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Modeling a system is the first step in reasoning about physical de-
vices. By restricting our domain to linear circuits, we can find an efficient
algorithm to do this modeling .

The algorithm presented in this article is an efficient implementation of
the star-mesh reductions used in Electrical Engineering. By choosing the
right representation and based on simple data structures, we can reduce
considerably the process of modeling a circuit .

The algorithm has three main sources of efficiency gain : An efficient
cluster representation reduces the complexity of the produced model; a
simple data structure reduces the search for parallel regions, in the last
step, we generate a circuit model where the principle of superposition
does not need to be applied. Those three points reduce dramatically
both, the complexity of the modeling process and the size of the model .
The reduction in the size of the model impacts favorably its use in any
reasoning task to be performed. Finally, avoiding superposition will allow
us to treat this class of circuits more efficiently .

1 Introduction

Abstract

One of the main objectives of qualitative reasoning is to derive the behav-
ior of a system from a description of its components and their interrelation-
ships [de 84, For82, Kui85, Wil84] . Prediction of behavior of electric circuits has
been achieved by electrical engineering at different levels . There are a number
of numerical methods to analyze circuits of different kinds and under different
conditions [Ker77, Wa187] . Those methods take as input a circuit topology and
exact values for the parameters, perform some computation (mainly based on
linear algebra or iterative methods to solve non-linear or differential equations),
and return exact values for the variables representing the unknown quantities .
In this process, causality and explanation are discarded; the only goals are pre-
cision and efficiency.
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Several works have been developed to model and reason about circuits of
different nature and in different application areas . Those works show that we
need to achieve a more efficient implementation . There are several steps in
the reasoning process where we can work towards more efficient algorithms and
implementations . One such step is the modeling process .

In this paper we are presenting an efficient algorithm to model linear cir-
cuits with multiple grounded sources (i .e . all sources are connected to a reference
node) . Our algorithm is efficient in the time needed to produce the model and
in the size of the resulting model. The size of the resulting model is impor-
tant, since it will impact the reasoning tasks that follow, specially constraint
propagation, which has been shown to be intractable [Dav84].

In section 2, we give the basic background that supports our algorithm .
Section 3 outlines the proposed algorithms . Section 4 presents an application
example. Section 5 presents some of the related work in this area . Section
6 concludes the work presenting our main contributions and discusses some
possible extensions for future research .

2 Background
In this section we give some definitions to establish the proposed methodology.
After that, we describe the star-mesh reduction [She47], then we show that
every Circuit with Multiple Grounded Sources (MGSC) can be reduced to an
equivalent circuit where all nodes are connected to sources. Finally, we show
that superposition is redundant in this class of circuits .

2.1 Definitions
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Let us define Kn as a complete graph (i .e . a complete mesh where every
node is connected to every other node) . A TV-1GSC, can be represelited by
C = (N, t', E, S, g) ; where

1\%

	

the set of nodes
g E N

	

the grounded node
j' C_ (N\{g})

	

the source nodes,

	

. .
E

	

the set of elements
S

	

the set of sources

Also, we define the following predicates :
The element e is connectedc(e, n) to node n
The element e is connectedb(e m n),

	

,

	

between nodes m n,

Finally, Equations 1 define the functions : nb(n) - the neighbors of node n ;
Kn(n) - a complete graph amongst n's neighbors ; and PKn(m, n) - a partial
mesh formed by m and n's neighbors, not including m.
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Formally, MGSC circuits satisfy the next properties :

(de E E : b(e, n, m) n rc, m E N n n 54 m)

So we can say that VU {g}, represents the active nodes (i .e . nodes connected
to sources) and the set N\(V U {g}) represents the passive nodes (i .e . nodes
not connected to sources) .

2 .2

	

Generalized Star-Mesh Reduction
Star-Mesh reductions [She47] allow us to eliminate a node from the network,
creating an equivalent circuit represented by a Kn that connects the neighbors
of the eliminated node . See Figure 1 .

V,

(VV EV :(,BsES :b(s,v,g)))

Figure 1 : Star-Mesh Conversion

Note that the series reduction is a particular case when n = 2 . When n = 3
we get the well known Y -4 0 transformation . For the general case, we get a
K-mesh, with (a) = " a 1

	

elements .
Now we derive an expression for the admittance of the elements of the mesh

as a function of the admittances of the elements of the star . Suppose we want to
eliminate node 0 from figure 1 (a), and get an electrically equivalent circuit, of
figure 1 (b), the rest of the circuit will not notice that the star has been replaced
by a K-mesh. Let us define nodes i, k such that i, k E nb(0)

nb(n) _ {m E N \ {n} : b(e, n, m) n e E E}

Kn(n) - {e E E : b(e, p, q) n p, q E nb(n)}

PKn(m, n) - {e E E : p E nb(n) \ {m} n b(e, m, p) }
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of the eliminated node .

Now, to be electrically equivalent with the original star, we have to impose
the following restriction to our reduced circuit :

This means that the sum of the currents of the newly generated elements
must be the same as the current of the element eliminated from the star . Com-
paring 7 with 8, we find that they are equivalent, so we can write

Iki
= 1"ki9k9i

	

(9)
E 9;

Finally, we deduce an expression for the admittance between the neighbors

Iki _ 9k9i
VkiF, gi

(10)

By applying Ohm's law to each element of the star, we have:

Ik = (Vk - Vo)9k (2 )

Now, applying Kirchoff's Current Law at node 0, we find

Eli=E(Vi -1o)9i=0 (3)
This leads to write Vo as

E VigiVo = (4)
E 9i

Substituting 4 into the right member of 2, we have

Ik ~ r 9i
= (Vk - )9k (5 )

E 9i
We can write 5 as :

E(Vk - V )9kgiIk _
_

(6)
E9i

If we make Vki = Vk - Vi in 6, we have

Vkigkgi
(7)

ti
E 9i
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2.3

	

Reduction of MGSC
Let us consider a special class of circuits whose property is that N = V U {g}
(i .e . all nodes are connected to source nodes) . The class of circuits that satisfies
this property, will be called the reduced MGSC (rMGSC) class and the circuits
that belong to this class will be called rMGSC circuits . We are ready to show
that every circuit with N nodes and V nodes connected to grounded sources, can
be reduced to a rMGSC circuit. This demonstration will be done by induction.

Proposition 1 Every circuit C = (N, V, E, S, g), N D V, can be reduced to a
circuit of the rMGSC class .

Proof.
BASIS. We have the circuit C = (N, V, E, S, g), where V = N\{9}, in

this case the circuit satisfies the property of the rMGSC class per se, and is
interconnected by at most a K-mesh among V U {g} .

IND UCTION. Suppose that a circuit C = (N, h E, S, g) where N D (V' U
{g}) can be reduced to a member of the rMGSC class . We will show that an
augmented circuit C' = (N U fal, V, E U Y, S, g), where dy E Y : c(y, a),can be
reduced to a rMGSC class circuit .

By applying the star-mesh reduction at node a, we are getting a reduced cir-
cuit with N nodes . The star formed by the elements of the set Y that were
connected to this node, become a Kn(a) C N. This change does not affect the
rMGSC reducibility property, and its effect is just to make a stronger connectiv-
ity in C. Finally, because of the induction hypothesis, C was a rMGSC reducible
circuit and therefore so is circuit C' .

2.4

	

Superposition in the rMGSC Class .
Basically ; superposition means that if the network contains several sources of
excitation, it is possible to consider the effect of each source separately, inde-
pendent of the others . At the end you add the partial solutions .

In previous research work[F1o97, 11Iau98], superposition has been applied to
a circuit with s sources producing .s models of the circuit, each -with only one
active source . This approach has several drawbacks. First, you need to produce
s models, one for each source . Second, each time analysis is needed, we need
to solve s circuits . Third, adding the partial results, adds s operations for each
variable . An important detail is that each partial model is based on a totally
different topology, this fact makes some reasoning tasks harder to implement.

With all these points in mind, we developed an algorithm to produce a single
circuit reduction, where at the end, the effects of all sources on a given element
can be computed directly, without the need of any further decomposition .

Superposition is an important property of linear networks, but as we will
show it is not necessary in the rMGSC class . . Let us analyze what happens when
superposition is applied to rMGSC circuits . Consider the example of figure 2,
where N = 10,1,2,3},V = 11,2,3},S = {S1, S2 , S3 }, E = 1912,913,923,904}
and g=0.
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Figure 2 : Example of Superposition

3

	

The Reduction Algorithm

3.1

	

Representation Choices

If we set S1, as the only active source and the rest of the sources are set to
zero (i .e . voltage sources are in short circuit) . The only elements of the circuit
affected by the source are those connected to node 1, so v-e can picture this
as a circuit with just one source, the topology of the resulting circuit is just
a parallel array of elements . Figure 2 (a), (b), and (c) show how the original
circuit is transformed when each of the sources becomes the only active source .

Finally, we find that in this class of circuits, the current in all of the elements
can be determined by applying Ohm's Law, taking into account only the sources
connected to it . The sources not connected to the element do not have any
effect on it . So no decomposition of the circuits is needed ; a single circuit model
suffices to produce the solution . This property is the one we were looking for,
since our method reduce any MGSC into a rMGSC circuit .

In this section, we outline the main characteristics of our algorithm to reduce a
NIGSC to a rl\-IGSC . The algorithm is based on a few key ideas: the elements are
represented as admittances ; parallel regions are represented as multiple clusteis ;
reduction of parallel regions are detected at the time of inserting elements, and
successive star mesh reductions are applied until only active nodes remain in
the circuit .

This algorithm represents the components of the set E as admittances. Each
stage of the reduction we will perform two steps :

1 .- Elimination of node n: Basically, this corresponds to variable elimination
in the Gauss algorithm, and as deduced in 10, we need to calculate the
summation of nb(n), if we did not have used this representation, we would
have to deal with a summation of inverses .



2.- Finding parallels: In admittance representation, parallel reduction cars be
performed by an addition ; in impedance representation it is the quotient
of the product and the addition of the involved elements . So we also save
operations in this case .

Those are the reasons that lead us to choosing admittance over impedance
in our representation .

The second choice was to represent several elements connected in parallel
in a single cluster. This choice saves computational resources; for a parallel
region with n elements, our representation needs n + 1 nodes, whereas a binary
representation uses 2n - l .

3 .2

	

Replacing a PKn(n)
When eliminating node n, we compare node k E nb(n) \ {ni}, against each
element of nb(m) . We can do one of the following actions, based upon the value
of k .

k = n

	

Eliminate element
k E nb(m)

	

-+Parallel update
k V nb(m)

	

->Insert element
In one pass, we eliminate the elements of the star and insert the elements of

the PKn(n) to produce the equivalent circuit .

3 .3

	

Reduction Rules

Basically our algorithm uses two types of reductions : parallel and star-mesh .
Table 1 shows the algebraic constraints for each one of them .

Table l : Algebraic Constraints

PARALLEL STAR
~s i ~ . 'Sik . 5 ..,.i ,

pi
1 I

i

e l 6e\Oe

i,j E nb(n)
1<j<ra 9n=~9in

ij
_
- VPlgj

tin = iik
kEPKn(i,n)

`J -VP1 Vi
V. = 1

ginV,
n

9Pr = E9i 9iy =
9tngfn

sn
i=1
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Once we have reduced the circuit to a rMGSC, we use these constraints to
produce a constraint-based model of the circuit .

3 .4

	

The Reduction Algorithm

Figure 3 shows the algorithm to reduce a MGSC C = (N, V, E, S; g) .

rMGSC(C)
P = N\(V U {g})
While P ,-4

Node-Min(P) -+ n
Replace-Y-by-Kn(n)
P\n --> P

Return

Node-Min(P)
(n E P n (dm E P : Inb(n)l <= jnb(7n)j))
Return n

Replace_Y-by-Kn(n)
For each m E nb(n)
Replace_eY_by-PKn(m, n)

Return

Replace-eY-by-PKn(m, n)
For each k E nb(n)

case
k = m : nb(?n)\n --> nb(7n)
k E nb(m) :

	

Parallel Update
k. V nb(m) :

	

nb(m) U k -> nb(in)
Return

Figure 3 : The reduction algorithm

The function rMGSC(C), takes a circuit and starts to eliminate all the
non-active nodes, by replacing the star associated with each of them by a
mesh. Node-Min(P), extracts the node with the minimal degree from P. Re
place-Y-by-M(n), replaces the star associated with node n by a Kn among its
neighbors . Finally, Replace_eY_by_PKn(m, n) replaces the partial Kn associ-
ated with node m when node n is eliminated.

4

	

An Illustrative Example
Let us consider the circuit C=(N,V,E,S,g) of figure 4 (a), where

N={0,1,2,3,4,5,6}
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V={1,2,3}
E={Gi,G2, . .,Gio}
S={S1, S2, Ss}

(a)

	

(b)

P: (S . , .S, :}

Figure 4 : Example

When the nodes are inserted in the system, all parallel regions are immedi-
ately detected and made into clusters (first stage not shown in Figure 4) .

For this circuit, P = {4, 5, 6} ; we eliminate node 6 since it has the lowest
degree . Elimination of node 6 in figure 4 (a) results in the circuit shown in
figure 4 (b) . P~,_ 5 is the parallel cluster between nodes 2 and 5 . containing
elements S2_ 5 _6 , Gio, and G9 . S._,_ 5 _6 is one of the elements that result. form
the elimination of node 6 connecting nodes 2 and 5 . This step sho-'vs how the
series reduction is a special case of the star-mesli reduction .

In the next step, P = {4, 5} ; the algorithm takes node 5 ; the star around it
is replaced by Kn(5) . The resulting circuit is shown in figure 4 (c) .

Finally, P={4}, the algorithm takes node 4, as the one to be eliminated .
The final reduced circuit is shown in figure 4 (d) . As we can see. this circuit
satisfies the rMGSC class property.

The reduction algorithm produces a graph containing a history of modifica-
tions applied to a given circuit . Figure 5 shows the graph corresponding to the
reductions that transform the circuit of figure 4 (a) into the circuit of figure 4
(d) . The leaf nodes of the same figure denote admittances. Internal nodes,
marked with P denote parallel clusters . A Y node represents a star-mesh re-
duction, its children are the elements of the star, and its ancestors, S nodes,
represent the Kn(n) that replaces the star .
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5

	

Related Work

Figure 5 : Final Reduction Graph for Circuit of Figure 4

There have been many successful effort to perform model-based reasoning about
circuits [SS77, SS80, de 84, Dav84, Gen84, Ham91, FF96, Flo97, 1\-Iau98] . The
most recent work and more related to this one are the works of Flores land
Farley, and %lauss .

The work of Flores and Farley can only cope with series-parallel reducible
circuits, missing an important number of circuits and being of no much use for
many practical applications . For instance, to validate a diagnosis the circuit
is modified to reflect the fault . We can easily find an example where a short
circuit can transform a series-parallel reducible circuit into a one that is not .

Both works, Flores and Farley's, and Mauss', represent parallel clusters as
binary relations . This fact increases the size of the resulting graph . Also, they
search for elements or clusters that share the same nodes to produce a parallel
cluster . That is an expensive search . Our algorithm is based in a data structure
that can determine whether there is an element in parallel with the inserted
element in almost constant time .

Both works, Flores and Farley's, and Mauss', need to use superposition to
analyze circuits with multiple sources in its natural representation . As men-
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tioned above, they decompose a circuit with n sources in n sub-models, each
with only one active source . This fact makes the production of the model and
the analysis time more expensive.

The goal in both works was to reduce the circuit to a single resistance,
without thinking that maybe it was not necessary and it would not provide
more information, so they were making redundant clustering .

6

	

Conclusions and Future Work
We are presenting an algorithm capable of modeling circuits with multiple
grounded sources . The reduction is accomplished by repeated applications of
the star-mesh reduction rule . Our algorithm also gains in efficiency by eliminat-
ing the quadratic process to find parallel clusters . With the use of simple data
structures, we reduce time in detection of parallel clusters to almost constant
time .

By using an adequate representation, our modeling algorithm has proven to
be efficient . Compared to ICron's reduction, a classical node-elimination meth-
ods used in Electrical Engineering [GS94, And73], our algorithm performs much
more efficiently, since it only performs operations when they are necessary . Clas-
sical methods, on the other hand, use matrix representations arid linear algebra,
operating on complete rows and columns, therefore performing unnecessary op-
erations in some cases.

To establish a comparison, let us define n as the number of nodes of the
circuit and s the number of sources . Table 6 compares the number of operations
needed to get the reduced matrix (without considering the inverse operation
(O((n - s) 3 ))), against the number of operations needed by our algorithm in
the worst case (i .e . every node is connected to each other) . Table 6 provides a
numeric figure, for n = 6 arid 1 < .s < n .

Table 2 : Number of Operations as a Function of n and s

On the other hand, by using multiple parallels clusters, we have optimized
the graph, leading to a more efficient model .

Again, comparing our method to those used by classical circuit solvers, our
algorithm produces a cluster graph that can be used to produce a constraint-
based model . A constraint-based model can be derived from first principles,

Method Number of Operation s

Kron + (n - s)+ - - -.s(n, s)(n s 1) -., .,
77.- + S- - 7l .s

~ k,{A.
+1)

- 1 ,rMGSC k=s+1
n

k=s+1



using the same ideas as in [FF96, Flo97] . Such a constraint-based model can
be used to perform several reasoning tasks about the circuit, e.g . first-order
reasoning, qualitative analysis, design, diagnosis, etc . (see [Flo97]) .

Traditional circuit analysis is not that flexible, and does not provide the
intuition behind the cluster graph. Circuit solvers just provide numeric solutions
to precisely specified circuits . QR techniques enable us to provide solutions
under the presence of incomplete or uncertain information ; also, explanation
can be generated, etc .

This algorithm was developed in an effort to make the work by Flores and
Farley more efficient . Trying to apply QR methods to circuit analysis, design,
and diagnosis, we found that efficiency was a crucial point to make a QR system
applicable to larger circuits . This situation is present specially in diagnosis,
where a fault has to be diagnosed, and a solution proposed in real time, in such
a way as to shut-down or isolate part of the system .

Our next target in the process of making qualitative circuit analysis more
efficient is constraint propagation . If we want to apply qualitative reasoning to
practical problems, we need a constraint propagation algorithm that exploits
the topology of the cluster graph.
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