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Introduction

Qualitative Euler Integration with Continuity

The subject of this paper is a novel synchronous
fuzzy qualitative simulator developed within the
Mycroft fuzzy qualitative reasoning framework .
Synchronous fuzzy qualitative simulation involves
replacing the transition rules of Mycroft with an
integration phase utilising a qualitative version of
Eulers first order approximation to the Taylor se-
ries : Qualitative Euler Integration (QEI) .
The simulation process described utilises
constraint-based fuzzy qualitative models, the
variables of which take their values from a
predefined fuzzy quantity space . The simulation
proceeds, driven by an externally defined integra-
tion time step (chosen to ensure the continuity of
the magnitudes of the state variables), by means
of an explicit Euler integration operation . This
provides the set of possible successor values for
the magnitudes of the state variables . After this
the constraints of the model are solved to provide
the values of the non-state variables of the model .
As each constraint is solved the same transition
rules as for asynchronous simulation are applied
to constrain the generation of the behaviour tree .
At the end of this process a number of successor
states will be generated This number will be
less than or equal to the number generated by
semi-constructive or non-constructive simulators
such as Mycroft or FuSim, and a great deal less
than if the transition filters had not been applied .
The advantage of this approach is that it per-
inits the_ utilisation of multiple precision models
in which the information concerning the values of
system variables may be expressed in vague terms
but with precise time stamp information . The sys-
tem has already been utilised in a research explor-
ing the use of qualitative models for parameter
identification, diagnosis, (Steele and Leitch 1997)
and control (Keller and Leitch 1994) .

One of the original motivations for the development
of qualitative reasoning systems was a research pro-
aramme to enable expert systems to reason from first
principles, in order to overcome the weaknesses inher-
ent in the first generation, rule-based, expert systems
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(Kuipers 1986) . As the field developed, it became ap-
parent that the programme had problems of its own to
overcome if it was to meet its original goals . The domi-
nant problem in qualitative reasoning is that of spurious
behaviour generation : and a great deal of research ef-
fort has gone into overcoming the problem (Fouche and
Kuipers 1992, Kuipers et al . 1991, Lee and Kuipers
1988) . In the interim, the engineering community has
become interested in, and contributed to the field, be-
cause it is seen as a useful tool for simulating the be-
haviour of complex but incompletely specified plant .
Both these influences have contributed to the utili-
sation of semi-quantitative information (Berleant and
Kuipers 1997) and more constructive simulation tech-
niques (Wiegand 1991) .
A complement to this, and a major motivation for the

work reported herein, is the requirement that a qualita-
tive simulation system be able to match the behaviour
of a real system at distinct, measured, timepoints . The
reason being that it is possible for data to be presented
qualitatively, and yet be precisely time stamped, for
example in patient records . For this requirement to be
met (with incomplete models) the variables must have,
at least, semi-quantitative values (for the magnitudes)
in order for temporal intervals to be calculated . In re-
lated research the focus has been on the co-operation of
symbolic, asynchronous, non-constructive systems with
semi-quantitative information, or on the use of con-
structive synchronous techniques, which have converged
on the domain of interval simulation . And with this
latter approach, if there is a. mapping back into a pre-
defined quantity space, then it is an output operation
and the structure of the quantity space is not used to
constrain the behaviour generation . In the system pre-
sented in this paper, on the other hand, the features
of both asynchronous simulation (albeit in the context
of fuzzy qualitative simulation (Shen and Leitch 1993,
Coghill 1996), and synchronous Euler simulation are
utilised to generate behaviours . This is a novel feature
of the system presented and is part of an ongoing re-
search program to utilise qualitative simulation for sys-
tem identification and parameter estimation from time
series data, at multiple precisions (Steele and Leitch
1997) ; and reason with explicit linguistic descriptions



of the data . The approach presented . forms part of
the91ycroft fran- ie-,vork : it has been utilised in a. number
of contexts already (Keller and Leitch 1994, Steele and
Leitch 1997) and the reader is directed to these reports
and papers for further information and results .
The structure of this paper is as follows . In the next

section the Alycroft framework is summarised, in order
to put the subject of this paper in its overall context . In
that section the three components required for the qual-
itative simulation are described : the quantities (in this
case fuzzy intervals and numbers), the constraint-based
model representation, and each of the other (asyn-
chronous) inference approaches utilised within Alycroft .
This is followed by a description of the Euler integra-
tion approach and its relation to the use of continuity
in the transition analysis and causal propagation phases
of the simulation . In section four the technique is fur-
ther elucidated by comparing the results obtained by
utilising the different algorithms from within Mycroft
(synchronous and asynchronous) . Finally, a selection
of similar techniques reported in the research literature
are briefly reviewed .

The Mycroft Framework
The Alycroft framework (Coghill 1996) is a constraint-
based fuzzy qualitative reasoning system containing
a number of simulation and envisionment algorithms .
The development of this framework has permitted the
suitability of different techniques to be examined in a
number of contexts ; and the comparison of different
approaches to constraint-based fuzzy qualitative siinu-
lation to be made .
This section contains an outline description of My-

croft which is based around the common division of the
process (depicted in figure l ) into four parts : the model
representation, the input data, the output behaviours
and the inference engine . The model is a, possibly in-
complete, representation of a physical system consist-
ing of a number of variables and the relations between
them . The variables of the system take values front
a quantity space, which in this case consists of fuzzy
values . The input, data is the assignment of values to
the exogenous and state variables, and the behaviours
output are trees or graphs of states ; each state being
a consistent assignment of values to all the variables in
the model . In each aspect of the Alycroft framework the
representation of the model structure and the variables
remains the same, while the inference engine utilised
for the reasoning process changes . In the rest of this
section each of these components is described in turn .

Fuzzy Sets and Quantity Spaces
Both qualitative reasoning and approximate reasoning
have a common foundation, that, of reasoning about. sys-
tem that are incompletely specified . However, the dis-
tinction remains, that whereas in qualitative reasoning
a knowledge of the structure of the system under con-
sideration is assumed, in fuzzy systems it is merely an

Figure 1 : The Qualitative Reasoning Process

input/output . representation that, is utilised ; albeit with
the possibility of being empirically derived . Thus there
are three advantages which ensue from the combination
of fuzzy and qualitative approaches :

" the fact. that the meaning of a qualitative value and
its support set (the real number line here) are cap-
tured in a single representation,

the ability to incorporate empirical knowledge into
a model (which is also finer grained than the M+/-
constraint in QSIM (Kuipers 1986)), and

being able to include more detailed knowledge of the
temporal behaviour of the variables in a model than
the total ordering available within QSIM, which is
essential for use in such applications as model-based
diagnosis and control .

This was the motivation behind the development of
FuSiiii (Shen and Leitch 1993), which is the system
which was the major influence on the development of
Mycroft .

Fuzzy sets extend the ideas of traditional set theory
to include the concept, of partial (or graded) member-
ship . It is assumed here that the ideas underlying fuzzy
sets are known to the reader ; however, a description
of the domain and explanation of the concepts may be
found in (Kosko 1992) . In FuSim, for reasons of compu-
tational efficiency, trapezoidal fuzzy numbers and inter-
vals are used . These are represented by the four tuple
(a, b, a, 13) which yields the interval shown in figure 2 .
The trapezoidal fuzzy numbers maintain the essential
features of fuzzy sets : graded membership and the use
of a-cuts .

Figure 2 : A Trapezoidal Fuzzy Number
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The quantity space which is built from fuzzy num-
bers must be closed, continuous, finite and cover all
values which a variable can take . An example of such
a . quantity space is shown in figure 3 . In fuzzy quali-
tative simulation, unlike QSIM, the quantity space for
the derivatives of a variables may also be dense (that
is can have any number of divisions consistent with the
definition of a quantity space) .
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Figure 3 : A Fuzzy Quantity Space
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The 1llycroft framework is a qualitative reasoning sys-
tem within the so called constraint based ontology. The
models used in the framework consist ofsets of variables
and the constraints that relate them . In fuzzy qualita-
tive reasoning the operators utilised are the same as
for its symbolic counterpart, though by the nature of
the case there is a difference in the way they are 1111-
plemented . The fuzzy case makes use of two concepts :
the extension and approximation principles . The for-
sner of these extends the results of numerical and inter-
val arithmetic and states that any operation on one or
more fuzzy numbers will produce a fuzzy number as the
result . All the variables of the system take their values
from a predefined fuzzy quantity space . In performing
any operation on one or more fuzzy values it is unlikely
that the resulting fuzzy number will also be a member
of the constrained variable's quantity space . Therefore .
the latter principle provides a means of snapping the
Calculated value onto the appropriate quantity space .
There are two ways in which this can be done : in the
simplest case, if there is any overlap between a member
of the quantity space and the calculated fuzzy munber,
then that quantity is a valid approximation and may be
assigned as a valid value for the variable . This is de-
picted in 4 . However, if there is more than one possible
approximation (as is usually the case) then one can use
a distance metric to gain a measure of the degree of ap-
proxilna.tion of each qualitative value . In this way one
( - all prioritise the values from "most, likely` to ''least
likely" (Leitch and Shen 1993) .

In Mycroft the model constraints are causally ordered
(hvasaki 1988) and distributed over a number of differ-
ential planes (Wiegand 19 191) . That is, the qualitative
differential equation (qde) model is developed on plane-
0, and the relationships between the higher derivatives
of the system are obtained by differentiating the qde
and representing the results as a qde on the so called
higher differential planes . To illustrate, consider the
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Figure 4 : The Approximation Principle

Figure 5 : A Single Tank System
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single tank system of figure 5 . The quantitative equa-
tions describing this system are :

where qi is the flow of fluid into the tank, qo is the
corresponding flow of fluid leaving the tank, V is volume
of fluid in the tank at any particular time, and k is a
parameter representing the resistance to flow presented
by the outlet pipe .
This system model is linear and it can be seen that

the relations in plane-1 have the same form as those
in plane-0 ; with the difference being that each variable
is the next derivative of the variable in plane-0 . The
means by which models represented in ll~ycroft can be
used to generate the system behaviours is described in
the following section .

The subject of this paper is a novel synchronous fuzzy
qualitative simulator developed within the Mycroft
framework . As stated, the Mycroft framework contains
a number of fuzzy qualitative reasoning algorithms ; the
majority of which operate asynchronously . In order to



put the present work in its overall context this sub-
section will be devoted to a brief description of the
asynchronous algorithms contained in Mycroft .
But first the distinction between synchronous and

asynchronous operation must be clarified . Synchronous
simulation is actually the more straightforward, since it
is the most common approach to simulation in general,
as manifested in numerical simulators . In synchronous
dynamic simulation, the integration phase (Transition
Analysis (TA) in qualitative reasoning) is driven by an
external clock . That is, the length of the integration
step is predetermined and proceeds relentlessly between
the time-points specified . The solution of the model
equations (Qualitative Analysis (QA) in qualitative rea-
soning) follows the integration step, and the simulation
proceeds alternating between these two phases .

In contrast, pure qualitative simulators generally pro-
ceed asynchronously . That is to say, the length of time
between the states is determined by the structure of the
quantity spaces of the variables involved in the transi-
tions . The transition analysis phase the values of the
magnitudes and derivatives of, at least, the state vari-
ables of the system are known ; and this information is
used (along with transition rules) to decide which value
these variables may take in the succeeding time inter-
val (or time point) . Thus no external driving force is
required for asynchronous simulation .
Amongst asynchronous qualitative simulators there

are two types of algorithm : constructive and non-
constructive . The classic example of the non-
constructive approach is QSIM (the basic algorithm of
which is also utilised in FuSim) . In non-constructive
simulation the model of the system is used only to filter
out assignments of values to variables . These possible
values are assigned by the transition analysis phase on
the basis of the knowledge of the present magnitudes
and derivatives of each of the system variables individ-
ually . For someone acgainted with numerical simulation
methods, this is counter-intuitive and appears to be a
cause of spurious behaviour generation because values
are generated which the constraints cannot eliminate .
Therefore, Wiegand (1991) developed a qualitative sim-
ulator which sought. to make constraint based qualita-
tive simulation more constructive . In this approach the
constraints of the system are used to calculate the val-
ues for all the variables of the system except for the
exogenous variables and the magnitudes of the state
variables . Thus, the problematic assignments of values
to variables will not be made. However, regardless of
whether the simulation is synchronous, asynchronous,
constructive or non-constructive, the process is basi-
cally the same : it proceeds by alternating between the
TA and QA phases .
The Mycroft framework contains three asynchronous

algorithms : semi-constructive (which has a constructive
QA phase and a non-constructive TA phase), construc-
tive (which has a constructive QA and TA phase) and a
fuzzy envisionment algorithm . Details of these are con-
tained in (Coghill 1996) . Each of these is designed to

explore different aspects of constraint-based fuzzy qual-
itative reasoning . However, while temporal information
can be calculated from each of these algorithms, when it
comes to comparing the behaviours generated with real
data, the temporal matching process is complicated . It
is desirable to have a simulation engine which main-
tains the qualitative nature of the simulation while at
the sarne time allowing the comparison of predicted and
measured values at predefined time-points . Therefore
the synchronous approach to fuzzy qualitative simula-
tion described in the following section was developed .

P71 + 1 ) = f(n) + f l (n) At
This is made possible by our access to the alpha-cut

of the qualitative values f(77) and f' (n) . The alpha-cut
of a fuzzy qualitative value is the crisp interval which
represents those real numbers which have a membership
value that, is greater than or equal to a given alpha value
(N.(x) >_ a) . Figure 6 shows a fuzzy qualitative quantity
space Qm. (For the simulation a is set to 0 .55 .)

Qualitative Euler Integration
Synchronous fuzzy qualitative simulation involves re-
placing the transition rules in Mycroft with an inte-
gration phase utilising a qualitative version of Eider's
first order approximation to the Taylor Series : Quali-
tative Euler Integration (QEI) . In the work presented
in this paper the representation of our models is re-
stricted to plane-0 . This means that each state vari-
able will have an associated qualitative magnitude and
derivative whilst all non-state variables will only have
an associated qualitative magnitude .
Given the time step At and a qualitative state, the

Euler formula can be used to calculate an interval rep-
resenting the predicted magnitude of state variables at
the succeeding time point .
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Figure 6 : Fuzzy Qualitative Quantity Space Qin

To illustrate the use of QEI consider the following
situation . Suppose the magnitude of a state variable X
is defined over the quantity space Qm in figure 6 and
the derivative of X is defined over the quantity space
Qd (shown in figure 7 . X is in the qualitative state
[P- .SMALL, P- MAX] . With an alpha value of 0 .55
the alpha cut of P - SMALL in Qm is [0 .155, 0 .455]
whilst the alpha-cut of P-MAX in Qd is [0 .9551] . The
predicted interval is given by euler integration, where
At is chosen to be 0 .35 .

[0 .503,0.805]= [0 .155,0.455]+ [0.955, 1] * 0.35

Scott
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It is clear from this that at the new time point the
magnitude of X will, by the approximation principle,
be a member of the set{ P - MEDIUM, P- MAX) .
QEI is applied to each of the state variables and the
elements of the power set of the results are
turn to the causal propagation phase .
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Figure 7 : Fuzzy Qualitative Quantity Space Qd

Continuity and Integration

In the previous section, QEI was introduced . However,
even the simple example used there can illustrate the
possibility that utilising QEI can produce discontinuous
changes in the magnitude of a state variable . The state
variable X could transition from P - SMALL to P -
LARGE given the quantity spaces Qd and Qm and

,,At = 0 .35 . Continuity, however, has been axiomatic in
the development of all qualitative simulators including
FuSim and Mycroft, and has effectively constrained the
branching of partial envisionments . In this section, the
maintenance of continuity in conjunction with QEI is
described .

Under certain circumstances, the Euler integration
step will only produce continuous changes in the mag-
nitudes of state variables between time points . The
circumstances under which this remains true depend
on selecting the time step, At . such that the qualita-
tive continuity condition for a single state variable is
maintained . This condition is described below .

Consider the following situation ; i£ Qrn(i) is the
quantity space for the magnitude of state variable i and
Qd(i) is the quantity space for its derivative . We define
the adjacent interval of a qualitative value vi ([-1']adi)
to be the interval representing the union of v with the
adjacent value in the quantity space (which will be ei-
ther greater or less than v depending on the sign of the
derivative, di ) . That is,

vi Uvi_1

	

if

	

di <a 0
,D adz

	

=

	

2!i

	

if

	

di =0
vi U vi+1

	

if

	

di >a 0

For example, the adjacent interval of the qualitative
value P-SiVIALL in the quantity space Qrn is defined
by the lower bound of the alpha cut of P - SMALL
and the upper of the alpha cut of P - MED if the
sign of the derivative is positive ; and is defined by the
lower bound of the alpha cut of ZERO and the upper
bound of the alpha cut of P - SMALL if the sign of
the derivative is negative .
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Thus the we can express the continuity Condition
for the QEI as follows :

Qualitative Continuity Condition

Select At such that :
da E Q? -n(i)

	

db E Qd(i)
a + bAt C [a]°d'

This condition must hold for every state variable i,
order to ensure that only continuous changes in qualita-
tive variables are predicted between time points . Given
the quantity spaces of our state variables we choose a
time step to satisfy the qualitative continuity condition,
in all situations .

Suppose, for example, that the quantity spaces of the
magnitude of all state variables is Qrn from figure 6 and
the quantity spaces of the derivative of all state vari-
ables is Qd from figure 7 . To find an upper bound on
i t we take the highest possible value in Qd, which is
P-MAX, and a representative of the qualitative value
with the narrowest adjacent interval in Qrn, which in
the present case is P - SMALL. The alpha cut of
P - SMALL in Qrn is [0 .155,0.4551 whilst the adja-
cent interval is [-0 .155,0 .745] . The alpha cut (where a
= 0 .55 here) of P - MAX in Qd is [0.755, 1] . Sub-
stituting these values respectively into the Qualitative
Continuity Condition gives the following inequality .

[0 .155, 0.455] + [0 .755, 1] * At E [0 .155, 0.745]

in

Here the derivative is positive, and so the largest
possible value for At is that which yields 0 .745 as the
results of the QEI . Hence to ensure that the continuity
condition is met :

At < 0 .29 = .,t�cay

Any At less than or equal to 0 .29 will ensure a sat-
isfaction of the qualitative continuity condition for the
magnitude of all state variables in this example .

It should be pointed out here that this Continuity
Condition has implications for the choice of quantity
space that one may utilise . If one is merely interested
in performing a simulation, then there is no problem ;
however, if external data has to be matched, then the
quantity spaces must be constructed such that the up-
per bound for At is greater than the time interval be-
tween the data points .
Thus far the conditions for maintaining the continu-

ity of the state variables throughout the simulation have
been described . However, the question may still persist
as to why one should want to apply such a restriction
in the context of discrete time simulations . The justifi-
cation is straightforward and is similar to that for the
asynchronous case . However, since the same question
arises in a broader sense in the context of applying the
transition filters in the causal propagation phase, the
justifaction will be left until after that process has been
described . This is the subject of the next sub-section .



Continuity and Causal Propagation
fit order to utilise the continuity filter applied in the
causal propagation phase of Mycroft we must assume
that the derivatives of the state variables arid the mag-
nitudes of all the non-state variables can only vary con-
tinuously over the given time step At . The assertion
of continuity of the non-state variables and derivatives
of state variables under QEI is equivalent to the use
of continuity in the transition analysis phase in FuSim
and the asynchronous algorithms in .1lycroft . In these
systems, since they both operate asynchronously, the
temporal information is riot, used to calculate the next
value a variable can take . Rather, the transition rules
ensure that the next value a variable takes is one of
the neighbours of its present value (and in the correct
direction), and the tunes are calculated retrospectively .
Therefore, the continuity rules are applied to all vari-
ables and their derivatives as matter of course since this
is part. of the definition of asynchronous simulation .

In the synchronous case, although the continuity of
the magnitudes of the state variables is ensured by the
continuity condition described in the previous section,
this does not guarantee that the calculated successor
values of the non-state variables will be continuous with
their present values . Therefore the transition filters de-
veloped in :Mycroft are used to ensure the continuity of
the complete simulation and constrain the number of
states generated .
In numerical discrete time simulation, continuity is

taken as being implicit in the limit as At -4 0 . v In
asynchronous simulation it has to be explicitly stated
because all the information required to enable the sim-
ulation to proceed is embodied in the model repre-
sentation . In the present ca-se the question arises as
to why one should not treat synchronous fuzzy qual-
itative simulation in the sa,me manner as numerical
simulation'? The main answer to this question arises
from tire practicalities of the situation ; namely the fact,
that the number of states generated would become un-
manageable very quickly . Also, the states generated
Nvould be unconnected, making it impossible to ascer-
tain which connections should be made to select a be-
haviour . An additional, and more conclusive, consider-
ation in this regard is the fact that it has been shown
that asynchronous qualitative simulators are conserva-
tive (I{uipers 1986) ; that is . they guarantee to find all
the possible behaviours from the given starting state .
Therefore if a synchronous simulator generates more
states than air asynchronous one, then the additional
states must be spurious .
As a supplement, to this it may be noted that as At

approaches it is not only guaranteed to transit
continuously but also to do so maximally (that is, gen-
erate a value close to the furthest away boundary of the
adjacent qualitative value) . Therefore, values close to
Atmaa, will produce a behaviour tree close to or identical
with those of the asynchronous case . Conversely, as At
becomes smaller it becomes less likely that all the state
variables will transit, assuming that they have different

values or quantity spaces .

Simulation of a Coupled Markets Model
In order to illustrate the foregoing and to assess the irn-
portance of continuity in QEI, a second order model of
coupled Housing and Mortgage markets is constructed .
This Coupled Markets model is a reduced form of a
model which appeared in Wyatt, Leitch and Steele
(1995) . The two state variables are the housing price
level P and the stock of mortgages 111 . The system
contains two input variables, a market. rate of interest
r and a Housing supply Ils . The system is presented
below as two differential equations . The first equation
models the adjustment process of housing Price to clear
the Housing market, whilst the second equation models
the adjustment process of Mortgage Stocks to clear the
mortgage market .

dP/dt = Hd1(P) + Hd2(,1l) - Its

	

(1)
d.11/dt = nldl(P) + 11d2(r) - 11

	

(2)
The quantity space for the magnitude of all vari-

ables is Qrn from figure 6 . 'The quantity space for
the first derivative of the state variables is Qd from
figure 7 . The functional relations in the above equa-
tions (FId1,Hd2,11dI, 11(12) are modelled as degen-
erate fuzz, relations . Hdl is a. decreasing function
of House Price P . since higher prices reduce demand
for houses . 11(12 is an increasing function of mortgage
stock . since the higher the mortgage stock the higher
the demand for houses . Aldl is an increasing function of
house price, since higher house prices lead to a demand
for larger mortgages . 111d2 is a decreasing function of
the interest rate since higher exogenous interest. rates
lead to higher mortgage repayments . The final causally
ordered model includes the degenerate functional rela-
tions and algebraic constraints to complete tire MYcroft,
model of equations (1) and (2) .

'Tire partial envisionment for the coupled market,
model from an identical initial state was found by three
simulation methods . A partial envisionment, is a di-
rected graph with a single root node (the initial state)
in which the nodes are all the possible qualitative states
reachable from the initial state . The first simulation
method applied to the coupled markets model was the
semi-constructive Mycroft described in (( - '.oglrill 1996) .
The second simulation method used QEI in the qual-
itative transition phase with At = 0.2 which ensured
continuity in the transition of the magnitudes of state
variables . In the second method, however, continuity
filters were riot. applied during the causal propagation
phase . The third method used QEI and applied conti-
nuity during the causal propagation phase .

Table 1 shows the number of nodes found in the
partial envisionment, for each method from the initial
state :
119 = [N-SAIALL,P-LARGE], Hs = [P-SMALL],
P = [P-SAIALL,N-MEDIUM], r = [N-S11IALL].
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The results in table 1 show that applying continuity
filters during the causal propagation phase is important
in producing a reliable qualitative simulator based on
QEI . With the continuity checks and QEI 75 nodes were
created in the partial envisionment . Without continuity
checks 121 had been found and the partial envisionment
was stopped whilst ongoing .

Table l : Nodes in Partial Envisionment

Applying continuity filters during the causal propa-
gation phase, therefore, leads to more tractable results
from the QEI simulator . The extent to which continuity
cuts down the number of possible transitions is clearly
illustrated . The simulator without continuity filters in
the causal propagation phase produces twice as many
transitions as the simulator with continuity .

Table 1 also shows that QEI with continuity found
the salve number of states in the partial envisionment as
t lie semi-constructive Mycroft ' which is what one would
expect from the argument of the previous section . Also,
the results of the integration as used thus far have been
treated as propagated values in the same manner as for
the asynchronous case, and have been mapped straight
back into the quantity space of the state variable by
means of the approximation principle . However, this
can, under certain circumstances cause problems . Con-
sider the following case . A particular state variable has
the magnitude value [P-SMALL P-SNIALL] (from the
quantity space Q � t ) ; and the time step At is 0 .25 . Per-
forming QEI on this state variable yields the interval re-
sult [0 .174, 0 .5 :3] . Now this maps onto the intervals for
P-S-NIALL and P-\MEDIUM from the quantity space .
However, by the approximation principle, for all sub-
sequent calculations the whole interval associated with
the values P-SMALL and P-N'IEDIUM are used . This
leads to a problem . In the case of P-SMALL, (if the
salve values of At is used then next integration step
would yield the salve values as before (an identical sit
nation) . In this case there are other values predicted by
the integration step, but is possible, in the worst case .
t o select a sufficiently small value for At such that the
calculated value does not, reach the lower bound of the
adjacent qualitative value ; in this case the simulation
would enter an infinite loop . A solution to this problem
is presented in the next section .

Minimum Interval Euler Integration
The proposed solution to deal with persistence of qual-
itative states in QEI involves changing a representa-
tional primitive of the Mycroft system . The qualitative
values of the magnitudes of the state variables will no
longer have a single interpretation as an alpha-cut de-
fined over the real line . Instead they will be used as a

label for any sub-interval which is contained within the
alpha cut .

During integration the intervals calculated by the Eu-
ler method are recorded (instead of the alpha-cuts of
the relevant quantity space) as the values of the mag-
nitudes of the state variables . When integration is to
be applied the next time around only these minimum
intervals will be used . The problem of small intervals
being approximated to the fixed quantity space during
qualitative integration is therefore avoided . It may take
a few integration steps for the minimum interval to tra-
verse the alpha-cut of a qualitative value, thus causing
that state to persist .
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Figure 8 : Minimum Interval Euler Integration

Figure 8 illustrates such a process . Starting with a
small propagated interval [-0 .445, -0 .339] (shown by
dashed lines) and the qualitative derivative P-SMALL,
the dotted line in the figure shows the result of ap-
plying Qualitative Euler Intergration with At = 0 .2 .
Here, the variable cannot transit to the qualitative value
ZERO in this integration phase because the interval
[-0 .445, -0.339] has not been approximated to the full
alpha cut of N - SMALL . Assuming that, the deriva-
tive remains P - SMALL throughout . the sequence of
intervals the variable will have to transit through before
reaching ZERO is show below :

[-0 .145, -0.396], [-0 .428 . -0 .337], [-0 .411, -0 .279]
[-0 . .394 ; -0.22], [-0 .377, -0 .161], [-0 .36, -0 .102]
Moving to a minimum interval representation for the

magnitude of state variables addresses the persistence
of qualitative states . This is because the definition of a
node in the partial envisionment for minimum interval
eider integration must take into account the minimum
interval a qualitative value represents .
At the moment the use of the full alpha-cut's of quali-

tative values is retained in the casual propagation stage .
This is because of the utilisation of degenerate fuzzy
relations to represent. empirical knowledge . This is an
obvious problem to tackle to permit. the extension of
the idea of minimum interval integration to propagate
only minimum intervals through the causal propagation
phase . Thus there will be a complete coupling of the
propagation methods of symbolic qualitative simulation
and interval simulation . This will have the advantage
of maintaining a consistent representation for all quali-
tative values whilst helping to eliminate the additional
vagueness caused by the approximation of minimum in-
tervals on the fixed quantity space .

Simulator S-C Euler E-C
Nodes 75 121+ 75
S-C : Semi-Constructive
E-C : Euler with Continuity



Related Work
The work presented in this paper has focused on the
use of an externally selected tune step to synchronously
drive the integration (transition analysis) phase of the
simulation forward . Over the past few years there have
been a number of systems developed which seek to make
the temporal aspects of qualitative simulation more
transparent ; some of these have been synchronous and
some have been asynchronous . In this section those
most closely related to the present work are briefly re-
viewed for comparison .
The, deservedly, most famous research is that of

Berleant and {wipers (Berleant and Iiuipers 1997) : QZ
and Q3; and that of Kay and Iiuipers (Kay 1996) :
SQsim . These systems are developed on and from
QSIM, and are thus non-constructive . The primary
simulation mechanism is QSIM and the quantitative in-
formation is then used to refine the simulation values
and also the "time step" of the simulation . Thus the
time is calculated as a result of generating future values
and is asynchronous .
The constructive approach to qualitative simulation

utilising semi-quantitative information has generated a
fair bit of interest, and has often made use of fuzzy
values . Unfortunately the trend in this line has been
to converge on straightforward interval simulation . For
example CA-EN (Bousson and Trave-Massuyes 1994)
is a. constructive qualitative simulator which may utilise
either symbolic or interval values . CA-EN performs a
fuzzy interval simulation which may be related back
to an underlying fuzzy quantity space when required,
though the a'ct'ual simulation is basically interval based .
It has led to the development, of NIS (Vescovesi, Far-
quha.r and Iwasaki 1995) which is an interval simulator .

Also in this category is the Nvork of Bonarini and Bon-
tempi (1994) . This system is a fuzzy interval simula-
tor (though it is still called qualitative) . A great deal
of useful attention is paid in their work to the issues
arising from the interaction of the variables in complex
dynamic systems .

In contrast, to these systems it must be re-iterated
that Mycroft, and the Euler integration approach con-
tained within it, seeks to utilise the strengths of both
synchronous simulation and qualitative reasoning, in
order to enable the use of the simulator in context's
where the variable values may be expressed in vague
terms but. with a definite time stamp .

Discussion and Future Work
The ability to prioritise behaviours based upon their
possibility with respect to the model may prove to be
one of the major advantages of fuzzy qualitative sim-
ulation . This theme has been developed in (Leitch
and Shen 1993) . Current. prioritisation has focused on
FuSim where a distance metric is applied to the alge-
braic constraints in the model to identify the highest
priority state, however, the transitions themselves are
not prioritised . A prioritiser based upon the QEI should

provide a more meaningful prioritisation of states be-
cause the transition of the state variable bears a causal
relation to the next state which holds .
Another area which ha .s yet to be explored is the gen-

eralisation of the Qualitative Continuity Condition to
deal with models defined on higher differential planes .
A higher order approximation of the Taylor series would
be used during the qualitative integration phase . The
more general Qualitative Continuity Condition would
be defined over a time step At and the quantity spaces
of a state variable on each differential plane .

Finally, one of the initial motivations for QEI is that
it will allow the simulation of systems experiencing time
varying and discrete inputs . Future applied work will
involve the tuning of fuzzy qualitative dynamic models
to Economic Time Series data where the economic svs-
tein being modelled is subject to continuous exogenous
shocks ; as well as continuing the work on applying the
technique in qualitative control and model-based diag-
nuhis .

Conclusion
Synchronous Fuzzy Qualitative Simulation offers a com-
plementary approach to asynchronous simulation with
regard to the terriporal aspects of the simulation . In-
stead of states being associated with overlapping tem-
poral intervals, the use of QEI allows states to be asso-
ciated with well defined tirne points . This has impor-
tant implications for practical applications of qualita-
tive simulation ; simplifvingthe task of matching predic-
tions against data and opening the way for simulation of
systems which are experiencing time varying exogenous
influences .
The effectiveness of simulators employing Qualitative

Eider Integration has been shown to depend crucially
on the application of continuity filters . Continuity of
the magnitude of state variables call be ensured by
the choice of quantity spaces and time steps which are
consistent, with the Qualitative Continuity Condition .
Continuity for the highest derivative of each variable,
however, must be imposed through the application of
continuity filters during the causal propagation phase
of Mycroft . Experimental results on a coupled mort-
gage and housing market, model have shown that the
application of continuity filters in the causal propaga-
tion phase produce more tractable simulation results
than when they were not applied .
Comparison of the results of the semi-constructive

Mycroft (Co-hill 1996) and QEI with Continuity has
shown significant differences in the handling of the tem-
poral persistence of qualitative states . In particular
QEI allowed infinite persistence times . This differ-
ence can be explained by the approximation of intervals
propagated by QEI onto a fixed quantity space .
The proposed solution to handle temporal persistence

of qualitative states under QEI involves maintaining the
information provided by intervals propagated during
the integration phase . The magnitude of state variables
will be associated with the minimum interval of overlap

Scott



between the propagated interval and the alpha-cut of a
qualitative value in the magnitude quantity space of the
state variable . By maintaining these minimum intervals
for the next integration phase, minimum interval euler
integration avoids the necessity of approximating small
intervals on a fixed quantity space .
The final system trades some of the features of pre-

vious qualitative simulators for predictions at distinct
time points . Quantity spaces must now be constrained
by the Qualitative Continuity Condition . The seman-
tics of the magnitudes of state variables must be ad-
justed to encompass any interval contained within the
alpha cut of a given qualitative value . The exploration
of these trade-offs have been made possible by the rnod-
ular development framework provided by Nlycroft ; and
that aspect of !llycroft reported here has been utilised
in other research projects where models of multiple pre-
cision are required (Keller and Leitch 1994, Steele and
Leitch 1997) .
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