
Discrete-event modelling and diagnosis
of quantised dynamical systems

Abstract

The paper deals with the diagnosis of quantised
continuous-variable systems whose state can be mea-
sured only by means of a quantiser . Hence, the on-line
information used in the diagnosis is given by the se-
quences of input and output events . The diagnostic
algorithm uses a representation of the quantised sys-
tem by means of discrete-event models . Four different
forms of such models will be explained and their useful-
ness for the solution of diagnostic tasks discussed . The
paper shows that a timed discrete-event representation
is necessary if the diagnostic task should be solved as
quickly as possible under real-time constraints . The
results are illustrated by diagnosing a batch process.

Introduction
Diagnosis of quantised systems . This paper is con-
cerned with the diagnosis of dynamical systems with
discrete inputs and outputs . As shown in Figure 1,
the system under consideration is a continuous-variable
continuous-time system, which can be described by
some analytical model (set of differential equations) .
However, the system state x is accessible only through a
quantiser, which generates an event whenever the state
changes its qualitative value . The input assumes a se-
quence of discrete values v, which is transformed into
a continuous input function u(t) by the injector . Since
the observations are based on the quantised signals, a
qualitative model has to be used for the diagnosis . The
system consisting of the continuous--variable system,
the quantiser and the injector is called the quantised
system.

Aim of the paper.

	

This workshop paper should show
how diagnostic methods can be elaborated for quantised
continuous-variable dynamical systems . The develop-
ment consists of two major steps .
" First, four different discrete-event representations of

the quantised system are described .
" Second, diagnostic algorithms that use these mod-

els and the observed input and output sequences are
given .
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Fig . 1 : Diagnosis of quantised systems

As the models distinguish concerning the information
about the dynamical properties of the quantised sys-
tems, the diagnostic results differ concerning their pre-
cision . The severeness of these differences are shown by-
a numerical example .

Relevant literature .

	

Results along this line of re-
search have been obtained in two fields . The mod-
elling problem for quantised systems has been inves-
tigated, for example, in (Lunze 1992), (Lunze 1994),
(Lunze 1999), (Raisch, O'Young 1997) or (Stursberg,
Kowalewski, Engell 1997) . On the other hand, di-
agnosing quantised systems by means of a discrete-
event representation has been investigated in (Licht-
enberg, Steele 1996), (Lunze 1998), (Lunze, Schiller
1997), (Lunze, Schiller, 1999), (Sampath, Sengupta,
Lafurtune, Sinnamohideen, Teneketzis 1995) or (Srini-
vasan, Jafari 1993) . This paper uses the principle of
consistency-based diagnosis (Hamscher, Console, and
de Kleer 1992) which will be applied here to four dif-
ferent discrete-event representations .

Example: Diagnosis of a batch process
The class of diagnostic problems considered in this pa-
per is illustrated by the batch process depicted in Fig-
ure 2 . The dashed lines mark liquid levels, which are
measured by sensors that indicate only if the level is
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higher or lower than its position . These sensors act
as quantisers . The quantitative model is given in the
Appendix .

V

Fig. 2: Example of a batch process

The following operation from a batch process is con-
sidered. At t = 0 the liquid level in Tank 1 is "high" (i .e .
higher than the dashed line) and the level in Tank 2 is
"low" (i .e . lower than the lower dashed line) . The aim
is to bring the level in the right tank above the upper
dashed line . To do this, the Valves Vi, L2 and 174 are
opened and Valve 173 closed .

xz t

Fig. 3: Partition of the state space of the two tanks (xl
= level of Tank 1 ; x2 = level of Tank 2)

Since the only on-line information is obtained from
the qualitative sensors, the behaviour of the system is
considered in the partitioned state space depicted in
Figure 3. The numbers i = 1, 2, . . ., 6 in the figure refer
to the enumeration of the state space partitions . If the
trajectory of the system crosses one of the partition
borders, an event is generated. Figure 3 shows as two
examples the events e34 and e43 .
Four faults are considered where fl, f2 and f4 de-

note the situation that the Valve 171, V2 or 44 is not
opened, respectively, and f3 describes that Valve V3 is
not closed . fo symbolises the faultless system . Hence.

T= If0 ; f1, f2, f3, f4} "

QR99 Loch Awe, Scotland

The diagnostic problem is to find the fault as quickly as
possible after the control input, which opens the valves
Vl, 1~2 and V4 and closes valve V3, has been applied.

Quantised continuous-variable systems
Quantitative system description. This section ex-
plains important properties of the quantised system,
which have to be taken into account when solving the
modelling and diagnostic tasks. Continuous--variable
systems

=

	

f(x(t) ; u(t),A

	

x(0) = xo.

	

( 1)

are considered where x E IR" denotes the state and
u E IR"L the input vector . It is assumed that for any
initial state xo and input u(t) eqn. (1) has a unique
solution, which is considered for the time interval [0, Th]
and denoted by xlo,Thl . Since the main ideas can be
developed by considering a system without input (i .e .
for u(t) = 0), all further investigations are restricted to
the autonomous system

=

	

f(x(t), f),

	

x(0) = xo-

	

(2)

However, the modelling method and the diagnostic al-
gorithm can be extended to system (i).

Quantisation of the state space.

	

The quantiser
maps the state space IR" onto a finite set

Nx = {0,1, 2, .. ., N}

of qualitative values and, thus, introduces a partition
of IR" into N + 1 disjoint sets Qx(i), where i denotes
the "number" of the partition. Qx(i) denotes the set
of states x E IR" with the same qualitative value i and
6Qx (i.) the hull of this set. In the example, the state
variables xl and x2 are quantised independently so that
the sets Q,(i) represent rectangular boxes as shown in
Figure 3 .

Temporal quantisation .

	

Since only the 'quantised
state information is assumed to be available for diag-
nosis, the quantised system seems to remain in a given
qualitative state as long as its trajectory x(t) does not
cross a border

SQxi; = 6Qx(i) n 6Qx(j)

	

(3)

between two adjacent state space partitions . A change
of the qualitative value of the state x is called an event.
The quantiser does not only determine which event oc-
curs but also at which time the event is generated . The
event that the system moves from qualitative state j
to qualitative state i is denoted by eij . E is the set
of all events that may occur. Upper-case letters like
Ek represent variables denoting the occurrence of the
k-th event whereas lower-case letters like e, e E S de-
note particular events . Hence, ES = e34 signifies that
the system (2) changes its qualitative state from 4 to 3
while generating the fifth event .
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Discrete-event behaviour of the quantised sys-
tem . The behaviour of the quantised system is de-
scribed by a timed event sequence

Et (0 ...Th) = (Eo,To ; Ei,Ti ; E2, T2 ; . . . ;EH,Ttr) .

	

(4)

Ek denotes the name and Tk the occurrence time of
the k-th event . H is the number of events that the
quantised system generates in the time interval (0, Th] .
If only the sequence of events are considered but the
occurrence times neglected, the behaviour of the grran-
tised system is described by the, untimed event sequence

E(O . ..H) = (Eo , Ei, E2, . . .Ell) .

Clearly, every continuous-variable behaviour x(t) of the
system (2) is associated with a unique tinned event se-
quence (4) and a unique untimed event sequence (5),
which is abbreviated by

and

Et (0 . . .Th) = Quantt(x[o,Thl)

E(O . . .H) = Quant (x[o,Thl) .

The qualitative modelling problem

For diagnosis, a model has to be used which gener-
ates for every given initial event eo the event sequence
Et (0 . . .Th) or E(O . . .H) for all faults f E T. Such a
model is available if eqn . (2) is combined with the quan-
tiser . However, this model includes continuous-variable
and discrete-event parts . For diagnosis, a more com-
pact model has to be found . An inherent problem of this
modelling task results from the fact that these event
sequences are not unique (Lunze, Nixdorf, Scliroder
1999) . This fact has to be explained now.

Nondeterminism of the discrete-event be-
haviour . The nondeterminism of the discrete-event
behaviour of the quantised system means that the quan-
tised system may generate one of a set of different event
sequences Et or E and it is impossible to select the
true sequence in advance . The reason for this is given
by the fact that the initial state xo of the system (2) is
unknown . After the first event eo has been observed at
time to, the state of the system is known to lie in the
set 6Q(eo), which includes all those states x for which
the system generates the event eo . For notational con-
venience, to is assumed to be zero . Depending on xo
the system may produce one event sequence of the sets

St (eo, f)

S(eo, f )

{Et = Quant t(x[o,T,)) I Eqn . (2) holds
for some xo E 6Qx (eo)} .

	

(6)
{E = Quant (x[o , T, ]) I Eqn . (2) holds
for some xo E JQ x (eo)} .

	

(7)

For the example, the reason for the nondeterminism
of the behaviour can be seen from Figure 4. If the event
e42 is observed as initial event, the tank system may
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Hence,

Ve (e, O, f)

	

=

C
o .sC

0.5

0.4

0.2

5

0 .1

0
0.4 0.45 0.5 0.55 0.6n,

Fig . 4 : T'rajectories generated for fault fr and e0 = e42

follow any trajectory of the set depicted in the figure .
Hence, it may generate any of the event sequence

3

holds .
Moreover, the temporal distance of the events may

vary considerably, which yield to a huge set St(e4., , fl)
of tiered event sequences .

Stochastic properties of the quantised system .
A compact representation of the nondeterministic be-
haviour of the quantised system can be obtained by
a statistical evaluation . It is assumed that the initial
state x,~ of the continuous--variable system (2) is uni-
formly distributed over the set 6Q(eo) . Then the event
sequence Et is a random sequence with Et E St (eo, f) .
The probability that the event e has occurred before or
at time t is denoted by

le (e, t, f) _

	

Prob (Ek = e, Tk < t I F= f) .

	

(10)
k

Since the initial event eo is assumed to be known,
Ve (e, 0, f) is known:

for e = eo

	

for all f E .x'.(11)else

The relation between the probabilities just defined
and the event sequence Et is obvious . An event eij
occurs in at least one event sequence Et E St (eo, f) if
and only if Ve(eij, t, f) A 0 .

Figure 5 shows the statistical properties of the quan-
tised tank system . The strips depict the probability
VC (e, t ; fi ) in grey scale . The strips are shown only for
the time interval in which dt > 0 holds, because the
event e may occur exactly in this time interval . The
darker the strip is the more probable is the occurrence
of the event until the corresponding time instant .
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Er = (e42, e64)
E2 = (e42, e34, e43, e64)
E3 = (e42, e34, e53, e65) . (8)

S(e42, fl) = {E1, E22, E3} (9)
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Fig . 5 : Graphical representation of the statistical
properties of the tank system for fault f, and initial

event e42

Figure 5 has been obtained by exhaustive simulation
for a large number of initial states xo E 6Q(e42) . Such
an exhaustive simulation should not be used in the di-
agnosis . Therefore, models have to be set up which
represent. the set. of event sequences of the quantised
system in a concise form .

Modelling aim.

	

Since the behaviour is nondetermin-
istic, a nondeterministic model has to be used . Such a
model does not generate: a unique event sequence Et ,
but a set i4t(eo, f) of event sequences . The modelling
aim is to find a representation of the quantised system
such that the relation

A4t(eo,f) St(eo, .f) (12)

holds for all eo, f and Tt, . If the untimed sequences are
considered, the modelling aim reads as

M(eo, f) ;? S(eo , f) .

	

(13)
According to eqn . (12) the model should generate all

event sequences that the quantised system may gen-
erate over the same time horizon for the same initial
event and fault . It has been shown that any diagnos-
tic algorithm can find all possible faults in a quantised
system if and only if the modelling aim (12) (or (13))
is satisfied (cf . (Lunze 1998)) .

Qualitative modelling of the quantised

In this section, four different solutions to the modelling
problem will be given . Starting with a simple (untimed)
model, the four models include more and more informa-
tion about the quantised system . In the next section,
it will be shown, how the diagnostic result can be im-
proved due to this increasing information included in
the model . The first two models can be merely used to
generate the untimed sequences E(O . . .H), whereas the
third and fourth model can be used to determine timed
event sequences E t (O . . .T,, ) .

Nondeterministic automata or Petri nets
The nondeterministic automaton N(E, R, eo) with state
transition relation R(f) g E x E and and initial state c o

can be used as model of the quantised system if R(f)
includes all event pairs that the quantised system may
generate subject to the fault f . In the automaton graph
these pairs correspond to directed edges as shown in
Figure 6 . R(f) can be found for a given quantised sys-
tem by determining for every event e all possible suc-
cessor events (Lunze 1994), (Raisch, O'Young 1997),
(Forstner, Lunze 1999) . Instead of the nondeterminis-
tic automaton, Petri nets can also be used as model of
the quantised system (Lunze 1992) .

Fig . 6 : Automaton graph representing the quantised
tank system for fault f,

The behaviour of the nondeterministic automaton
can be interpreted as movement along the edges in its
automaton graph . For the fault f1 and initial event,
e42 the nondeterministic automaton generates the set
A4 (C42, fl), which includes exactly the three event se-
quences E1 , E2 and E3 given in eqn . (9) . That is, for
this example the modelling aim (13) can be satisfied
with equality sign (S(e42, fl) = A4(e42, f1)) .

Stochastic automata

Compared with the nondeterministic automaton, the
stochastic automaton S(E, P, eo) generates additional
information because its dynamical properties are de-
scribed by the state transition probability P :

P(e, e, f) = Prob (El = e I Eo = e, f) .

	

(14)

In order to find P for a given quantised system, the
right-hand side of this equation has to be determined
for all possible event pairs (e, e), which is possible by
means of the quantitative model (2) and the quantiser
(Lunze 1994) . These probability values are additional
labels of the edges in the automaton graph .

For the tank example, it can be seen from Figure 4
that about 28% of all trajectories that generate the
event e42 yield e.34 as succeeding event and 72% of
these trajectories have the successor event e64 . Hence,
P(e34, e42, f1) = 0,28 .
The set ,,'Vl(eo,f) of trajectories generated by the

stochastic automaton again includes all paths within
the automaton graph and, in addition to that, an eval-
uation of the probability of its appearance .
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Timed automata
A first step towards a timed description can be made by
using time intervals [train, tmax] as additional labels of
the state transitions of a nondeterministic or a stochas-
tic automaton . tmi,, and tmox denote the minimum or
maximum temporal distance between the events e and e
of the considered event pair, which can be determined
for a given quantised system (Stursberg, Kowalewski,
Engell 1997) . The behaviour of the model is then de-
scribed by all paths in the automaton graph and, in ad-
dition to that, by the cumulative time interval, which
can be obtained by combining the time intervals of the
individual state transitions according to the rules of in-
terval arithmetic .

Semi-Markov processes
A further improvement is possible if the model describes
with which probability the quantised system generates
the event e if it has generated the event e at T time
units before . Note that the probability depends now on
the sojourn time -r = Tk+l - Tk :

Fee (T, f) =
Prob (Ek+i = e, Tk+i < t + T I Ek = e, Tk = t, f)

for e 5E e . (15)
A semi-Markov process Al-r(£, 17 , F, eo) with the

state set £ and the state transition probability distri-
bution F generates the set Mt(eo, f) of timed event
sequences for given initial event eo and fault f

Mt(eo, f)

	

_

	

{(Eo, 0 ; El, T, ; . . . ; EH,TH) I
FEk,,E,(Tk+l - Tk,f) > 0

(k = 0, 1, . . ., H - 1)} .

How to set up the models
All the models explained so far can be automatically
generated from the quantitative description (2) and the
given quantiser . For example, the probability distribu-
tion F of the semi-Markov model is given by

Timed Abstraction :
Fee (T, f) =

Prob (El = e, Tl < T I Eo = e, To = 0, F = f)
for e ~4 e

- Ee~e Fee(?', f)

	

else .

(16)
On the right-hand side of the first equation, a pair (e, e)
of succeeding events is considered and the probability of
its occurrence determined by means of eqn. (2) for given
f . It has been proved in (Lunze 1999) that a semi-
Markov process with the probability distribution F de-
scribed by eqn . (16) satisfies the modelling aim (12) .
Similar relations between the given quantised system
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and the other three qualitative models have been elab-
orated in the references cited above .
The statistical evaluation necessary to determine the

right-hand side of eqn . (16) is done by numerical simu-
lation . Note that in these simulations only pairs of suc-
cessive events have to be considered . The semi-Markovprocess includes the information obtained by the inves-
tigations of these event pairs and uses this information
to generate arbitrarily long event sequences .

Process diagnosis by means of the
qualitative models

The diagnostic problem
The diagnostic problem can be stated now as follows :

Given:

	

Model of the quantised system
Observation E(O . . .H) or Et(O . ..Th )

Find :

	

pm(f,Th), which describes whether
fault f has occurred

The form of the diagnostic result pm(f,Th) depends
on the model used and will be explained later . However,
for all models, pmt depends on the time horizon Th of
the observed data and ptir(f,Th) = 0 signifies that the
fault f is known not to occur .
The diagnostic problem will be solved in this section

by applying the idea of consistency-based diagnosis to
the four models proposed in the preceeding section . For
a given observed event sequence it is tested for which
candidate fault(s) f E F this sequence is consistent
with the qualitative model . Since also a model of the
faultless system is used, the faulty behaviour can be di-
agnosed even if the fault set does not include the current
fault .

Diagnosis by means of the semi-Markov
model
As the semi-Markov model is the most general one
among the four models, the diagnostic algorithm is ex-
plained for this model first . Assume that the event
sequence E t (0 . . .Th) has been observed until time Th .
The aim is to determine the probability that the quan-
tised system with this fault f has generated the given
timed event sequence :

PM (f,Tj~) = Prob (F I Et(0 . .Th))

For the description of the algorithm it is assumed that
before the time instant Th the events Eo, . . ., EH have
occurred at the time points To , . . .T,,, (Fig . 7) . The last
event, which has occurred at time TH G Th is denoted
by e (EH = e) .
The algorithm uses the probability of the model to

remain in the state e :
Fe (T, f) =

Prob (Ti > T 1 Eo = e, To = 0) = 1 -E Fe e (T, f) . (17)
eEP

278



Diagnostic Algorithm
Start with the initial fault probability

where nF denotes the number of faults considered .
For increasing time horizon Th do the following:

2 .

T,

	

T11., 1rM

	

Th

Fig. 7: Observed event sequence

hM (f, 0) = 1 ,

	

(18)
nF

Determine the auxiliary function

(I - F'e(Th - TH,f))PM(f,TH)
for TH+1 > Th

pn(f,Th) _

	

Fee(Th - TH,f))PM(f,TH)
for TH+1 = Th

(19)
for all f E Y. The first line concerns the case that
at time Th no new event occurs whereas the second
line applies if the event e occurs at time Th .

Determine the diagnostic result at time Th by

PM (f, Th) =

	

pa(f, Th)

	

(20)E f pa (f, Th)

(for a proof cf. (Lunze 1998)) . The proof uses results
from probability theory to solve a decision problem for
a semi-Markov process. In a real-time application,
eqns . (19) and (20) are used for continuously increasing
time horizon Th .

Diagnosis by means of the timed
automaton

If a timed automaton is used as qualitative model of the
quantised system, the diagnostic result is an assertion
saying whether a given fault f can be the cause of the
observed event sequence or riot, but no probabilistic
information about the occurrence of the different faults
is obtained . The Diagnostic Algorithm can be used with

-
(7,f

	

1

	

for tmin < 7 < tmaxFee ) 0 else,

which can be obtained from the timed automaton.
Then, eqns . (18) - (20) yield a nonvanishing value of
pM (f, Th) if the observed event, sequence can occur sub-
ject to fault, f .
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Diagnosis by means of the stochastic
automaton
If the stochastic automaton is used . only the untimed
event sequence E can be processed. The diagnostic
result pM (f, Th) gives the probability with which the
quantised system can generate the observed event se-
quence for fault f . The Diagnostic Algorithm is used
with P(e, e, f) replacing F,P ('r, f) . pn and pM are up-
dated only after a new event e has occurred :

Diagnosis by means of the
nondeterministic automaton
If the nondeterministic automaton is used, pM (f , Th )
says only whether the observed untimed event sequence
E(O. . .H) may occur for fault f or not.

Comparison of the diagnostic results
The diagnostic results obtained by the different mod-
els are compared now for the batch process example.
First, the faulty behaviour of the tank system is anal-
ysed in order to evaluate the "difficulty" of the diagnos-
tic task . Figure 8 compares the event sequences that
the tank system generates for the different faults with
initial event e42 .

As the event sequence (e42, e34, e53, e65) may be gen-
erated by the faultless system as well as by the sys-
tem with the faults fl, f2 or f3, these three faults
can only be discriminated if the temporal distances
of the events are taken into account .

Fault f4 can be identified due to the fact that only
the event pair (e42, e34) is generated . This, however,
necessitates temporal information in the sense that
the algorithm has to wait "long enough": before it
outputs the fault f4 .

For the faults f1 and f2 the quantised system may
generate one of the three event sequences (9). Both
faults can only be distinguished by using temporal
information.
In the following diagrams the time t = 0 denotes the

initial time when the tank system starts its movement
in some initial state xo . The first event may occur later
(To >_ 0) . In any case, the diagnostic algorithm starts
at To .

First, consider the tank system for fault f1 with (un-
known!) initial state xo = (0.5 0)' . The discrete-
event behaviour is described by the untimed sequence
E(0. . .3) = (ere, e31 , e53, es5) or the timed event se-
quence depicted in the upper part of Figure 9, where
the dashes show at which time instances Tk the events
Ek occur. The diagnosis by means of the four different
models yield the following results:
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pa(f,TH) = P(P,e'f)PM(f,TH-1) (21)

PA1(f,Tit) =
pa (f, Tt_1)

(22)
Efpa(f,TH)'
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Fig . 8 : Discrete-event behaviour of the batch process
for different faults
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Fig . 9 : Behaviour of the process subject to fault f, and

diagnostic results

As the observed untimed event sequence can occur for
the faultless system and for the faults fl, f2 and f3,
the diagnostic algorithm using the untimed automata
cannot identify the fault . Only the fault f4 can be
excluded after the fourth event has occurred (lowest
part of Fig . 9) .

. The middle part of Fig . 9 shows the diagnostic result,
where the probability pw (f, Th) is depicted in grey
scale . Obviously, the fault f, is uniquely detected
after about 30sec . That is, p,1r (fl, Th) = 1 holds for
Th > 30, which is also indicated at the right margin of
the figure . Note that the diagnosis is finished before
the second event occurs .
The fault diagnosis takes more time if the event e42

is generated first . Figure 10 shows that for the (un-
known) initial state xo used now the first event occurs
at time To = 32 . It is not before this time that the
diagnostic algorithm is started . After the second event
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has occurred, the fault f, is uniquely determined . Thee
lowest part of the figure shows that the diagnostic task
cannot be solved by the untimed models.

If the timed automaton (without probabilistic evalu-
tation of the state transitions) is used, the results are
similar to the results obtained with the semi-Markov
model . However, as the fault probabilities cannot be
determined, all stripes are black instead of grey .

If the (untimed) nondeterministic automaton is used,
the results are similar to those obtained for the (un-
timed) stochastic automaton, where again the stripes
are black instead of grey . This comparison shows that
an important information for diagnosis lies in the tem-
poral distance between succeeding events. The proba-
bilistic evaluation made here provides only additional
information to distinguish the degree in which possible
faults occur .

The paper has shown that quantised continuous-
variable systems can be diagnosed by means of discrete-
event representations of the quantised system . Four dif-
ferent models have been described, which include differ-
ent information and, hence, necessitate different depth
of knowledge about the quantised system . A diagnos-
tic algorithm has been given, which can be used (with
some modifications) for- all four models . The results
have been compared by means of a numerical example .

For the simplicity of presentation, only an au-
tonomous system (2) has been used here . However, as
the cited literature shows, all modelling and diagnostic
steps can be generalised to the system (1) which takes
into account the input u(t) .
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Appendix : Quantitative model of the
tank system

The coupled tanks can be described by the differential equa-
tions

QR99 Loch Awe, Scotland

hi < h�
if

	

h i , h2 < 1h . �

Q3 = S,: 2g jh2I

04 = 040-

hi is the liquid level in the left tank (Tank 1) and h2 the
level in the right tank (Tank 2) . Qt denotes the flow through
the Valve V, .

If Vi is closed, Q ; = 0 holds instead of the given equation .
The system is considered for the following parameters :

Ai, A2 = 0, 0154m2	Cross-sectionof the cylindric tanks
h t, = 0, 3m

	

Height of the upper pipe
S,. = 0, 00002m2	Cross-sectionof the valves
Q40 = 6_1

in

	

Flow through Valve 174 (if opened)
g = 9,81 ,

	

Gravity constant.

28 1

hi
1
04 -01-02)

A,

h2
1

(Q ' + Q2 - Q3)
Aa

Q1 S� sgn(hl - h2) 2g1hi - h2l

S" sgn(hi - 112) 2g1hi - h2l if hl, h2 > h,.

S� 2g Ih i - h � I if hl > h.,,

Q2
h 2 < h �

S" 2glh2 - h. � j if h2 > h,,


