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Abstract

Fault detection by stochastic qualitative reason-
ing is an effective way for complex systems such as
air conditioning systems . In this framework, the
faulty part of a system can be identified by com-
paring the behavior derived by stochastic qualita-
tive reasoning with the actual measured behavior .
The latter is represented as the series of qualita-
tive values that are obtained by classifying quan-
titative measurements into several qualitative cat-
egories based on a definition of the qualitative re-
gions . The fault detection is often ineffective un-
der the inappropriate definitions .
This paper proposes a method that can automat-
ically define the qualitative regions from the mea-
sured data . In this system, data are controlled
using a certain value and follow a normal distri-
bution . Measurement data must be transformed
into stable qualitative values so that its behavior
can be distinguished from fault conditions : there-
fore, the middle of the qualitative region which has
the most stable qualitative value is determined as
the average value of the data . The width of the
most stable qualitative value is determined based
on the standard deviation .
This method is applied to an actual air condition-
ing system . According to the definition of qual-
itative regions that is determined from the field
data, the faults can be identified.

Introduction
Qualitative reasoning can an effectively approximate
the behavior of a system (Kuipers and Berleant 1992)
(Lackinger and Obreja 1991) (Lackinger and Nejdl
1993) . One of its advantages is that its complicated
physical mechanisms are expressed simply through a
symbolic casual relationship . Fault detection is an im-
portant application of qualitative reasoning, in which a

part that does not work can be identified by compar-
ing the results of reasoning with the actual measured
values .

Stochastic qualitative reasoning for fault detection in
air conditioning systems has been studied (Mihara et al .
1994) (Arimoto et a1 . 1995) (Yumoto et al . 1996a) . In
this method, the probabilistic process is used for state
transitions which are based on the stochastic qualita-
tive model, and several types of behavior are derived as
a series of qualitative values . In stochastic qualitative
reasoning, since the actual behavior in a target system
is compared with the derived behavior in order to esti-
mate how much the derived behavior follows the actual
behavior, the former must be considered to be a series
of qualitative values . Based on a definition of the qual-
itative regions, actual quantitative measurement data
that are controlled by sensors are classified into sev-
eral categories . Therefore, one of the most important
problems in the above is to define qualitative regions .

This paper proposes a method that can automatically
transform quantitative measurements into qualitative
values . The qualitative values are defined by using the
distribution of the measured data . The middle value
of the most stable qualitative region is defined by the
average of all measured data, because the qualitative
values in the model are controlled at the most stable
state . In addition, the width of each qualitative region
is defined based on standard deviation a, because the
measured data approximately follows a normal distri-
bution . The width should be determined by 2a so that
the rate of each transformed qualitative value equals
the probability of occurrence .

This method is applied to an actual air conditioning
system, the VAV system . The faulty parts are identified
by using determined qualitative regions . The effective-
ness of this method is confirmed using the results from
fault detection .
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Qualitative Model and Fault Detection
Stochastic Qualitative Model
Figure 1 illustrates an example of a qualitative model
of an air conditioning system . The qualitative model is
constructed from nodes, directed arcs with propagation
rules, and functions .
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g_1 : one-arity function 'disturbance'

h_2 : two-arity function 'control'

f_3 : three-arity function 'heat flow'

A
B
C
D
E

extremely hot
hot

normal
cold

extremely cold

Figure 1 : A stochastic qualitative model .

The nodes represent factors that determine the sta-
tus of a target system, such as the real value of the sup-
plied air temperature, the measured value of the room
temperature and heat resources as a disturbance . Each
node is characterized with some of the qualitative val-
ues, as can be seen in Table l .
A node representing a component that is measured

by a sensor is called a measured node . The nodes with a
gray pattern in Figure 1 are measured ones . Their qual-
itative values must correspond to the measured ones .

Table l : An interpretation of the qualitative values at
different temperatures .

Qualitative Interpretationvalue

An arc connects two nodes . The direction of the arc
shows the direction of influence propagation . Propaga-
tion rules are attached to an arc . The five types of prop-
agation rules which are shown in Table 2 are defined by
the way- of the influence . More than one propagation
rule is often attached to an arc : therefore, each rule has
a choosing probability- which indicates its probability .
The following two characteristic parameters have

been introduced in order to specify the choosing prob-
ability of the rule .

. Sign pa (-1 .0 < ps < 1 .0)
ps determines the direction of influence from the
source node .

. Delay pd (0 .0 < pd < 1 .0)
Pd determines how long the change of the qualita-
tive value in the source node of the arc affects the
destination .
According to Table 3, the choosing probability of each

type of rule is calculated for an arc by using these two
parameters .

Table 2 : Types of propagation rules .

+2(-2)

	

If the source node of the arc changes .
the destination node changes in the same
(opposite) manner as the source node
two time units later .

+1(-1)

	

If the source node of the arc changes,
the destination node changes in the same
(opposite) manner as the source node
one time unit later .

std

	

If the source node of the arc changes,
the destination node is still unchanged .

Table 3 : Choosing rule probabilities .

Type of rule

	

Choosing probability
+2

	

max ps, 0

	

x pd
+1

	

max(ps , 0) x (1 - pd)
std

	

1 - IN
-1

	

max(-ps, 0) x (1 - pd)
-2

	

max(-P,, 0) x pd

The other type of causal relationship is expressed by
a function . A function receives the qualitative values of
nodes as input, and gives the change in directions and
their probabilities as output . The three types of change
in directions on function are shown in Table 4 .
The choosing probability of each change in directions

in the function is not independently determined, but is
determined according to the following three character-
istic parameters :
Most stable qualitative value

f, (-5.0 < f, < 5.0)
f~ is the qualitative value in the destination node that
has sustained the most stable amount of change .
Vagueness of output

fs (0.0 < fs < 1 .0)
A function has some choice in regard to its choosing
probabilities in connection to the output that corre-
sponds to an input . fs expresses latitude in output ;
which expresses the vagueness of the selection .

Table 4 : Types of change in directions in a function .

Up

	

The destination node value increases .
Down

	

The destination node value decreases .
Const.

	

The destination node value is unchanged .



If f1. < 0 . the Up and Down probabilities are reversed .

. Tendency of output
fU (-1 .0 < fL. < 1 .0)

fv expresses the change rate of the stochastic param-
eters that corresponds to the input .

According to Table 5, the choosing probabilities of
each change in directions can be specified for a function
with one argument x by using these three parameters .
In this definition, if the value of x is `A', it is assumed to
be `-2' ; if the value of x is `B', it is assumed to be ` - 1',
etc . Figure 2 illustrates the intuitive meaning of the
definition . For example, if (fs, f~, fv) _ (0 .1, 0 .0, 0 .1),
the function is interpreted in Table 6 .
A function with n-arity (n > 1) is defined as a lin-

ear combination between one-arity functions . If one
argument of a two-arity function is fixed, the two-arity
function is equivalent to a one-arity function .

Up

Const .

Down

Figure 2 : The intuitive meaning of functions with pa-
rameters .

Table 6 :

	

An example of a function,

	

(fs, f~, fv)

	

_
(0.1, 0 .0, 0.1) .

Table 5 : The choosing probabilities of a function .

Stochastic Qualitative Reasoning
Stochastic qualitative reasoning is excused by a series of
recursive state transitions in the qualitative model . The
state of a system in the qualitative model is defined as
one definite set of the qualitative values of all the nodes
in the model . ~~hen the qualitative values of nodes 1,2
and 3 in Figure 3 are, respectively, B, B and C, the
state of this model is expressed as [ B . B, C ] .

Node 1
Arc

std 40
+t

	

soi

Node 2

Figure 3 : A simple qualitative model .

An example of a state transition of the model in Fig-
ure 3 is shown in Figure 4 . Each state has a proba-
bility of occurrence . The probability of occurrence of
each new state is calculated based on the probability- of
occurrence of the previous state and the choosing prob-
ability of the applied rules and functions . The prob-
ability of occurrence of the initial state is 1 .0 . The
behavior of the qualitative model is represented by the
state transition .
The procedures for stochastic qualitative reasoning

can be summarized as follows :

Step 1 . Predict all possible states from current ones
according to the function and propagation rules ; and
obtain each probability of occurrence .
Step 2 . Rank the states in descending order of the
probability of occurrence . Add all of these until the
sum is more than the threshold . Then eliminate all
the remaining ones .
Step 3. Compare the surviving states with the actual
measured values . Discard the inconsistent ones .
Step 4 . Normalize the probability of occurrence of the
surviving states . These states will act as the current
states in the next stage . Repeat all steps until there
are no surviving states or until all of the stages are
finished .
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Conditions Return values and Choosing probability
Up = min f~ + x f, - fs , 0.5 + min fc + x f~, + fs . 0.5

If~~ ~ f~ + x Down* = 0
Const . = 1 .0 - (Prob . of Up) - (Prob . of Down)
Up* = min(((f~ + x)~fv~ ~- fs), 0.5)

- If l < f~ -~ x < ~ Down* = tnin(-((f~ + x)~fv~ - fs), 0.5)
Const . = 1 .0 - (Prob . of Up) - (Prob . of Down)
Up' = 0

f~ + x < - Ifv Down* = min(-((f~ + x)~fU~ - fs), 0.5) + min(-((f~ + x)~f~~ + fs), 0.5)
Const . = 1 .0 - (Prob . of Up) - (Prob . of Down)

Input Output
Set Probability c

temp . p ortst . own
A 0 60 40
B 0 80 20
C 10 80 10
D 20 80 0
E 40 60 0



Nodal Node2 Node3
[ C B C

[ B B C

Figure 4 : An example of a state transition .
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L
rDerived behavior
in controller fault

State

In Step 2, `threshold', which is a predefined parame-
ter, expresses tile maximum sum of the existence prob-
abilities . Eliminating states by using the threshold
avoids the need for an enormous amount of time and a
large amount of memory in order to generate all possible
states . The lower the threshold, the more approximate
but the more quickly a simulation can be performed .

In Step 3, the states which are not in agreement
with the measurements are discarded . If most of the
new states are discarded, the state transition does not
accurately reflect the real behavior of the target . On
the other hand, if most of the states survive, the state
transition is accurate . Here, we have introduced an
evaluation parameter that can estimate the degree of
agreement of the simulation result with the measured
behavior ; agreement rate, based on this property .

,.... . .__ ..... .. . . . ...... . . . . ._ ... .. . . ._. . . . . ..__ . . . . .-Target system ..
System structure-)

Agreement rate

Figure 5 : Fault detection by stochastic qualitative reasoning .

Time

Measured data
Time Room temp.
14:00 14 .0
14:10 13.0
14:20 12 .0

Agreement rate Ro is formally defined as follows :

_P,t
~ a

(Pl X P2 x . . . X P,) "

B
In this definition . Pi is the sum of the probability of
occurrence which is the states after the elimination in
Step 2 ; and P is the sum o£ the probability of occur-
rence of the states that survive in Step 3 at the i-th
cycle of the simulation process, n is the number of cy-
cles of the sirnulation(the simulation time), and B is the
threshold value .
The value for agreement rate Ra is an indicator that

shows how consistent a model is with the series of mea-
sured values if any state remained until the final step .
The higher this value, the higher the possibility- of the
behavior represented by the simulation model . If there
are no state left in a simulation cycle, the value of the
agreement rate Ra is calculated as zero and the simu-
lation is terminated.

Fault Detection by Stochastic Qualitative
Reasoning
?. fault detection framework is shown in Figure 5 . First,
in fault detection, a normal qualitative model is con-
structed from the structure of the target system (Yu-
moto et al . 1996b) . It is a model of a system under nor-
mal conditions . Its parameters can be tuned with the
measured data using the steepest ascent based method
(Yamasaki et al . 1997) .
Next, the assumed faults in the target system are

considered . Several fault models are constructed by
modifying the functions or the arc propagation rules
that correspond to each assumed malfunctioning part .
The behaviors are derived in each fault model through
stochastic qualitative reasoning .

probability of
occurrence

1 .0

rule : std
func . : const.

-- [ B B C ]

rule : std 1 .0 x 0.4 x 0.8 = 0.32
func . : down

[ B B D ]
1 .0 x 0.4 x 0.2 = 0.08rule : up

func . : const .
- [ B A C ]
1 .0 x 0.6 x 0 .8 = 0.48rule : up

func. : down
-- ( B A D ]
1 .0 x 0.6 x 0 .2 = 0.12



On the other hand ; the quantitative measured data
are transformed into a series of qualitative values which
are based on the definition of qualitative regions . A
series of transformed qualitative values qualitatively
shows the actual behavior of the target system .
By comparing the derived behavior and the actual

behavior, an agreement rate can be calculated . If the
agreement rate for the reasoning of a fault model is the
highest in all the models, a faulty part in this fault
model is the cause .

Transformation of Quantitative
Measurements into Qualitative Values

Theoretical Background
In order to use stochastic qualitative reasoning on a
practical basis, quantitative measurements must be
transformed into qualitative values . This transforma-
tion can be done based on the definition of qualitative
regions such as that found in Table 7 .

Table 7 : Definition of the qualitative regions at room
temperature .

In stochastic qualitative reasoning, one of the most
important problems is how to define qualitative regions .
The landmark values that serve as a precise boundary
for those regions to date have been defined by human
intuition based on measured data . It is difficult, how-
ever, to define qualitative regions . If they are defined by
regions that are too strict, the robustness of the qual-
itative value is lost and the results are weakened by
noise . On the other hand, if the qualitative values are
defined by regions that are too vague, it is impossible
to represent the actual behavior by the fluctuations in
qualitative values .

In order to solve this problem, we have proposed a
method in which qualitative regions are automatically
defined for all measurement data, respectively. In ac-
tual air conditioning systems, the measured data ap-
proximately follows a normal distribution . By using
this feature, one can use a method by which a defini-
tion of qualitative regions can be determined according
to the probability of occurrence of the latter .

Probability of Occurrence of Qualitative
Values
In air conditioning systems, the measured values are
controlled so that they are stable ; therefore, a qualita-

tive model is generated so that the qualitative values of
each node can become stable at qualitative value C .

In the qualitative model of the target system ; how-
ever, the qualitative value of the nodes are respectively
controlled by each function . For example, in the model
that has tight control, the qualitative values on the
model are immediately controlled to C even if it is A or
E, ant it is hard to change the qualitative values except
for C . On the other hand, in the model in which con-
trol is loose, the qualitative value cannot be controlled
to C immediately, and the qualitative values became
unstable .

For the sake of simplicity, the behavior is derived
from a simple model such as in Figure 6 . This model
has only one node and one function . In this model,
therefore ; the state is represented by the one qualita-
tive value of the node . The qualitative value one unit
time later is determined based on the current qualita-
tive value and the choosing probability of 'f_1' . In the
stationary state, the probability of occurrence of each
state is determined by `f-1' .

output

unction

input'1,

Figure 6 : An example of a qualitative model .

The example with loose control
In the model which has a function such as in Table
8, the qualitative value is loosely controlled to C . For
example, if the qualitative value of the node is A, the
probability that the qualitative value becomes B one
unit time later is only 60%. The probability of occur-
rence of each of the stationary states is the following :

A B C D E
2.0% 25.1% 45 .8% 25 .1% 2.0%

The width of the qualitative regions is defined by
approximately 1 .2o, so that the measured data can
be transformed into qualitative values at the above
rate .
The example with normal control
If the function in Figure 6 is defined as Table 9, the
probability of occurrence is the following . In this
function, the qualitative value is ordinarily controlled
to C . The probability of occurrence of each of the
stationary states is the following :

A B C D E
0.0% 16.7% 66 .6% 16 .7% 0.0%

If the width of the qualitative regions is defined by
approximately 1 .9a, each qualitative value is parted
in the above rate by the transformation measured
data that is based on this definition .

Yamasaki 14 1

Qualitative
value Definition

28°
B 26°C - 28°
C 24°C ti 26°C
D 22° - 24°C
E _ 22°C
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The example with tight control

A B C D E
0.0% 7.2% 85.6% 7.2% 0.0%

The function which is defined in Table 10 is a typi-
cal example that the qualitative value is immediately
controlled to C, which is a stable qualitative value .
In this function, the qualitative value is closely con-
trolled to C . For example, if the qualitative value is A,
the probability that the qualitative value will become
B one unit time later is 100%, and, if the qualitative
value is C, the probability that the qualitative value
will become stable is 90% . The probability of occur-
rence of each of the stationary states is the following :

The qualitative values are transformed based on the
definition that states that the width of the qualitative
regions is defined by about 2.9o, and almost follows
the above rate .

The middle value of qualitative region C is defined
as the average of all measured data. The width of each

Table 8 : Function `f-l' in a example with loose control
(fs, f,:, f,) = (0-2,0-0,0.15) .

Table 9 : Function `f_1' in a example with normal control
(fs, fc! fv) = (0.1, 0.0, 0.2) .

Table 10 : Function 'f-l' in a example with tight control
(fs, fc, fv) = (0.05, 0 .0, 0.3) .

qualitative region, which is the interval between two
neighborhood landmarks, is defined based on standard
deviation a . The optimal width of qualitative regions is
different for each function . In the above examples which
involve very extreme examples, the width of qualitative
value C is confirmed within the range of 1 .2or - 2 .9v .
Because the qualitative value is not controlled so closely
in air conditioning systems, the width should be deter-
mined by 2a .

An Example of a Definition of Qualitative
Regions
Figure 7 shows the daily measured data for actual room
temperature in a air conditioning system and the defi-
nition of qualitative regions . The middle of qualitative
region C is 27.48°C, which is the average of the mea-
surement data . In addition, the width of the qualitative
regions is 0.38°C, because each width is defined as 2Q .
Using this definition, most of the measured data are

included in qualitative region C . On the other hand,
there is no measured data that is transformed into qual-
itative value A or E. This transformation is suitable be-
cause this data was measured when the target system
was stable .

- - average . -

10 :00 12 :00 14_00 16 :00 18 :00
Time

Figure 7 : An example of the definition of qualitative
regions .

Application to VAV Systems
Experiments to define the qualitative regions are done
in regard to the VAV (Variable Air Volume) system of
a building in Tokyo .

A Stochastic Qualitative Model of a VAV
System
Figure 8 shows a diagram of a VAV system . It consists
of one fan, one refrigerator, and eight VAV valves and
sensors . The room temperature is controlled, respec-
tively. This system controls the room temperature by
controlling the supplied air temperature and the room
air volume . At the fan and refrigerator, the air that is
supplied is generated from the outside, and is separated
in order to send it to each VAN'valve . At each valve, the
room air volume is controlled according to the gap in

Quali- Output
tative Probability(7c)
value --U-P- 7Tonst . Down
A 0 40 60
B 5 60 35
C 20 60 20
D 35 60 5
E 60 40 0

Quali- Output
tative Probability(c)
value p onst . Down
A 0 20 80
B 0 60 40
C 10 80 10
D 40 60 0
E 80 20 0

Quali- Output
tative rrobaT7ity7
value ---Up TConst . Down
A 0 0 100
B 0 40 60
C 5 90 5
D 60 40 0
E 100 0 0

Temp. ( `c) Tem

28 .2 28 .2
28 .0 -- 28 .0
27 .8 - - i Roomtemp . 27 .8
27 .6 t

_ 27 .6
27 .4 " -

,~'-
27 .4

27 .2 - - 27 .2
27 .0 27 .0
26,8 26 .8



the room temperature between the preset value and the
measured one . The volume of air in the room controls
the temperature of air . Figure 9 illustrates a qualitative
model for a VAN' system in Figure 8 . This qualitative
model can be constructed with eight blocks which cor-
respond to each VAV valve, because the VAV valves are
independent of each other .

cold water
controller ».. . ..... .... . .."

, . Supplied
air temp .
sensor

Figure 8 : VAV system instrumentation diagram .

Preset
supplied
air temp .

Supplied
air temp

7<control/

Supplied
air temp.

(+1)100~i Arc

Measured
supplied
air temp. -

Preset
room
temp . 1

Preset
room
temp . 8

Heat
resource 8

VAV valve a Room temp . sensor

VAV
valve No .8

Room air
volume 8

Arc

(+1)
100%

r Measured
room
temp. 8

Measured
room air
volume 8

(+1)100%

Room
temp . 8

. . ..... . .. ... ... ... ... .. . .. . .. .. . ... .. . .. ... . .. .. . ... .. ... ... . .. .. .. . .. ..Block I .. ....

Block 8. ... -.. ... ..

Arc

Figure 9 : A qualitative model for the N'AV system .

Assumed Faults

" Cause : VAV valve is fixed at full open .

VAV valve full closed fault

Cause : VAV valve is fixed at full close .

Supplied air volume dropped fault

" Cause : Supplied air volume control .

Cold water volume dropped fault

" Cause : Cold water valve is closed .

The Results of Fault Detection

Qualitative models that represent every assumed fault
are built by modifying the normal model, as is shown in
Figure 9 . The qualitative model is separated into eight
blocks because the room temperatures are controlled
independently. The assumed faults are as follows :
VAV valve full opened fault
" Phenomenon : The room air volume increases to an

extremely high level . As a result, the room tempera-
ture decreases .

Modification point : The function `VAV valve', which
represents the volume control for the air in tire room,
is modified so that the room temperature decreases .

Phenomenon : The room air volume decreases to an
extremely low level . As a result . the room tempera-
ture increases .

" Modification point : The function `V AN'r valve' is mod-
ified so that the room temperature increases .

" Phenomenon : The supplied air volume has dropped
to an extremely low level . As a result, the room tem-
perature increases .

Modification point : The function `Supplied air vol-
ume control' is modified so that the volume of air
that is supplied already decreases .

" Phenomenon : The volume of the cold water dropped
to an extremely low level . As a result, the room tem-
perature increases because the supplied air tempera-
ture increases .

Modification point : The function `Supplied air tem-
perature control' is modified so that the temperature
of the supplied air is already low .

In the qualitative model which has a block of VAV valve
No.5 . No.6 and No.7 in Figure 9 model, the qualitative
values are defined based on actual measured data. The
middle value of qualitative region C is defined by the
average of all measured data, and the width of each
qualitative region is defined as 2Q .

Tables 11 and 12 show some of the respective defini-
tions of qualitative regions for measured data for Au-
gust and November in the target VAN' system . These
definitions are determined by the respective monthly
data in a normal controlled systern .
Based on the definitions in Tables 11 and 12, the

characteristic parameters of the qualitative model are
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Table 11 : The definition of the qualitative regions in
the model used in August .

Table 12 : The definition of the qualitative regions in
the model used in November .

tuned by measured data under the normal conditions
(Yamasaki et al . 1997) . This model is a normal quali-
tative ones . Fault models can be created by modifying
components .

In the VAV valve No.6 of the target VAV system,
the experiment on assumed fault was performed oil Au-
gust 7th and November 12th ; 1996 . Table 13 shows the
fault state and the time occurred fault state on each
day. Figure 10 shows the measured data for the room
temperature and the supplied air temperature for VAV
valve No.5, 6 and 7 on August 7th . Figure 11 shows the
measured data of the room air volume and the supplied
air volume on the same day.

Fault detection for each model whose qualitative re-
gions are defined with measured data is performed . Ta-
ble 14 shows the results .

In a similar fashion, the measured data on November
12th are transformed into qualitative values based on
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Table 13 : The time that fault states occurred .

the definition from Table 12 . Table 15 shows the results
of fault detection on November 12th .
From the results in Table 14 and Table 15, the faulty

parts can be identified because the agreement rate for
the model on assumed fault is the highest for each fault
state .

Room

	

Cold water

	

Supplied
temp. (*C)

	

volume dropped

	

air temp . ('C)

29 .11'. . .

	

.. .

	

. ._ .

	

_

	

. .-.

	

-~

	

- . .F -

	

-124 .0

1(A11)

121X)

81X1

41X1

0

VAV6

	

VAV full

	

Supplied air
full opened

	

closed

	

volume dropped

	

/

	

I
M H

	

4~i

	

/

i

10 :00 12 :00 14 :00 16 :00 18:00

Room air
volume ( m'/h)

Supplied air temp.

	

VAV6 room temp .

VAV5 room temp.

	

VAV7 room temp .

Figure 10 : Room temperature and supplied air temper-
ature on August 7th .

Cold water
volume dropped
f-~

VAV6

	

VAV full

	

Supplied air
2111111 [full opened

	

closed

	

volume dropped--- - - j'rt;-_- -

.1 1

__/__ - ----A
__-

111:0 12 :00 14 :1X) 16:(N) 18 :114)

Supplied air volume

	

VAV6 room air volume

VAVS room air volume

	

VAV7 room air volume

Time

Supplied
volume (m'/h)

1O(MM)

SINN)

NO)

41NN1

2(NNI

1

Time

Figure 11 : Room air volume and supplied air volume
on August 7th .

fault content August 7th November 12th
VAV valve
full opened 10 :15 - 10:45 10 :00 - 10:40
VAV valve 11:20full closed 11 :30 - 12:10 - 12 :20
Supplied air

volume dropped 14 :05 - 14:40 13 :35 - 14:20
Cold water 15:25 , .� 17:00 15 :35 - 16:40volume dropped

qualitative
value

temperature o
supplied air

room
temperature 6

A 13.42 - 27.98
-
B

11.18 ru 13.42 27.62 - 27 .98
C 8.94 - 11 .18 27.27 - 27 .62
D 6.69 - 8 .94 26.91 - 27 .27
E ti 6 .69 - 26.91

qualitative
value

volume of
supplied air

room air
volume 6

A ( 9008 - 1285
B ) 6300 -., 9008 919 ti 1285
C 3591 ti 6300 552 - 919
D !1 882 ti 3591 185 - 552
E '~ rr 882 - 185

qualitative
value

supplied air
temperature

room
temperature 6

A 19.49 - 27.27
B -( 15.92 ti 19.49 26.76 27.27

12.35 - 15.92 26.25 26.76
D 8.78 - 12.35 25.74 - 26.25
E ti 8.78 - 25 .74

qualitative
value

supplied air
volume

room air
volume 6

5985 ti 1885 -r

B 4066 - 5985 1271 - 1885
C 2146 - 4066 657 - 1271
D 227 - 2146 43 - 657
E - 227 - 43



A

Table 14 : The results of fault detection on August 7th .

Table 15 : The results of fault detection on November 12th .

Sensitivity Analysis for Width of Each
Qualitative Region
In the previous example, the width of qualitative re-
gions is defined as 2a . In this section, it is confirmed
whether the fault part can be identified if the width of
qualitative regions is changed .
The method of definition is applied to the same qual-

itative model which has the block of VAV valve No.5,
No.6 and No.7 . Table 16 shows the definitions at the
room temperature when the width of qualitative regions
is changed . Fault detection is done by using these defi-
nitions .

Figure 12 - 16 shows the agreement rates of the se-
ries of qualitative values for each condition, which is
transformed based on the definitions in Table 16, for
normal and fault models . In Figure 12 - 16, the faulty
part was identified exactly if the width of the qualita-
tive regions is suitable . Table 17 is a summary of the
fault detection .

For the VAV systems, the width of the qualitative
regions should be about 2v . If the qualitative width
determined as more than 2Q, in the VAV full closed
case, which shows in Figure 14, the agreement rate for
the VAV closed model is zero, and the agreement rate
for the normal model is highest, so that the fault detec-
tion is incorrect . That is to say, for spreading width of
qualitative region, if measured data is large varied, the
data are transformed into no variable series of qualita-
tive value . On the other hand, if the qualitative width
determined as less than 20, for example, in the VAX` full
opened case, which shows in Figure 13, the fault state
cannot distinguish . That is to say, by narrowing width,
the real behavior disagrees the derived behaviors be-
cause the series of transformed qualitative values show
large transition .

Table 16 : The definitions of the qualitative regions at
room temperature ( °C) .
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fault fault state

model normal
NAV

opened closed
air volume
dropped

water volume
dropped

normal 0 .225 0.000 0 .128 0.076 0 .081
VAN valve full opened 0.108 0.106 0 .000 0.026 0 .006
VAV valve full closed 0.000 0.000 0 .310 0.000 0 .000

supplied air volume dropped 0 .091 0.000 0 .082 0 .252 0 .000
cold water volume dropped ~~ 0 .073 0.000 0 .077 0.091 0 .178

fault fault state

model normal opened
VAN,'
closed

air volumeume
dropped

water volume
dropped

normal 0 .225 0.000 0.128 0.076 0.081
VAV valve full opened 0.108 0.106 0.000 0.026 0 .006
V. N7 valve full closed 0.000 0.000 0.310 0.000 0 .000

supplied air volume dropped 0.091 0.000 0.082 0.252 0 .000
cold water volume dropped 0.073 0.000 0.077 0.091 0 .178

qualitative the width of the regions
value .5v 1 .00,
A 27.58 - 27 .71
B 27 .49 - 27.58 27 .54 - 27.71

27 .40 --" 27.49 27.36 --- 27.54
D 27 .31 - 27.40 27 .18 - 27.36
E 27.31 27.18

qualitative the width of the regions
value 1 .5o, Too,
A 27 .85 - 27.98
B 27 .58 - 27.85 27.62 - 27.98

27 .31 ti 27.58 27.27 - 27.62
D 27 .05 - 27.31 26 .91 - 27.27
E - 27.05 - 26.91

qualitative the width of the regions
value 2.5Q .OQ
A 28 .11 - 28 .25
B 27.67 - 28.11 27.71 - 28.25
C 27 .22 - 27.67 27.18 - 27.71
D 26 .78 ti 27.22 26.65 - 27.18
E - 26.78 - 26.65

qualitative the width of the regions
value 3.5Q 4.OQ

28 .38 ti 28 .51
B 27 .76 - 28.38 27.80 - 28.51
C 27 .13 - 27.76 27.09 - 27.80
D 26 .51 - 27.13 26.28 - 27.09
E - 26.51 - 26.28



Figure 12 : The agreement rate for each fault model
under normal condition .
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4.0 6
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3.0cr
The width of qualitative regions

Normal model
VAV closed model
Supplied air volume
dropped model

1.06' 2.00- 3 .06' 4.0(7-old water volume
dropped model

the VAV full closed fault .

The width of qualitative regions

Figure 13 : The agreement rate for each fault model in
the VAN' full opened fault .

The width of qualitative regions

Figure 14 : The agreement rate for each fault model in

Supplied air volume
dropped model

Normal model

VAV opened model

VAV closed model
Cold water volume

4.06- dropped model1.06 - 2.0o- 3.06'
The width of qualitative regions

Figure 15 : The agreement rate for each fault model in
supplied air volume dropped fault .

Figure 16 : The agreement rate for each fault model in
cold water volume dropped fault .

This paper presented a method for transforming quanti-
tative measurements into qualitative values in stochas-
tic qualitative reasoning for fault detection . It was con-
cluded that :
" The qualitative regions were defined by using the dis-

9 This method was applied to an actual air condition-
ing system, the VAV system, and the faulty parts
were identified by using determined qualitative re-
gions .

1 .0 o-

	

2.00"

Table 17 : Summary of the fault detection .

Conclusion

tribution of measurement data .

VAV opened model
Supplied air volume
dropped model

3.0o-	4 .06 VAV closed model

The width of qualitative regions

The qualitative regions were defined so that the rate
of each qualitative value transformed was equal to
the probability of occurrence .

It was confirmed that the width of qualitative regions
using this method is suitable .
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