase
space diagram, shown on the right in Fig . 2 . After
momentum transfer, Vrod has the same magnitude but
opposite sign, and the system moves back to a contin-
uous mode of operation .

Notice that pinnacles are different from boundaries .
Pinnacle behaviors, caused by time scale abstraction,
are governed by algebraic equations that cause jumps
in phase space . As soon as the a priori state vec-
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Table l : Semantics governing each transition
mode behavior .

for is updated, the pinnacle is departed and no con-
tinuous behavior evolution should take place in that
mode . Boundary behaviors can be attributed to pa-
rameter abstraction and are governed by a gradient
of continuous flow . After the state vector is updated,
the boundary is active . It is departed after behavior
evolves over an infinitesimal amount of time . Also note
the difference between mythical modes and pinnacles .
Unlike mythical modes, energy redistributions can oc-
cur within the system at pinnacles, and, therefore, the
state vector can be modified, whereas mythical mode
behaviors are governed by the principle of invariance
of state (i .e ., they do not affect the state vector) .
Summary

	

Behavior in interior and boundary modes
are governed by the gradient of the flow in the particu-
lar mode of operation . In addition, our work has iden-
tified three other transition modes that occur in behav-
ior analysis of hybrid systems : (1) mythical modes, (ii)
sliding modes, and (iii) pinnacles . A mythical mode re-
sults in an immediate new transition, governed by the
principle of invariance of state (Table 1) . When the
system switches back and forth between two bound-
ary modes, i .e ., the switches between the two bound-
ary modes occur within an infinitesimal point in time,
chattering behavior occurs, and this is defined as a
sliding mode. In our work, sliding mode behavior
is governed by the equivalence dynamics methodol-
ogy (Mosterman, Zhao, & Biswas 1997) . At a pinna-
cle, system behavior is defined by algebraic relations,
therefore, there is no continuous evolution of behav-
ior within this mode. An instantaneous mode change
occurs and the new state vector is derived by the alge-
braic relations .

A Formal Representation and an
Application

We have identified three types of transition behavior :
(i) immediate transitions through mythical modes, (ii)
transitions from pinnacles, governed by algebraic rela-
tions, and (iii) continuous behavior evolution . Fig . 12
shows how the components of a hybrid dynamic system
model defined in Eq . (1) interact to mathematically es-
tablish system behaviors .
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The recursion

Figure 12 : A mathematical model based on a
physical semantics .

The Mathematical Model

The mathematical model defines a switching function,
ya, with parameters the state vector x a , prior to the
jump and xtr , the state vector just after the jump com-
puted by the mapping x+ = ga(xa) .

Initially the state vector evolves in Va, as spec-
ified by Ya, until the minimal time t, at which
ya; (xa,(t)) - 0 for some a2 .

	

Then, the new state
xa , is derived by xa , = ga, (x,,,) .

	

If xa, is not in
Ua� ya;(X.,) <_ 0 and x,,,, is not considered to have
an actual representation on the time-line, and does not
affect the mapping of xa, to xa, . Therefore, the new
xa , is derived by applying gai to the original point
x a� xa, = ga;(xa,) . In this case, x,,,, is mythical, i .e .,
it has no real existence in time for this behavior trajec-
tory . Using x«, = gai(xa,) results in the expressions
of the form ya2 (x+,) <_ 0 and ya? (x++,) <_ 0 .

In general, 7.0 is also a function of xa , the state value
prior to the jump, e .g ., in the case of pinnacles, a fur-
ther mode change is triggered when the a priori value
is updated (Mosterman & Biswas 1998a) . With values
xa , prior to the jump and values x+ after the jump, the
semantics of transitions are specified by the recursive
relation between y)3 and ga (Mosterman 1997)

x+ a-(x.,,)
7a.

	

(xak,xa+ k ) <_ 0

terminates in a mode a�, when Va �
yam(xak,xa+k ) > 0 . In this case ak and a�, are real
modes (pinnacle or continuous) . Note the ak subscript
of x a ,, in gak .

In physical systems, continuous behavior is
pletely specified by the state . Therefore, the

com-
state

mapping is independent of the departed mode, i .e ., ga
is independent of a . This results in the general se-
quence

11 ModeClass --I Semantics ))



_ a

	

_ a

x = fa,(x,t)

	

x =

	

(X, t)
al

	

a2

(d)

(a) interior; (b) boundary; (c) sliding ; (d) mythical ; (e) pinnacle.

Yam_1ts~s+)

	

x+=g`W
x =x(4)

any of the three assignment statements is executed .
In this sequence, each mode, a, may be departed when

The resultant computational model handles the types
of mode transition behavior that may occur as illus-
trated in Fig . 13 (Note that x represents the state
vector and a the mode of the system in this figure) .
This figure shows a sequence of possible mode changes
from mode ak to mode a�, and possibly a� at a given
point in time . Fig . 13a shows the situation that the
mode transition moves the state vector into the inte-
rior of mode a�, and behavior evolution is governed
by a continuous field, f,,_ . In Fig . 13b the trajectory
transitions onto the boundary of a�, which causes a
further change to a� within an infinitesimal period of
time. When the system is moved back to mode ak,
and the field gradients in both modes are directed to-
wards each other, and chattering occurs . This is in-
dicated by the double arrow on the discrete indexing
axis, a, in Fig . 13c . Another case where the system re-
sides in a �, for an infinitesimal period of time is when
behavior in a �, is governed by an algebraic equation

(b)

(a) Transition to continuous mode : In this case after
the transition and update x = x+, dar-Yam (x, x+) >
0 . Therefore, fam is active . Three situations may

(e)

(c)

Fig . 13e . In this mode, no continuous behavior evo-
lution is specified . Finally, if the trajectory is trans-
ported to a mode that has no representation for the
given state and time, an immediate further transition
follows, shown in Fig . 13d . In this case, a�, does not
affect the state vector, and, therefore, is called mythi-
cal .
A classification of the transition behavior for the five

classes can be made based on the nature of the transi-
tions, illustrated by the mathematical model in Fig . 14 :

occur :

continuousInterior mode: Behavior evolution is
governed by field, fa m (see Fig . 13a) .
Boundary: A transition occurs after an infinitesi-
mal period of time, which indicates a patch bound-
ary was reached (see Fig . 13b) .
Sliding mode: A transition occurs after an in-
finitesimal period of time and the newly es-
tablished mode switches back to the current
one within an infinitesimal period of time (see
Fig . 13c) .

Mosterman

Transition to pinnacle : This occurs when updating
the state vector x = x+ results in ya' ;+ ` (x, x+) < 0 .
Updating x stored in the f element causes a mode
transition . Therefore, mode ai only exists at a point.
in time but the state vector tail change with the
transition (see Fig . 13e) .

This occurs whenTransition to mythical mode :
x+ = go,

(x) leads to y,;+ ' (x, x+) < 0 . The immedi-
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Table 2 : Classification scheme and guards.

Figure 14 : Classes of modes of operation .

ate transition bypasses the integrator (f), therefore,
the state vector x remains unchanged through the
transition (see Fig . 13d) .

Given ak was an interior mode, and after a pe-
riod of time a transition occurred from ak to a�, with
xa,,(t)+ = g'-(x.J, Table 2 specifies the conditions
that have to be satisfied for each of the classified modes
based on the semantics described above.' Pinnacles
and continuous modes are referred to as real modes
because they change the state vector x stored in the f
element . Pinnacles do so by a direct change and con-
tinuous modes by integration against time . Interior
modes, boundary modes and sliding modes are called
continuous because a field defines the behavior evolu-
tion process .
Note that the described mode transitions may ap-

pear in combination with one another . For example, in
the cam-follower system, collision effects occur between
the cam and the pushing rod that opens valves . These
collisions introduce pinnacles in phase space that are
traversed in between sliding modes . Likewise, mythi-
cal modes may be part of the transition between the
chattering real modes .

Results
The mode transition classification and their physical
semantics have formed the basis for developing a hy-
brid dynamic system simulation algorithm . The algo-
rithm has been implemented and used to produce the
simulation results shown in Figures 6, 7, 10, and 11 .
Continuous behavior evolution, identification of mode
transitions, and updating the mode transitions when
mode transitions occur have been implemented using

'The function yp(x, x+) is replaced for clarity reasons
by ya(x+) for sliding modes because x+ = x .
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Require: a, x,fa,'Y:, ga
while time < end time do
x = timeStep(a, x)
[a+, x+] = recursion(a, x)
if a+ ;e a then

repeat
a =a+
x =x+
[a+, x+] = recursion(a, x)

until a+ = a
[a, x] = slide(a, x)

end if
end while

Conclusions

the semantics developed in the earlier sections of this
paper .
A high level description of the simulation algorithm

appears as Algorithm 1 . The input to the simulator is
a mathematical hybrid system model (see (Mosterman
& Biswas 1998a) for details) and an initial state vec-
tor . The output of the algorithm is a behavior trajec-
tory that includes piecewise continuous behavior evo-
lution plus mode transitions . A forward Euler numeri-
cal approximation function, timeStep(a, x), evolves be-
havior along field gradients in the continuous mode
of operation . When a transition condition is detected
(ya < 0), this function generates behavior up to the
transition event using a bi-sectional root search . Mode
transitions are handled by the function recursion(a, x)
which implements the recursive relations in Eq. (3) .
When recursion terminates, the state vector is updated
(x - x+) . This may cause a further change implying
a pinnacle . The pinnacle may be followed by mythical
modes . When mode changes terminate in a new con-
tinuous mode, the sliding mode condition in Table 1 is
checked by the function slide(a, x) . If satisfied, equiv-
alence dynamics approximates system behavior until
behavior moves away from the switching surface . The
system continues to evolve until a new transition con-
dition is detected . Applications to the cam-follower
and the falling rod systems were illustrated earlier .

Algorithm 1 Hybrid Simulation Algorithm

Details of the simulation algorithm have been pre-
sented elsewhere (Mosterman & Biswas 1998a ; Moster-
man, Zhao, & Biswas 1997 ; Zhao & Utkin 1996) .

A systematic study of abstractions in physical system
models provides a formal methodology for defining hy-
brid systems and the semantics of temporal behavior
evolution for these models . Model behaviors can be
described by multiple piecewise-continuous patches in
phase space . Transitions between patches give rise to
additional modes of behavior : (i) interior, (ii) bound-
ary; (iii) sliding, (iv) pinnacle, and (v) mythical . This
paper has developed a systematic classification scheme

__
mythical mod 3an(7a ., -xQ

(t),
xa (t)+) 0)

pinnacle 3a�(yQ° x Q t) xa (t) ) < 0)

11
sliding mode 36t 1 6t 1 < c ya~x°,~ t +6t < O)A

36t2 (6t 2 < 0(-Yo: (x- (t + 6t)) < 0)



to define modes and transitions between modes . The
classification scheme is developed into a consistent and
efficient simulator for hybrid system behaviors . The
simulator has been tested on a number of physical ex-
amples, such as diode-inductor circuits, the secondary
sodium cooling loop of a fast breeder reactor, the
falling rod, and the cam-follower system . It handles
the idiosyncrasies of each transition type as well as
combinations of transitions .

Future research will focus on applying this frame-
work to verification and analysis tasks for control prob-
lems . The primary challenges in a more extensive anal-
ysis include :

* Verification mechanisms to study mode transition
guards for complex physical systems with much
higher dimensional phase spaces,

* A more formal characterization of the pinnacle mode
where the change in the state vector is governed by
algebraic equations . Some preliminary work in this
regard has been presented in (Mosterman & Biswas
1997b; 1998b ; 1998a), and

Development of a systematic methodology for com-
positional modeling from individual component
models, while ensuring that the time scale and pa-
rameter abstractions are consistent across models .
Preliminary work in this area has been presented
in the bond graph framework with switched junc-
tions (Mosterman & Biswas 1997b ; 1998b) .
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