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Abstract: The Structure-Mapping Engine (SME) has successfully modeled several aspects of human
analogical processing. However, it has two significant drawbacks: (1) SME constructs all structurally
consistent interpretations of an analogy. While useful for theoretical explorations, this aspect of the
algorithm is both psychologically implausible and computationally inefficient. (2) SME contains no
mechanism for focusing on interpretations relevant to an analogizer’s goals. This paper describes
modifications to SME which overcome these flaws. We describe a greedy merge algorithm which
efficiently computes an approximate “best” interpretation, and can generate alternate interpreta-
tions when necessary. We describe pragmatic marking, a technique which focuses the mapping to
produce relevant, yet novel, inferences. We illustrate these techniques via example and evaluate
their performance using empirical data and theoretical analysis.

1 Introduction

The importance of analogy in human reasoning makes it a natural focus for cognitive simulation.
The Structure-Mapping Engine (SME)[6,7], has been used to successfully model several aspects
of human analogical processing. As a simulation of Gentner’s Structure-Mapping theory [9,10],
SME has been used to model human soundness judgements [13], to study the representational and
processing choices in analogical processing [8], and as part of a model of sequence learning [14].
SME has also been used in an Al system which learns qualitative physics by analogy [3].

We believe several features of SME are accurate reflections of human analogical processing, in-
cluding the emergence of global interpretations from local matches, the use of structural evaluation
criteria as a default means of judging a comparison, the ability to generate novel candidate infer-
ences, and the ability to construct and compare multiple interpretations of a comparison. However,
the current SME algorithm has several drawbacks. First, SME constructs all structurally consistent
interpretations of an analogy. This is often useful for theoretical explorations, since it allows one
to know for certain the best possible interpretation of a given comparison. But it is extremely
implausible psychologically. There are in the worst case a factorial number of potential solutions,
making exhaustive enumeration impossible under any reasonable assumptions about human pro-
cessing constraints. Even for theoretical explorations, as we tackle more realistic representations
(c.f., [8]) this aspect of SME has become a stumbling block. To use SME as a central component in
larger-scale simulations and Al systems, a more practical algorithm is needed. Here we describe
a greedy algorithm which efficiently provides good approximations to the “best” interpretation.
Although any greedy algorithm must sometimes fail to deliver optimal solutions, we demonstrate
that in fact on this task it performs superbly.

The second drawback is that SME does not focus the mapping process according to the goals
of the system. Such influences can be incorporated into analogical processing in several ways.
Standard structure-mapping postulates that goals help determine both what gets matched and
how the match is evaluated, but excludes them from the mapping stage itself [11]. Holyoak and
Thagard’s ACME model [12] blends structural, semantic, and pragmatic considerations into weights
in a connectionist network, using a relaxation scheme to derive a single solution as an approximate
best mapping. In addition to biasing preference for correspondences according to relevance, they
allow queries to be inserted in the target description. If the query is supported by the match it is
construed as the candidate inference of the analogy. A different approach is used by Falkenhainer’s
contextual structure mapping [3,5], which provides an elegant account of how to relax both the
identicality and 1:1 constraints of structure-mapping when doing so provides more useful conjectures
for the analogizer.

This paper describes a new technique, pragmatic marking, which is consistent with both stan-
dard and contextual structure mapping. The idea is to filter what subsets of local matches are
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Figure 1: An example of SME input descriptions

We use this simple example for illustration only, realistic representations are typically much larger. The italicized
numbers are not part of the representation, but have been introduced to provide a convenient means for refering to
subexpressions later on.

Base domain:

1 (IMPLIES 2 (AND S(SENSITIVE-TO 4 LITMUS32 5 ALCOHOL-VAPOR) 6 (INSIDE 7 COOLANT & SUMP)
10 (HELD-CLOSE LITMUS32 SUMP))

11 (DETECTABLE 12 (GIVES-OFF COOLANT ALCOHOL-VAPOR)))
18 (IMPLIES 14 (LIQUID COOLANT) 15 (POSSIBLE (GIVES-OFF COOLANT ALCOHOL-VAPOR)))
16 (IMPLIES 17 (DECREASED 19 (PRESSURE SUMP))

20 (INCREASED 27 (FLOW-RATE 22 (FLOW 28 STILL SUMP COOLANT 24 PIPE))))

26 (IMPLIES 27 (INCREASED (PRESSURE SUMP))

28 (DECREASED (FLOW-RATE (FLOW STILL SUMP COOLANT PIPE))))
29 (IMPLIES 80 (DECREASED 81 (AREA PIPE)) (DECREASED (FLOW-RATE (FLOW STILL SUMP COOLANT PIPE))))
82 (IMPLIES 838 (INCREASED (AREA PIPE)) (INCREASED (FLOW-RATE (FLOW STILL SUMP COOLANT PIPE))))
83 (CAUSE 84 (GREATER 85 (PRESSURE STILL) (PRESSURE SUMP)) (FLOW STILL SUMP COOLANT PIPE))
86 (FLAT-TOP COOLANT)

Target domain:

1 (INCREASED 2 (FLOW-RATE 8 (FLOW 4 EFFLUENT 5 HEAT-SINK 6 HEAT 7 HX)))

8 (DETECTABLE 9 (GIVES-OFF EFFLUENT 10 RADIATION))

11 (CAUSE 12 (CONTAINS EFFLUENT 18 STRONGTIUM) (GIVES-OFF EFFLUENT RADIATION))
14 (LIQUID EFFLUENT)

15 (FLAT-TOP EFFLUENT)

16 (GREATER 17 (TEMPERATURE EFFLUENT) 18 (TEMPERATURE HEAT-SINK))

considered by whether or not they can support candidate inferences relevant to the analogizer’s
stated goal. Unlike ACME’s query mechanism, this technique does not require the actual form of the
candidate inference to be specified in advance. Thus our technique is better able to support the
use of analogy in modeling problem-solving and discovery.

Section 2 reviews the SME algorithm using an example. Section 3 describes the GreedyMerge
algorithm for efficiently combining local matches into consistent global interpretations. We analyze
its theoretical properties and we demonstrate empirically that it tends to be optimal, in that the first
interpretation it provides is usually the same as the best interpretation found by the exhaustive SME
merge algorithm. Section 4 describes pragmatic marking, analyzes its complexity, and illustrates
it by example. Finally, we discuss our plans for future work.

2 How SME works

Here we sketch the standard SME algorithm to provide the backdrop for our improvements (see [7]
for details). SME takes as input two propositional descriptions, a base and a target. It produces
as output a set of global interpretations (gmaps) of the comparision. Each gmap contains a set
of correspondences linking items in the base and target (including both entities and statements
about them), a structural evaluation score which provides an indication of match quality, and a
set of candidate inferences. The candidate inferences are statements in the base which can be
hypothesized to hold in the target as a result of the gmap’s correspondences. Each candidate
inference is a surmise, and hence must be evaluated by other means to ensure its validity.

Figure 1 shows a simple example we use through the paper for clarity. Consider a case-based
design system, which already had designed a still and was now working on a recycling plant. The
base domain shows part of what it might retain about the still, and the target shows part of the
description of the new design. This analogy can help solve two problems: how one might detect
radiation in the efluent and how one might increase the rate of waste heat removal.

SME begins the mapping process by computing match hypotheses (M H’s), each representing
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Figure 2: Hypothesized local matches for the comparison
Each match hypothesis has the form < Base,Target >, where Base and Target are expression numbers
from Figure 1. The roots of the graph are circled, and the pmap defined by each root is indicated by
dotted lines. The thick lines indicate nogoods. Only structurally consistent MH’s are shown for clarity.
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a potential correspondence between an item of the base and an item of the target!. Figure 2
depicts the match hypotheses for our example. These local matches must be carefully filtered
and combined to build structurally consistent interpretations. First, M H’s involving items whose
arguments cannot be placed in correspondence are eliminated from further consideration. In our
example, the hypothesized match between these two statements

B: (CAUSE (GREATER (PRESSURE STILL) (PRESSURE SUMP)) (FLOW STILL SUMP COOLANT PIPE))
T: (CAUSE (CONTAINS EFFLUENT STRONGTIUM) (GIVES-OFF EFFLUENT RADIATION))

fails because neither of the corresponding arguments can match, while

B: (DETECTABLE (GIVES-OFF CDOLANT ALCOHOL-VAPOR))
T: (DETECTABLE (GIVES-OFF EFFLUENT RADIATION))

is locally consistent, given the hypothesized pairings between COOLANT and EFFLUENT and between
ALCOHOL-VAPOR and RADIATION. (These pairings can be considered as the arguments of the match
hypothesis.) Next, SME installs local consistency constraints (nogoods) between pairs of M H’s to
mark potential violations of the 1:1 constraint. That is, the M H which maps COOLANT to EFFLUENT
cannot ever be part of the same interpretation as the M H which maps COOLANT to HEAT. These
local inconsistencies are propagated up the argument structure of the match hypotheses, to rule
out M H’s whose argument matches do not suggest consistent correspondences. Those M H’s which
remain become the grist for gmap construction.

Constructing maximal sets of M H’s is the goal of gmap construction. A gmap is maximal if
adding another M H causes structural inconsistancy. It is useful to view the set of match hypotheses
as a partial order, with the M H’s concerning object correspondences forming the bottom elements
and inclusion relatlonshlps determined by the argument structure. Call an M H a root if it is
consistent and is not an argument of some other match hypothe31s The roots of this graph are the
initial gmap candidates, or pmaps, for “partial mappings” (Again, see Figure 2).

So far, the computational complexity is low. If n is the number of items in the base and
target, then finding match hypotheses and local inconsistent combinations are both 0(n?), and the
various propagation steps are O (log(n)). Exhaustively combining pmaps into gmaps is the expensive
part. It begins cheaply, by taking the union of the constraints for each pmap’s correspondences to

1The rules which Euicle‘ MH construction _are programmable. To simulate structure-mapping, attributes and
relational items must have identical functors. Different rule sets can be used to implement context-sensitive methods

for relaxing identicality [5] and even simulate certain aspects of ACME[4].
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compute what it is inconsistent with (O(n?)). The standard SME algorithm builds every possible
complete gmap by making successive merges, subject to these consistency constraints, until no
larger combinations can be built. If p is the number of pmaps, there are at worst p! gmaps. This,
of course, is expensive. Typical examples perform much better than this, due to the strong filtering
effects of structural consistency. As [7] reports, on many complex examples SME takes only a few
seconds of CPU time. However, we have found examples that can produce thousands of gmaps,
and take days of CPU time to compute.

Finally, the structural evaluation and candidate inferences for each gmap are computed. These
operations are of low complexity [7]. The structural evaluation score computation is irrelevant for
this paper, see [7,8] for details. The only important feature is that the structural score of a gmap is
the sum of its M H’s scores, so it can easily be computed for pmaps and combined during merging.

Candidate inferences are computed by finding structure in the base which is consistent with a
gmap’s correspondences, but is not in fact included in them. Thinking now of the base domain
as a graph, we are seeking structures which are roots (e.g., they are not themselves arguments of
another item) and which have some, but not all, of their subitems mapped by the correspondences.
Such items comprise potential new knowledge about the target, and are carried over by making
the substitutions defined by the correspondences. Skolem functions are provided for base objects
not mentioned in the correspondences. One candidate inference from a gmap resulting from our
example comparison is:

(CAUSE (GREATER (TEMPERATURE EFFLUENT) (TEMPERATURE HEAT-SINK)) (FLOW EFFLUENT HEAT-SINK HEAT HX))

because the base structures 84 and 22 can map onto the target structures 16 and & respectively,
while 88 in the base has no correspondence in the target (see Figures 1 and 2).

We believe the ability to generate structurally justifiable conjectures about the target is a central
feature of analogy, responsible for its important role in creative problem solving and discovery (c.f.
[2]). The rest of this paper shows how to achieve uniformly low complexity in gmap construction
(at the cost of not always providing the optimum answer) and how to tune SME to produce novel
candidate inferences relevant to the analogizer’s goals.

3 Greed

The greedy method is a standard technique for combining a set of constrained, local solutions into a
good global solution. The idea is that (a) finding a global solution can be modeled as deciding which
local solutions to include and (b) some indication of “quality” exists for ordering local solutions|[1].
Roughly, it works like this: Pick the best local solution. This rules out other choices, namely those
which are inconsistent with the one picked. Throw away those which are inconsistent with your
first choice. Now augment your solution with the best of the remaining local solutions. Again, this
may rule out further choices, so one continues filtering and selecting until no more choices remain.
The result is a single solution which is often, but not always, optimal.

The simplest version of GreedyM erge casts gmap construction as a sequence of decisions about
which pmaps should be combined. The ordering is provided by the pmap’s structural evaluation
score. Starting with the largest, each pmap is merged into the solution under construction, unless
doing so would violate structural consistency. If a pmap is inconsistent with the solution, it is
skipped. By starting with the largest we improve our chances of getting the best solution.

The attraction of greedy methods is low complexity. Their drawbacks are (1) the solution may
not be optimal and (2) obtaining useful alternative interpretations can be difficult. Whether or not
the first problem is significant for natural representations is an empirical question addressed below.
The second problem is very important. We view the ability to generate multiple interpretations of
an analogy as critical. Even with a firm goal in mind, there can still be several ways to interpret
an analogy (c.f. the Contras example in [12]).

There are several ways that multiple interpretations could be generated. One algorithm we
explored generated an approximation of the top n gmaps based on their structural evaluation.
This is often not a good strategy. Consider a very large base and a medium-sized target, so that
many small, semi-independent pmaps are formed as well as several large ones. The gmaps for such
comparisons can often be divided into several families of basically different interpretations, with
each family member varying only in which small pmaps are included. In such cases the top n gmaps
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Figure 3: Greedy Merge Al§orithm

We assume that the standard SME algorithm has been executed up to the stage of constructing pmaps.

1. Place pmaps in descending order based on their structural evaluation score.
2. PMAPS « the set of pmaps; USED « { }
3. Repeat for desired number of interpretations
3.1. MAPPING « {PMAP,} S PMAP; ¢ USED
and V5 <<¢ PMAP; € USED
3.2. For each PMAPE PMAPS
3.2.1. If PMAP is consistent with MAPPING Then
3.2.1.1. MAPPING <+ MAPPINGU PMAP
3.2.1.2. USED « USED U {PMAP}
3.3 Output MAPPING

Figure 4: Empirical Results of GreedyMerge

Types Of Analogies
Object Physical Systems Stories
Number of matches 8 20 28
Min/Max number of gmaps 1/3 3/81 3/160
Min/Max GreedyMerge time (Sec.) 0/0.6 0.03/1.3 0.5/7
Min/Max FullMerge time (Sec.) 0/2.6 0.6/235 0.6/3335
Percentage of cases Greedy is optimal 100% 85% 96%
Lowest ratio Greedy Score / Best Score 100% 67% 91%

are likely to be trivial variations on the top theme, and since these will largely share the same set of
candidate inferences, this is often undesirable. What we usually want is an alternate interpretation
which is radically different. This suggests generating subsequent gmaps by starting with pmaps
which are as large as possible but inconsistent with previously generated interpretations.

The algorithm we currently use (see Figure 3) starts by greedily generating the best gmap, and
ensures that its gmaps are representative by always starting an alternate interpretation from a seed
pmap which has never been used in any other interpretation. By adding the unused pmap first we
ensure that we get a significantly different interpretation — it must be different since it contains
a (hopefully large) structure which is inconsistent with all previously generated gmaps. Since the
candidate inferences are based on the M H's these are also likely to be different. Note GreedyMerge
reduces to the original greedy algorithm when generating only one interpretation. Each succes-
sive gmap starts with the largest unused pmap. All interpretations generated are maximal since
GreedyMerge always attempts to add all pmaps to the interpretation during construction.

GreedyMerge is O(nlog(n)) in the number of pmaps, and O(n) in the number of interpretations

generated. The number of pmaps is O(n?) in the size of the base and target, in worst case. In
practice the number of pmaps tends to be much smaller, since only plausible M H’s are generated,
and these tend to cluster into reasonably large pmaps.

GreedyMerge has been tested on over fifty different analogies, ranging from comparisons be-
tween physical phenomon, short stories, and object descriptions, drawn from the library of SME
examples. Figure 4 summarizes the results. The stories show the most dramatic speedup — one
story could not be included because the exhaustive algorithm failed to terminate after several days
of computation, yet GreedyMerge found a reasonable interpretation in under a minute. And in
most cases the first gmap generated by GreedyMerge was identical to the best gmap found by the
exhaustive merge algorithm.

Why does GreedyMerge do so well? Typically, these large examples have a few large pmaps,
only some of which are mutually inconsistent, and a much larger set of small pmaps. Thus the
first few decisions are the really critical ones, and they are relatively easy to make. When will
GreedyMerge fail? There are two kinds of cases where it should do poorly. The first is when there
are many large pmaps with a high degree of mutual inconsistency, since many more decisions have
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to be correct, and hence the chance of error grows. This was the problem in the few cases (4 out
of 56) where a non-optimal solution was generated. The second is when an initial, large pmap is
inconsistent with every member of a large set of small but mutually compatible pmaps which in fact
outweigh the initial one. We do not know how likely such situations are in natural representations.
Fortunately, the ability to generate radically different interpretations provides a way to recover
from such problems.

4 Pragmatism

The power of analogy comes from its ability to shed new light on the target by importing knowledge
from the base. Retaining this ability using GreedyMerge requires modifying SME further. The rea-
son is that the structurally best match may not always provide the most relevant inferences [3,5].
Returning to our example, the structurally best interpretation places the two flows in correspon-
dence. But what if our goal is to propose how to detect strongtium in the recycler’s effluent? As
we find below, an interpretation which maps COOLANT to EFFLUENT is better for this purpose, even
though a smaller structure is mapped. When using the original SME merge algorithm, one simply
searches the interpretations to find a relevant inference. Since GreedyMerge 1s not exaustive, we
must take care to ensure that relevant interpretations are actually generated.

Unfortunately, the techniques used by ACME provide no leverage here. Their techniques seem
most useful for modeling instructional analogies, where a teacher may explicitly provide correspon-
dences or point out which facts are most important. Here there is no correspondence involving
the base fact that we wish to bring over, so it cannot be given extra weight or identified a priori
as interesting. Introducing a query fact in the target does not help — if we knew the form of the
query fact, we wouldn’t need analogy to solve the problem. To get the novel inferences required
for analoglcal problem solving requires a more generative solution.

Our pragmatic marking technique operates by looking for interpretations which can potentially
import relevant base structure into the target. How can the relevant part of the base be found?
Suppose we have target item G as our goal. That is, we want to find how G might legitimately
be inferred on the basis of other (perhaps new) items in the target. For concreteness, suppose our
goal is:

(DETECTABLE (GIVES-OFF EFFLUENT RADIATION))

Consider the set of match hypotheses generated for a comparison. The interpretations we are
interested in must include a match hypothesis M Hg involving G, since only they can provide
the structural grounds for candidate inferences involving G. (If G is not involved in any match
hypotheses, then it cannot be the subject of any candidate inferences and hence we immediately
know the comparison is useless for this purpose.) This means that the interpretation must in turn
include M H’s for the corresponding arguments of M H¢, and possibly for some larger structure of
which it is a part.

Now consider the projection of M Hg onto the base domain. Again viewing the base as a graph,
any pmap which includes the subgraph rooted in M Hg could provide inferences. However, pmaps
which do not include this subgraph can also contribute to the structural grounding of an inference,
so we must carefully examine them as well. There is some subset of roots of the base which contain
M Hg’s projection. Any pmap whose base projection lies outside this subset of the graph can be
ignored, since it does not include the projection of our goal onto the base. Furthermore, any pmap
inside this subset of the graph can be ignored if it is inconsistent with the correspondences implied
by M Hg, since it could not be part of a gmap with it.

This intuitive picture provides the basis for the pragmatic marking algorithm (Figure 5). It is
slightly more complicated to take into account the fact that there can be more than one M H¢, but
otherwise is straightforward. The information required for the functions Targetltem, Baseltem,
Roots, BaseRoots, Descendants, and Nogood is already computed in the process of generating
pmaps. The complexity is thus O(|{pmap}| x |{MH¢g}|).

Figure 6 illustrates the results of two queries in our extended example. With the query about
radiation detection, three out of the five pmaps are potentially relevant, and GreedyMerge success-
fully combines them all. The inference which results may be paraphrased as “By finding something
which is sensitive to radiation, like litmus paper is sensitive to alcohol vapor, and holding it close to
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Figure 5: Pragmatic Marking Algorithm

g
We assume that the standard SME algorithm has been executed, independent of any query, through pmap construction.

1. Let {MH¢}= {M|Targetitem(M) = G}
2. RELEVANT « {}
3. For each MH; € {MHg},
3.1 For each pmap; € pmaps
3.1.1 If Descendants(pmap;) N Descendants(MHg) # {} then go to 3.1.4
1.2 If BaseRoots(pmap;) N Roots(Baseltem(MHg)) = {} then skip.
1.3 If Nogood(pmapi, M He) then skip.
1.4 Otherwise, RELEVANT < RELEVANTU pmap;
4. GreedyMerge(RELEVANT)

3.
3.
3.

Figure 6: Inferences generated in response to queries
G = (DETECTABLE (GIVES-OFF EFFLUENT RADIATION))

There are 1 relevant interpretations:
GM1: 4 correspondences, SES = 2.5
Object mappings: COOLANT <-> EFFLUENT, ALCOHOL-VAPOR <-> RADIATION
Candidate Inferences:
(IMPLIES (AND (SENSITIVE-TO (:SKOLEM LITMUS32) RADIATION) (INSIDE EFFLUENT (:SKOLEM SUMP))
(HELD-CLOSE (:SKOLEM LITMUS32) (:SKOLEM SUMP)))
(DETECTABLE (GIVES-OFF EFFLUENT RADIATION)))

G = (INCREASED (FLOW-RATE (FLOW EFFLUENT HEAT-SINK HEAT HX)))

There are 1 relevant interpretations:
GM6: 10 correspondences, SES = 4.3756
Object mappings: PIPE <-> HX, COOLANT <-> HEAT, STILL <-> EFFLUENT, SUMP <-> HEAT-SINK
Candidate Inferences:
(CAUSE (GREATER (TEMPERATURE EFFLUENT) (TEMPERATURE HEAT-SINK)) (FLOW EFFLUENT HEAT-SINK HEAT HX))
(IMPLIES (INCREASED (AREA HX)) (INCREASED (FLOW-RATE (FLOW EFFLUENT HEAT-SINK HEAT HX))))
(IMPLIES (DECREASED (TEMPERATURE HEAT-SINK)) (INCREASED (FLOW-RATE (FLOW EFFLUENT HEAT-SINK HEAT HX))))

the effluent’s container, one may detect when the effluent is giving off radiation.” Notice that this
interpretation is not the structurally best, which makes the flows correspond but is inconsistent
with the mapping of COOLANT to EFFLUENT. The second question exploits the structurally larger
interpretation, suggesting that in order to bring about an increase in the rate of heat removal, one
can either increase the area of the heat exchanger HX or decrease the temperature of the heat sink.
We have also successfully tested pragmatic marking on a variety of standard SME examples, with
correct results in each case.

5 Discussion

We have seen how the SME algorithm can be modified to efficiently generate interpretations of
analogies by using a greedy merging algorithm, and demonstrated that pragmatic marking can
focus its efforts on just those interpretations likely to lead to relevant, novel candidate inferences.
In moving from an exhaustive algorithm to a polynomial one we give up the guarentee of optimality,
but as our empirical results indicate, we lose little by doing so.

There are several directions to explore next. For example, sometimes degrees of certainty or
relevance can be estimated for items in a representation. It would be useful to exploit such infor-
mation, as ACME does. Combining scores for certainty and relevance with the structural evaluation
score used by GreedyMerge could provide an increased sensitivity to relevance that might be useful
on larger problems. We also plan to use these techniques to embed SME into a larger simulation of
human problem-solving activity.
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