
 
 
 

GeoRep: A Flexible Tool for Spatial Representation of Line Drawings 

Ronald W. Ferguson and Kenneth D. Forbus 

Qualitative Reasoning Group 
Department of Computer Science 

Northwestern University 
1890 Maple Avenue 

Evanston, IL 60201 USA 
{ ferguson, forbus} @ils.nwu.edu 

 
Abstract 

A key problem in diagrammatic reasoning is understanding 
how people reason about qualitative relationships in 
diagrams. We claim that progress in diagrammatic reasoning 
is slowed by two problems: (1) researchers tend to start from 
scratch, creating new spatial reasoners for each new problem 
area, and (2) constraints from human visual processing are 
rarely considered. To address these problems, we created 
GeoRep, a spatial reasoning engine that generates qualitative 
spatial descriptions from line drawings. GeoRep has been 
successfully used in several research projects, including 
cognitive simulation studies of human vision.  In this paper, 
we outline GeoRep’s architecture, explain the domain-
independent and domain-specific aspects of its processing, 
and motivate the representations it produces. We then survey 
how GeoRep has been used in three different projects–a 
model of symmetry, a model of understanding juxtaposition 
diagrams of physical situations, and a system for reasoning 
about military courses of action. 

Introduction: How Diagrams Work  
Diagrams are ubiquitous. In daily communications, through 
sketches, maps, and figures, people use diagrams to convey 
information. Some diagrams depict intrinsically spatial 
domains, such as bus routes or furniture arrangements. 
Other diagrams use spatial concepts to compactly show 
more abstract relations, such as corporate hierarchies or 
data flow in a computer program. In all such domains, 
diagrams can be extremely effective.  

It is also true, however, that there is a keen difference 
between effective and ineffective diagrams. Small visual 
differences may distinguish a diagram that elucidates from 
one that confuses (Tufte, 1990). A key difference between 
good and bad diagrams is how well they utilize the kinds of 
qualitative spatial relations most easily perceived by the 
human visual system. In the best diagrams, these spatial 
relations support the conceptual relations the reader is 
meant to infer. For example, in a thermodynamics diagram, 
an arrow may indicate the direction of heat flow, with 
thicker arrows to indicate greater flow, or tapering arrows 
to indicate heat dissipation. Or, in a circuit diagram, wires 
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may be drawn so that related wires are adjacent and 
parallel, so they can be visually grouped.   

For this reason, to understand how diagrams work, we 
must show how diagrams use visual characteristics to 
support particular qualitative inferences. In the system 
described here, we model this process as an interaction 
between two representation levels: 
1. A low-level, domain-independent representation which 

involves a representative set of primitive spatial 
relations.  This level models human low-level vision. 

2. A high-level, domain-specific representation that models 
visual skills for a particular domain. This level links low-
level visual relations to a domain’s conceptual content. 

These two representation levels form the basis of 
GeoRep.  GeoRep is an engine for building diagrammatic 
reasoners.  GeoRep takes as input a line drawing, given as a 
set of primitive visual elements. From this drawing, 
GeoRep creates a predicate calculus representation of the 
drawing's visual relations. To perform this task, GeoRep, 
given the drawing, examines the primitive shapes in the 
figure, looking for a broad set of low-level visual relations. 
These relations are detected by a library of visual 
operations (assumed to be domain-independent) which 
partially cover the set of universal visual routines (Ullman, 
1984). Next, GeoRep uses these relations, in combination 
with domain-dependent rules, to generate the second, 
domain-specific representation. GeoRep's two-level 
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Figure 1: The Metric Diagram / Place Vocabulary 
framework (A) and how it is modified for GeoRep (B). 



 

architecture provides a sophisticated model of how early 
visual relations are used for inferring conceptual relations. 

At the level of the high-level representation, GeoRep is a 
qualitative spatial reasoner. GeoRep’s qualitative spatial 
reasoning uses a variant of the MD/PV framework (Forbus, 
1980; Forbus, Nielsen, & Faltings, 1991). This framework 
is motivated by the poverty conjecture, which states that 
“ there is no purely qualitative, general-purpose representa-
tion of spatial properties.”  (Forbus et al., 1991). For this 
reason, MD/PV reasoners use two representations levels: a 
metric diagram, which contains quantitative information 
(and often, some symbolic or qualitative representation), 
and the place vocabulary, which is a qualitative spatial 
representation fitted to the particular place and task (Figure 
1-A). The place vocabulary is constructed as needed by 
querying the metric diagram. 

Qualitative spatial reasoners using the MD/PV frame-
work have been successful in many domains, including the 
analysis of mechanical systems (Forbus et al., 1991; Kim, 
1993) and graphs (Pisan, 1995).   

GeoRep elaborates on the MD/PV model by splitting the 
place vocabulary into higher and lower levels. The low-
level place vocabulary represents low-level visual relations 
specific to early human vision, while the high-level place 
vocabulary is a task-specific spatial representation 
derivable from the low-level vocabulary (Figure 1-B). By 
generating the initial low-level place vocabulary directly 
from the metric diagram (which in this case is the line 
drawing itself), GeoRep can then use this initial vocabulary 
as the building blocks for a broad (if still finite) class of 
high-level place vocabularies. Thus GeoRep, while not a 
general diagrammatic reasoner, is general over the set of 
high-level place vocabularies derivable from this low-level 
place vocabulary, which is in turn bounded by cognitive 
constraints in human perception. Our conjecture is that this 
cognitively-grounded place vocabulary is both 
computationally useful and psychologically plausible. 

GeoRep's consistency with human visual abilities–unlike 
previous systems using the MD/PV framework–provides 
robustness. Although some visual skills are domain-
specific, the fact that people use visual reasoning in such a 
broad variety of tasks suggests that a sufficiently robust 
visual processing engine could provide similarly general 
services for diagrammatic reasoning. This generality 
addresses a key limitation of current research in 
diagrammatic reasoning, which is the tendency for every 
researcher to start from scratch, implementing a spatial 
reasoning system aimed at one class of problems.  

Although most previous diagrammatic reasoning systems 
are motivated by human visual abilities (c.f. the systems 
described in Glasgow et.al. (1995)), their design has 
typically been driven more by the task than by the 
psychology of human vision.  While this has lead to useful 
insights, we believe that an explicit concern with human 
vision can lead to better diagrammatic reasoners. 

The next section describes GeoRep's architecture, 
explaining where its processing and representational 
choices have been influenced by perceptual psychology 

findings. We then demonstrate GeoRep’s generality by 
showing its use in three systems: MAGI (Ferguson, 1994), 
a model of symmetry; JUXTA (Ferguson & Forbus, 1995), 
a model of juxtaposition diagram understanding; and 
COADD, a system for understanding military course of 
action diagrams. We close with a discussion of GeoRep’s 
limitations and future development. 

Architecture 
GeoRep's architecture is shown in Figure 2. GeoRep’s input 
is a line drawing, given as a vector graphics file. This file 
uses the FIG graphics format. Using drawings rather than 
bitmaps avoids the problem of doing line detection, which 
is essential in machine vision, but not critical in 
diagrammatic reasoning. Using line drawings also makes 
diagram input simple: diagrams can be built using an off-
the-shelf drawing program (Hendrich, 1999). Line drawings 
have been successful in several systems (e.g., Evans, 1968; 
Gross, 1996; Sutherland, 1963) and work well with existing 
spatial reasoning models. 

The output of GeoRep is a description of the figure 
expressed in a domain-dependent high-level place vocab-
ulary. Like previous approaches to spatial representation, 
the representation produced by GeoRep emphasizes 
compact, composable vocabularies that directly reflect 
visual structure. Entities are mapped onto geometric 
elements or object parts, with predicates to represent 
connections and arrangements (Biederman, 1987; Palmer, 
1975). The composability of these arrangements are 
reflected in the composability of the vocabulary itself. 

GeoRep’s internal processing contains two stages: the 
low-level relational describer (LLRD) and the high-level 
relational describer (HLRD). The LLRD handles the 
domain-independent representation of the line drawing. It 
detects and represents a large set of useful visual relations. 
These relations are structural relations detected early in 
visual perception.  

The HLRD, in turn, uses domain-specific rules that 
extend the LLRD's representation. These extensions 
include new visual relations (and how to compute them) 
and ways to recognize depicted items. The final output of 
the HLRD is one or more representation levels.  A 
representation level is a set of propositions that 
corresponds to some specific task or type of analysis.  For 
example, representation levels may include the LLRD's 
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Figure 2: A simplified schematic of GeoRep’s architecture. 



 

basic visual representation, more complex visual relations, 
a representation of the depicted items, or potentially even 
limited reasoning within the diagram’s problem domain (see 
Figure 5 for an example). 

The Low-Level Relational Describer (LLRD) 
GeoRep’s first stage, the LLRD, creates GeoRep’s low-
level, domain-independent spatial representation. Starting 
with primitive visual elements, the LLRD detects and 
represents a broad set of early visual relations, using a 
library of visual operations. These operations correspond 
to Ullman’s (1984) universal routines, which are routines 
that run in the absence of visual goals. These operations, 
while they do not attempt to model visual processes, model 
the visual relations such processes detect. Conceptually, 
these operations are applied in parallel over the visual 
field's proximate shapes. Due to dependencies between the 
LLRD's visual relations, it pipelines processing so that 
more complex visual relations are computed after simpler 
ones (Figure 3). For example, parallel lines and polygons, 
once detected, are fed to the interval relation and boundary 
description systems, respectively. 

The LLRD recognizes five primitive shape types: line 
segments, circular arcs, circles and ellipses, splines (open 
and closed), and positioned text. The LLRD also subsumes 
some visual elements into polylines, polygons, and groups.  

Computing proximity. Proximity is the LLRD's core 
attentional mechanism. Because it is impractical for the 
LLRD to detect all visual relations between all available 
element combinations, it only checks for relations between 
proximate elements. For example, in representing a human 
stick figure, the LLRD might relate the “ foot”  to the “ leg” , 
and the “ leg”  to the “ torso” , but wouldn't attempt to find 
relations between the “ foot”  and “hand” . 

To determine element proximity, GeoRep uses a 
calculation that is a function of element size, distance and 
shape type. Each visual element type has a prototypical 
area of influence based on the element's size. For example, 
a circle's area of influence is the area within twice its 
radius. Similarly, for a line segment the area of influence 
extends out from the segment for the segment length. 
Elements are considered proximate when their areas of 
influence overlap. Areas of influence are calculated as sets 
of circles and rectangles to make overlap checking 
efficient, and all proximity calculations are cached. Note 

that because all pairs of items must be considered, the time 
complexity of this stage is O(N^2) over the number of 
visual elements. This makes proximity detection the 
LLRD’s most expensive stage. However, proximity 
detection also makes subsequent LLRD operators more 
efficient by limiting their application to either the set of 
visual elements or the set of proximate element pairs. 

Though imperfect, this proximity measure has many 
advantages. It is easily constructed, relatively efficient, and 
captures the intuition that large elements (such as a large 
rectangles or long polylines) relate visually to many other 
elements. Similar approaches to rating nearness have been 
used successfully (e.g., Abella and Kender, 1993). 

Running the visual operations. Once the LLRD 
determines which elements are proximate, it looks for other 
visual relations between proximate elements, using a visual 
operation library. Each visual operation detects specific 
visual relations that are part of early vision. All visual 
operations act on some combination of primitive visual 
elements, composite visual elements, and reference frames. 

The rest of this section briefly surveys the set of visual 
operations the LLRD uses. 

Orientation and the frame of reference. One 
fundamental characteristic of vision is the reference frame. 
Experiments have shown that figure orientation can have a 
critical effect on perception, including figure recognition 
(Rock, 1973). The LLRD detects many orientation-based 
relations, including horizontally and vertically-oriented 
elements, and above and beside relations between elements. 
The LLRD also looks for elements occupying the same 
horizontal or vertical extent. 

Like humans, GeoRep can change its reference frame. 
GeoRep's default reference frame is gravitational, but can 
be changed based on clues in the scene, such as a 
preponderance of lines at one orientation, figural elong-
ation, or symmetry. When the reference frame changes, 
LLRD relations using the old reference frame are retracted, 
and new relations asserted in GeoRep's knowledge base. 

Parallel lines. The LLRD also detects parallel line 
segments, modeling the ease with which humans detect 
parallelisms. However, in practice, describing the parallel 
segments alone often doesn't adequately constrain the 
description of a drawing. To elaborate on parallel elements 
in a cognitively-plausible fashion, we extended the LLRD 
to categorize parallel segments using Allen's (1983) interval 
relations. Allen's interval relations were useful in describing 
parallel segments because they constrain the relative 
position of segment endpoints in a way invariant to the 
frame of reference. Admittedly, while in practice these 
interval relations have been extremely useful, empirical 
evidence for their role in vision is still marginal. 

Connection relations. The LLRD also describes element 
connectivity, which is a central factor in perceptual 
organization. Connectivity is detected using standard 
computational geometry routines (Glassner, 1990) amended 
with strictness factors. The element types determine the 
type of connection relation. "Ended" elements, such as line 

Figure 3: Processing of visual elements within the LLRD 



 

segments and arcs, can connect or cross other elements. 
Specifically, the LLRD checks pairs of segments for corner, 
intersection, and mid-connections. Arcs may connect with 
segments as well, and their connections may be aligned or 
misaligned. Connections may also have a particular 
character. Corner angles, for example, are characterized as 
acute, obtuse, or perpendicular. The LLRD also detects and 
classifies connections between line segments and curved 
objects, such as circles and ellipses. Endpoint connections 
between a segment and an ellipse or circle are checked to 
see if the connection is radial or tangential. Other curved 
shapes, such as circles, ellipses, and arcs, are connected by 
abutment (i.e., when boundaries touch).  

Building Composite Elements 
A key insight of Gestalt theory is that the whole is seen 
differently than the sum of its parts. For GeoRep, which 
operates mainly in a bottom-up fashion, this means that it 
must recognize when individual elements can be subsumed 
into larger structures. When elements are collected into 
composite elements, we say they are visually subsumed, 
and the status of those elements changes. Once subsumed, a 
visual element is represented as part of its composite 
structure rather than individually. 

GeoRep contains three mechanisms to perform visual 
subsumption. Elements may be subsumed as polylines and 
polygons, via grouping, and by constructing ad hoc 
composite elements, called glyphs. While these mecha-
nisms lack the flexibility of human perception, they can 
simulate aspects of it, and can be extended when a 
particular visual domain requires it. These three 
mechanisms, although listed here with the LLRD, actually 
bridge lower and higher-level visual processing. The need 
to bridge these levels is due to the way subsumption is tied 
to perceptual organization. Perceptual organization itself 
often depends on either global element configuration or 
domain knowledge, which limits the effectiveness of 
bottom-up processing. Note that because GeoRep’s visual 
rules can check if an element is a subsumed element, such 
rules may act only on unsubsumed elements, increasing 
reasoner efficiency. 

Polylines and polygons. It has long been recognized that 
polylines and closed shapes are important in perception. 
The LLRD detects polylines and polygons using simple 
path-following algorithms. Despite the computational 
complexity of calculating closed shapes (c.f., Ullman, 
1984), humans detect shape closure early in perception—
perhaps pre-attentively (Treisman & Patterson, 1984).  

 Polygons, and their constituent corners and segments, 
have many characteristics derived from their boundaries. 
Their corners may be concave or convex, and groups of 
adjoining convex or concave corners constitute protrusions 
or indentations. Representing these characteristics is crucial 
to modeling human performance: inflexion points  (indenta-
tions and protrusions) are critical in recognition tasks 
(Hoffman & Richards, 1984; Lowe, 1987), and recent 
studies have shown the importance of concavities in visual 

tasks such as symmetry judgment (Baylis & Driver, 1994; 
Ferguson, Aminoff, &  Gentner, submitted).  

The LLRD represents indentations and protrusions as 
groups of concave or convex points.  Protrusions are also 
represented relative to the current reference frame, 
indicating the protrusions' relative vertical placement.  

Grouping. Grouping requires some measure of similarity 
between grouped elements. This required similarity metric 
makes grouping too broad an effect to model with the 
LLRD. However, the LLRD can model limited grouping 
effects by using domain-specific similarity metrics in the 
HLRD. 

Grouping in GeoRep thus depends on a set of domain-
specific grouping rules. These rules determine which 
element pairs are similar enough to be grouped. For 
example, triangle groups may be collected with a grouping 
rule that pairs triangles of similar size. While there are 
limits to this approach—a new rule is needed for each new 
group type, and the rules are not generative—this 
mechanism has proven adequate for our current visual 
domains, and easily accommodates the construction of new 
grouping-based place vocabularies. We are currently 
looking at a tractable grouping sub-case using factors, such 
as similar size, orientation, and shape, that have been 
shown to allow items to be grouped pre-attentively (Julesz 
& Bergen, 1983; Treisman & Gelade, 1980).  

Glyphs.  Along with other basic shapes, GeoRep includes 
glyphs, which are arbitrary collections of visual elements 
that constitute a symbol or other divisible visual form.  
Glyphs implement visual symbols, such as depictions of 
NAND gates or military units. Glyphs are treated as a 
single element with location and extent alone. 

The High-Level Relational Describer (HLRD) 
GeoRep's reasoning does not end with the LLRD's low-
level place vocabulary. Built upon this low-level vocab-
ulary is a high-level vocabulary specific to a visual 
reasoning task. For example, depicting connectivity in a 
wiring diagram or the meshing of gears may involve spatial 
relations that are not domain-general, but are still better 
expressed in a diagram than through text. 

This high-level place vocabulary is created by GeoRep's 
second stage: the HLRD. The HLRD’s input is the LLRD's 
description. The HLRD contains a rule engine utilizing a 
logic-based truth-maintenance system (LTMS; Forbus & de 
Kleer, 1993). The complexity of this stage thus depends on 
the domain. The rule engine loads rules from a visual 
domain theory, and creates a description using those rules. 

HLRD rules are similar to those for other rule-based 
systems, but are set apart by the rules' visual vocabulary, 
which form a convenient abstraction layer for discussing 
domain-dependent visual symbols (e.g., the symbology of 
maps) and spatial relations. HLRD rules contain special 
forms for delimiting the application of rules to proximate 
objects and for calling the LLRD's visual operation library.  

While HLRD rules are domain-specific, there are some 
rules used across domains. For example, one rule set 



 

handles representational links between visual elements and 
what they represent. In thermodynamics, for instance, a 
trapezoid may represent a fluid container. While the 
specific mappings from geometry to conceptual entity are 
domain-specific (trapezoids may have different meanings in 
other domains), the properties of representational links are 
more general. These rules dictate that each visual element 
represent only one thing (excluding partonomic relations).  
Multiple element interpretations are then resolved via 
various heuristics (e.g., when conflicting interpretations 
exist, choose the interpretation that accounts for the most 
visual elements and retract the other interpretation in the 
LTMS). 

Because the HLRD uses the LTMS, the HLRD can 
explain why it believes that particular visual elements 
represent particular things: e.g., why a polygon represents a 
coffee cup. Another advantage of explicit representational 
links is that they can be used to extend the place 
vocabulary. For example, given a drawing of two coffee 
cups, GeoRep can determine which cup contains more 
liquid by returning to the polygons representing the cups 
and comparing them to see if one cup is taller or wider. 

Once the HLRD has generated a high-level description, 
it can either be retrieved from the HLRD directly, or 
filtered by relation type to simulate different diagrammatic 
representation levels. For example, one representation level 
might list only individual glyph properties, while another 
level might relate patterns of glyphs. 

HLRD’s ability to handle arbitrary place vocabularies is 
limited by the LLRD’s capabilities. However, the advantage 
is that when HLRD rules use only the LLRD’s represen-
tation or visual operations, it is cognitively plausible that 
the resulting description will contain relations that are 
visible to people. The LLRD’s representation is valuable 
because it provides an easy-to-use and extensible 
vocabulary. But it is also valuable because, used correctly, 
it should tell us not just the relations a drawing depicts, but 
why a person would notice those relations. 

Applications of GeoRep 
To date, GeoRep has been used in three different projects: 
symmetry detection of abstract figures, diagrams of simple 
physical phenomena, and military Course-of-Action (COA) 
diagrams. We briefly survey each of them here, and provide 
references for those who wish to explore, for each system, 
GeoRep’s role in greater depth. 

Symmetry detection. GeoRep is used in the MAGI 
symmetry-detection model (Ferguson, 1994; Ferguson, in 
preparation). MAGI, which maps similar relations in a 
representation to determine its symmetry, uses GeoRep to 
detect symmetry in drawings, including functional drawings 
such as logic circuits. It has also been used to simulate 
experimental results. In (Ferguson, Aminoff, &  Gentner, 
1996; Ferguson et al., submitted), subjects in two 
experiments judged the symmetry of randomly-generated 
polygons after brief presentation times (50 ms). The 
experiments found that qualitative visual structure, such as 

boundary concavities, had a significant effect on whether a 
figure was judged symmetric.   

To simulate the experimental results, GeoRep was given 
the polygon set, using the same segment data used for the 
experimental stimuli. For each figure, GeoRep generated a 
low-level relational description. This was then passed to the 
MAGI model, which determined the qualitative symmetry 
of the figure (Figure 4). The simulation was successful, 
resulting in the same general pattern of symmetry 
judgments found in the human subjects. MAGI, like human 
subjects, detected asymmetries more easily when the 
asymmetry involved differences in qualitative visual 
structure, such as mismatches in vertex concavity or in the 
number of vertices. 
Juxtaposition-based diagrams of simple physical 
phenomena.  GeoRep is used as part of a system called 
JUXTA (Ferguson & Forbus, 1995; Ferguson & Forbus, 
1998), which critiques simplified diagrams of physical 
phenomena.   

For each diagram, GeoRep generates three different 
levels of description: a visual level (using the LLRD, and 
some additional rules), a physical level (interpreting the 

 
Figure 4: Sample figure from asymmetry study, with axis 

and correspondences are drawn in by MAGI. 

(POLYGON poly1)
(NUMBER-OF-SIDES poly1 4)
(UPRIGHT-TRAPEZOID poly1)
(SPLINE spline1)
(SPLINE spline2)
(SPLINE spline3)
(SPINE-GROUP group1
     (GROUP spline1 spline2 spline3))

(CONTAINER cup1)
(LIQUID liquid1)
(CONTAINS (CONTAINER cup1) 
                    (LIQUID liquid1))
(STEAM-HEAT steam1)
(RISING-FROM steam1 liquid1)

(FLOW HEAT liquid1 atmosphere steam1)

Visual
Level

Physical
Level

Process 
Level

Original 
Drawing

 
Figure 5: A subset of the representations produced by 
GeoRep for JUXTA, with the original figure. 



 

visual elements as domain objects using a set of structural 
templates), and a process level (giving the physical 
processes inferred from the diagrams).  A representative 
sample of each level is given in Figure 5.  

Using MAGI to detect the repeated parts of the scene, 
JUXTA detects the physical and process differences 
between those parts, and attempts to relate those 
differences to the caption. The resulting system can critique 
the diagram based on how the diagram meets the expecta-
tions set in the caption. Based on the caption, for example, 
JUXTA can label the figure’s critical differences (Figure 7).   

To perform this analysis, the distinction between levels 
of interpretation is crucial. Visual differences can be 
relevant or irrelevant depending on the caption’s 
interpretation. Because GeoRep can represent multiple 
abstraction levels, JUXTA can distinguish between visual 
differences that could confuse the reader and differences 
that, while noticeable, would not be confusing. 

Course-of-Action Diagrams. In DARPA’s High-Perfor-
mance Knowledge Bases (HPKB) initiative, GeoRep is 
being used for spatial reasoning about Course-of-Action 
(COA) diagrams (Ferguson, Rasch, Turmel, & Forbus, 
2000).  These diagrams, drawn by the military for tasks 
such as troop movement planning, use a well-defined set of 
line-drawn symbols to indicate important areas, unit 
locations and types, tasks, movement paths, and obstacles. 
Most work performed with COA diagrams is done by hand, 
using grease pencils on clear acetate. Diagrams are 
frequently redrawn to remove irrelevant details or change 

the level of description. 
The COA diagram describer (COADD), built using 

GeoRep, takes a line drawing of a COA diagram (as in 
Figure 6), and produces a description of the units, 
areas, and tasks given in the figure. Recognition of 
symbols in the COA diagram is handled by an HRLD 
rule set. It is worth noting that the initial prototype, 
which handles enough of the COA symbols to do 
simple but recognizable COA diagrams, was completed 
in less than 10 person-days, and involved only minimal 
changes to the LLRD (mostly to improve recognition of 
arrows). COADD’s diagrams are the largest handled by 
GeoRep, containing  as many as 197 visual elements.  

Because most COA diagrams are constructed 
interactively, we are investigating extending GeoRep to 
handle interactive freehand sketches as input, instead of 
line drawings. A key technique is the use of glyphs in 
GeoRep to limit the low-level processing. A completed 
COA geographical reasoner utilizing GeoRep was recently 
used in a COA critiquer in HPKB (Ferguson et al., 2000) 

Limitations and Areas for Future Work 
GeoRep has evolved considerably as various projects have 
made demands on it.  While GeoRep has shown itself to be 
a flexible and useful tool in our own research, it has 
significant limitations. These limitations must be addressed 
to make the model truly general.  

First, GeoRep needs a cognitively accurate model of 
proximity. While GeoRep's proximity metric is sophis-
ticated enough to incorporate the relative shape and size of 
elements considered proximate, the human attentional 
mechanism is much more complex, often balancing one 
proximity against another. For example, shapes A and B 
might be seen as proximate only if there is not some shape 
C that lies between them. We are investigating techniques 
for incorporating this model of proximity into the LLRD. 

GeoRep’s processing is mainly bottom-up, with only 
limited top-down influences on shape perception. Top-
down influences occur when the HLRD calls LLRD 
operations to verify visual relations that are not checked by 
default. By using this limited top-down mechanism, 
GeoRep enforces the use of LLRD relations. In other 
words, GeoRep enforces the cognitive constraint that 
inferences be sanctioned by easily-perceived qualitative 
visual relations. We are currently examining ways to extend 
top-down influences while maintaining these vision-driven 
cognitive constraints. 

GeoRep's intended use as part of an interactive sketching 
system highlights two other areas for improvement. 
GeoRep currently processes drawings in batch mode. For 
sketching, drawings will be processed incrementally. 
GeoRep currently expects each visual element to be 
accurately classified when read in. Although the strictness 
of LLRD operations can be varied, GeoRep does not have 
mechanisms to resolve ambiguous figures. Nor does it 
handle multiple variant feature interpretations of a single 
figure. For sketching, where a single pen stroke might be a  

Figure 6: Example from a Course-of-Action diagram 

 
Figure 7: JUXTA’s labeling of the aligned differences detected in 
a diagram, as related to the caption 



 

spline, line segment, or arc depending on the context, 
GeoRep will have to be more flexible about choosing 
between alternate interpretations. These modifications will 
also allow GeoRep to be used with less-reliable data 
formats, such as vector data derived from scanned bitmaps 
of pre-existing diagrams. 
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