
The Structure-Mapping Engine:
Algorithm and Examples

Brian Falkenhainer

Qualitative Reasoning Group

Department of Computer Science

Kenneth D . Forbus

Qualitative Reasoning Group

Department of Computer Science

Dedre Gentner

Psychology Department

Abstract

This paper describes the Structure-Mapping Engine (SME), a program for studying analogical
processing . SME has been built to explore Gentner's Structure-mapping theory of analogy, and
provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
flexibility enhances cognitive simulation studies by simplifying experimentation . Furthermore,
SME is very efficient, making it a useful component in machine learning systems as well . We
review the Structure-mapping theory and describe the design of the engine . We analyze the
complexity of the algorithm, and demonstrate that most of the steps are polynomial, typically
bounded by 0 (N2) . Next we demonstrate some examples of its operation taken from our
cognitive simulation studies and work in machine learning . Finally, we compare SME to other
analogy programs and discuss several areas for future work.

This paper appeared in

Artificial Intelligence, 41, 1989, pp 1-63.

For more information, please contact

forbus@ils .nwu .edu

The Structure-Mapping Engine

	

1

1 Introduction

In analogy, a given situation is understood by comparison with another similar situation . Analogy
may be used to guide reasoning, to generate conjectures about an unfamiliar domain, or to generalize

several experiences into an abstract schema . Consequently, analogy is of great interest to both
cognitive psychologists and artificial intelligence researchers . Psychologists wish to clarify the

mechanisms underlying analogy in order to understand human learning and reasoning . Artificial
Intelligence researchers wish to emulate analogical processing on computers to produce more flexible

reasoning and learning systems.

This paper describes the Structure-Mapping Engine (SME), a program built to explore the com-
putational aspects of Gentner ' s Structure-mapping theory of analogical processing [27,29] . SME has
been used both as a cognitive simulation of human analogical processing and as a component in a
larger machine learning system.

SME is both flexible and efficient . It constructs all consistent ways to interpret a potential analogy
and does so without backtracking . SME provides a "tool kit" for building matchers satisfying the
structural consistency constraint of Gentner's theory . The rest of the constraints definining a
matcher are specified by a collection of rules, which indicate local, partial matches and estimate
how strongly they should be believed . The program uses these estimates and a novel procedure for
combining the local matches to efficiently produce and evaluate all consistent global matches.

Cognitive simulation studies can offer important insights for understanding the human mind.

They serve to verify psychological theories and supply a detailed vocabulary for describing cognitive
processes . Cognitive simulations can provide "idealized subjects", whose prior knowledge and set of

available processes is completely known to the experimenter . Unfortunately, cognitive simulations
tend to be complex and computationally expensive (c .f. [2,67] . Complexity can obscure the

relationship between the theory and the program . While all design decisions affect a program's
performance, not all of them are directly motivated by the theory being tested . To assign credit

properly (or to model performance in detail) requires exploring a space of similar architectures.
Such explorations are very difficult if the major way to change the program's operation is surgery

on the code . Complex programs also tend to be computationally expensive, which usually means
fewer experiments are performed and fewer possibilities are explored . While there have been several

important AI programs that study computational aspects of analogy (e .g ., [5,73,74], they were not

designed to satisfy the above criteria.
Over the last decade there have been a variety of programs that simulate different aspects of

analogical processing (as reviewed in Section 5) . However, the progress to date has been disap-
pointingly slow . Often papers describe programs that work on only a handful of carefully chosen

examples, and do not specify the algorithms in a replicable fashion . We believe the difficulty has
been in part the lack of a good problem decomposition . Without some theoretically motivated

decomposition of analogy, it is easy to merge distinct problems, and become lost in the space of
possible mechanisms . Our decomposition, described in the next section, is psychologically moti-

vated . Roughly, SME focuses on the mapping process in analogy, leaving the access and application
aspects to future studies. The power of the program and its success on a wide variety of examples
(over 40 as of this writing) provides additional evidence that the decomposition is a good one.

This paper examines the architecture of the Structure-Mapping Engine and how it has been used
for machine learning and cognitive simulation . First, we review Gentner's Structure-mapping theory

and some of the psychological evidence for it . Next we discuss the organization of SME, including

The Structure-Mapping Engine

	

2

knowledge representation conventions and the algorithm. After a complexity analysis, we then

illustrate SME's operation on several examples drawn from machine learning and cognitive simulation
studies. Related work in both AI and psychology is reviewed next, followed by a discussion of future

work.

2 Structure-mapping Theory

The theoretical framework for this research is Gentner's Structure-mapping theory of analogy

[27,28,29,30,31,32] . Structure-mapping describes the set of implicit constraints by which people
interpret analogy and similarity. The central idea is that an analogy is a mapping of knowledge

from one domain (the base) into another (the target) which conveys that a system of relations
known to hold in the base also holds in the target . The target objects do not have to resemble their

corresponding base objects . Objects are placed in correspondence by virtue of corresponding roles
in the common relational structure.

This structural view of analogy is based on the intuition that analogies are about relations,

rather than simple features . No matter what kind of knowledge (causal models, plans, stories,
etc.), it is the structural properties (i .e ., the interrelationships between the facts) that determine

the content of an analogy . For example, consider the water flow and heat flow situations shown in
Figure 1 . These situations are thought to be analogous because they share the complex relationship

known as "flow" . In each, we have a rough picture of something flowing downhill, from a source
to a destination . We prefer to ignore the appearances and even specific defining properties of the

objects, such as the fact that water and coffee are both liquids . Indeed, focusing on these attributes
tends to confuse our picture of the analogy.

2 .1 Subprocesses in analogy

Structure-mapping decomposes analogical processing into three stages ([33,26,30], see also [9,10,39,48]:

1. Access : Given a current target situation, retrieve from long-term memory another description,

the base, which is analogous or similar to the target.

2. Mapping and Inference : Construct a mapping consisting of correspondences between the

base and target . This mapping can include additional knowledge in the base that can be
transferred to the target . These are the candidate inferences sanctioned by the analogy.

3. Evaluation and Use : Estimate the "quality" of the match . Three kinds of criteria are involved
[30,31] . The structural criteria include the number of similarities and differences, the degree

of structural similarity involved, and the amount and type of new knowledge the analogy
provides via the candidate inferences . The second criteria concerns the validity of the match

and the inferences it sanctions . The inferences must be checked against current world knowl-
edge to ensure that the analogy at least makes sense, and may require additional inferential

work to refine the results . The third criteria is relevance, i .e ., whether or not the analogy is

useful to the reasoner's current purposes . Structure-mapping focuses on structural criteria
only, since they define and distinguish analogy from other kinds of inference.

The Structure-Mapping Engine emulates the mapping stage of analogy and provides a struc-
tural, domain-independent evaluation of the match. While we believe it can be used to model

The Structure-Mapping Engine

	

3

access, and provides useful results for accounts of evaluation and use (see [16,17], we will ignore

these issues for most of this paper.

2 .2 Constraints on Analogy

Structure-mapping defines similarity in terms of matches between the internal structures of the de-
scriptions being compared. Consequently, we need some terminology for describing such structures.

Section 3 .1 will introduce several formal descriptions . Here we provide some motivating intuitions.
Consider a propositional statement, like

CAUSE[GREATER-THAN(x,y), BREAK(x)]

The chief relation involved in this statement is CAUSE, and its arguments are GREATER-THAN(x,y)

and BREAK(x) . We can view this statement in the usual way as a tree, i .e., the root of the tree
is a node whose label is the predicate CAUSE and the root's children are nodes representing the

relation's arguments (Figure 2 provides an example of this view) . This view is useful in under-

standing Structure-mapping because it provides a spatial metaphor for collections of statements.
For instance, we can say that the arguments are "below" the CAUSE statement in the internal struc-
ture of the description, and describe a collection of statements with logical constraints between

them (explicitly represented by statements involving logical connectives and/or relationships) as a

"connected" system of relations.
One formal definition is needed before proceeding . We define the order of an item in a repre-

sentation as follows : Objects and constants are order O . The order of a predicate is one plus the
maximum of the order of its arguments . Thus GREATER-THAN (x , y) is first-order if x and y are

objects, and CAUSE [GREATER-THAN (x , y) , BREAK (x)] is second-order . Examples of higher-order
relations include CAUSE and IMPLIES . This definition of order should not be confused with the

standard definition of the order of a logic .' Using the tree view of statements, this definition of

order indicates how deep the structure is below an item. Notice that intricate explanations with

' Under the standard definition, a logic is first-order if variables only range over objects and second-order when it
permits variables to range over predicates as well .

The Structure-Mapping Engine

	

4

many layers of justifications can give rise to representation structures of high order, since there will

be a high degree of nesting.
Let {S i }, {T

i
} denote the items in the base and target representations, respectively . Let the

subsets {bz},{tz} denote the objects in the base and target, respectively . The tacit constraints on
the analogical mapping M can be characterized as follows:

1 . Objects in the base are placed in correspondence with objects in the target:

M :

	

bz - t2

2. Isolated object descriptions are discarded unless they are involved in a larger relational struc-

ture.

e .g . RED(b) + RED(t)

3. Relations between objects in the base tend to be mapped across:

e .g . COLLIDE (bz , bj) —p COLLIDE (t i , t j)

4. The particular relations mapped are determined by systematicity, as defined by the existence
of higher-order constraining relations which can themselves be mapped:

e .g . CAUSE [PUSH (bz , bj) , COLLIDE (b j , b k)]	

CAUSE[PUSH(tz,tj),COLLIDE(tj ,tk)]

We require M to be one-to-one : that is, no base item maps to two target items and no target

item maps to two base items. Furthermore, we require M to be structurally consistent . This means

that, in addition to being 1 :1, if M maps Bz onto Tj , then it must also map the arguments of Bz onto
the corresponding arguments of Tj .

Consider for example a simple analogy between heat-flow and water-flow . Figure 2 shows a

simplified version of what a learner might know about the situations pictured in Figure 1 . In order
to comprehend the analogy "Heat is like water" a learner must do the following (although not

necessarily in this order):

1. Set up the object correspondences between the two domains:

water — heat, pipe — bar, beaker — coffee, vial

	

ice-cube

2. Discard object attributes, such as LIQUID (water) .

3. Map base relations such as

GREATER-THAN[PRESSURE(beaker), PRESSURE(vial)]

to the corresponding relations in the target domain .

The Structure-Mapping Engine

	

5

Figure 2 : Simplified water flow and heat flow descriptions.

4. Observe systematicity: i .e ., keep relations belonging to a systematic relational structure in
preference to isolated relationships . In this example,

CAUSE(GREATER-THAN[PRESSURE(beaker), PRESSURE(vial)],

FLOW(beaker, vial, water, pipe))

is mapped into

CAUSE(GREATER-THAN[TEMPERATURE(coffee), TEMPERATURE(ice-cube)],

FLOW(coffee, ice-cube, heat, bar))

while isolated relations, such as

GREATER-THAN[DIAMETER(beaker), DIAMETER(vial)]

are discarded.

The systematicity principle is central to analogy . Analogy conveys a system of connected knowl-
edge, not a mere assortment of independent facts . Preferring systems of predicates that contain

higher-order relations with inferential import is a structural expression of this tacit preference for
coherence and deductive power in analogy. Thus, it is the amount of common higher-order re-

lational structure that determines which of several possible matches is preferred . For example,

suppose in the previous example we were concerned with objects differing in specific heat, such as
a metal ball-bearing and a marble of equal mass, rather than temperatures . Then DIAMETER would

enter the mapping instead of (or in addition to) PRESSURE, since DIAMETER affects the capacity of
a container, the analogue to specific heat .

The Structure-Mapping Engine

	

6

2 .3 Other types of similarity

In addition to analogy, the distinctions introduced by Structure-mapping theory provide definitions
for several other kinds of similarity . In all cases, we require one-to-one, structurally consistent

mappings . As we have seen, in analogy only relational structures are mapped . Aspects of object
descriptions which play no role in the relational structure are ignored. By contrast, in literal sim-
ilarity both relational predicates and object-descriptions are mapped . 2 Literal similarity typically

occurs in within-domain comparisons, in which the objects involved look alike as well as act alike.
An example of a literal similarity is the comparison "Kool-Aid is like juice ." In mere-appearance
matches, it is primarily the object-descriptions which are mapped, as in the metaphor

"The road is like a silver ribbon"

A fourth kind of mapping is the abstraction mapping . Here, the entities in the base domain
are variables, rather than objects . Few, if any, attributes exist that do not contribute to the base's

relational structure . Applying an abstraction match is very close to the instantiation of a rule . The
difference is that only entities may be variables, whereas in many pattern-directed rule systems

predicates may be used in substitutions as well.

2 .4 Empirical evidence

Although the focus of this paper is on computational modeling, two sets of psychological findings
are particularly relevant . First, empirical psychological studies have borne out the prediction that

systematicity is a key element of people's implicit rules for analogical mapping . Adults focus on
shared systematic relational structure in interpreting analogy . They tend to include relations and

omit attributes in their interpretations of analogy, and they judge analogies as more sound and more
apt if base and target share systematic relational structure [27,33,34] . In developmental work, it has

been found that eight-year olds (but not five-year olds) are better at performing difficult mappings

when the base structure is systematic [35] . Second, there is also empirical evidence that the
different types of similarity comparisons defined by Structure-mapping have different psychological

properties [29,30,31].

3 The Structure-Mapping Engine

A simulation of Gentner's theory has been implemented in the Structure-Mapping Engine (SME).

Given descriptions of a base and target, SME constructs all structurally consistent mappings between

them. The mappings consist of pairwise matches between statements and entities in the base
and target, plus the set of analogical inferences sanctioned by the mapping . SME also provides

a structural evaluation score for each mapping according to the constraints of systematicity and
structural consistency . For example, given the descriptions of water flow and heat flow shown in

Figure 2, SME would offer several alternative interpretations . In one interpretation, the central
inference is that water flowing from the beaker to the vial corresponds to heat flowing from the
coffee to the ice cube . Alternatively, one could map water to coffee, since they are both liquids.

2 Notice that our structural characterization of literal similarity differs from some other psychological approaches
(e .g ., [63]) .

The Structure-Mapping Engine

	

7

The first interpretation has a higher structural evaluation score than the second, since a larger

relational structure can be mapped.
Importantly, SME is not a single matcher, but a simulator for a class of matchers . The Structure-

mapping notion of structural consistency is built into the system . However, what local elements can
match and how these combinations are scored can be changed by implementing new match rules
that govern what pairwise matches between predicates are allowable and provide local measures of

evidence . Thus, for example, SME can be used to simulate all the similarity comparisons sanctioned
by Structure-mapping theory, not just analogy . Since the match rules can include arbitrary lisp

code, it is possible to implement many other kinds of matchers as well.
This section describes the SME algorithm in sufficient detail to allow replication . We start by

specifying some simple conventions for knowledge representation which are essential to understand-
ing the algorithm.

3 .1 Representation conventions

We make as few representational assumptions as possible so that SME remains domain-independent.

We use a typed (higher-order, in the standard sense) predicate calculus to represent facts . The
constructs of this language are:

Entities: Individuals and constants.

Predicates : There are three types : functions, attributes, and relations . Each is described below.

Dgroup: A description group is a collection of entities and facts about them, considered as a unit.

We examine each construct in turn.

3.1 .1 Entities

Entities are logical individuals, i .e ., the objects and constants of a domain . Typical entities include
physical objects, their temperature, and the substance they are made of . Primitive entities are the

tokens or constants of a description and are declared with the def Entity form:

(defEntity (name)
[:type (EntityType)]
[:constant? {t I nil}])

Entities can also be specified in the usual way by compound terms, i .e . the term (Pressure
We1132) refers to a quantity.

The : type option establishes a hierarchy of entity types . For example, we state that our sun is
a particular instance of a star with

(defEntity sun :type Star)

Constants are declared by using the :constant? option, as in

(defEntity zero :type number :constant? t)

The Structure-Mapping Engine

	

8

3.1 .2 Predicates

Classically, "predicate" refers to any functor in a predicate calculus statement . We divide predicates
into three categories:

Functions Functions map one or more entities into another entity or constant . For example,
(PRESSURE piston) maps the physical object piston into the quantity which describes its
pressure. We treat functions whose range are truth values as relations (see below), rather than

functions . Consequently, Structure-mapping treats functions differently from other types of
predicates. It allows substitution of functions to acknowledge their role as an indirect way of

referring to entities.

Attributes An attribute describes some property of an entity. Examples of attributes include
RED and CIRCLE . We restrict attributes to take only one argument – if there are multiple
arguments we classify the predicate as a relation . It is well-known that a combination of a

function and a constant is logically equivalent to an attribute . For example,

(RED BlockA)

and

(_ (COLOR BlockA) RED)

are logically equivalent . However, these two forms do not behave identically under Structure-

mapping . We assume that a reasoner has a particular piece of information represented in one

form or another, but not both, at any particular time (we return to this issue in Section 6 .1).

Relations Like attributes, relations range over truth values . Relations always have multiple argu-
ments, and the arguments can be other predicates as well as entities . (However, we classify
logical connectives, regardless of the number of arguments, as relations .) Examples of rela-
tions include CAUSE, GREATER-THAN, and IMPLIES.

Predicates are declared with the def Predicate form . It has several options:

(defPredicate (Name) (ArgumentDeclarations) (PredicateType)
:expression-type (DefinedType)
[:commutative? {t I nil}]

[:n-ary? {t I nil}])

(PredicateType) is either function, attribute, or relation, according to what kind of predicate
(Name) is . The (ArgumentDeclarations) specifies the predicate's arity and allows the arguments

to be named and typed. For example, the declaration:

(defPredicate CAUSE ((antecedent sevent) (consequent sevent)) relation)

states that CAUSE is a two-place relational predicate. Its arguments are called antecedent and

consequent, both of type sevent . (We use sevent to mean the union of states and events .) The
names and types of arguments are for the convenience of the representation builder, and are not

The Structure-Mapping Engine

	

9

currently used by SME . However, the predicate type is very important to the algorithms, as we will

see below.
The optional declarations :commutative? and :n-ary? provide SME with important syntactic

information . : commutative? indicates that the predicate is commutative, and thus the order of
arguments is unimportant when matching . : n-ary? indicates that the predicate can take any

number of arguments . Declaring n-ary predicates reduces the need for applying associativity to

binary predicates [62] . Examples of commutative n-ary predicates include AND, OR, and SUM . Making
these distinctions allows SME to

3.1 .3 Expressions and Dgroups

For simplicity, predicate instances and compound terms are called expressions . A Description
Group, or dgroup, is a collection of primitive entities and expressions concerning them . Dgroups

are defined with the defDescription form:

(defDescription (DescriptionName)
entities ((Entity].) , (Entity2) , . . . , (Entityz))
expressions ((ExpressionDeclarations)))

where (ExpressionDeclarations) take the form

(expression) or

((expression) : name (ExpressionName))

The :name option is provided for convenience ; (expression) will be substituted for every occurrence

of (ExpressionName) in the dgroup's expressions when the dgroup is created . For example, the
description of water flow depicted in Figure 2 was given to SME as

(defDescription simple-water-flow
entities (water beaker vial pipe)
expressions (((flow beaker vial water pipe) :name wflow)

((pressure beaker) :name pressure-beaker)
((pressure vial) :name pressure-vial)

((greater pressure-beaker pressure-vial) :name >pressure)

((greater (diameter beaker) (diameter vial)) :name >diameter)
((cause >pressure wflow) :name cause-flow)
(flat-top water)

(liquid water)))

The description of heat flow depicted in Figure 2 was given to SME as

(defDescription simple-heat-flow
entities (coffee ice-cube bar heat)

expressions (((flow coffee ice-cube heat bar) :name hflow)
((temperature coffee) :name temp-coffee)

((temperature ice-cube) :name temp-ice-cube)

The Structure-Mapping Engine

	

10

((greater temp-coffee temp-ice-cube) :name >temperature)

(flat-top coffee)
(liquid coffee)))

Notice that each expression does not need to be declared explicitly ; for example, SME will automat-

ically create and name expressions corresponding to (diameter beaker) and (diameter vial) in
the water flow description.

We will refer to the expressions and entities in a dgroup collectively as items . To describe the
SME algorithm we need some terminology to express the structural relations between items . These

relationships form directed acyclic graphs, so we adopt some standard graph-theory terminology.

Each item corresponds to a vertex in a graph . When item Ii has I, as an argument, there will be
a directed arc from the node corresponding to Iz to the node corresponding to 1j . The offspring of

an expression are its arguments. By definition, primitive entities (i .e ., those denoted by constants)
have no offspring . Expressions which name entities by compound terms are treated like any other

item. An item Il which is in the transitive closure (arguments of arguments, etc .) of another item
12 is said to be a descendant of 12 , while 12 is said to be an ancestor of Il . An item with no

ancestors is called a root. The term Reachable(I) refers to the transitive closure of the subgraph
starting at I . We define the depth of an item with respect to Reachable(I) by the minimum number

of arcs it takes to reach the item starting from I.

3 .2 The SME Algorithm : Overview

Given descriptions of a base and a target, represented as dgroups, SME builds all structurally

consistent interpretations of the comparison between them . Each interpretation of the match is
called a global mapping, or gmap . 3 Gmaps consist of three parts:

1. Correspondences : A set of pairwise matches between the expressions and entities of the two

dgroups.

2. Candidate Inferences : A set of new expressions which the comparison suggests holds in the

target dgroup.

3. Structural Evaluation Score : (Called SES for brevity) A numerical estimate of match quality
based on the gmap's structural properties.

Following the Structure-mapping theory, we use only purely structural criteria to construct and

evaluate the mappings . SME has no other knowledge of either base or target domain . Neither rules
of inference nor even logical connectives themselves are built into the algorithm . Each candidate

inference must be interpreted as a surmise, rather than a logically valid conclusion . The SES reflects
the aesthetics of the particular type of comparison, not validity or potential usefulness . Testing the

validity of candidate inferences and determining the utility of a match are left to other modules,
as described in Section 2.

Match rules specify what pairwise matches are possible and provide measures of quality used in
computing the SES . These rules are the key to SME's flexibility. To build a new matcher one simply

3 The definition of gmap is inspired in part by de Kleer's work on assumption-based truth maintenance, although
we do not use an ATMS in the actual code . The idea of combining local solutions by constructing maximally
consistent sets is analogous to the process of interpretation construction in an ATMS. We also find bit-vectors a useful
implementation technique for the set operations needed to maintain structural consistency .

The Structure-Mapping Engine

	

11

loads a new set of match rules . This has several important advantages . First, we can simulate all

of the similarity comparisons sanctioned by Structure-mapping theory with one program . Second,
we could in theory "tune" the rules if needed to simulate particular kinds of human performance

(although, importantly, this flexibility has not been needed so far!) . Third, we can also simulate a
number of other analogy systems (including [40,73], as described below) for comparison purposes.

Conceptually, the SME algorithm is divided into four stages:

1. Local match construction : Finds all pairs of ((Baseltem), (Targetltem)) that potentially can
match . A Match Hypothesis is created for each such pair to represent the possibility that this

local match is part of a global match.

2. Gmap construction : Combines the local matches into maximal consistent collections of cor-

respondences.

3. Candidate inference construction : Derives the inferences suggested by each gmap.

4. Match Evaluation : Attaches evidence to each local match hypothesis and uses this evidence
to compute structural evaluation scores for each gmap.

We now describe each computation in detail, using a simple example to illustrate their operation.

3.2 .1 Step 1: Local match construction

Given two dgroups, SME begins by finding potential matches between items in the base and target

(see Figure 3) . Allowable matches are specified by match constructor rules, which take the form:

(MHCrule ((Trigger) (BaseV ariable) (TargetVariable)
:test (TestForm)J)

(Body))

In all match constructor rules, (Body) will be executed in an environment in which (BaseVariable)
and (TargetVariable) are bound to items from the base and target dgroups, respectively . If
(TestForm) is present, the bindings must satisfy the test (i .e ., the form when evaluated must

return non-NIL . There are two possible values for (TestForm) . A :filter trigger indicates that
the rule is applied to each pair of items from the base and target . These rules create an initial set

of match hypotheses between individual base and target expressions . For example, the following

rule hypothesizes a match between any two expressions that have the same functor:

(MHCrule (:filter ?b ?t :test (equal (expression-functor ?b)

(expression-functor ?t)))
(install-MH ?b ?t))

An : intern trigger indicates that the rule should be run on each newly created match hy-

pothesis, binding the variables to its base and target items . These rules create additional matches
suggested by the given match hypothesis . For example, hypothesizing matches between every pair

of entities would lead to combinatorial explosions . Instead, we can use an : intern rule to create

match hypotheses between entities in corresponding argument positions of other match hypotheses,
since these correspondences will be required for structural consistency .

The Structure-Mapping Engine

	

12

Figure 3 : Local Match Construction . The graphs corresponding to the water flow and heat flow

descriptions of Figure 2 are depicted on the left and right panels, respectively . The squares and

triangles in the middle represent the match hypotheses created by the literal similarity rules for
these dgroups . The dashed arrows indicate which base and target items are conjectured as matching

by each match hypothesis . The squares represent match hypotheses involving expressions, while the
triangles represent match hypotheses involving entities . Notice how sparse the match is . Expression

matches are only created when relations are identical, and matches between functions and entities
are only created to support expression matches . This "middle out" local match computation

provides SME with much of its power.

Appendix A lists the rule sets used to implement each similarity comparison of Structure-

Mapping (analogy, literal similarity, and mere appearance) . Notice that each rule set is small and
simple (we describe the evidence rules below) . The literal similarity rule set uses only three match

constructor rules. One rule is the filter rule shown above . The other two are intern rules. The
content of the first is, roughly,

"If the match hypothesis concerns two facts, then create match hypotheses between any

corresponding arguments that are both functions or entities ."

The second is a specialization of this which runs only on commutative predicates (i .e ., the "corre-
sponding arguments" condition is removed) . The analogy rule set differs in that matches are created
between attributes only when they are part of some higher-order structure . The mere appearance

rule set differs by completely ignoring higher-order structure.
The result of running the match constructor rules is a collection of match hypotheses . We

denote the hypothesis that bz and tj match by MH(bz, t j) . When no ambiguity will result, we
will simply say MH. We will use the same terminology to refer to the structural properties of

The Structure-Mapping Engine

	

13

graphs of match hypotheses (offspring, descendants, ancestors, root) as we use for describing items

in dgroups . To wit, the collection of match hypotheses can be viewed as a directed acyclic graph,
with at least one (and possibly many) roots.

Example : Simple analogy between heat and water In this example we will use the literal
similarity rule set, rather than analogy, in order to better illustrate the algorithm . The result of

running these rules on the water flow and heat flow dgroups of Figure 2 is shown in Figure 3 (see

also Figure 4) . Each match hypothesis locally pairs an item from the base dgroup with an item
from the target dgroup.

There are several points to notice in Figure 4 . First, there can be more than one match hy-
pothesis involving any particular base or target item . Here, TEMPERATURE can match with both

PRESSURE and DIAMETER, since there are corresponding matches between the GREATER-THAN ex-
pressions in both dgroups (MH-1 and MH-6) . Second, note that with the exception of functions,

predicates must match identically . Entities, on the other hand, are matched on the basis of their
roles in the predicate structure . Thus while TEMPERATURE can match either PRESSURE or DIAMETER,

GREATER cannot match anything but GREATER . This distinction reflects the fact that functions are

often used to refer to objects, which are fair game for substitution under analogy . Third, not ev-
ery possible correspondence is created . We do not, for example, attempt to match TEMPERATURE

with water or heat with beaker . Functions only match with other functions ; and local matches
between entities are only created when justified by some other match . In general, this significantly

constrains the number of possible matches.

3.2 .2 Step 2: Global Match Construction

The second step in the SME algorithm combines local match hypotheses into collections of global

matches (gmaps) . Intuitively, each global match is the largest possible set of match hypotheses
that depend on the same one to one object correspondences.

More formally, gmaps consist of maximal, structurally consistent collections of match hypothe-
ses . A collection of match hypotheses is structurally consistent if it satisfies two constraints:

1. One-to-one: The match hypotheses in the collection do not assign the same base item to
multiple target items or any target item to multiple base items.

2. Support : If a match hypothesis MH is in the collection, then so are match hypotheses which
pair up all of the arguments of MH's base and target items.

The one-to-one constraint allows straightforward substitutions in candidate inferences . The support
constraint preserves connected predicate structure . A collection is maximal if adding any additional

match hypothesis would render the collection structurally inconsistent.

Requiring structural consistency both reduces the number of possible global collections and helps
preserve the soundness and plausibility of the candidate inferences . Without it, every collection of

local matches would need to be considered, and effort would be wasted on degenerate many-to-one
mappings without any possible inferential value . The maximality condition also serves to reduce

the number of gmaps, since otherwise every subset of a gmap could itself be a gmap.
Global matches are built in two steps :

The Structure-Mapping Engine

	

14

Figure 4 : Water Flow / Heat Flow Analogy After Local Match Construction . Here we show

the graph of match hypotheses depicted schematically in Figure 3, augmented by links indicating
expression-to-arguments relationships . Match hypotheses which are not descended from others are

called roots (e .g ., the matches between the GREATER predicates, Mil-1 and MH-6, and the match for
the predicate FLOW, MH-9) . Match hypotheses between entities are called Emaps (e .g ., the match

between beaker and coffee, MH-4) . Emaps play an important role in algorithms based on structural

consistency .

The Structure-Mapping Engine

	

15

1. Compute consistency relationships : For each match hypothesis, generate (a) the set of entity

mappings it entails, (b) what match hypotheses it locally conflicts with, and (c) what match
hypotheses it is structurally inconsistent with.

2. Merge match hypotheses : Compute gmaps by successively combining match hypotheses as
follows:

(a) Form initial combinations : Form an initial set of gmaps from each maximal, structurally
consistent, connected subgraph of match hypotheses.

(b) Combine dependent gmaps : Merge initial gmaps that have overlapping base structure,

subject to structural consistency.

(c) Combine independent collections : Form maximal, complete gmaps by merging the partial

gmaps from the previous step, again subject to structural consistency.

Importantly, the process of gmap construction is completely independent of gmap evaluation.

Which gmaps are constructed depends solely on structural consistency . Numerical evidence, de-
scribed below, is used only to compare their relative merits.

We now describe the algorithm in detail.

Computing consistency relationships Consistency checking is the crux of gmap construction.
Consequently, we compute for each match hypothesis (a) the entity mappings it entails and (b) the
set of match hypotheses it is inconsistent with.

Consider a particular match hypothesis MH(bz, tj) involving base item bz and target item

tj . If bz, t j are expressions, then by the support constraint the match hypotheses linking their
arguments must also be in any collection that MH(bz, tj) is in. Appying this constraint recursively,

all descendents of MH(bz, t j) must be in the same collections if it is structurally consistent (see
Figure 5) . Since the chain of descendants ends with match hypotheses involving entities, each

match hypothesis implies a specific set of entity correspondences:

Definition 1 . An emap is a match hypothesis between entities . Emaps(MH(bz, tj)) represents
the set of emaps implied by a match hypothesis MH(bz, t j) . Emaps(MH(bz, tj)) is simply the union

of the Emaps supported by MH(bz, t j)'s descendants. We also include match hypotheses involving

functions in Emaps(MH(bz, tj)).

To enforce one-to-one mappings we must associate with each MH(bz, t j) the set of match hypotheses
that provide alternate mappings for for bz and tj . Clearly, no member of this set can be in the same

gmap with MH(bz, t j).

Definition 2 . Given a match hypothesis MH(bz, tj), the set Conflicting(MH(bz, tj)) consists of

the set of match hypotheses that represent the alternate mappings for bz and tj :

Con flicting(MH(bz, tj)) [U b k Ebase{MH(bk) tj) bk ~ bz}~ U

[UtkEtarget{MH(bi) tk) tk � t~}~

The Structure-Mapping Engine

	

16

Figure 5 : Water Flow - Heat Flow analogy after computation of Conflicting relationships . Simple

lines show the tree-like graph that the support constraint imposes upon match hypotheses . Lines

with circular endpoints indicate the Conflicting relationships between matches . Some of the original
lines from MH construction have been left in to show the source of a few Conflicting relations.

The set Conflicting(MH(bz, tj)) only notes local inconsistencies (see Figure 5) . However, we

can use it and Emaps(MH(bz i tj)) to recursively define the set of all match hypotheses that can

never be in the same gmap as MH(bz i tj).

Definition 3 . The set NoGood(MHH) is the set of all match hypotheses which can never appear
in the same gmap as MHz . This set is recursively defined as follows : if MHz is an emap, then
NoGood(MHH) = Conflicting(MHH) . Otherwise, NoGood(MHH) is the union of MHz 's Conflict-
ing set with the NoGood sets for all of its descendents, i .e .,

NoGood(MHH) = Conflicting(MHH) U UMH,EArge(mNop ood (MHj)

We compute Conflicting, Emaps, and No Good sets as follows. First, Conflicting is computed

for each match hypothesis, since it requires only local information . Second, Emaps and No Good
are computed for each emap. Third, Emaps and No Good sets are computed for all other match
hypotheses by propagating the results from Emaps upwards to their ancestors.

We make two observations about this computation . First, these operations can be efficiently im-

plemented via bit vectors . For example, SME assigns a unique bit position to each match hypothesis,

and carries out union and intersection operations by using OR and AND bit operations . Second, it is
important to look for justification holes in the match hypothesis graph — match hypotheses whose

arguments fail to match . Such match hypotheses will always violate the support constraint, and

The Structure-Mapping Engine

	

17

hence should be removed . For example, if one of the PRESSURE - TEMPERATURE match hypotheses

had not been formed (see Figure 4), then the match between their governing GREATER predicates
would be removed . Notice that removing justification holes eliminates many blatantly incorrect

matches, such as trying to place an eighth-order IMPLIES in correspondence with a second-order
IMPLIES.

The next step in gmap construction is to identify those match hypotheses which are internally

inconsistent, and thus cannot be part of any gmap . This can happen when the descendents of a
match hypothesis imply mutually incompatible bindings.

Definition 4 . A match hypothesis is inconsistent if the emaps of one subgraph of its descendants

conflicts with the emaps entailed by another subgraph of its descendants:

Inconsistent(MHH)

	

Emaps(MHH) n NoGood(MHH) � 0

Clearly, every ancestor of an inconsistent match hypothesis is also inconsistent . By caching the

No Good sets, inconsistent match hypotheses can be identified easily.
Global match construction proceeds by collecting sets of consistent match hypotheses . Since

gmaps are defined to be maximal, we begin from roots and work downward rather than starting
bottom-up . If a root is consistent, then the entire structure under it must be consistent, and thus

forms an initial gmap . If the graph of match hypotheses had only a single consistent root, this

step would suffice. However, typically there are several roots, and hence several initial gmaps . To
obtain true gmaps, that is, maximal collections of match hypotheses, these initial gmaps must then
be merged into larger, structurally consistent collections.

Merge Step 1 : Form initial combinations. The first step is to combine interconnected and
consistent structures (Figure 6a) . Each consistent root, and its descendants, forms an initial
gmap . If a root is inconsistent, then the same procedure is applied recursively to each de-
scendant (i .e ., each immediate descendant is now considered as a root) . The resulting set will
be called Gmaps l . The procedure is:

1 . Let Gmaps l = O.

2 . For every root MH(bz, tj)

(a) If —iInconsistent(MH(bz, t j)), then create a gmap GM such that
Elements(GM) = Reachable(MH(bz, t j)).

(b) If Inconsistent(MH(bz, t j)), then recurse on Ofspring(MH(bz, tj)).

3 . For every GM E Gmaps l ,

(a) NoGood(GM) = UMx(bzitj)ERoots(GM)NoGood(MH(bij t;))

(b) Emaps(GM) = UMH(bz i yERoots(GM)Emaps (MH (bi,tj))

In this step inconsistent match hypotheses have been completely eliminated . However, we do

not have true gmaps, since the sets of correspondences are not maximal. To obtain maximality,

elements of Gmapsithat are consistent with one another must be merged . Consistency between
two gmaps can be defined as follows:

Consistent(GMapz,GMapj) i~"

	

Elements(GMapz) n NoGood(GMapj) _ 0
A NoGood(GMapz) n Elements(GMapj) = 0

The Structure-Mapping Engine

	

18

Figure 6 : Gmap Construction . (a) Merge step 1 : Interconnected and consistent . (b) Merge step

2 : Consistent members of the same base structure . (c) Merge step 3 : Any further consistent

combinations.

Merge Step 2 : Combine connected gmaps . Consider two elements of Gmaps l which share
base structure, i .e ., whose roots in the base structure are identical . Since we are assuming

distinct elements, either (a) their correspondences are structurally inconsistent or (b) there

is some structure in the base which connects them that does not appear in the target (if it
did, match hypotheses would have been created which would bring the two elements under a

common match hypothesis root, hence they would not be distinct) . Combining such elements,
when consistent, leads to potential support for candidate inferences . We call the partial gmaps

resulting from this merge Gmaps2 (Figure 6b).

Merge Step 3 : Combine independent collections . Consider two elements of Gmapsl which

have no overlap between their relational correspondences . Clearly, any such pair could be
merged without inconsistency, if they sanction consistent sets of emaps . This final step

generates all consistent combinations of gmaps from Gmapsl by successive unions, keeping

only those combinations that are maximal (Figure 6c).

Example : Simple analogy between heat and water Figure 6 shows how the gmaps are
formed from the collection of match hypotheses for the simple water-flow/heat-flow example . After
merge step 1, only isolated collections stemming from common roots exist . Merge step 2 combines
the PRESSURE to TEMPERATURE mapping with the FLOW mapping, since they have common base
structure (i .e ., the base structure root is the CAUSE predication) . Finally, merge step 3 combines

the isolated water and coffee attributes (see Figure 7) . Notice that the FLOW mapping is structurally

The Structure-Mapping Engine

	

19

consistent with the DIAMETER to TEMPERATURE mapping . However, because merge step 2 placed the

FLOW mapping into the same gmap as the PRESSURE to TEMPERATURE mapping, merge step 3 was
unable to combine the FLOW mapping with the DIAMETER to TEMPERATURE gmap.

3.2 .3 Step 3: Compute Candidate Inferences

Each gmap represents a set of correspondences that can serve as an interpretation of the match.
For new knowledge to be generated about the target, there must be information from the base

which can be carried over into the target . Not just any information can be carried over — it must
be consistent with the substitutions imposed by the gmap, and it must be structurally grounded in

the gmap. By structural grounding, we mean that its subexpressions must at some point intersect
the base information belonging to the gmap. Such structures form the candidate inferences of a

gmap.

To compute the candidate inferences for a gmap GM, SME begins by examining each root BR
in the base dgroup to see if it is an ancestor of any match hypothesis roots in the gmap . If it is,

then any elements in Descendants(BR) which are not in Baseltems(GM) are included in the set
of candidate inferences.

The candidate inferences often include entities . Whenever possible, SME replaces all occurrences
of base entities with their corresponding target entities . Sometimes, however, there will be base

entities that have no corresponding target entity ; i .e ., the base entity is not part of any match
hypothesis for that gmap . What SME does depends on the type of entity . If the base entity is a

constant, such as zero, it can be brought directly into the target unchanged (a flag is provided

to turn on this behavior) . Otherwise, SME introduces a new, hypothetical entity into the target
which is represented as a skolem function of the original base entity . Such entities are represented

as (:skolem base-entity).
Recall that Structure-mapping does not guarantee that any candidate inference is valid . Each

candidate inference is only a surmise, which must be tested by other means . By theoretical assump-
tion, general testing for validity and relevance is the province of other modules which use SME's

output . 4 However, SME does provide a weak consistency check based on purely structural consider-
ations . In particular, it discards a candidate inference when (a) the predicate is non-commutatitive

and (b) its arguments are simply a permuted version of the arguments to another expression involv-
ing that predicate in the target domain . For example, if (GREATER (MASS sun) (MASS planet))

existed in the target, (GREATER (MASS planet) (MASS sun)) would be discarded as a candidate

inference.

Example : Simple analogy between heat and water In Figure 7, gmap #1 has the top level

CAUSE predicate as its sole candidate inference . In other words, this gmap suggests that the cause
of the flow in the heat dgroup is the difference in temperatures.

Suppose the FLOW predicate was missing in the target dgroup . Then the candidate inferences for

a gmap corresponding to the pressure inequality would include expressions involving both CAUSE
and FLOW, as well as conjectured target entities corresponding to water (heat) and pipe (bar).

The two skolemized entities would be required because the FLOW match provides the match from
water and pipe to heat and bar, respectively . Note also that GREATER-THAN [DIAMETER(coffee) ,

4 One such module is described in [16,17] .

The Structure-Mapping Engine

	

20

Rule File : literal-similarity .rules Number of Match Hypotheses : 14

Match Hypotheses:

(0 .6500 0 .0000) (>PRESSURE >TEMP)

(0 .7120 0 .0000) (PRESS-BEAKER TEMP-COFFEE)

(0 .7120 0 .0000) (PRESS-VIAL TEMP-ICE-CUBE)

(0 .9318 0 .0000) (BEAKER-6 COFFEE-1)

(0 .6320 0 .0000) (PIPE-8 BAR-3)

o

	

o

	

0

o

	

o

	

0

Global Mappings:

Gmap #1 : (>PRESSURE >TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)

(PRESSURE-VIAL TEMP-ICE-CUBE) (WFLOW HFLOW)

Emaps :

	

(beaker coffee) (vial ice-cube) (water heat) (pipe bar)

Weight : 5 .99

Candidate Inferences : (CAUSE >TEMPERATURE HFLOW)

Gmap #2 : (>DIAMETER >TEMPERATURE) (DIAMETER-1 TEMP-COFFEE)

(DIAMETER-2 TEMP-ICE-CUBE)

Emaps :

	

(beaker coffee) (vial ice-cube)

Weight : 3 .94

Candidate Inferences:

Gmap #3 : (LIQUID-3 LIQUID-5) (FLAT-TOP-4 FLAT-TOP-6)

Emaps :

	

(water coffee)

Weight : 2 .44

Candidate Inferences:

Figure 7 : Complete SME interpretation of Water Flow - Heat Flow Analogy.

DIAMETER(ice cube)] is not a valid candidate inference for the first gmap because it does not
intersect the existing gmap structure.

3.2 .4 Step 4: Compute Structural Evaluation Scores

Typically a particular base and target pair will give rise to several gmaps, each representing a differ-
ent interpretation . Selecting the "best" interpretation of an analogy, as mentioned previously, can

involve non-structural critera . However, as the psychological results indicated, evaluation includes
an important structural component . SME provides a programmable mechanism for computing a

structural evaluation score (SES) for each gmap . This score can be used to rank-order the gmaps

or as a factor in some external evaluation procedure.
The structural evaluation score is computed in two phases, each using match evidence rules to

assign and manage numerical scores . The first phase assigns weights to individual match hypotheses,

The Structure-Mapping Engine

	

21

and the second phase computes a score for each gmap by combining the evidence for the match

hypotheses comprising its correspondences . After a brief introduction to the evidence processing
mechanism, we describe each phase in turn.

The management of numerical evidence is performed by a Belief Maintenance System (BMS)
[15] . The BMS is much like a standard TMS, using horn clauses as justifications. However, the

justifications are annotated with evidential weights, so that "degrees of belief" may be propagated.

A modified version of Dempster-Shafer formalism is used for expressing and combining evidence.
Belief in a proposition is expressed by the pair (s (A) , s (—i A)) , where s (A) represents the current

amount of support for A and s(— A) is the current support against A . A simplified form of Demp-
ster's rule of combination [60,53,37,15] allows combining evidence from multiple justifications . For

example, given that Belief (A)=(0 .4, 0) and Belief (B)=(0 .6, 0), together with (IMPLIES A
C) (0 .8 0) and (IMPLIES B C) (1 0) , Dempster 's rule provides a belief in C equal to (0 .728, 0 .0) . In

addition to providing evidence combination, these justifications provide useful explanations about
the structural evaluation (see [15]).

Two caveats about the role of numerical evidence in SME: (1) While we have found Dempster-

Shafer useful, our algorithms are independent of its details, and should work with any reasonable
formalism for combining evidence . (2) We use numerical evidence to provide a simple way to

combine local information . These weights have nothing to do with any probabilistic or evidential
information about the base or target per se.

Assigning local evidence Each match hypothesis and gmap has an associated BMS node to
record evidential information . The match evidence rules can add evidence directly to a match
hypothesis based on its local properties or indirectly by installing relationships between them.
Syntactically, these rules are similar to the match constructor rules . For example,

(assert! 'same-functor)

(rule ((:intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)

(eq (expression-functor ?b)
(expression-functor ?t)))))

(assert! (implies same-functor (MH ?b ?t) (0 .5 . 0 .0))))

states that "if the base item and target item of a match hypothesis are expressions with the
same functors, then supply 0 .5 evidence in favor of the match hypothesis ." (The assertion of

same-functor provides a global record for explanatory purposes that this factor was considered
in the structural evaluation .) The complete set of evidence rules used in this paper are listed in

Appendix A.

The ability to install relationships between match hypotheses provides a simple, local implemen-
tation of the systematicity constraint . Recall that the systematicity constraint calls for prefering

expressions involving higher-order relationships belonging to a systematic structure over isolated
relationships . We implement this preference by passing evidence from a match involving a rela-

tionship to the matches involving its arguments . The following rule accomplishes this, propagating
80% of a match hypothesis' belief to its offspring:

(rule ((:intern (MH ?b1 ?t1))
(:intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?b1 ?t1)))

(assert! (implies (MH ?b1 ?t1) (MH ?b2 ?t2) (0 .8 . 0 .0))))

The Structure-Mapping Engine

	

22

The more matched structure that exists above a given match hypothesis, the more that hypothesis

will be believed . The effect cascades, so that entity mappings involved in a large systematic
structure receive much higher scores than those which are not . Thus this "trickle down" effect

provides a local encoding of the systematicity principle.

Computing the Structural Evaluation Score The structural evaluation score for a gmap
is simply the sum of the evidence for its match hypotheses . While simplistic, summation has
sufficed for most of the examples encountered so far . There are a number of other factors that are
potentially relevant as well, which we discuss in Section 6 .3 .1 . Consequently, to provide maximum
flexibility, evidence rules are used to compute the evidence of gmaps as well.

Originally we combined evidence for gmaps according to Dempster's rule, so that the sum of

beliefs for all the gmaps equaled 1 [20] . We discovered two problems with this scheme . First,
Dempster's rule is susceptible to roundoff, which caused stability problems when a large number

of match hypotheses supported a gmap . Second, normalizing gmap evidence prevents us from

comparing matches using different base domains (as one would want to do for access experiments),
since the score would be a function of the other gmaps for a particular base and target pair.

Example : Simple analogy between heat and water Returning to Figure 7, note that the
best interpretation (i .e ., the one which has the highest structural evaluation score) is the one we
would intuitively expect . In this interpretation, beaker maps to coffee, vial maps to ice-cube,

water maps to heat, pipe maps to bar, and PRESSURE maps to TEMPERATURE . Furthermore, we

have the candidate inference that the temperature difference is what causes the flow of heat.

3 .3 Complexity analysis

Here we analyze the complexity of the SME algorithm. Because it depends critically on both the

input descriptions and the match rules, strict bounds are hard to determine . However, we give both

best and worst case analyses for each step, and provide estimates of typical performance based on
our experience. The decomposition used in the analysis is show in Figure 8 . We use the following
notation in the analysis:

eb

	

Number of entities in the base dgroup.

et

	

Number of entities in the target dgroup.

3b = Number of expressions in the base dgroup.

3t

	

Number of expressions in the target dgroup.

M = Number of match hypotheses.

J - Number of gmaps

Nb = eb+3b

Nt = et+3t

N Nb+Nt2

The Structure-Mapping Engine

	

23

1 . Run MHC rules to construct match hypotheses.

2 . Calculate the Conflicting set for each match hypothesis.

3 . Calculate the EMaps and NoGood sets for each match hypothesis by upward

propagation from entity mappings.

4 . Merge match hypotheses into gmaps.

(a) Interconnected and consistent.

(b) Consistent members of same base structure.

(c) Any further consistent combinations.

5 . Calculate the candidate inferences for each gmap.

6 . Score the matches

(a) Local match scores.

(b) Global structural evaluation scores.

Figure 8 : Summary of SME algorithm.

3.3 .1 Analysis of Step # 1 : local match construction

SME does not restrict either the number of match rules or their complexity . There is nothing to
prevent one from writing a rule that examines extensive information from external sources (e .g .,

a knowledge-base, plans, goals, etc .) . However, the rule sets which implement the comparisons of
Structure-mapping theory consist of only a few simple rules each . This reduction of computational

complexity is one of the advantages of the Structure-mapping account, since it restricts the tests

performed in rules to local properties of the representation . Consequently, we assume rule execution
takes unit time, and focus on the total number of rules executed . The :filter rules are run for

each pair of base and target predicates . Consequently, they will always require 0 (Nb * NO . Each
: intern rule is run once on every match hypothesis . In the worst case, M = Nb * Nt , or roughly

N2 . But in practice, the actual number of match hypotheses is substantially less, usually on the

order of cN, where c is less than 5 and N is the average of Nb and Nt . Thus, in practice, : intern
rules have a run time of approximately 0(N).

3.3 .2 Analysis of Step # 2 : Calculating Conflicting

Recall that SME assigns a Conflicting set to each match hypothesis, MH(bz, t j) which represents

the alternate mappings for bz and tj . The conflicting sets are calculated by examining each base

and target item to gather the match hypotheses which mention them . Let C be the average number
of alternative matches each item in the base and target appears in . SME loops through the C match

hypotheses twice : once to form the bitwise union of these match hypotheses and once to update
each hypotheses' Conflicting set . Thus, the entire number of bit vector operations is

(3b*2C)+(eb*2C)+(3t *2C)+(et*2C)

The Structure-Mapping Engine

	

24

The worst case is when a match hypothesis is created between every base and target item. If

we also assume Nb = Nt , then C = Nt in that case . The number of operations becomes 4Nt 2

or approximately 0(N 2) . Conversely, the best case performance occurs when C is 1, producing

0(max(Nb , Nt)) operations . In our experiments so far, we find that C is typically quite small, and
so far has always been less than 10 . Consequently, the typical performance lies between 0 (N) and

0(N 2).

3.3 .3 Analysis of Step # 3 : Emaps and No Good calculation

Recall that once the Conflicting sets are calculated, the Emaps and NoGood sets are propagated

upwards from the entity mappings through the match hypotheses . By caching which MH(bz, tj)'s
correspond to emaps and using a queue, we only operate on each node once . Hence the worst and

best case performance of this operation is 0(M), which in the worst case is 0(N 2).

3.3 .4 Analysis of Step # 4: Gmap construction

Global matches are formed in three steps . The first step collects all of the consistent connected

components of match hypotheses by starting at the match hypothesis roots, walking downwards to
find consistent structures . Each graph walk takes at most 0(Nz), where Ni is the number of nodes

Reachable from the current match hypothesis root . If there are NR roots, then the first merge step
(Step 4(a)) takes 0 (NR * Ni) . Assuming that most of the match hypotheses will appear in only one

or two subgraphs (some roots may share substructure), we can approximate this by saying that the
first merge step is 0(M) . Call the number of partial gmaps formed at this stage 9P1.

Perhaps surprisingly, the complexity of the previous steps has been uniformly low . Sophisticated

matching computations usually have much worse performance, and SME cannot completely escape
this . In particular, the worst case for steps 4(b) and 4(c) is O (N!) (although worst-case for one

implies best-case for the other).
Step 4(b) combines partial gmaps from Step 4(a) that intersect the same base structure . This

requires looping through each base description root to find which partial gmaps intersect it, and then
generating every consistent, maximal combination of them . In the worst case, every gmap could

intersect the same base structure . This would mean generating all possible consistent, maximal
sets of gmaps, which is equivalent to Step 4(c), so we defer this part of the analysis until then . In

the other extreme, none of the gmaps share a common base structure, and so step 4(b) requires

0(9P1 2) operations, although this is not the best-case performance (see below) . Typically, the
second merge step is very quick and displays near best-case performance.

Step 4(c) completes gmap construction by generating all consistent combinations of the partial
gmaps, discarding those which are not maximal . The complexity of this final merge step is directly

related to the degree of structure in the base and target domains and how many different predicates
are in use . Worst-case performance occurs when the description language is flat (i .e ., no higher-order

structure) and the same predicate occurs many times in both the base and the target . Consider a
language with a single, unary predicate, and base and target dgroups each consisting of N distinct

expressions. In this case every base expression can match with every target expression, and each
such match will suggest matching in turn the entities that serve as their arguments . This reduces

to the problem of finding all isomorphic mappings between two equal size sets, which is 0(N!).

Now let us consider the best case . If the base and target dgroups give rise to a match hypothesis
graph that has but one root, and that root is consistent, then there is only one gmap! The second

The Structure-Mapping Engine

	

25

and third merge steps in this case are now independent of N, i .e ., constant-time.

Of course, the typical case is somewhere between these two extremes . Typically the vocabulary
of predicates is large, and the relationships between entities diverse . Structure provides a strong

restriction on the number of possible interpretations for an analogy . By the time SME gets to Step
4, many of the match hypotheses have been filtered out as being structurally impossible . Steps 4(a)

and 4(b) have already merged many partial gmaps, reducing the number of elements which may

be combined. The identicality constraint of Structure-Mapping (encoded in the match rules) also
reduces typical-case complexity, since match hypotheses are only created between relations when

functors are identical . Thus, SME will perform badly on large descriptions with no structure and
extensive predicate repetition, but SME will perform well on large descriptions with deep networks of

diverse higher-order relationships . Semantically, the former case roughly corresponds to a jumble
of unconnected expressions, and the latter case to a complex argument or theory . The better

organized and justified the knowledge, the better SME will perform.
While the potential complexity of Step 4(b) is O (N!), our experience is that this step is very

quick and displays near best-case performance in practice . We suspect the worst-case behavior

is very unlikely to occur, since it requires that all members of Gmaps l intersect the same base-
structure and so must be merged in all possible ways . However, partial gmaps intersecting the same

base structure are almost always consistent with one another, meaning that step 2 would usually
merge Gmaps l into one gmap in 0(9 13 1) time. On the other hand, it is easy to hand-generate

examples which illustrate the worst-case performance for Step 4(c), and this step in practice can
take signficant work.

3.3 .5 Analysis of Step # 5 : Finding candidate inferences

The candidate inferences are gathered by looping through the base description roots for each gmap,
collecting missing base expressions whenever their structure intersects a match hypothesis in the

gmap. Each expression is tested to ensure that (1) it is not already matched with part of the
target description, and (2) whether it represents a contradiction of an existing target expression.

The size of the typical candidate inference is inversely related to the percentage of base structure
roots: more roots implies less structure to infer, and vice versa . Thus in the worst case we have

0 (9 * 3b * 3t), or roughly 0 (N4) . However, this is an extreme worst-case . First, the 3t term implies
that we check every target expression on each iteration . The algorithm actually only checks the

pertinent target expressions (i .e ., those with the same functor), giving a tighter bound of 0(N3).
In the best case, there will only be one gmap and no candidate inferences, producing constant time
behavior.

3.3 .6 Analysis of Step # 6: SES computation

The complexity of the BMS is difficult to ascertain . Fortunately, it is irrelevant to our analysis

since the BMS can be eliminated if detailed justifications of evidential results are not required.
For example, the first version of SME [20] used specialized evidence rules which had most of the

flexibility of the BMS-based rules yet ran in 0(M) time.
Although the flexibility of the BMS can be valuable, in fact the majority of SME's processing

time takes place within it – typically 70 to 80%. So far this has not been a serious performance

limtation, since on the examples in this paper (and most of the examples we have examined), SME

runs in a matter of a few seconds on a Symbolics machine .

The Structure-Mapping Engine

	

26

4 Examples

The Structure-Mapping Engine has been applied to over 40 analogies, drawn from a variety of
domains and tasks . It is being used in psychological studies, comparing human responses with

those of SME for both short stories and metaphors . It is also serving as a module in a machine
learning program called PHINEAS, which uses analogy to discover and refine qualitative models of

physical processes such as water flow and heat flow . Here we discuss a few examples to demonstrate
SME ' s flexibility and generality.

4 .1 Methodological constraints

Flexibility is a two-edged sword . The danger in using a program like SME is that one could imagine

tailoring the match construction and evidence rules for each new example. Little would be learned
by using the program in this way — we would have at best a series of "wind-up toys" , a collection

of ad-hoc programs which shed little theoretical light . Here we describe our techniques for reducing
tailorability.

First, all the cognitive simulation experiments were run with a fixed collection of rule sets,
listed in Appendix A. Each rule set represented a particular type of comparison sanctioned by

the Structure-mapping theory (i .e ., analogy, literal similarity, and mere appearance) . The mere

appearance rules (MA) match only low-order items : attributes and first-order relations . The analogy
rules (AN) match systems of higher-order relations, while the literal similarity rules (LS) match both

low-order and higher-order structure . The first two examples in this section use the AN rules, while
the last uses both AN and MA rules, as indicated.

While the choice of match construction rules is dictated by Structure-mapping, the particular
values of evidence weights are not . Although we have not performed a sensitivity analysis, in our

preliminary explorations it appears that the gmap rankings are not overly sensitive to the particular
values of evidence weights . (Recall that which gmaps are constructed is independent of the weights,

and is determined only by the construction rules and structural consistency .)
Second, we have accumulated a standard description vocabulary which is used in all experiments.

This is particularly important when encoding natural language stories, where the translation into a

formal representation is underconstrained . By accumulating representation choices across stories,
we attempt to free ourselves from biasing the descriptions for particular examples.

Third, we have tested SME with descriptions generated automatically by other AI programs . A
representation developed to perform useful inferences has fewer arbitrary choices than a represen-

tation developed specifically for learning research. So far, we have used descriptions generated by
two different qualitative simulation programs with encouraging results . For example, SME actually

performs better on a water-flow / heat-flow comparison using more complex descriptions gener-
ated by GIZMO [23] than on many hand-generated descriptions . We are working on other, similar

systems, as described in Section 6 .3.1.

4 .2 Solar System - Rutherford Atom Analogy

The Rutherford model of the hydrogen atom was a classic use of analogy in science . The hydrogen

atom was explained in terms of the better understood behavior of the solar system . We illustrate
SME's operation on this example with a simplified representation, shown in Figure 9 .

The Structure-Mapping Engine

	

27

Figure 9 : Solar System - Rutherford Atom Analogy.

SME constructed three possible interpretations . The highest-ranked mapping (SES = 6 .03) pairs
up the nucleus with the sun and the planet with the electron . This mapping is based on the mass

inequality in the solar system playing the same role as the mass inequality in the atom . It sanctions
the inference that the differences in masses, together with the mutual attraction of the nucleus and

the electron, causes the electron to revolve around the nucleus. This is the standard interpretation
of this analogy.

The other major gmap (SES = 4 .04) has the same entity correspondences, but maps the tem-
perature difference between the sun and the planets onto the mass difference between the nucleus

and the electron . The SES for this gmap is low for two reasons. First, temperature and mass are

different functions, and hence they receive less local evidence . The second, and more important,
reason is that there is no mappable systematic structure associated with temperature in the base

dgroup. Thus other relations, such as the match for ATTRACTS, do not enter into this gmap . We
could in theory know alot more about the thermal properties of the solar system than its dynam-

ics, yet unless there is some relational ground in the target description there will not be a set of
mappable systematic relations . (If we instead were explaining a home heating system in terms of

the solar system the situation would be the reverse .)
The third gmap is a spurious collection of match hypotheses which imply that the mass of the

sun should correspond to the mass of the electron, and the mass of the planet should correspond to

the mass of the nucleus . There is even less structural support for this interpretation (SES = 1 .87).
This example demonstrates an important aspect of the Structure-mapping account of analogy.

The interpretation preferred on structural grounds is also the one with the most inferential import.
This is not an accident ; the systematicity principle captures the structural features of well-supported

arguments . Using the Structure-mapping analogy rules (AN), SME prefers interpretations based on
a deep theory (i .e ., a subset of a dgroup containing a system of higher-order relations) to those

based on shallow associations (i .e ., a subset of a dgroup containing an assortment of miscellaneous
facts).

4 .3 Discovering heat flow

The Structure-Mapping Engine

	

28

Figure 10 : Two examples of water-flow and heat-flow.

The PHINEAS program [16,17,19] learns by observation . When presented with a new behavior,
it attempts to explain it in terms of its theories of the world . These theories are expressed as

qualitative models of physical processes using Forbus' Qualitative Process Theory [21,22] . When it
is given a behavior that it cannot explain, an analogical learning module is invoked which attempts

to generate a new or revised model that can account for the new observation . This module uses
SME in two ways . 5 First SME is used to form a match between a previous experience which has

been explained and the current behavior . These correspondences then provide the foundation for
constructing a model that can explain the new observation based on the model for the previous

behavior.

For example, suppose that the program was presented with measurements of the heat-flow
situation depicted in Figure 10 and described in Figure 11 . If the domain model does not include

a theory of heat flow, PHINEAS will be unable to interpret the new observation .6 Using SME,
PHINEAS constructs an analogy with the previously encountered water-flow experience also shown

in Figures 10 and 11 . This match establishes that certain properties from the two situations
behave in the same way. As shown in Figure 11, the roles of the beaker and the vial in the water

flow history are found to correspond to the roles of the horse shoe and water in the heat flow
history, respectively . PHINEAS stores the correspondences that provide a mapping between entities

or between their quantities (e .g ., Pressure and Temperature) for later reference.

When it is satisfied that the chosen water-flow history is sufficiently analogous to the current

situation, PHINEAS begins a deeper analysis of the analogy . It fetches the domain used to generate
its prior understanding of the base (water-flow) experience . Its description of water-flow, shown in

Figure 12, is a straightforward qualitative model similar to that used in other projects [23,26] . This
model states that if we have an aligned fluid path between the beaker and the vial (i .e., the path

either has no valves or if it does, they are all open), and the pressure in the beaker is greater than

the pressure in the vial, then a liquid-flow process will be active . This process has a flow rate which
is proportional to the difference between the two pressures . The flow rate has a positive influence

on the amount of water in the vial and a negative influence on the amount of water in the beaker.

5 In this example PHINEAS is using the Structure-mapping analogy rules . In normal operation, it uses a rule set
that examines an IS-A hieararchy to relax the identicality constraint and a relevance-influenced match evaluation
criteria that is sensitive to the system's current reasoning goals [19].

6 PHINEAS uses the ATMI theory of measurement interpretation to explain observations . See [24] for details .

The Structure-Mapping Engine

	

29

Water-Flow History Heat-Flow History

(Situation SO) (Situation SO)

(Decreasing (Pressure (At beaker SO))) (Decreasing (Temp (At horse-shoe SO)))

(Increasing (Pressure (At vial SO))) (Increasing (Temp (At water SO)))

(Decreasing (Amount-of (At beaker SO))) (Greater (Temp (At horse-shoe SO))

(Increasing (Amount-of (At vial SO))) (Temp (At water SO)))

(Greater (Pressure (At beaker SO))

(Pressure (At vial SO)))

(Situation Si) (Situation Si)

(Meets SO Si) (Meets SO Si)

(Constant (Pressure (At beaker Si))) (Constant (Temp

(Constant (Pressure (At vial Si))) (Constant (Temp

(Constant (Amount-of (At beaker Si))) (Equal-To (Temp

(Constant (Amount-of (At vial Si))) (Temp

(Equal-To (Pressure (At beaker Si))

(Pressure (At vial Si)))

(Function-Of (Pressure ?x)

	

(Function-Of (Temp ?x)

(Amount-of ?x))

	

(Heat ?x))

Behavioral Correspondences

Pressure 4-4 Temperature

Amount-of 4-4 Heat

SO 4-4 SO

Si 4-4 Si

beaker 4-4 horse-shoe

vial 4-4 water

Figure 11 : Analogical match between water-flow history and heat-flow history.

(At horse-shoe Si)))

(At water Si)))

(At horse-shoe Si))

(At water Si)))

The Structure-Mapping Engine

	

30

Figure 12 : Qualitative Process Theory model of liquid flow.

Using SME a second time, this theory is matched to the current heat-flow situation using the

correspondences established with the behavioral analogy . The output is shown in Figure 13 . The
entity and function correspondences provided by the behavioral analogy provide signficant con-

straint for carrying over the explanation . SME's rule-based architecture is critical to this operation:
PHINEAS imposes these constraints by using a set of match constructor rules that only allow hy-

potheses consistent with the specific entity and function correspondences previously established.

Entities and functions left without a match after the accessing stage are still allowed to match other
unmatched entities and functions . For example, the rule

(MHC-rule (:filter ?b ?t :test (sanctioned-pairing? (expression-functor ?b)
(expression-functor ?t)))

(install-MH ?b ?t))

forces a match between those quantities which were found to be analogous in the behavioral analogy

(e.g ., PRESSURE and TEMPERATURE) and prevents any alternate matches for these quantities (e .g .,
AMOUNT-OF and TEMPERATURE).

This example demonstrates several points . First, the second analogy which imports the the-

oretical explanation of the new phenomena is composed almost entirely of candidate inferences,
since the system had no prior model of heat flow . Hence, the model was constructed by analogy

The Structure-Mapping Engine

	

31

Gmap #1 : { (AMOUNT-OF-35 HEAT-WATER) (AMOUNT-OF-33 HEAT-HSHOE)

(PRESSURE-BEAKER TEMP-HSHOE) (PRESSURE-VIAL TEMP-WATER) }

Emaps : { (beaker horse-shoe) (vial water) }

Weight : 2 .675

Candidate Inferences : (IMPLIES

(AND (ALIGNED (:skolem pipe))

(GREATER-THAN (A TEMP-HSHOE) (A TEMP-WATER)))

(AND (Q= (FLOW-RATE pi)

	

(- TEMP-HSHOE TEMP-WATER))

(GREATER-THAN (A (FLOW-RATE pi)) zero)

(I+ HEAT-WATER (A (FLOW-RATE pi)))

(I- HEAT-HSHOE (A (FLOW-RATE pi)))))

Figure 13 : An Analogically Inferred Model of Heat Flow.

rather than augmented by analogy . This shows the power of SME's candidate inference mechanism.
Second, the example illustrates how SME's rule-based architecture can support tasks in which the

entity correspondences are given prior to the match, rather than derived as a result of the match.
Finally, it shows the utility of introducing skolemized entities into the candidate inferences . The

results produced by SME (Figure 13) contain the entity (: skolem pipe) . This indicates that, at
the moment, the heat path is a conjectured entity . At this time, the system inspects its knowledge

of paths to infer that immersion or physical contact is a likely heat path . However, we note that
much knowledge gathering and refinement may still take place while leaving the heat path as a

conjectured entity . For example, in the history of science ether was postulated to provide a medium
for the flow of light waves because other kinds of waves required a medium.

4 .4 Modeling Human Analogical Processing

SME is being used in several cognitive simulation studies . Our goal is to compare human responses

with those of SME's for a variety of tasks and problems . For example, two psychological stud-
ies [33,56] have explored the variables that determine the accessibility of a similarity match and

the inferential soundness of a match . Structure-mapping predicts that the degree of systematic

relational overlap will determine soundness [29] . In contrast, Gentner [30,31] has suggested that
the accessibility of potential matches in long-term memory is heavily influenced by surface sim-

ilarity . Psychological studies have supported both hypotheses [33,56,58] . In order to verify the
computational assumptions we then ran SME on the same examples . Here we briefly summarize the

simulation methodology and the results ; for details see [65].

The hypotheses were tested psychologically as follows . Pairs of short stories were constructed

which were similar in different ways : in particular, some pairs embodied mere appearance and some
analogy . ? Subjects first read a large set of stories . Then, in a second session, subjects saw similar

stories and tried to retrieve the original stories (the access measure) . After that, the subjects
were then asked to judge the inferential soundness of each of the story pairs . For the cognitive

70ther kinds of matches, including literal similarity, were also used . Here we discuss only analogy and mere

appearance

The Structure-Mapping Engine

	

32

Base Story
Karla, an old hawk, lived at the top of a tall oak tree . One afternoon, she saw a hunter on the ground with a

bow and some crude arrows that had no feathers . The hunter took aim and shot at the hawk but missed . Karla
knew that hunter wanted her feathers so she glided down to the hunter and offered to give him a few . The hunter
was so grateful that he pledged never to shoot at a hawk again . He went off and shot deer instead.

Target Story - Analogy
Once there was a small country called Zerdia that learned to make the world's smartest computer.
One day Zerdia was attacked by its warlike neighbor, Gagrach . But the missiles were badly aimed and the attack

failed . The Zerdian government realized that Gagrach wanted Zerdian computers so it offered to sell some of its
computers to the country. The government of Gagrach was very pleased . It promised never to attack Zerdia again.

Target Story - Mere-Appearance
Once there was an eagle named Zerdia who donated a few of her tailfeathers to a sportsman so he would promise

never to attack eagles.
One day Zerdia was nesting high on a rocky cliff when she saw the sportsman coming with a crossbow . Zerdia

flew down to meet the man, but he attacked and felled her with a single bolt . As she fluttered to the ground Zerdia
realized that the bolt had her own tailfeathers on it.

Figure 14 : Story Set Number 5.

simulation study, five triads of stories — a base, a mere-appearance match, and an analogy match
were encoded (15 in all) . Then pairs of stories were presented to SME, using different rule sets

corresponding to analogy (the AN rules) and mere appearance (the MA rules) . The results from
the AN rules were used to estimate soundness, while the results from the MA rules were used to

estimate accessibility . One of these story groups will be discussed in detail, showing how SME was
used to simulate a test subject.

In the story set shown in Figure 14, the original story concerned a hawk named Karla who
survives an attack by a hunter . Two target stories were used as potential analogies for the Karla

narration . One was designed to be truly analogous (TA5) and describes a small country named

Zerdia that survives an attack by another country . The other story (MA5) was designed to be
only superficially similar and describes an eagle named Zerdia who is killed by a sportsman . The

representation of the Karla story given to SME was:

(CAUSE (EQUALS (HAPPINESS HUNTER) HIGH)

(PROMISE HUNTER KARLA (NOT (ATTACK HUNTER KARLA))))

(CAUSE (OBTAIN HUNTER FEATHERS) (EQUALS (HAPPINESS HUNTER) HIGH))

(CAUSE (OFFER KARLA FEATHERS HUNTER) (OBTAIN HUNTER FEATHERS))

(CAUSE (REALIZE KARLA (DESIRE HUNTER FEATHERS)) (OFFER KARLA FEATHERS HUNTER))

(FOLLOW (EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED)

(REALIZE KARLA (DESIRE HUNTER FEATHERS)))

(CAUSE (NOT (USED-FOR FEATHERS CROSS-BOW)) (EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED))

(FOLLOW (SEE KARLA HUNTER) (ATTACK HUNTER KARLA))

(WEAPON CROSS-BOW)

(KARLAS-ASSET FEATHERS)

(WARLIKE HUNTER)

(PERSON HUNTER)

(BIRD KARLA)

The results from human subjects showed that (1) in the soundness evaluation task, as predicted

The Structure-Mapping Engine

	

33

Analogical Match from Karla to Zerdia the country (TA5).

Rule File : analogy.rules

	

Number of Match Hypotheses : 54

	

Number of GMaps : 1

Gmap #1:

(CAUSE-PROMISE CAUSE-PROMISE) (SUCCESS-ATTACK SUCCESS-ATTACK) (HAPPY-HUNTER HAPPY-GAGRACH)
(HAPPINESS-HUNTER HAPPINESS-GAGRACH) (REALIZE-DESIRE REALIZE-DESIRE) (CAUSE-TAKE CAUSE-BUY)

(ATTACK-HUNTER ATTACK-GAGRACH) (DESIRE-FEATHERS DESIRE-SUPERCOMPUTER) (FAILED-ATTACK FAILED-ATTACK)
(TAKE-FEATHERS BUY-SUPERCOMPUTER) (CAUSE-FAILED-ATTACK CAUSE-FAILED-ATTACK)

(CAUSE-OFFER CAUSE-OFFER) (FOLLOW-REALIZE FOLLOW-REALIZE) (HAS-FEATHERS USE-SUPERCOMPUTER)
(CAUSE-HAPPY CAUSE-HAPPY) (NOT-ATTACK NOT-ATTACK) (PROMISE-HUNTER PROMISE)

(NOT-HAS-FEATHERS NOT-USE-SUPERCOMPUTER) (OFFER-FEATHERS OFFER-SUPERCOMPUTER)
Emaps : (HIGH23 HIGH17) (FEATHERS20 SUPERCOMPUTER14) (CROSS-BOW21 MISSILES15)

(HUNTER19 GAGRACH13) (KARLA18 ZERDIAl2) (FAILED22 FAILED16)
Weight : 22 .362718

Analogical Match from Karla to Zerdia the eagle (MA5).

Rule File : analogy.rules

	

Number of Match Hypotheses : 47

	

Number of GMaps : 1

Gmap #1:

(PROMISE-HUNTER PROMISE) (DESIRE-FEATHERS DESIRE-FEATHERS) (TAKE-FEATHERS TAKE-FEATHERS)
(CAUSE-OFFER CAUSE-OFFER) (OFFER-FEATHERS OFFER-FEATHERS) (HAS-FEATHERS HAS-FEATHERS)

(REALIZE-DESIRE REALIZE-DESIRE) (ATTACK-HUNTER ATTACK-SPORTSMAN) (NOT-ATTACK NOT-ATTACK)
(SUCCESS-ATTACK SUCCESS-ATTACK) (FOLLOW-SEE-ATTACK FOLLOW-SEE) (SEE-KARLA SEE-ZERDIA)

(FAILED-ATTACK SUCCESSFUL-ATTACK) (CAUSE-TAKE CAUSE-TAKE)
Emaps : (FAILED22 TRUE11) (KARLA18 ZERDIA7) (HUNTER19 SPORTSMAN8)

(FEATHERS20 FEATHERS9) (CROSS-BOW21 CROSS-BOW10)
Weight : 16 .816530

Figure 15 : SME ' s Analysis of Story Set 5, Using the TA Rules.

by Gentner 's systematicity principle, people judged analogies as more sound than mere appearance

matches ; and (2) in the memory access task, people were far more likely to retrieve surface similarity
matches than analogical matches.

To test SME as a cognitive simulation of how people determine the soundness of an analogy, SME

was run using its analogy (AN) match rules on each base-target pair of stories – that is, base/mere-

appearance story and base/analogical story . Figure 15 shows the output of SME for the AN task.
For example, "Zerdia the country" (the analogy) was found to be a better analogical match (SES

= 22 .4) to the original Karla story than "Zerdia the eagle" (SES = 16 .8) . Overall, SME as an

analogical mapping engine agrees quite well with the soundness rating of human subjects.

We also used SME to test the claim that the human access patterns resulting from a dependence

on surface similarity matches (objects and object-attribute overlap) . To test this, SME was run on
each of the pairs using its mere-appearance (MA) match rules. This measured their degree of

superficial overlap . Again, over the five stories SME's rankings match those of human subjects . For
example, the output of SME for the MA task is given in Figure 16, which shows that the eagle

story (SES = 7 .7) has a higher MA rating than the country story (SES = 6 .4) .

The Structure-Mapping Engine

	

34

Analogical Match from Karla to Zerdia the country (TA5).

Rule File : appearance-match .rules

	

Number of Match Hypotheses : 12

	

Number of GMaps : 1

Gmap #1:

(HAPPINESS-HUNTER HAPPINESS-GAGRACH) (ATTACK-HUNTER ATTACK-GAGRACH) (TAKE-FEATHERS BUY-SUPERCOMPUTER)
(WARLIKE-HUNTER WARLIKE-GAGRACH) (DESIRE-FEATHERS DESIRE-SUPERCOMPUTER)

(HAS-FEATHERS USE-SUPERCOMPUTER) (OFFER-FEATHERS OFFER-SUPERCOMPUTER) (WEAPON-BOW WEAPON-BOW)
Emaps : (KARLA1 ZERDIAl2) (FEATHERS3 SUPERCOMPUTER14) (CROSS-BOW4 MISSILES15) (HUNTER2 GAGRACH13)

Weight : 6 .411572

Analogical Match from Karla to Zerdia the eagle (MA5).

Rule File : appearance-match .rules

	

Number of Match Hypotheses : 14

	

Number of GMaps : 1

Gmap #1:

(OFFER-FEATHERS OFFER-FEATHERS) (TAKE-FEATHERS TAKE-FEATHERS) (ATTACK-HUNTER ATTACK-SPORTSMAN)
(SEE-KARLA SEE-ZERDIA) (HAS-FEATHERS HAS-FEATHERS) (BIRD-KARLA BIRD-ZERDIA) (WEAPON-BOW WEAPON-BOW)
(DESIRE-FEATHERS DESIRE-FEATHERS) (WARLIKE-HUNTER WARLIKE-SPORTSMAN) (PERSON-HUNTER PERSON-SPORTSMAN)

Emaps : (FEATHERS3 FEATHERS9) (CROSS-BOW4 CROSS-BOW1O) (HUNTER2 SPORTSMAN8) (KARLA1 ZERDIA7)
Weight : 7 .703568

Figure 16 : SME ' s Analysis of Story Set 5, Using the MA Rules.

It should be noted that the access mimicking task is not a true simulation . To do this would

require finding and selecting the prior story from a large set of potential matches . Rather, SME

is acting as a bookkeeper to count the variable (here, degree of surface overlap) being claimed as

causally related to the variable being measured (accessibility of matches) . The results demonstrate

that surface similarity, as strictly defined and used in SME's match rules, match well with people's
retrieval patterns in an access task.

This study illustrates the viability of SME as a cognitive simulation of human processing of
analogy. We make two additional observations . First, the results demonstrate the considerable

leverage for cognitive modeling that SME's architecture provides . We know of no other general-
purpose matcher which successfully models two distinct kinds of human similarity comparisons.

Second, the short story analogies show that SME is capable of matching large structures as well as
the smaller, simpler structures shown previously.

4 .5 Removing all external constraints

What example should this be - an isomorphic type example, or one of the ones already
given (WF-HF or SS-RA) to show comparison?

4 .6 Performance Evaluation

SME is written in Common Lisp . The examples in this paper were run on a Symbolics 3640 with
8 megabytes of RAM . Table 1 shows SME's performance for each example in this paper . All run

The Structure-Mapping Engine

	

35

Table 1 : SME performance on described examples.

Example
Number base

expressions/entities
Number target

expressions/entities # MH's # Gmaps
Total BMS
run time

Total match
run time

Simple Water-Heat 11/4 6/4 14 3 0 .70 0 .23

Solar System-Atom 12/2 9/2 16 3 0 .91 0 .28
PHINEAS behavioral 40/8 27/6 69 6 9 .68 1 .92
PHINEAS theory 19/11 13/6 10 1 0 .17 0 .66

Base5-TA5 (AN) 26/6 24/6 54 1 5 .34 0 .87
Base5-MA5 (AN) 26/6 24/5 47 1 4 .55 0 .98
Base5-TA5 (MA) 26/6 24/6 12 1 0 .38 0 .36

Base5-MA5 (MA) 26/6 24/5 14 1 0 .73 0 .46

NOTE: All times are given in seconds . Total match time is total SME run time minus BMS run time.

times are in seconds . We have separated the BMS run time from the total run time to give a

more accurate account of SME's speed, since the computational cost of the BMS can be removed
if necessary. This data indicated that SME is extremely fast at producing unevaluated gmaps . In

fact, it would seem to be close to linear in the number of match hypotheses and in the number
of base and target expressions . The majority of the run time is spent within the BMS, producing

structural evaluation scores . However, the total run times are sufficiently short that we have opted
to continue using the BMS for now, since it has proven to be a valuable analysis tool.

The longest runtime occurred for the behavioral match between the water-flow and heat-flow
observations (PHINEAS behavioral) . While the descriptions for this example were the largest, the

primary source of slowdown was the flat representations used to describe the situations.

5 Comparison With Other Work

The Structure-mapping theory has received a great deal of convergent theoretical support in artifi-
cial intelligence and psychology . Although there are differences in emphasis, there is now widespread

agreement on the basic elements of one-to-one mappings of objects with carryover of predicates

([5,6,38,41,46,47,57,59,73,66]) . Moreover, several of these researchers have adopted special cases of
the systematicity principle . For example, Carbonell focuses on plans and goals as the high-order

relations that give constraint to a system, while Winston [74] focuses on causality . Structure-
mapping theory subsumes these treatments in three ways . First, it defines mapping rules which are

independent of particular domains or primitives. Second, the Structure-mapping characterization
applies across a range of applications of analogy, including problem solving, understanding expla-

nations, etc . Third, the Structure-mapping account treats analogy as one of a family of similarity
comparisons, each with particular psychological privileges, and thus explains more phenomena.

Some models have combined an explicit Structure-mapping component to generate potential
interpretations of a given analogy with a pragmatic component to select the relevant interpretation

(e .g ., [5,47] . Given our experience with PHINEAS, we believe SME will prove to be a useful tool for

such systems.
SME computes a structural match first, and then uses this structural match to derive candidate

inferences . The implementations of Winston [73] and Burstein [5] are similar to SME in this respect.
An alternate strategy is used by Winston [74], Kedar-Cabelli [47], Carbonell [6,7], and Greiner

The Structure-Mapping Engine

	

36

[38] . These programs do not perform a match per se, but instead attempt to carry over "relevant"

structure first and modify it until it applies to the target domain . The match arises as an implicit
result of the structure modification . We know of no complexity results available for this technique,

but we suspect it is much worse than SME . It appears that there is great potential for extensive
search in the modification method . Furthermore, the modification method effectively requires that
the access mechanism is able to provide only salient structures (e .g ., purpose-directed [47]), since
the focusing mechanism of a partial match is not present . This means these systems are unlikely
to ever derive a surprising result from an analogy.

A very different approach is taken by Holyoak [44] . In this account, there is no separate
stage of structural matching. Instead, analogy is completely driven by the goals of the current

problem-solving context . Retrieval of the base domain is driven by an abstract scheme of current
problem-solving goals . Creating the mapping is interleaved with other problem-solving activities.

This "pragmatic" account, while appealing in some ways, has several crucial limitations . First,
the pragmatic model has no account of soundness in terms of systematicity . Without structural

consistency, the search space for matching explodes (see below) . Second, the pragmatic account can

only be defined in problem-solving contexts . Yet analogy is used for purposes other than problem
solving, including many contexts in which relevance does not apply . Analogy can be used to explain

a new concept and to focus attention on a particular aspect of a situation . Analogy can result in
noticing commonalities and conclusions that are totally irrelevant to the purpose at hand . Thus

an analogy interpretation algorithm that requires relevance cannot be a general solution [30,31].
Third, psychological data indicates that access is driven by surface similarity, not relevance, as

described previously.
We believe the modularity imposed by the Structure-mapping account has several desirable

features over the pragmatic account . In the Structure-mapping account, the same match procedure
is used for all applications of analogy. For example, in a problem-solving environment, current plans

and goals influence what is accessed . Once base and target are both present, the analogy mapping

is performed, independently of the particular context . Its results can then be examined and tested
as part of the problem-solving process (see [30,31].

SME demonstrates that an independent, structural matcher can be built which is useful in several
tasks and for a variety of examples (over 40 at this writing) . By contrast, no clear algorithms have

been presented based on the pragmatic account, and published accounts so far [43] describe only
two running examples . Another issue is that of potential complexity . The "typical case" bounds we

have been able to derive so far are not very precise, and a more complete complexity analysis would
certainly be desirable . However, the analysis so far indicates reasonable typical case performance

(roughly, 0(N2)), and the empirical results bear this out . Our excellent performance arises from
the fact that SME focuses on local properties of the representation . On the other hand, the pragmatic

account appears to involve arbitrary inference, and arbitrary amounts of knowledge, in the mapping

process . Thus we would expect that the average-case computational complexity of a pragmatically
oriented matcher will be dramatically worse than SME.

5 .1 Matching Algorithms

To our knowledge, SME is unique in that it generates all structurally consistent analogical map-
pings without search . Previous matchers have utilized heuristic search through the space of pos-

sible matches, typically returning a single, best match (e .g., [14,40,49,51,68,69,72,73,74]) . Some

The Structure-Mapping Engine

	

37

researchers on analogy have suggested that generating all possible interpretations is computation-

ally intractable [40,73,49] . Our analysis and empirical results indicate that this conclusion must
be substantially modified . Only when structural constraints do not exist, or are ignored, does the

computation become intractable . For instance, in [49] the knowledge base was uniform and had no
higher-order structure . In such cases exponential explosions are unavoidable.

Winston's original matcher [73] heuristically searched for a single best match . It begins by

enumerating all entity pairings and works upward to match relations, thus generating all NEb!/(NEb-
NEt)! possible entity pairings . Because SME only introduces entity pairings when suggested by
potential shared relational structure, it typically generates many fewer entity pairings . Some limited
amount of pruning due to domain-specific category information was also available on demand,
such as requiring that males match with males . By contrast, SME ignores attributes when in
analogy mode, unless they play a role in a larger systematic structure . Winston's scoring scheme
would attribute one point for each shared relation (e .g., LOVE, CAUSE), property (e .g ., STRONG,
BEAUTIFUL), and class classification (e .g ., A-KIND-OF(?x, woman)) . Unlike SME 's analogy rules,
this scheme makes no distinction between a single, systematic relational chain and a large collection
of independent facts.

Winston's later system [74] used importance-dominated matching, where certain relationships

(such as causal or other constraining relationships) were placed in correspondence first, and helped
guide the rest of the match. This is similar in spirit to SME's : intern match constructor rules,

which generate hypotheses necessary for structural consistency based on a local hypothesis . How-
ever, instead of assembling global solutions from local matches as SME does, Winston's matcher

constructed correspondences by heuristic search, guided in part by functions which determine the
similarity of parts . The notion of structural consistency was never formalized and exploited as a

constraint . However, Winston's system was the first to be tested on a wide variety of examples
from several domains, thus setting an important methodological example . It still stands today

as the most complete analogical reasoning and learning system, incorporating a model of access,

reasoning via precedents, and learning new rules from examples.
Kline 's RELAX system [49] focused on matching relations rather than entities . RELAX did

not attempt to maintain structural consistency, allowing many-to-one mappings between entities
or predicate instances . In conjunction with a semantic network, RELAX was able to match items

having quite different syntax (e .g., (Segment Al A2) matching (Angle Al X A2)) . However, there
was no guarantee that the best match would be found due to local pruning during search.

Programs for forming inductive generalizations have also addressed the partial matching prob-
lem. These systems use a heuristically pruned search to build up sets of correspondences between

terms which are then variablized to form generalized concept descriptions . Since these systems were
not designed for analogy, they resemble the operation of SME programmed as a literal graph matcher

(e .g ., they could not match Pressure to Temperature) . Hayes-Roth & McDermott 's SPROUTER

[40] and Diettrich & Michalski ' s INDUCE 1 .2 [14] possess our restriction of one-to-one consistency in
matching . Vere 's THOTH system [68,69] uses less stringent match criteria . Once the initial sets of

matched terms are built, previously unmatched terms may be added to the match if their constants
are in related positions . In the process, THOTH may allow many—to—one mappings between terms.

The usefulness of many–to–one mappings in matches has been discussed in the literature
[40,49] . Hayes-Roth & McDermott [40] advocate the need for many-to-one mappings among en-

tities. Kline [49] calls for many-to-one mappings between propositions as well . For example,
Kline points out that in trying to match a description of National League baseball to American

The Structure-Mapping Engine

	

38

League baseball, the statement (male NLpitcher) should match both (male ALpitcher) and

(male ALdesignatedhitter).
Allowing many–to–one mappings undercuts structural consistency, which in our view is central

to analogy. Many–to–one mappings appear to be permitted in artistic metaphor, but are not
viewed as acceptable by subjects in explanatory, predictive analogies [28,36] . However, we agree

that multiple mappings are sometimes useful [11] . We propose that many–to–one mappings should

be viewed as multiple analogies between the same base and target . Since SME produces all of the
interpretations of an analogy, a postprocessor could keep more than one of them to achieve the

advantages of many–to–one mappings, without sacrificing consistency and structural clarity. Thus,
in the baseball example, SME would produce an offense interpretation and a defense interpretation.

5 .2 Other Pattern-Matching systems

Clearly Structure-mapping is a form of pattern-matching, but it is different than previous pattern-

matchers. For example, it should be clear that Structure-mapping neither subsumes unification
nor is subsumed by it . Consider the pair of statements

(CAUSE (FLY PERSON1) (FALL PERSON1))
(CAUSE (FLY PERSON2) (FALL PERSON2))

These could be part of a legitimate analogy, with PERSON1 being mapped to PERSON2, but these
two statements do not unify since PERSON1 and PERSON2 are distinct constants . Conversely,

(CAUSE (?X PERSON1) (FALL PERSON1))
(CAUSE (FLY ?Y) (FALL ?Z))

will unify, assuming ? indicates variables, with the substitutions:

?X

	

FLY

?Y

	

PERSON1
?Z

	

PERSON1

However, since Structure-mapping treats variables as constants, these statments fail to be analogous

in two ways . First, FLY and ?X are treated as distinct relations, and thus cannot match . Second,

?Y and ?Z are considered to be distinct entities, and thus are forbidden to map to the same target
item (i .e ., PERSON1).

Most importantly, the goals of Structure-mapping and unification are completely different.
Unification seeks a set of substitutions which makes two statements identical . Structure-mapping

seeks a set of correspondences between two descriptions which can suggest additional inferences.
Unlike unification, partial matches are perfectly acceptable.

Several of the implementation techniques used in SME are however similar in spirit to those
used in axiomatized unifiers [4,52,54], which use equational theories (such as associativity and

commutativity) to extend equality beyond identicality .

The Structure-Mapping Engine

	

39

6 Discussion

We have described the Structure-Mapping Engine, a tool-kit for building matchers consistent with
Gentner's Structure-mapping theory of analogy and similarity . We have described SME's algorithm

in sufficient detail to allow replication by other researchers . 8 SME is both efficient and flexible.
A particular matching algorithm is specified by a set of constructor rules and evidence rules . It

produces all structurally consistent interpretations of a match, without backtracking . The interpre-
tations include the candidate inferences suggested by the match and a structural evaluation score,

which gives a rough measure of quality. SME has been used both in cognitive simulation studies and

a machine learning project . In the cognitive simulation studies, the results so far indicate that SME,

when guided with analogy rules, replicates human performance . In the machine learning project

(PHINEAS), SME ' s flexibility provides the means for constructing new qualitative theories to explain
observations.

While our complexity analysis indicates that SME's worst-case performance is factorial, the
empirical experience is that the typical behavior is much better than that . Importantly, the char-

acteristic which determines efficiency is not size, but the degree of structure of the knowledge.
Unlike many AI systems, SME performs better with more systematic, relational descriptions.

In this section we discuss some broader implications of the project, and sketch some of our plans
for future work.

6.1 Representational issues

The SME algorithm is of necessity sensitive to the detailed form of the representation, since we are

forbidding domain-specific inference in the matching process . Existing AI systems rarely have more
than one or two distinct ways to describe any particular situation or theory . But as our programs

grow more complex (or as we consider modeling the range and depth of human knowledge) the num-
ber of structurally distinct representations for the same situation is likely to increase . For example,

a story might be represented at the highest level by a simple classification (i .e ., GREEK-TRAGEDY),
at an intermediate level by relationships involving the major characters (i .e ., (CAUSE (MELTING

WAX) FALL23)), and at the lowest level by something like conceptual dependencies . An engineer ' s

knowledge of a calculator might include its functional description, the algorithms it uses, and the
axioms of arithmetic expressed in set theory . Unless there is some window of overlap between the

levels of description for base and target, no analogy will be found . When our representations reach
this complexity, how could SME cope?

There are several possible approaches to this problem. Consider the set of possible representa-
tions for a description . Assume these representations can be ordered (at least partially) in terms of

degree of abstraction. If two descriptions are too abstract, there will either be no predicate overlap
(e .g ., GREEK-TRAGEDY versus SHAKESPEARE-DRAMA) or identity (e .g ., TRAGEDY versus TRAGEDY) . On

the other hand, if two descriptions are greatly detailed, there can be too many spurious, inconse-

quential matches (e .g ., describing the actions of characters every microsecond) . The problem is to
find levels of description which provide useful analogies . We believe one solution is to invoke SME

repeatedly, using knowledge of the definitions of predicates to "slide" the base or target descriptions
up or down in the space of possible representations appropriately.

8 SME is publically available for interested researchers . There is a manual available [18] which provides extensive
implementation-level details and interface information .

The Structure-Mapping Engine

	

40

An orthogonal consideration is the degree of systematicity . Worst-case behavior tends to occur

when representations are large and relatively flat . Changes in representation can make large dif-
ferences. For example, a PHINEAS problem which took SME 53 minutes was reduced to 34 seconds

by imposing more systematic structure . We are currently exploring these trade-offs to formulate
more precise constraints on useful representations for analogical reasoning and learning.

6.2 Addressing the Combinatorics

As we have shown, SME is 0 (N 2) except for the last critical merge step, which has 0 (NO worst-case

performance . Our experience with both small (11 expressions) and large (71 expressions) domain
descriptions indicates that performance is more a function of representation and repetitiveness

rather than a function of size . We have found that even moderately structural domain descriptions
produce excellent performance . However, in practice it is not always convenient to avoid traditional,

flat domain representations . For example, SME is unable to duplicate Kline's baseball analogy

[49] within a reasonable amount of time (i .e., hours) . This is due to his flat description of the
domain (e .g., (MALE catcher), (BATS left-fielder), (BATS center-fielder), etc .) . Thus for

some cases, generating all possible interpretations of an analogy may be prohibitive . Previous
analogy programs used matching algorithms that are specifically designed around heuristic search

mechanisms . SME offers a clean line between generating all possibilities and imposing heuristic
limitations . If we stop after the first merge step, SME provides an 0 (N2) algorithm for generating

the complete set of initial gmaps! The subsequent merge steps could then be heuristically driven
through a limited search procedure (e .g., beam-search, best-first, etc .) to produce the best or N

best maximal interpretations. Alternatively, we could retain the current SME design (recall that
the second merge step is required to support candidate inference generation and is almost always

0(N 2) or better) and simply drop the troublesome third merge step . This is an (unused) option

that the current implementation provides . We have not yet explored the ramifications of dropping
merge step 3, although work with PHINEAS has indicated the need for the maximality criterion in

practice.
In the next sections, we discuss the potential for parallel versions of the SME algorithm . In par-

ticular, we argue that (1) there are many opportunities for parallel speedup, and (2) the expensive
merge steps can be eliminated in principle.

6.2 .1 Medium-grained Parallel Architectures

We begin by examining each stage of the algorithm to see how it might be decomposed into parallel
operations, and what kinds of speedups might result . First we assume a software architecture that

allows tasks to be spawned for parallel execution (such as [1]), and we ignore communications and
setup costs.

Constructing Match Hypotheses All :filter rules can be run independently, giving rise to
0 (N 2) tasks. With enough processors this could be done in constant time, assuming the

Structure-Mapping match constructor rules . Each : intern rule can be run on every match
hypothesis as it gets created . Since these rules can in turn create new match hypotheses, but

only involving an expression's arguments, the best speed-up would be roughly the log of the

input .

The Structure-Mapping Engine

	

41

Computing Conflicting, Emaps, and NoGood sets The Conflicting set computation is completely

local . It could either be organized around each base or target item, or around pairs of match
hypotheses. Finding the Emaps and No Good sets require propagation of results upwards, and

hence again will take log time.

Merge Step 1 : Form initial combinations Recall that this step starts from the roots of the
match hypothesis graph, adding the subgraph to the list of gmaps if the hypothesis is not
inconsistent and recursing on its offspring otherwise . The results from each root are inde-
pendent, and so may be done as separate tasks . If each recursive step spawns a new process
to handle each offspring, then the minimum time is proportional again to the order of the
highest root in the graph.

Merge Step 2 : Combine dependent but unconnected gmaps Recall that this step combines
initial gmaps which share common base structure and are not inconsistent when taken to-
gether . This procedure can be carried out bottom-up, merging pairs which share base struc-
ture and are consistent together and then recursing on the results . The computation time
will be logarithmic in the number of gmaps.

Merge Step 3 : Combine independent collections This can be performed like the previous
step, but skipping pairs of gmaps that have common structure (since they would have been
merged previously and hence must be inconsistent) . Again, with enough processors the time
is bounded by the log of the number of gmaps . However, since the number of gmaps is in the
worst case factorial, the number of tasks required could become rather large.

This cursory analysis no doubt glosses over several problems lurking in creating a highly parallel

version of the SME algorithm . However, we believe such algorithms could be very promising.
SME's simplicity also raises another interesting experimental possibility . Given that currently

many medium-grain parallel computers are being built with reasonable amounts of RAM and a lisp
environment on each machine, one can imagine simply loading a copy of SME into each processor.
Access experiments, for example, would be greatly sped up by allowing a pool of SME's to work over
the knowledge base in a distributed fashion.

6.2 .2 Connectionist Architectures

Another interesting approach would be to only generate a single, best gmap while still maintaining
SME's "no search" policy . The problem of choosing among all possible interpretations in analogy

processing is very much like choosing among possible interpretations of the sentence "John shot two

bucks" in natural language processing . A "no search" solution to this natural language problem was
provided by the connectionist work of Waltz and Pollack [71] . Rather than explicitly constructing

all possible sentence interpretations and then choosing the best one, Waltz and Pollack used their
networks to implicitly represent all of the possible choices . Given a particular network, spreading

activation and lateral inhibition were used to find the single best interpretation . This work in
fact inspired the use of the BMS for representing evidential relationships and helped motivate the

decomposition of the processing into the local/global steps.
Consider the network produced by SME prior to the gmap merge steps (shown in Figure 5).

Some match hypotheses support each other (grounding criterion) while others inhibit each other
(Conflicting relations) . Viewing this as a spreading activation, lateral inhibition network, it appears

The Structure-Mapping Engine

	

42

that standard connectionist relaxation techniques could be used to produce a "best" interpretation

without explicitly generating all gmaps . Furthermore, it may be possible to generate the second-
best, third-best, etc . interpretations on demand by inhibiting the nodes of the best interpretation,

forcing the second best to rise . Thus SME would be able to establish a global interpretation simply
as an indirect consequence of the establishment of local structural consistency and systematicity.
This would eliminate the single most expensive computation of the SME algorithm. By eliminating
explicit generation of all gmaps, the complexity of the algorithm could drop to the 0(N2) required
to generate the connectionist network.

6.3 Future Work

6.3 .1 Cognitive Simulation

We are conducting additional cognitive simulation studies of analogical reasoning, memory, and
learning involving SME . One line of experiments concerns the development of analogical reason-
ing . Psychological research shows a marked developmental shift in analogical processing. Young
children rely on surface information in analogical mapping ; at older ages, systematic mappings
are preferred [34,35,45,70] . Further, there is some evidence that a similar shift from surface to
systematic mappings occurs in the novice-expert transition in adults [8,50,57,58].

In both cases there are two very different interpretations for the analogical shift : (1) acquisition
of knowledge ; or (2) a change in the analogy algorithm . The knowledge-based interpretation is

that children and novices lack the necessary relational structures to guide their analogizing . The

second explanation is that the algorithm for analogical mapping changes, either due to matura-
tion or learning . In human learning it is difficult to decide this issue, since exposure to domain

knowledge and practice in analogy and reasoning tend to occur simultaneously . SME gives us a
unique opportunity to vary independently the analogy algorithm and the amount and kind of do-

main knowledge . For example, we can compare identical evaluation algorithms operating on novice
versus expert representations, or we can compare different analogy evaluation rules operating on

the same representation.
There are two problems with our current structural evaluation score computation . First, there

are several other structural properties which should enter into the SES, such as the number and
size of connected components, the existence and structure of the candidate inferences . Second, it

is not normalized with respect to the sizes of the base and target domains . The current SES can

be used to compare matches of different bases to the same target, or different targets to the same
base . But it cannot be used to compare two completely different analogies (i .e ., different bases and

different targets) . Janice Skorstad is building a programmable structural evaluator module that
will let us experiment with these factors and different normalization schemes [64] . We suspect that

being able to tune the structural evaluation criteria might allow us to model individual differences
in analogical processing . For example, a conservative strategy might favor taking gmaps with some

candidate inferences but not too many, in order to maximize the probability of being correct.
We are also exploring ways to reduce the potential for tailorability in the process of translating

descriptions provided as experimental stimuli for human subjects into formal representations for SME

input . For example, Janice Skorstad is creating a graphical editor for producing graphical figures
for experimental stimuli . One output of the editor is a picture which can be used as a stimulus
for psychological experiments . The other output is a set of symbolic assertions with numerical
parameters, which is expanded into SME input by a simple inference engine that calculates spatial

REFERENCES

	

43

relationships, such as INSIDE or LEFT-OF . Inspired by Winston 's use of a pidgin-English parser for

input [74], we are also seeking a parser that, perhaps in conjunction with a simple inference engine,
can produce useful descriptions of stories.

6.3 .2 Machine Learning Studies

Falkenhainer's PHINEAS program is part of the Automated Physicist Project at the University of

Illinois . This project, led by Forbus and Gerald DeJong, is building a collection of programs that
use qualitative and quantitative techniques for reasoning and learning about the physical world.

DeJong and his students have built several programs that use Explanation-Based Learning [12,13]

to acquire knowledge of the physical world [61,55] . Forbus' group has developed a number of
useful qualitative reasoning programs [24,25,42] which can be used in learning projects (as PHINEAS

demonstrates) . By combining these results, we hope to build systems that can reason about a wide
range of physical phenomena and learn both from observation and by being taught.

7 Acknowledgements

The authors wish to thank Janice Skorstad, Danny Bobrow, and Steve Chien for helpful comments
on prior drafts of this paper . Janice Skorstad provided invaluable assistance in encoding domain

models. Alan Frisch provided pointers into the unification literature.
This research is supported by the Office of Naval Research, Contract No . N00014-85-K-0559.

Additional support has been provided by IBM, both in the form of a Graduate Fellowship for
Falkenhainer and a Faculty Development award for Forbus . The equipment used in this research

was provided by an equipment grant from the Information Sciences Division of the Office of Naval
Research, and from a gift from Texas Instruments.

References

[1] Allen, D ., Steinberg, S . and Stabile, L . Recent developments in Butterfly Lisp . Proceedings of
AAAI-87, Seattle, 1987.

[2] Anderson, J ., The Architecture of Cognition, Harvard University Press, Cambridge, Mass,

1983.

[3] Buckley, S ., Sun up to sun down, McGraw-Hill Company, New York, 1979.

[4] Bundy, A ., The computer modelling of mathematical reasoning, Academic Press, 1983

[5] Burstein, M ., Concept formation by incremental analogical reasoning and debugging, in : Pro-
ceedings of the Second International Workshop on Machine Learning, University of Illinois,

Monticello, Illinois, June, 1983 . A revised version appears in Machine Learning : An Artifi-
cial Intelligence Approach Vol . II, R.S . Michalski, J .G . Carbonell, and T .M. Mitchell (Eds .),

Morgan Kaufman, 1986.

[6] Carbonell, J .G ., Learning by Analogy : Formulating and generalizing plans from past ex-

perience, in : Machine Learning: An Artificial Intelligence Approach, R .S . Michalski, J .G.

Carbonell, and T .M . Mitchell (Eds.), Morgan Kaufman, 1983 .

REFERENCES

	

44

[7] Carbonell, J .G ., Derivational analogy in problem solving and knowledge acquisition, in : Pro-
ceedings of the Second International Machine Learning Workshop, University of Illinois, Mon-
ticello, Illinois, June, 1983. A revised version appears in Machine Learning : An Artificial Ap-
proach Vol . II, R.S. Michalski, J .G . Carbonell, and T .M . Mitchell (Eds .), Morgan Kaufman,
1986.

[8] Chi, M.T.H., R . Glaser, E. Reese, Expertise in problem solving . In R . Sternberg (Ed .), Ad-
vances in the psychology of human intelligence (Vol . 1) . Hillsdale, N .J., Erlbaum, 1982.

[9] Clement, J . Analogy generation in scientific problem solving . Proceedings of the third annual
meeting of the Cognitive Science Society, 1981.

[10] Clement, J . Analogical reasoning patterns in expert problem solving . Proceedings of the fourth
annual meeting of the Cognitive Science Society, 1982.

[11] Collins, A.M., & Gentner, D . How people construct mental models . In D . Holland and N . Quinn

(Eds.) Cultural models in language and thought . Cambridge, England: Cambridge University,

1987.

[12] DeJong, G. Generalizations based on explanations . Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, August, 1981

[13] DeJong, G ., and Mooney, R . Explanation-based Learning : An alternative view . Machine
Learning, Volume 1, No . 2, 1986

[14] Diettrich, T ., & Michalski, R.S ., Inductive learning of structural descriptions : evaluation

criteria and comparative review of selected methods, Artificial Intelligence 16, 257-294, 1981.

[15] Falkenhainer, B ., Towards a general-purpose belief maintenance system, in : J .F . Lem-

mer (Ed .), Uncertainty in Artificial Intelligence, Volume II, 1987. Also Technical Report,
UIUCDCS-R-87-1717, Department of Computer Science, University of Illinois, 1987.

[16] Falkenhainer, B ., An examination of the third stage in the analogy process : Verification-
Based Analogical Learning, Technical Report UIUCDCS-R-86-1302, Department of Computer

Science, University of Illinois, October, 1986 . A summary appears in Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan, Italy, August, 1987.

[17] Falkenhainer, B ., Scientific theory formation through analogical inference, Proceedings of the
Fourth International Machine Learning Workshop, Irvine, CA, June, 1987.

[18] Falkenhainer, B ., The SME user's manual, Technical Report UIUCDCS-R-88-1421, Depart-

ment of Computer Science, University of Illinois, 1988.

[19] Falkenhainer, B ., Learning from Physical Analogies : An adaptive approach to understanding

physical observations, Ph .D . Thesis, University of Illinois, (in preparation).

[20] Falkenhainer, B ., K.D . Forbus, D . Gentner, The Structure-Mapping Engine, Proceedings of
the Fifth National Conference on Artificial Intelligence, August, 1986.

[21] Forbus, K .D ., "Qualitative Reasoning about Physical Processes " , Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, August, 1981 .

REFERENCES

	

45

[22] Forbus, K .D., Qualitative Process Theory, Artificial Intelligence 24, 1984.

[23] Forbus, K .D., Qualitative Process Theory, Technical Report No . 789, MIT Artificial Intelli-
gence Laboratory, July, 1984.

[24] Forbus, K. Interpreting measurements of physical systems, in : Proceedings of the Fifth National
Conference on Artificial Intelligence, August, 1986.

[25] Forbus, K. The Qualitative Process Engine, Technical Report UIUCDCS-R-86-1288, Depart-
ment of Computer Science, University of Illinois, December, 1986.

[26] Forbus, K .D. and D . Gentner, Learning Physical Domains : Towards a theoretical framework,
In Proceedings of the Second International Machine Learning Workshop, University of Illinois,

Monticello, Illinois, June, 1983 . A revised version appears in Machine Learning : An Arti-
ficial Approach Vol. II, R .S . Michalski, J .G. Carbonell, and T .M . Mitchell (Eds .), Morgan
Kaufmann, 1986.

[27] Gentner, D., The structure of analogical models in science, BBN Tech . Report No. 4451,
Cambridge, MA ., Bolt Beranek and Newman Inc ., 1980.

[28] Gentner, D., Are scientific analogies metaphors?, in : Miall, D ., Metaphor : Problems and
Perspectives, Harvester Press, Ltd ., Brighton, England, 1982.

[29] Gentner, D ., Structure-mapping : A theoretical framework for analogy, Cognitive Science 7(2),
1983.

[30] Gentner, D ., Mechanisms of analogy . To appear in S . Vosniadou and A . Ortony, (Eds .), Simi-
larity and analogical reasoning . Presented in June, 1986.

[31] Gentner, D ., Analogical inference and analogical access, in A . Preiditis (Ed .), Analogica: Pro-
ceedings of the First Workshop on Analogical Reasoning, London, Pitman Publishing Co ., 1988
Presented in December, 1986.

[32] Gentner, D ., & D .R. Gentner, Flowing waters or teeming crowds : Mental models of electricity,
In D. Gentner & A.L. Stevens, (Eds .), Mental Models, Erlbaum Associates, Hillsdale, N .J .,

1983.

[33] Gentner, D., & R . Landers, Analogical reminding : A good match is hard to find . In Proceedings
of the International Conference on Systems, Man and Cybernetics . Tucson, Arizona, 1985.

[34] Gentner, D . Metaphor as structure-mapping : The relational shift . Child Development, 59,
47-59, 1988.

[35] Gentner, D., & C . Toupin, Systematicity and Surface Similarity in the Development of Analogy,

Cognitive Science, 1986.

[36] Gentner, D ., Falkenhainer, B ., & Skorstad, J . Metaphor : The good, the bad and the ugly.

Proceedings of the Third Conference on Theoretical Issues in Natural Language Processing,
Las Cruces, New Mexico, January, 1987 .

REFERENCES

	

46

[37] Ginsberg, M.L., Non-Monotonic reasoning using Dempster 's rule, Proceedings of the Fourth
National Conference on Artificial Intelligence, August, 1984.

[38] Greiner, R ., Learning by understanding analogies, Artificial Intelligence 35 (1), 81-125, 1988.

[39] Hall, R. Computational approaches to analogical reasoning : A comparative analysis . To appear

in Artificial Intelligence.

[40] Hayes-Roth, F ., McDermott, J . An interference matching technique for inducing abstractions,

Communications of the ACM, 21(5), May, 1978.

[41] Hofstadter, D .R., The Copycat project : An experiment in nondeterministic and creative analo-

gies. M.I.T. A .I . Laboratory memo 755 . Cambridge, Mass : M.I.T., 1984.

[42] Hogge, J . Compiling plan operators from domains expressed in qualitative process theory,
Proceedings of the Sixth National Conference on Artificial Intelligence, Seattle, WA, July,

1987.

[43] Holland, J .H ., Holyoak, K.J ., Nisbett, R .E., & Thagard, P ., Induction: Processes of inference,
learning, and discovery, 1987.

[44] Holyoak, K.J . The pragmatics of analogical transfer . In G .H. Bower (Ed .), The psychology of
learning and motivation. Vol. I. New York: Academic Press, 1984.

[45] Holyoak, K.J ., E .N. Juin, D .O. Gillman (in press) . Development of analogical problem-solving
skill . Child Development.

[46] Indurkhya, B ., "Constrained Semantic Transference : A formal theory of metaphors," Technical
Report 85/008, Boston University, Department of Computer Science, October, 1985.

[47] Kedar-Cabelli, S ., Purpose-Directed Analogy. Proceedings of the Seventh Annual Conference
of the Cognitive Science Society, Irvine, CA, 1985.

[48] Kedar-Cabelli, S . T. (in press) . Analogy : From a unified perspective . To appear in D . H.

Heiman (Ed.), Analogical reasoning: Perspectives of artificial intelligence, cognitive science,
and philosophy . Dordrecht, Nolland: D . Reidel Publishing Company.

[49] Kline, P.J ., "Computing the similarity of structured objects by means of a heuristic search for
correspondences", Ph .D. Thesis, Department of Psychology, University of Michigan, 1983.

[50] Larkin, J .H. Problem representations in physics . In D . Gentner & A .L. Stevens (Eds.) Mental
Models . Hillsdale, N .J., Lawrence Erlbaum Associates, 1983.

[51] Michalski, R .S ., " Pattern recognition as rule-guided inductive inference " IEEE Transactions
on Pattern Analysis and Machine Intelligence 2(4), pp . 349-361, 1980.

[52] Plotkin, G .D., Building in equational theories, in : Machine Intelligence 7, Meltzer, B . &
Michie, D. (Eds .), John Wiley & Sons, 1972.

[53] Prade, H., "A synthetic view of approximate reasoning techniques," Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, 1983 .

REFERENCES

	

47

[54] Raulefs, P., Siekmann J ., Szabo, P., & Unvericht, E ., A short survey on the state of the art in

matching and unification problems, ACM SIGSAM Bulletin 13(2), 14-20, May, 1979.

[55] Rajamoney, S ., DeJong, G., and Faltings, B . Towards a model of conceptual knowledge acquisi-

tion through directed experimentation . Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, Los Angeles, CA, August, 1985.

[56] Rattermann, M .J., and Gentner, D . Analogy and Similarity : Determinants of accessibility and

inferential soundness, Proceedings of the Cognitive Science Society, July, 1987.

[57] Reed, S .K., A Structure-mapping model for word problems . Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 13(1), 124-139, 1987.

[58] Ross, B .H., Remindings and their effects in learning a cognitive skill, Cognitive Psychology,
16, 371-416, 1984.

[59] Rumelhart, D .E., & Norman, D .A., Analogical processes in learning . In J .R. Anderson (Ed .),

Cognitive skills and their acquisition, Hillsdale, N .J ., Erlbaum, 1981.

[60] Shafer, G ., A mathematical theory of evidence, Princeton University Press, Princeton, New

Jersey, 1976.

[61] Shavlik, J .W . Learning about momentum conservation . Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, CA, August, 1985

[62] Stickel, M. A complete unification algorithm for associative-commutative functions, in : Pro-
ceedings of IJCAI-75, Tbilisi, Georgia, USSR, 71-76, 1975.

[63] Tversky, A. Representation of structure in similarity data : Problems and prospects . Psychome-
trika 39, 373-421, 1974.

[64] Skorstad, J ., A structural approach to abstraction processes during concept learning, Master's

Thesis, 1988.

[65] Skorstad, J ., Falkenhainer, B ., Gentner, D ., Analogical Processing : A simulation and empiri-
cal corroboration, in : Proceedings of the Sixth National Conference on Artificial Intelligence,
Seattle, WA, August, 1987.

[66] Van Lehn, K . & J .S . Brown, Planning nets : A representation for formalizing analogies and

semantic models of procedural skills . In R.E . Snow, P.A . Federico & W .E . Montague (Eds .),
Aptitude, learning and instruction : Cognitive process analyses . Hillsdale, N .J . Erlbaum, 1980.

[67] Van Lehn, K., "Felicity conditions for human skill acquisition : Validating an AI-based theory,"
Xerox Palo Alto Research Center Technical Report CIS-21, 1983.

[68] Vere, S ., "Induction of concepts in the predicate calculus", Proceedings of the Fourth Interna-
tional Joint Conference on Artificial Intelligence, 1975.

[69] Vere, S ., "Inductive learning of relational productions", In Waterman & Hayes-Roth (Eds .),
Pattern-Directed Inference Systems, 1978 .

REFERENCES

	

48

[70] Vosniadou, S ., On the development of metaphoric competence . University of Illinois:

Manuscript submitted for publication, 1985.

[71] Waltz, D .L. & Pollack, J .B., Massively Parallel Parsing : A strongly interactive model of natural

language interpretation, Cognitive Science 9, 51-74, 1985.

[72] Winston, P.H ., Learning structural descriptions from examples, Ph .D. thesis, Report AI-

TR-231, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

1970.

[73] Winston, P.H., Learning and Reasoning by Analogy, Communications of the ACM, 23(12),

1980.

[74] Winston, P .H., Learning new principles from precedents and exercises, Artificial Intelligence,
19, 321-350, 1982 .

REFERENCES

	

49

A SME Match Rules

The construction of a match is guided by a set of match rules that specify which expressions
and entities in the base and target might match and estimate the believability of each possible

component of a match . In our experiments using SME, we currently use three types of rule sets,
literal similarity, analogy, and mere appearance.

A.1 Literal Similarity (LS) Rules

The literal similarity rules look at both relations and object descriptions.

;;; ; Define MH constructor rules

;; If predicates are the same, match them

(MHC-rule (:filter ?b ?t :test (eq (expression-functor ?b) (expression-functor ?t)))

(install-MH ?b ?t))

;; Intern rule for non-commutative predicates - corresponding arguments only.
;; Match compatible arguments of already matched items

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(not (commutative? (expression-functor ?b)))

(not (commutative? (expression-functor ?t)))))

(do ((bchildren (expression-arguments ?b) (cdr bchildren))

(tchildren (expression-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))

(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(install-MH (first bchildren) (first tchildren)))
((and (function? (expression-functor (first bchildren)))

(function? (expression-functor (first tchildren))))

(install-MH (first bchildren) (first tchildren))))))

;; Intern rule for commutative predicates - any "compatible" arguments, regardless of order.
;; Match compatible arguments of already matched items

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(commutative? (expression-functor ?b))

(commutative? (expression-functor ?t))))

(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(cond ((and (entity? bchild) (entity? tchild))

(install-MH bchild tchild))

((and (function? (expression-functor bchild)) (function? (expression-functor tchild)))

(install-MH bchild tchild))))))

;;; ; Define MH evidence rules

;; having the same functor is a good sign

(assert! same-functor)

(rule ((:intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)
(eq (expression-functor ?b) (expression-functor ?t)))))

(if (function? (expression-functor ?b))

(assert! (implies same-functor (MH ?b ?t) (0 .2

	

. 0 .0)))

(assert! (implies same-functor (MH ?b ?t) (0 .5

	

. 0 .0)))))

REFERENCES

	

50

;;check children (arguments) match potential

(initial-assertion (assert! 'arguments-potentially-match))

(rule ((:intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t))))

(if (children-match-potential ?b ?t)

(assert! (implies arguments-potentially-match (MH ?b ?t) (0 .4

	

. 0 .0)))

(assert! (implies arguments-potentially-match (MH ?b ?t) (0 .0

	

. 0 .8)))))

;;if their order is similar, this is good. If the item is a function,
;; ignore since order comparisons give false support here.

(initial-assertion (assert! 'order-similarity))

(rule ((:intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)

(not (function? (expression-functor ?b)))

(not (function? (expression-functor ?t))))))

(cond ((= (expression-order ?b) (expression-order ?t))

(assert! (implies order-similarity (MH ?b ?t) (0 .3 . 0 .0))))

((or (= (expression-order ?b) (1+ (expression-order ?t)))

(= (expression-order ?b) (1- (expression-order ?t))))

(assert! (implies order-similarity (MH ?b ?t) (0 .2 . 0 .05))))))

;;propagate evidence down - systematicity
;; support for the arg will be 0.8 of the current support for the parent

(rule ((:intern (MH ?bl ?tl) :test (and (expression? ?bl) (expression? ?tl)
(not (commutative? (expression-functor ?bl)))))

(:intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?bl ?tl)))

(sme :assert! (implies (MH ?bl ?tl) (MH ?b2 ?t2) (0 .8 . 0 .0))))

(rule ((:intern (MH ?bl ?tl) :test (and (expression? ?bl) (expression? ?tl)

(commutative? (expression-functor ?bl))))

(:intern (MH ?b2 ?t2) :test (and (member ?b2 (expression-arguments ?bl) :test #'eq)

(member ?t2 (expression-arguments ?tl) :test #'eq))))

(sme :assert! (implies (MH ?bl ?tl) (MH ?b2 ?t2) (0 .8 . 0 .0))))

;;; ; Gmap rules

;; Support from its MH's . At this time we ignore other expressionors such as number
;; of candidate inferences, etc.

(rule ((:intern (GMAP ?gm)))

(dolist (mh (gm-elements ?gm))

(assert! '(implies ,(mh-form mh) (GMAP ?gm)))))

A.2 Analogy (AN) Rules

The analogy rules prefer systems of relations and discriminate against object descriptions . The
analogy evidence rules are identical to the literal similarity evidence rules and are not repeated

here. The match constructor rules only differ in their check for attributes:

;;; ; Define MH constructor rules

REFERENCES

	

51

;; If predicates are the same, match them

(MHC-rule (:filter ?b ?t :test (and (eq (expression-functor ?b) (expression-functor ?t))

(not (attribute? (expression-functor ?b)))))

(install-MH ?b ?t))

;; Match compatible arguments of already matched items.
;; Notice attributes are allowed to match here, since they are part of some higher relation that matched.

;; Intern rule for non-commutative predicates - corresponding arguments only.

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(not (commutative? (expression-functor ?b)))

(not (commutative? (expression-functor ?t)))))

(do ((bchildren (expression-arguments ?b) (cdr bchildren))

(tchildren (expression-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))

(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(install-MH (first bchildren) (first tchildren)))

((and (function? (expression-functor (first bchildren)))
(function? (expression-functor (first tchildren))))

(install-MH (first bchildren) (first tchildren)))

((and (attribute? (expression-functor (first bchildren)))
(eq (expression-functor (first bchildren)) (expression-functor (first tchildren))))

(install-MH (first bchildren) (first tchildren))))))

;; Intern rule for commutative predicates - any "compatible" arguments, not necessarily corresponding.

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(commutative? (expression-functor ?b))

(commutative? (expression-functor ?t))))

(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(cond ((and (entity? bchild) (entity? tchild))

(install-MH bchild tchild))

((and (function? (expression-functor bchild))

(function? (expression-functor tchild)))

(install-MH bchild tchild))

((and (attribute? (expression-functor bchild))
(eq (expression-functor bchild) (expression-functor tchild)))

(install-MH bchild tchild))))))

A.3 Mere Appearance (MA) Rules

The mere appearance rules focus on object descriptions and prevent matches between functions or

relations. As a result, the number of evidence rules is greatly reduced.

;;; ; Define MH constructor rules

(MHC-rule (:filter ?b ?t :test (and (eq (expression-functor ?b) (expression-functor ?t))

(<= (expression-order ?b) 1)
(<= (expression-order ?t) 1)))

(install-MH ?b ?t))

(MHC-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

REFERENCES

	

52

(not (commutative? (expression-functor ?b)))

(not (commutative? (expression-functor ?t)))))

(do ((bchildren (expression-arguments ?b) (cdr bchildren))

(tchildren (expression-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))

(if (and (entity? (first bchildren)) (entity? (first tchildren)))

(install-MH (first bchildren) (first tchildren)))))

(MHO-rule (:intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(commutative? (expression-functor ?b))

(commutative? (expression-functor ?t))))

(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(if (and (entity? bchild) (entity? tchild))

(install-MH bchild tchild)))))

;;; ; Define MH evidence rules

;; having the same functor is a good sign

(initial-assertion (assert! 'same-functor))

(rule ((:intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)

(eq (expression-functor ?b) (expression-functor ?t)))))

(cond ((attribute? (expression-functor ?b))

(assert! (implies same-functor (MH ?b ?t) (0 .5 . 0 .0))))

((= 1 (max (expression-order ?b) (expression-order ?t)))

(assert! (implies same-functor (MH ?b ?t) (0 .4 . 0 .0))))))

;;propagate evidence down - only for entity MH's caused by attribute pairings
;; support for the arg will be 0.9 of the current support for the parent

(rule ((:intern (MH ?bl ?tl) :test (and (expression? ?bl) (expression? ?tl)

(<= (max (expression-order ?bl)(expression-order ?tl)) 1)

(not (commutative? (expression-functor ?bl)))))

(:intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?bl ?tl)))

(sme :assert! (implies (MH ?bl ?tl) (MH ?b2 ?t2) (0 .9 . 0 .0))))

(rule ((:intern (MH ?bl ?tl) :test (and (expression? ?bl) (expression? ?tl)

(<= (max (expression-order ?bl)(expression-order ?tl)) 1)

(commutative? (expression-functor ?bl))))

(:intern (MH ?b2 ?t2) :test (and (member ?b2 (expression-arguments ?bl) :test #'eq)

(member ?t2 (expression-arguments ?tl) :test #'eq))))

(sme :assert! (implies (MH ?bl ?tl) (MH ?b2 ?t2) (0 .9 . 0 .0))))

;;; ; Gmap rules

;;; Support from its MH's . At this time we ignore other expressionors such as number of candidate inferences

(rule ((:intern (GMAP ?gm)))

(dolist (mh (gm-elements ?gm))

(assert! '(implies ,(mh-form mh) (GMAP ?gm)))))

B Sample Domain Descriptions

In this section we show the domain descriptions given to SME for the described examples .

REFERENCES

	

53

B .1 Simple Water Flow - Heat Flow

Water Flow

(defEntity water :type inanimate)

(defEntity beaker :type inanimate)

(defEntity vial :type inanimate)

(defEntity pipe :type inanimate)

(defDescription simple-water-flow

entities (water beaker vial pipe)

expressions (((flow beaker vial water pipe) :name wflow)

((pressure beaker) :name pressure-beaker)

((pressure vial)

	

:name pressure-vial)

((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial)) :name >diameter)

((cause >pressure wflow) :name cause-flow)

(flat-top water)
(liquid water)))

Heat Flow

(defEntity coffee :type inanimate)

(defEntity ice-cube :type inanimate)

(defEntity bar :type inanimate)

(defEntity heat :type inanimate)

(defDescription simple-heat-flow

entities (coffee ice-cube bar heat)

expressions (((flow coffee ice-cube heat bar) :name hflow)

((temperature coffee) :name temp-coffee)

((temperature ice-cube) :name temp-ice-cube)

((greater temp-coffee temp-ice-cube) :name >temperature)

(flat-top coffee)

(liquid coffee)))

B .2 Solar-System - Rutherford Atom

Solar System

(defEntity sun :type inanimate)

(defEntity planet :type inanimate)

(defDescription solar-system

entities (sun planet)

expressions (((mass sun) :name mass-sun)

((mass planet) :name mass-planet)
((greater mass-sun mass-planet) :name >mass)

((attracts sun planet) :name attracts)

((revolve-around planet sun) :name revolve)
((and >mass attracts) :name andl)

((cause andl revolve) :name cause-revolve)

((temperature sun) :name temp-sun)

((temperature planet) :name temp-planet)

REFERENCES

	

54

((greater temp-sun temp-planet) :name >temp)

((gravity mass-sun mass-planet) :name force-gravity)

((cause force-gravity attracts) :name why-attracts)))

Rutherford Atom

(defEntity nucleus :type inanimate)

(defEntity electron :type inanimate)

(defDescription rutherford-atom

entities (nucleus electron)

expressions (((mass nucleus) :name mass-n)

((mass electron) :name mass-e)

((greater mass-n mass-e) :name >mass)

((attracts nucleus electron) :name attracts)

((revolve-around electron nucleus) :name revolve)

((charge electron) :name q-electron)

((charge nucleus) :name q-nucleus)

((opposite-sign q-nucleus q-electron) :name >charge)

((cause >charge attracts) :name why-attracts)))

B .3 Karla Stories

Zerdia the eagle - base story

(defEntity Karla)

(defEntity hunter)

(defEntity feathers)

(defEntity cross-bow)

(defEntity Failed)

(defEntity high)

(defDescription base-5

entities (Karla hunter feathers cross-bow Failed high)
expressions (((bird Karla)

	

:name bird-Karla)

((person hunter) :name person-hunter)

((warlike hunter)

	

:name warlike-hunter)

((Karlas-asset feathers) :name feathers-asset)

((weapon cross-bow)

	

:name weapon-bow)

((used-for feathers cross-bow) :name has-feathers)

((not has-feathers)

	

:name not-has-feathers)

((attack hunter Karla)

	

:name attack-hunter)

((not attack-hunter)

	

:name not-attack)

((see Karla hunter)

	

:name see-Karla)

((follow see-Karla attack-hunter) :name follow-see-attack)

((success attack-hunter) :name success-attack)

((equals success-attack Failed)

	

:name failed-attack)

((cause not-has-feathers failed-attack) :name cause-failed-attack)

((desire hunter feathers)

	

:name desire-feathers)

((realize Karla desire-feathers) :name realize-desire)

((follow failed-attack realize-desire)

	

:name follow-realize)

((offer Karla feathers hunter)

	

:name offer-feathers)

((cause realize-desire offer-feathers)

	

:name cause-offer)

((obtain hunter feathers) :name take-feathers)
((cause offer-feathers take-feathers)

	

:name cause-take)

REFERENCES

	

55

((happiness hunter)

	

:name happiness-hunter)

((equals happiness-hunter high) :name happy-hunter)

((cause take-feathers happy-hunter)

	

:name cause-happy)

((promise hunter Karla not-attack)

	

:name promise-hunter)

((cause happy-hunter promise-hunter)

	

:name cause-promise)))

Zerdia the country - TA5

(defEntity Zerdia)

(def Entity Gagrach)

(defEntity supercomputer)

(defEntity missiles)

(defEntity failed)

(defEntity high)

(defDescription to-5

entities

	

(Zerdia Gagrach supercomputer missiles failed high)

expressions (((country Zerdia)

	

:name country-Zerdia)

((country Gagrach)

	

:name country-Gagrach)

((warlike Gagrach)

	

:name warlike-Gagrach)

((Zerdias-asset supercomputer)

	

:name supercomputer-asset)
((weapon missiles)

	

:name weapon-bow)

((used-for supercomputer missiles) :name use-supercomputer)

((not use-supercomputer) :name not-use-supercomputer)
((attack Gagrach Zerdia) :name attack-Gagrach)

((not attack-Gagrach)

	

:name not-attack)

((success attack-Gagrach)

	

:name success-attack)

((equals success-attack failed)

	

:name failed-attack)

((cause not-use-supercomputer failed-attack) :name cause-failed-attack)

((desire Gagrach supercomputer) :name desire-supercomputer)

((realize Zerdia desire-supercomputer)

	

:name realize-desire)

((follow failed-attack realize-desire)

	

:name follow-realize)

((offer Zerdia supercomputer Gagrach)

	

:name offer-supercomputer)

((cause realize-desire offer-supercomputer) :name cause-offer)

((obtain Gagrach supercomputer)

	

:name buy-supercomputer)

((cause offer-supercomputer buy-supercomputer) :name cause-buy)

((happiness Gagrach)

	

:name happiness-Gagrach)

((equals happiness-Gagrach high) :name happy-Gagrach)

((cause buy-supercomputer happy-Gagrach) :name cause-happy)

((promise Gagrach Zerdia not-attack)

	

:name promise)

((cause happy-Gagrach promise)

	

:name cause-promise)))

Zerdia the hawk - MA5

(defEntity Zerdia)

(defEntity sportsman)

(defEntity feathers)

(defEntity cross-bow)
(defEntity true)

(defDescription ma-5
entities

	

(Zerdia sportsman feathers cross-bow true)

expressions (((bird Zerdia)

	

:name bird-Zerdia)

((person sportsman)

	

:name person-sportsman)

((warlike sportsman)

	

:name warlike-sportsman)

REFERENCES

	

56

((Zerdias-asset feathers) :name feathers-asset)

((weapon cross-bow)

	

:name weapon-bow)

((used-for feathers cross-bow) :name has-feathers)

((desire sportsman feathers)

	

:name desire-feathers)

((realize Zerdia desire-feathers)

	

:name realize-desire)

((offer Zerdia feathers sportsman)

	

:name offer-feathers)

((cause realize-desire offer-feathers) :name cause-offer)

((obtain sportsman feathers)

	

:name take-feathers)

((cause offer-feathers take-feathers) :name cause-take)

((attack sportsman Zerdia)

	

:name attack-sportsman)

((not attack-sportsman)

	

:name not-attack)

((promise sportsman Zerdia not-attack)

	

:name promise)

((cause take-feathers promise) :name cause-promise)

((see Zerdia sportsman)

	

:name see-Zerdia)

((follow promise see-Zerdia)

	

:name follow-promise)

((follow see-Zerdia attack-sportsman)

	

:name follow-see)

((success attack-sportsman)

	

:name success-attack)
((equals success-attack true) :name successful-attack)

((cause has-feathers successful-attack) :name cause-success-attack)

((realize Zerdia has-feathers) :name realize-Zerdia)
((follow successful-attack realize-Zerdia) :name follow-succ-attack)))

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57

