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' Abstract -

Real-time model-based deduction has recently emerged
as a vital component in AI's tool box for develop-
ing highly autonomous reactive systems. Yet one of
the current hurdles towards developing model-based
reactive systems is the number of methods simultane-
ously employed, and their corresponding melange of
programming and modeling languages. This paper of-
fers an important step towards unification of reactive
and model-based programming, providing the capabil-
ity to monitor mixed hardware/software systems. We
introduce RMPL, a rich modeling language that com-
bines probabilistic, constraint-based modeling with re-
active programming constructs, while offering a simple
semantics in terms of hidden state Markov processes.
We introduce probabilistic, hierarchical constraint au-
tomata, which allow Markov processes to be expressed
in a compact representation that preserves the modu-
larity of RMPL programs. Finally, a model-based ex-
ecutive, called RBurton is described that exploits this
compact encoding to perform efficent simulation, belief
state update and control sequence generation.

Introduction

Highly autonomous systems, such as NASA’s Deep
Space One spacecraft(Muscettola et al. 1999) and
Rover prototypes, leverage many of the fruits of Al's
work on automated reasoning — planning and schedul-
ing, task decomposition execution, model-based rea-
soning and constraint satisfaction. Yet a likely show
stopper to widely deploying this level of autonomy is
the multiplicity of Al modeling languages employed for
tasks such as diagnosis, execution, control and planning
for these systems. Currently separate models of the
same artifacts are built for each of these tasks, leading
to considerable overhead on the part of the modeling
teams — for the Deep Space One spacecraft, as much as
half the total development time was devoted to ensuring
that the multiple models were mutually consistent.
This paper concentrates on a developing a unified
language for monitoring, diagnosis and recovery, and
reactive execution. Key to this challenge is the devel-
opment. of a unified language that can express a rich
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set of mixed hardware and software behaviors (Reactive
Model-based Programming Language - RMPL), a com-
pact encoding of the underlying Markov process (hier-
archical constraint automata - HCA), and an executive
for this encoding that supports efficient state estima-
tion, monitoring and control generation (RBurton).

RMPL. RMPL achieves expressiveness by merging
key ideas from synchronous programming languages,
qualitative modeling and Markov processes. Syn-
chronous programming offers a class of languages (Halb-
wachs 1993) developed for writing control programs for
reactive systems (Harel & Pnueli 1985; Berry 1989).
Qualitative modeling and Markov processes provide
means for describing continuous processes and uncer-
tainty.

RBurton achieves efficient execution through a care-
ful generalization of state enumeration algorithms that
are successfully employed by the Sherlock(de Kleer
& Williams 1989) and Livingstone(Williams & Nayak
1996) systems on simpler modeling languages.

Monitoring software/hardware systems. The
applications for which modeling in RMPL will be neces-
sary are mixed hardware software systems. In any com-
plex system, the overall control system and its individ-
ual components are mixed hardware software systems.
With respect to diagnosis this means that tracking the
system’s behavior requires tracking the software execu-
tion at some level of abstraction. In addition, failures
can effect the execution trace of the software and hence
symptoms might manifest themselves as software error
conditions.

A key feature of RMPL is that the execution and con-
trol software can also be written in RMPL, thus we can
do our monitoring and diagnosis on the same models
that are executed — “What you monitor is what you
execute”, a variant of Berry’s principle®*. This elimi-
nates the need for separately maintaining the execution

*“What you prove is what you execute” (Berry 1989).
Berry argues that verification must be done directly on ex-
ecutable programs, eliminating the gap between specifica-
tions about which we prove properties, and the programs
that are supposed to implement them.
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software and models of it for diagnosis, a potentially ex-
pensive and error-prone task.

Organization of this paper. We start with a sketch
of RBurton. The first half of the paper then intro-
duces hierarchical constraint automata, their determin-
istic execution, and their expression using RMPL. The
direct mapping from RMPL combinators to HCA, cou-
pled with HCA'’s hierarchical representation avoids the
state explosion problem that frequently occurs while
compiling large reactive programs.

The second half of the paper turns to model-based ex-
ecution under uncertainty. First we generalize HCAs to
a factored representation of partially observable Markov
processes. We then develop RBurton’s stochastic mon-
itoring and execution capabilities, while leveraging off
the compact encoding offered by probabilistic HCA.
The paper concludes with a discussion of related work.

The RBurton Exécutive

The execution task consists of controlling a physical
plant according to a stream of high-level commands
(goals), in the face of unexpected behavior from the
system. To accomplish this the executive controls some
variables of the plant, and senses the values of some
sensors to determine the state of the plant.

External
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Model e
State Control
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Module Module

]' Observables l Controls
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A schematic of RBurton is shown above. RBurton
consists of two main components. The state estima-
tion module determines the current most likely states of
the plant from observed behavior using a plant model.
This generalizes mode identification (MI), (Williams &
Nayak 1996). The key difference is the expressiveness
of the modeling languages employed. RMPL allows a
rich set of embedded software behaviors to be modeled,
hence RBurton’s state estimator offers a powerful tool
for monitoring mixed software/hardware systems.

RBurton’s control sequencer executes a program for
controlling the plant that is also specified using RMPL.
Actions are conditioned on external goals and proper-
ties of the plant’s current most likely state. Given mul-
tiple feasible options, RBurton selects the course of ac-
tion that maximizes immediate reward. As a control
language RMPL offers the expressiveness of reactive
languages like Esterel(Berry & Gonthier 1992), along
with many of the goal-directed task decomposition and
monitoring capabilities supported by robotic execution
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languages like RAPS(Firby 1995), TCA(Simmons 1994)
and ESL(Gat 1996).

Example. We will consider the Autonavigation sys-
tem on the spacecraft Deep Space 1. This system is
used on the spacecraft once a week to perform small
course corrections. It takes pictures of three asteroids,
and uses the difference between their actual locations
from their projected locations to determine the course
error. This is then used by another system to deter-
mine a new course. The plant model for this consists
of models of the camera, the thrusters which turn the
spacecraft, and the memory system which stores the
pictures. Each of these has various failure modes, which
are described in the models. The control program issues
commands to the thrusters to turn to each asteroid in
turn, to the camera to take pictures, and to the mem-
ory to store the pictures. If there is any error, it stops
the sequence and takes a recovery action.

We will need to make sure that RMPL is suffi-
ciently expressive to model this system. This behav-
ior draws upon many of the constructs supported by
Livingstone—qualitative interactions, multiple modes,
concurrent operation and probabilistic transitions. In
addition the model must embody a richer set of behav-
iors that cannot be expressed within Livingstone's mod-
eling language— preemption, forking concurrent pro-
cesses and iteration. In the next few sections we will
show how these are combined into a succinct language.

Hierarchic Constraint Automata

RMPL programs may be viewed as specifications of par-
tially observable Markov processes, that is probabilis-
tic automata with partial observability. While Markov
processes offer a natural way of thinking about reac-
tive systems, as a direct encoding they are notoriously
intractable. To develop an expressive, yet compact en-
coding we introduce five key attributes. First, transi-
tions are probabilistic, with associated costs. Second,
the Markov process is factored into a set of concur-
rent automata. Third, each state is labeled with a con-
straint that holds whenever the aytomaton marks that
state. This allows an efficient, intentional encoding of
co-temporal processes, such as fluid flows. Fourth, au-
tomata are arranged in a hierarchy — the state of an
automaton may itself be an automaton, which is ac-
tivated by its parent. This enables the initiation and
termination of more complex concurrent and sequential
behaviors than were possible with the modeling lan-
guage used in Livingstone. Finally, each transition may
have multiple targets, allowing an automaton to be in
several states simultaneously, enabling a compact rep-
resentation of recursive behaviors. )

These attributes are a synthesis of representations
from several areas of computation. The first attribute
comes from the area of Markov processes, and is essen-
tial for tasks like stochastic control or failure analysis
and repair. The second and third attributes are preva-
lent in areas like digital systems and qualitative mod-
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eling. The fourth and fifth are prevalent in the field of
synchronous programming, and form the basis for re-
active languages like Esterel(Berry & Gonthier 1992).
Lustre(Halbwachs, Caspi, & Pilaud 1991), Signal(Guer-
nic et al. 1991) and State Charts(Harel 1987). Together
they allow modeling of complex systems that involve
software, digital hardware and continuous processes.

Hierarchic constraint automata (HCA) incorporate
each of these attributes. An HCA models physical pro-
cesses with changing interactions by enabling and dis-
abling constraints within a constraint store (e.g., a valve
opening causes fuel to flow to an engine). Transitions
between successive states are then conditioned on con-
straints entailed by that store (e.g., the presence or ab-
sence of acceleration).

A constraint system (D, =) is a set of tokens D,
closed under conjunction, together with an entailment
relation =C D x D (Saraswat 1992). The relation &=
satisfies the standard rules for conjunction?.

RBurton, uses propositional state logic as its con-
straint system. Each proposition is an assignment
x; = vj, where variable x; ranges over a finite domain
D(z;). Propositions are composed into formulas using
the standard logical connectives — and (A), or (V) and
not (—). If a variable can take on multiple values, then
x; = v;j is replaced with v;; € ;.

Definition 1 A deterministic hierarchical constraint
automaton S is a S-tuple (£,0,11,Cp, Tp), where:

e ¥ is a set of states, partitioned into primitive states
¥, and composite states .. Each composite state
itself is a hierarchical constraint automaton.

e © C ¥ is a set of start states.

o II is a set of variables with each =; € Il ranging over a
finite domain D[z;]. C[I1] denotes the set of all finite
domain constraints over I1.

e Cp: B, = C[I], assoctates with each primitive state
s; a finite domain constraint Cp(s;) that holds when-
ever s; is marked.

e Tp: X, x C[I] = 2% associates with each primitive
state s; a transition function Tp(s;). Each Tp(s;) :
cl) - 22, specifies a set of states to be marked at
time t + 1. given assignments to I1 at time t.

Simulating Deterministic HCA

A full marking of an automaton is a subset of states
of an automaton, together with the start states of
any composite states in the marking. This is com-
puted recursively from an initial set of states M using
Mp(M)=MU|J{MFr(O(s)) | s € M, s composite}.
Given a full marking M on an automaton A, the func-
tion Step(A, M) computes a new full marking corre-
sponding to the automaton transitioning one time step.

' 1) a |= a (identity)
2)aAblEaand aAbEb (A elimination)
3)akEband bAcl=dimplies a Ac |= d (cut)
4) a = 0 ana’a (= cinples a f= J8 e (70 dntvadioiinng!
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Step(A, M)::
M1 := {s € M | s primitive}
2. C:= Ay Cr(s)
3. M2:={),cp Tr(6:C)
4. return Mp(M2)

Step 1 throws away any composite marked states,
they are uninteresting as they lack associated con-
straints or transitions. Step 2 computes the conjunction
of the constraints implied by all the primitive states in
M. Step 3 computes for each primitive state the set
of states it transitions to after one time step. In step
4, applying Mp to the union of these states marks the
start states of any composite state, The result is the
full marking for the next time step.

A trajectory of an automaton A is a finite or infinite
sequence of markings mg, my,..., such that mg is the
initial marking Mp(©(A)), and for each 7 > 0, m;yy =
Step(A,my).

Elaborating on step 3, we represent the transition
function for each primitive state Tp(s) as a set of pairs
(., 8;), where s; € £, and [; is a set of labels of the form
= ¢ or = ¢, for some ¢ € C[[]. This is the traditional
representation of transitions, as a labeled arc in a graph.
If the automaton is in state s, then at the next instant
it will go to all states s; whose label [; is entailed by
constraints ', as computed in the second step of the
algorithm. ; is said to be entailed by C, written C = [,
fVYEceli,CkEc and foreach fce ;.C e It
is straightforward to translate this representation into
our formal representation: Tp(s,C) = {s; | C = ;}.

Two properties of these transitions are distinctive:
Transitions are conditional on what can be deduced,
not just what is explicitly assigned, and transitions are
enabled based on lack of information.

Step provides a deterministic simulator for the plant,
when applied to an HCA that specifies a plant model.
Alternatively Step provides a deterministic version of
the control sequencer for RBurton, by placing appro-
priate restrictions on the control HCA. Constraints at-
tached to primitive states on this HCA are restricted
to control assignments, while transition labels are con-
ditioned on the external goals and the estimated cur-
rent state. The set of active constraints collected from
marked states during step 2 of the algorithm is then the
set of control actions to be output to the plant.

A Simple Example We illustrate HCA with a sim-
ple automaton. In this picture ¢ represents a constraint,
start states of an automaton are marked with arrows,
and all transitions are labeled. For convenience we use
c to denote the label |= ¢, and © to denote the label } c.
Circles represent primitive states, while rectangles rep-
resent composite states.

The automaton has two start states, both of which
are composite. Every transition is labeled j£ d, hence
all transitions are disabled and the automaton is pre-
empted whenever d becomes true. The first state has
one primitive state, which asserts the constraint c. If
d does not hold, then it goes back to itself — thus it
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repeatedly asserts ¢ until d becomes true. The second
automaton has a primitive start state. Once again, at
anytime if d becomes true, the entire automaton will
immediately terminate. Otherwise it waits until a be-
comes true, and then goes to its second state, which is
composite. This automaton has one start state, which
it repeats at every time instant until d holds. In ad-
dition, it starts another automaton, which checks if e
holds, and if true generates b in the next state. Thus,
the behavior of the overall automaton is as follows: it
starts asserting ¢ at every time instant. If a becomes
true, then at every instant thereafter it checks if e is
true, and asserts b in the succeeding instant. Through-
out it watches for d to become true, and if so halts. An
RMPL program that produces an equivalent automaton
is:

do

(always c,

when a donext always if e thennext b)
watching d

The combinators of this program are developed dur-
ing the remainder of this paper.

RMPL: Primitive Combinators

We now present the syntax for the reactive model-based
programming language. Our preferred approach is to
introduce a minimum set of primitives, used to con-
struct programs — each primitive that we add to the
language is driven by a desired feature. We then de-
fine on top of these primitives a variety of program
combinators, such as those used in the simple exam-
ple above, that make the language usable. The prim-
itives are driven by the need to write reactive control
software in the language, as well as to model physical
systems. As mentioned earlier, to write reactive control
programs we require combinators for preemption, con-
ditional branching and iteration. For modeling hard-
ware, we require constructs for representing constraints
and probability. Finally we need logical concurrency to
be able to compose models and programs together.

As we introduce each primitive we show how to con-
struct its corresponding automaton. In these definitions
lower case letters, like ¢, denote constraints, while upper
case letters, like A and B, denote automata. The term
“theory” refers to the set of all constraints associated
with marked primitive states at some time point.
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c. This program asserts that constraint ¢ is true at
the initial instant of time. This construct is used to
represent co-temporal interactions, such as a qualita-
tive constraint between fluid flow and pressure. The

automaton for it is:

Note that the start state in this automaton has no
exit transitions, so after this automaton asserts ¢ in the
first time instant it terminates.

if ¢ thennext A. This program starts behaving like
A in the next instant if the current theory entails e.
This is the basic conditional branch construct. Given
the automaton for A, we construct an automaton for
if ¢ thennext A by adding a new start state, and going
from this state to A if ¢ is entailed.

if ¢ thennext A

-0

unless ¢ thennext A. This program executes A in
the next instant if the current theory does not entail c.
The automaton for this is similar to the automaton for
if c thennext A. This is the basic construct for build-
ing preemption constructs — it is the only one that
introduces conditions = ¢ (written in the automaton
as ¢). This introduces non-monotonicity, but since the
non-monotonic conditions trigger effects in the next in-
stant, the logic is stratified and monotonic in each state.
This avoids the kinds of causal paradoxes possible in
languages like Esterel?. -

unless ¢ thennext A
-0

We also allow generalized sequences for if ... then
and unless ... then, terminated with thennext. (e.g.
if ¢ then unless d thennext A). The compilation to
automata proceeds exactly as above.

A,B. This is the parallel composition of two au-
tomata, and is the basic construct for introducing con-
currency. The composite automaton has two start
states, given by the two automata for A and B.

A B
—[A —[ B

‘Esterel allows programs like unless ¢ then ¢, which
have no behavior. These are rejected by its compiler.
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always A. This program starts a new copy of A at
each instant of time — this is the only iteration con-
struct needed. The automaton is produced by marking
A as a start state and by introducing an additional new
start state. This state has the responsibility of initiat-
ing A during every time step after the first. A tran-
sition back to itself ensures that this state is always
marked. A second transition to A puts a new mark on
the start state of A at every next step, each time invok-
ing a virtual copy of A. The ability of an automaton
to have multiple states marked simultaneously is key
to this novel encoding, which avoids requiring explicit

copies of A.
6 = A

Adding Uncertainty to RMPL

The presentation has concentrated thus far on a de-
terministic language and an algorithm for deterministi-
cally executing hierarchical constraint automata. This
can be used to simulate a deterministic plant or to gen-
erate deterministic plant control sequences. However
physical plant models are frequently uncertain, thus
forcing us to build probabilistic models. The plant’s
observables are used to predict its internal state, and
to determine when it deviates from the intended effect.
Uncertainty is modeled by introducing transition prob-
abilities, turning the plant into a partially observable
Markov process. The efficient estimation of the inter-
nal state for complex systems is notoriously difficult.

An efficient estimate of the plant’s possible states (the
belief state) is enabled through the compact encoding
of the plant’s model in terms of hierarchical constraint
automata. This estimate is used to guide the evaluation
of the control program at each time tick. To express
probabilistic knowledge into RMPL we introduce the
probabilistic combinator choose :

always A

choose [A with p, B with ¢]. This combinator re-
duces to A with probability p, to B with probability g,
and so on. In order to ensure that the current theory
does not depend upon the probabilistic choices made
in the current state, we make the following restriction
— all assertions of constraints in A and B must be in
the scope of a next. This restriction ensures that no
constraints are associated with the start states of A and
B (technically the attached constraint is “true”), and
thus the probabilities are associated only with transi-
tions. The corresponding automaton is encoded with a
single probabilistic start transition, which allows us to
choose between A and B.

To incorporate probabilistic transitions into HCA we
change the definition of Tp. Recall for deterministic
HCA that Tp(s;) denotes a single transition function.
For probabilistic HCA Tp(s;) denotes a distribution
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over transition functions Tep(s:), whose probabilities
P(7p?(si)) sum to 1.
choose [A with p, B with ¢]
P
[ A

B

Tp(si) is encoded as a probabilistic, AND-OR
tree. This supports a simple transformation of nested
choose combinators to probabilistic HCA. Each leaf
of this tree is labeled with a set of one or more target
states in ¥, which the automaton transitions to in the
next time tick.

The branches a; — b;; of a probabilistic OR node
a; represent a distribution over a disjoint set of alter-
natives, and are labeled with conditional probabilities
P[bi; | a;). The probability of branches emanating from
each a; sum to unity.

The branches of a deterministic AND node represent
an inclusive set of choices. Each branch is labeled by a
set of conditions l;; of the form = ¢ or & ¢, where ¢ is
any formula in propositional state logic over variables
I1. Every branch whose conditions are satisfied by the
current state is taken.

ACBCADBD

Each AND-OR tree is compiled into a two level tree
(shown above), with the root node being a probabilistic
OR, and its children being deterministic ANDs. Compi-
lation is performed using distributivity, as shown above,
and commutativity, which allows adjacent AND nodes
to be merged, by taking conjunctions of labels, and ad-
jacent OR nodes to be merged, by taking products of
probabilities.

This two level tree is a direct encoding of Tp(s;).
Each AND node represents one of the transition func-
tions Tp?(s;), while the probability on the OR branch,
terminating on this AND node, denotes P(7p?(s;)).

RBurton: State Estimation

To implement belief state update recall that a prob-
abilistic HCA encodes a partially observable Markov
process. A partially observable Markov process can be
described as a tuple (£, M, O, Pr, PU)' Y, Mand O
denote finite sets of feasible states s;, control actions u;,
and observations o; respectively. The state transition
function, Py (s;9), ;) s 5,(4+1)] denotes the proba-
bility that s;(**?) is the next state, given current state
;! and control action ;") at time t. The observation
function, P[s;*) - 0;{!)] denotes the probability that
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0;t) is observed, given state s;(*) at time ¢.

RBurton incrementally updates the plant belief state,
conditioned on each control action sent and each obser-
vation received, respectively:

ﬂ(.l+l}lsi] = P[si“-'-” l OL?J] rOLtr}vﬂilg) . Ju'u ]
0) t+1) (0
Pls:) | org), o 0l 3 g i
Exploiting the Markov property, the belief state at time
t + 1 is computed from the belief state and control ac-

tions at time ¢ and observations at ¢ + 1 using the stan-
dard equations:

0“"’1')[55]

]

n
Z O(t']{Sj]PT[S(, Mi — SJ']

J=t

a"”l"’[sil

PO[S.‘ — Okl

at1+ul[3i} = at-f-'-ll[st]

2_; o *HV[s,1P y[s; > o]

To calculate P+ recall that aytransition 7 is com-
posed of a set of primitive transitions, one for each
marked primitive state. Assuming conditional inde-
pendence of primitive transition probabilities, given the
current marking, the combined probability of each set
is the product of the primitive transition probabilities
of the set. This is analogous to the various indepen-
dence of failure assumptions exploited by systems like
GDE(de Kleer & Williams 1987), Sherlock(de Kleer &
Williams 1989) and Livingstone. However unlike these
systems, multiple sets of transitions may go to the same
target marking. This is a consequence of the fact that
in an HCA primitive states have multiple next states.
Hence the transition probabilities for all transitions go-
ing to the same target must be summed according to
the above equation for o(**+1)[s;].

Given P, the belief update algorithm for o(*+1)[s,]
is a modified version of the Step algorithm presented
earlier. This new version of Step returns a set of mark-
ings, each with its own probability. Step 3a builds the
sets of possible primitive transitions — here the prod-
uct is a Cartesian product of sets. Step 3b computes
the combined next state marking and transition prob-
ability of each set. Step 3¢ sums the probability of all
composite transitions with the same target:

Stepp{ A M):
M1 := {s € M | s primitive}
2- C:= Ay Cp(s)
3a. M2a:=[],cpn Tr(s,C)
3b. M2b:= {(MF(UILI St}r H:‘=1 p‘)
| <(Sl D1 )‘ caey (Sl'h Pn)) € .M2a}
3c. M2:={(S5 X spemnP) | (S ) € M2b}
4. return M2

The best first enumeration algorithms developed for
Sherlock and Livingstone are directly used by RBurton
to generate the composite transitions in step 3a and b
in order from most to least likely. However, since the
correspondence between transitions and next states is
many to one, there is no guarantee that the belief states
are enumerated in decreasing order.
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Instead we assume that most of the probability den-
sity resides in the few leading candidate transition sets.
Hence a best first enumeration of the few leading tran-
sition sets will quickly lead to a reasonable approxima-
tion. We enumerate transitions in decreasing order until
most of the probability density space is covered (e.g.,
95%), and then perform step 3c to merge the results.

Computing o**'*)[s;] requires Pp[s;"") + 0;(V].
P is computed using the standard approach in model-
based reasoning, first introduced within the GDE sys-
tem. For each variable assignment in each new obser-
vation, RBurton uses the model, current state and pre-
vious observation to predict or refute this assignment,
giving it probability 1 or 0 respectively. If no predic-
tion is made, then a prior distribution on observables is
assumed (e.g., 1/n for n possible values).

RBurton: Mode Reconfiguration and
Sequencing

A full decision theoretic executive that maximizes ex-
pected reward using HCA is well beyond the scope of
this paper. However, a simplified executive that does
task decomposition based on immediate rewards can be
easily constructed by a simple extension to the above
model. Thus RBurton maximizes immediate reward
under the assumption that the most likely estimated
state is correct. We further assume that rewards are
additive. The hierarchical automaton provides a way
of structuring tasks, subtasks and solution methods.

We restrict the constraint$ ¢ of a control program to
plant control assignments. In addition, to support se-
lection of methods for tasks, we replace the probabilis-
tic combinator choose with an analogous combinator
based on reward:

choosereward [A with p, B with g]. Thi$ combina-
tor reduces to A with reward p, to B with reward g,
and so on. choosereward has restrictions analogous
to choose that associate rewards only to expressions
containing next .
The AND-OR Tree formed by nested applications of
choosereward is analogous to choose . The tree is
reduced in a similar manner, except that rewards are
added while probabilities are multiplied.

Control sequence generation again uses a variation of
Step. For step 3 of this algorithm a best first enumer-
ation algorithm is given the sets of enabled transitions
from each primitive state that is marked in the most
likely current marking. During the enumeration it must
rule out any sets of transitions that lead to an incon-
sistent (conflicting) control assignment. It then returns
the set of transitions that maximize combined reward.
This is analogous in RAPS(Firby 1995) to selecting ap-
plicable methods based on priority numbers.

Extending RMPL: Definable operators

Given the basic operators defined earlier, we can de-
fine a variety of common language constructs, making
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the task of programming in reactive MPL considerably
easier. Common constructs in RMPL include recursion,
next, sequencing and preemption.

Recursion and procedure definitions. Given a
declaration P A[P], where A may contain oc-
currences of procedure name P, we replace it hy
always if p then A[p/P]. At each time tick this looks
to see if p is asserted (corresponding to P being in-
voked), and if so starts A.

next A. This is simply if true thennext 4. We
can also define if ¢ thennext A elsenext B as
if ¢ thennext A,unless ¢ thennext B.

if ¢ then A. This construct has the effect of start-
ing A at the time instant in which ¢ becomes true.
It can be defined as follows, where the expression to
the left of the equality is replaced with the expression
on the right (note that sequences of if ... then and
unless ... then, terminated with thennext are OK):

ifcthend=c—d
if ¢ then always A =
if ¢ then A, if ¢ thennext always A
if c then (4, B) =
if ¢ then A,if c then B
if ¢ then choose [4 with p, B with ¢] =
choose [if ¢ then A with p,if ¢ then B with ¢]

A; B. This does sequential composition of A and B.
It keeps doing A until A is finished. Then it starts B.
It can be written in terms of the other constructs by
detecting the termination of A by a proposition, and
using that to trigger B. RMPL detects the termina-
tion of A by a case analysis of the structure of A (see
(Fromherz, Gupta, & Saraswat 1997) for details).

do A watching c. This is a weak preemption oper-
ator. It executes A, but if ¢ becomes true in any time
instant, it terminates execution of A in the next instant.
The automaton for this is derived from the automaton
for A by adding the label } ¢ on all transitions in A.

suspend A on ¢ reactivate on d. This is like the
“Control — Z, fg" pair of Unix — it suspends the pro-
cess when ¢ becomes true, and restarts it from the same
point. when d becomes true.

when ¢ donext A. This starts A at the instant after
the first one in which ¢ becomes true. It is a temporally
extended version of if ¢ thennext A. It can be coded
using recursion and if ¢ thennext A.

DS1 Optical Navigation Example

To illustrate RMPL further, we give some fragments of
the RMPL models for the Autonav example. MICAS
is a miniature camera on DS1.

MICAS :: always {
choose {
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if MICASon then
if TurnMicasOff thennext MICASoff
elsenext MICASon,
if MICASoff then...,
if MICASfail then ...,
} with 0.99,
next MICASfail with 0.01
}
}

This model shows how probability is used — at each
step, MICAS will fail with probability 0.01. Other-
wise it will continue to exhibit normal behavior, during
which it can respond to commands. Probability can
also be used to simulate the effects of reseting a failed
MICAS — a reset corrects the failure with some prob-
ability.

AutoNav is the control routine that performs the
course correction.

AutoNav() =: {

TurnMicasOn,

if IPSon thennext SwitchIPSStandBy,

do when IPSstandby A MICASon donext {

TakePicture(1);. ..

TurnMicasOff,
OpticalNavigation()

}
} watching MICASfail V OpticalNavError,
when MICASfail donext {MICASReset, AutoNav()},
when OpticalNavError donext AutoNavFailed

}

This routine shows how iteration and preemption are
used. The preemption operator do ... watching
aborts the current program in the face of an error, and
restarts the program. The modular nature of the pre-
emption is particularly useful here — the program in-
side the do ... watching can be written without any
concern for failures, which are captured by the preemp-
tion operation, somewhat like exceptions in Java.

Discussion and Related Work

The RMPL compiler is written in C, and generates hi-
erarchical constraint automata as its target. This sup-
ports all primitive combinators and a variety of defined
combinators. RBurton is written in Lisp, and builds
upon the best-first enumeration code at the heart of the
Livingstone system. In addition the language is suffi-
ciently expressive and compact to support the full DS1
spacecraft models developed for Livingstone. RBur-
ton’s behavior is equivalent to Livingstone for those
examples.

Turning to related work, RMPL synthesizes ideas un-
derlying constraint-based modeling, synchronous pro-
gramming languages and Markov processes. Syn-
chronous programming languages (Halbwachs 1993;
Berry & Gonthier 1992; Halbwachs, Caspi, & Pilaud
1991; Guernic et al. 1991; Harel 1987; Saraswat, Ja-
gadeesan, & Gupta 1996) were developed for writing
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control code for reactive systems. They are based on the
Perfect Synchrony Hypothesis — a program reacts in-
stantaneously to its inputs. Synchronous programming
languages exhibit logical concurrency, orthogonal pre-
emption, multiform time and determinacy, which Berry
has convincingly argued are necessary characteristics
for reactive programming. RMPL is a synchronous lan-
guage, and satisfies all these characteristics.

In addition, RMPL is distinguished by the adoption
of Markov processes as its underlying model, its treat-
ment of partial observability and its extensive use of
contraint modeling to observe hidden state. This pro-
vides a rich language for continuous process, failure,
uncertainty and repair.

As previously discussed, RMPL and RBurton over-
lap substantially with AI robotic execution languages
RAPS, ESL and TCA. For example, method selection,
monitoring, preemption and concurrent execution are
core elements of these languages, shared with RMPL.

One key difference is that RMPL’s constructs fully
cover synchronous programing, hence moving towards
a unification of the executive with the underlying
real-time language. In addition RBurton’s deduc-
tive monitoring capability handles a rich set of soft-
ware/hardware models that go well beyond those han-
dled by systems like Livingstone. This moves execution
languages towards a unification with model-based, de-
ductive monitoring.

Finally, note that hierarchical state diagrams, like
State Charts(Harel 1987), are becoming common tools
for system engineers to write real-time specifications.
These specifications are naturally expressed within
RMPL, due to RMPL's simple correspondence with hi-
erarchical constraint automata, which are closely re-
lated to state charts. Together this offers a four way
unification between synchronous programming, robotic
execution, model-based autonomy and real-time speci-
fication, — a significant step towards our original goal.

Nevertheless substantial work remains. Many execu-
tion and control capabilities key to highly autonomous
systems fall well outside the scope of RMPL and RBur-
ton. For example, RMPL has no construct for express-
ing metric time. Hence RBurton cannot execute or
monitor temporal plans without the aid of an executive
like RAPS or Remote Agent’s Exec. In addition, out-
side of monitoring, RBurton does not employ any de-
duction or planning during control sequence generation.
Unifying the kinds of sequence generation capabilties
that are the hallmark of systems like HSTS(Muscettola
1994) and Burton(Williams & Nayak 1997), requires
significant research.
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