
 
Fuzzy Mechanisms for Unified Reasoning about Heterogeneous Data  

L. Hedjazi1,2, J. Aguilar-Martin 3, M-V. Le Lann 1,2 and T. Kempowsky1,2  
 

1CNRS ; LAAS ;7, avenue du Colonel Roche ;F-31077 Toulouse, France 
2 Université de Toulouse ;UPS, INSA,INP, ISAE ; LAAS ;F-31077 Toulouse, France 

3Universitat Politècnica de Catalunya, grup SAC; Rambla de Sant Nebridi, 10, E-08222 Catalunya, spain   
{lhedjazi, aguilar, mvlelann, tkempows}@laas.fr 

 
 

 
Abstract 

Human knowledge about monitoring process variables is 
usually incomplete. To deal with this partial knowledge 
many types of representation other than the quantitative one 
are used to describe process variables (qualitative, symbolic 
interval). Thus, the development of automatic reasoning 
mechanisms about the process is faced with this problem of 
multiple data representations. In this paper, a unified 
principle for reasoning about heterogeneous data is 
introduced. This principle is based on a simultaneous 
mapping of data from initially heterogeneous spaces into 
only one homogeneous space based on a relative measure 
using appropriate characteristic functions. Once the 
heterogeneous data are represented in a unified space, a 
single processing for various analysis purposes can be 
performed using simple reasoning mechanisms. An 
application of this principle within a fuzzy logic framework 
is performed here to demonstrate its effectiveness. We show 
that simple fuzzy reasoning mechanisms can be used to 
reason in a unified way about heterogeneous data in two 
well known machine learning problems. 

 Introduction    
 Qualitative reasoning is taken in this paper as the 
mechanism of reasoning about qualitative information. 
Such information is given by qualitative valued data, 
which can be nominal or ordinal, mixed with quantitative 
and interval data. We address here one of the main 
difficulties encountered in qualitative reasoning: the 
diversity of types of information. The focus of the present 
paper is to propose a unified principle to establish various 
reasoning mechanisms using simultaneously three types of 
data: pure quantitative, symbolic interval and pure 
qualitative modalities. During the last decades, few 
research works have been directed to defy the issue of 
representation multiplicity for data analysis purposes 
(Michalski and Stepp 1980; Aha 1992; Cost and Salzberg 
1993; Mohri and Hidehiko 1994; Giraud-Carrier and Tony 
1995; Gowda and Diday 1992; Hu et al. 2007; De 
Carvalho and De Souza 2010; Kononenko 1994). 
However, no standard principle has been proposed in the 

                                                 
 

literature to handle in a unified way heterogeneous data. 
Indeed, a lot of proposed techniques process separately 
quantitative and qualitative data. In data reduction tasks for 
example, they are either based on distance measures for the 
former type (Kira and Randell 1992) and on information or 
consistency measures for the later one ( Dash and Liu 
2003). Whereas in classification and clustering tasks, 
eventually only a Hamming distance is used to handle 
qualitative data (Aha 1992; Kononenko 1994; Aha 1989). 
Other approaches are originally designed to process only 
quantitative data and therefore arbitrary transformations of 
qualitative data into a quantitative space are proposed 
without taking into account their nature in the original 
space (Kira and Randell 1992; Weston et al. 2001; Cover 
and Hart 1967). Another inverse practice is to enhance the 
qualitative aspect and discretize the quantitative value 
domain into several intervals, then objects in the same 
interval are labeled by the same qualitative value (Liu and 
Hussian 2002; Hall 2000). Obviously, both approaches 
introduce distortion and end up with information loss with 
respect to the original data. Moreover, none of the 
previously proposed approaches combines in a fully 
adequate way the processing of symbolic intervals 
simultaneously with quantitative and qualitative data. 
Although extensive studies were performed to process this 
type of data in the Symbolic Data Analysis framework 
(Bock and Diday 2000), they were focused generally more 
on the clustering tasks (Gowda and Diday 1992; De 
Carvalho and De Souza 2010) and no unified principle was 
given to handle simultaneously the three types of data for 
different analysis. In this paper a new general principle, 
introduced here as “Simultaneous Mapping for Single 
Processing (SMSP)”, enables the reasoning in a unified 
way about heterogeneous data for several data analysis 
purposes. To illustrate the possible use of the proposed 
approach, two methodological applications are considered: 
dimensionality reduction and classification.  This paper is 
organized as follows: in the second section the SMSP 
principle is introduced. In section 3, an example of 
simultaneous mapping of mixed variables into a common 
space is presented within the framework of fuzzy logic. 
Section 4 presents the use of this principle to establish a 
reasoning scheme for a variable selection task of 



heterogeneous data. Another reasoning mechanism using 
this principle, devoted to the classification of 
heterogeneous data is presented in section 5. In each of 
these three sections, an application example on real-world 
heterogeneous data sets from the UCI Repository database 
is given to exhibit the performance of the proposed 
method. The final section gives conclusions. 

SMSP Principle  
As the name indicates it, SMSP principle is based initially 
on an appropriate simultaneous mapping of heterogeneous 
data into a unified space. This mapping can be obtained by 
using a characteristic function for each type of data to 
bring them into a homogeneous space. These functions can 
be designed in such a way that they express a relative 
measure, as for example the measure of the 
appropriateness of each variable value of individuals to 
existing partitions, based on available prior knowledge. For 
instance, in a fuzzy sets theory  framework, this measure is 
technically synonymous with the terms of membership 
measure which is a number of the real unit interval I.  
 In this paper, the SMSP principle is applied within a 
fuzzy set theory framework to reason about heterogeneous 
data. Once suitable membership functions that characterize 
the adequacy to each class are chosen according to a 
variable type, a fuzzy partition of variables can be 
performed based on empirical data. It results that the initial 
data is mapped into a homogeneous space isomorphic to an 
nth dimensional unit cube In. Therefore, a unique and 
simple fuzzy reasoning mechanism can be used to reason 
about the resulting data whatever its original type. It will 
be shown thereafter that it enables to perform a wide 
variety of analysis (classification, dimensionality 
reduction, clustering…). 

Homogeneous Space of Variables 

Fuzzy partition of variables  
Basically we consider the three above mentioned types of 
data: Quantitative variables, Symbolic intervals and 
Qualitative variables. 
Definition 1.  Fuzzification of variables 
Let { } CCk ×Χ∈=

N
1nn  =D ,x  be a dataset, where 

xn=[xn1,xn2,...,xnm] is the nth individual (item) and N is the 
total number of individuals. Each individual is represented 
by m variables possibly of different types (quantitative, 
qualitative or symbolic interval), and Ck is the class label 
assigned to each individual in the pre-established 
partitions:  k=1,2,…,l. 
Namely, let { mff1

i,…, mffl
i } represent the l  fuzzy sets that 

form a fuzzy partition for the ith variable. 
The membership function mffk

i is defined in the ith rank Xi 
of the ith variable: 
  

mffk
i =μk

i(xi / ith parameter of class Ck ); k=1,2,…,l       (1) 
 
Where μk

i is the membership function of the ith variable to 
the class Ck. 
The membership function will be written using a parameter 
θki representing the ith prototype of class Ck as: 
                              μk

i(xi)= fi(xi, θki)                                  (2) 
In the following, we define the particular membership 
functions that will be used here for the three different 
types. 
Quantitative type variables. When the variable is 
quantitative, its numerical values are normalized within the 
interval [ximin, ximax], where the bounds can be the extremes 
of a given dataset or independently imposed. This linear re-
scaling of the variable into the interval [0,1] is performed 
by:    
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Where ˆix is the ith variable measured value and ix is its 
normalized one.  
In this work the binomial membership function has been 
chosen:  
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where i

kϕ  represents for each class k the mean value of the 
ith variable of the mk individuals belonging to this class :  
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Interval type variables. The membership function for 
interval type variables is chosen as the similarity between 
the symbolic interval value of the ith variable xi and the 
interval ,i

k

i i
k kρ ρ ρ− +=⎡ ⎤⎣ ⎦ representing the class Ck as: 

                      ( ) ( )i
kii

i
k xSx ρμ ,=                           (6) 

 Symbolic interval variables are extensions of pure real 
data types, in the way that each variable may take an 
interval of values instead of a single value (Gowda and 
Diday 1992). In this framework, the value of a quantity x is 
expressed as a closed interval [x-,x+] whenever only an 
incomplete knowledge is available about it; representing 
the knowledge that x x x− +≤ ≤ (Kuipers 1994). 

Let us consider the global domain U, continuous or 
discrete, in which the intervals are defined. U must be a 
compact subset of the real line R.  
The measure ϖ  of an interval X is given by its length:

[ ] ( ) ( )XboundlowerXboundupperX .. −=ϖ . 

Given 2 intervals  [ ]−+= aaA ,   and [ ]−+= bbB , , their 
distance ∂  is defined as: 

[ ] { } { }( ), ,, max 0, max mina b a bA B − − + +∂ = −⎡ ⎤
⎣ ⎦  

Definition 2. Similarity measure between two intervals  



The similarity measure is defined here as: 
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It is worthwhile to note that the function S(A,B) fulfils the 
following properties : 
(i) 0 ≤  S(A,B)  ≤ 1 ; 

(ii) S(A,B) = 1 if and only if  A equals to B ; 
(iii) S(A,B) = S(B,A). 
 
These properties are commonly used to characterize a 
general similarity measure (Li and Wu 2008). 
Lets consider that mk individuals have been assigned to 
class Ck, this class will have as prototype a vector whose 
components are the intervals obtained by the mean bounds:  
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Where j
ix −  is the ith variable lower bound of the jth sample 

and j
ix +  is its upper bound. Consequently, the resulted 

class prototype for the r interval variables is given by the 
vector of intervals:  

                         [ ]Tr
kkkk ρρρρ ,...,, 21=                       (9) 

 
Qualitative type variables. For qualitative variables, the 
possible values of the ith variable form a set of modalities: 

               { }1 , ,i i i
i j MiD Q Q Q= … …

                                 (10)                    
The membership function of qualitative variable xi is 
specified as: 
          ( ) ( ) ( )1

1
i iMiq qi i i

k k kMiixμ = Φ ∗ ∗ ΦL                            (11) 

Where 
 

i
kjΦ is the frequency of modality i

jQ  in the class Ck   

and                    
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Therefore, the class prototypes are represented by 
1 , , , ,  i i i i

k k kj kMi⎡ ⎤Ω = Φ Φ Φ⎣ ⎦K K   

Common membership space 
Thus, having a quantitative space Rv , a qualitative space Rq 
and an interval space Rr, for each class the resulting 
membership space is Rm with m= v+q+r which is the total 
number of variables. In case of dichotomy problems only 
one Rm space is necessary as the other can be obtained by 
complementary of membership.  
 
Definition 3. Membership Degree Vector 
A Membership Degree Vector (MDV) of dimension m, can 
be associated for a given individual xn to each class as 
follows:            

( ) ( ) ( )1 2 m
nc n1 n2 nm

T
U x ,  x ,...,  x ;   1, 2, ...,

k k k k k lμ μ μ= =⎡ ⎤⎣ ⎦    (12)  

Where μk
i(xni) (i.e. μk

i(xi= xni) ), is the membership function 
of class Ck evaluated at the given value xni  of the ith 
variable of individual xn .  
MDV is a mth dimensional image of individual xn with 
respect to the considered class. All the components of the 
MDV are positive numbers in the unit interval [0,1], 
therefore 

kncU can be considered as a discrete fuzzy subset 

and the function )( ni
i
k x∑=

i
nc  )(U

k
μψ  represents its scalar 

cardinality (power or sigma count) as defined by (Zwick et 
al 1987).  

SMSP for heterogeneous variable selection  

Theory 
Variable selection is defined as the problem of choosing a 
small subset of variables that ideally is necessary and 
sufficient to describe the target concept (Kira and Randell 
1992). Generally, in classical dimensionality reduction 
methods, the variable relevance is estimated in the space 
assumed to be quantitative (Kira and Randell 1992; 
Weston et al. 2001). This restrictive assumption requires 
that other variable types must be transformed arbitrary, 
without taking any consideration about their original space.
 The margin concept extensively studied in statistical 
learning theory  (Vapnik 1998) is used here to perform a 
heterogeneous variable selection task. A Membership 
Margin is introduced in this section to accomplish 
heterogeneous variable selection task based on the SMSP 
principle.  
Definition 4. Membership Margin (MM). 
Let us consider classC , and its complement c% . We assume 
that the nth individual xn=[xn1,xn2,...,xnm] is labeled by class
C .  
The membership margin for individual xn is given by:   
 

( ) ( )nβ = ψ U -ψ Unc nc%                                             (13) 
Where Unc  and Unc%  are the MDVs of individual xn 
respectively to classes c and c~ , computed with respect to 
all individuals contained in D excluding xn (“leave-one-out 
margin”) and )(Uncψ  is the scalar cardinality of the 

discrete fuzzy set Unc . Individual xn is considered 
correctly classified if βn >0. 
Definition 5. Weighted adequacy of an individual  
Given a vector of positive weights f 1W , Rm

f fmw w⎡ ⎤= ∈⎣ ⎦K , the 

weighted adequacy of the nth individual is defined by the 
cardinality of the new fuzzy set that takes into account the 
weight of each variable adequacy. It is given by the scalar 
product: 

             nc nc
i

T
f f(U /W )  W U ( )

k k

i
fi k niw xμ=Ψ = ∑                      (14) 



These weights are non-negative numbers expressing the 
discriminative power of the fuzzy sets between existing 
classes. Therefore, a weighted membership margin for 
individual xn can be defined as:  

The basic idea to determine the adequacy weights is to 
scale variable memberships in the membership space by 
minimizing the leave-one-out error.   
This problem can be written as an optimization problem in 
the membership space:  
               ( )( )

f
1 n fw

Min   I β w 0N
n=∑ <                         (16) 

Where βn(wf) is the xn
th margin computed with respect to 

wf and I is an indicator function. To solve the above stated 
problem, an objective function has been used so that the 
averaged membership margin in the resulted weighted 
membership space is maximized:  
 

( ) ( )
f

1 n f 1 1 1w
 Max β (w ) { }N N m i m i

n n i fi c ni i fi c niw x w xμ μ= = = =∑ = ∑ ∑ − ∑ %

2
f 2|| w || =1  ,s.t. :  0wf ≥                                             (17) 

The first constraint has been introduced to bound the 
weight vector wf  whereas the second one ensures its non 
negativity.  
To solve the stated optimization problem, the well known 
Lagrangian optimization method can be used and yields an 
analytical solution, whose closed-form expression is given 
by: 

                           v

v

*  wf
+

= +
                                         (18) 

With v+= [max(v1,0), …, max(vm,0)]T 

 It is interesting to note that, by minimizing the objective 
function (16) within a membership margin framework, this 
mechanism avoids the combinatorial search and enables to 
reason about data regardless the number of variables.  

Application example 
Ljubljana Prognosis Dataset. The dataset used here 
concerns Ljubljana Prognosis dataset which deals with 
breast cancer prognosis; it contains a total of 286 patients 
where 201 among them have not relapsed after five years 
and 85 have relapsed (Murphy and Aha 1995). Patients 
with missing data were excluded from this study (9 
patients). All patients are described by 9 variables (6 
qualitative and 3 interval type): 

• Menopause: >40, <40, pre-menopause. 
• Ablation Ganglia: yes, no. 
• Malignancy Degree (Grade): I, II, III 
• Breast right, left   
• Quadrant: sup. left, inf. left sup. right, inf. right, 

center. 

•  Irradiation: yes, no  
• Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 

70-79, 80-89, 90-99 
• Tumor Size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-

29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.  
• Invaded Nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-

17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 
36-39.  

 
Experimental setup and results. The proposed reasoning 
tool in this section is used to find the set of important 
factors for this problem. Moreover, 50 random quantitative 
variables were added also to assess the robustness of this 
mechanism against irrelevant variables. 

Fig. 1. Adequacy weights of variables  
 
 In figure 1, it can be observed that the order of the most 
relevant variables appears to be: Invaded Nodes (interval), 
Ablation ganglia (qualitative), Malignancy Degree 
(qualitative), Irradiation (qualitative). Moreover, the 
proposed mechanism succeeds to identify the 50 added 
irrelevant variables by assigning them approximately zero 
weights (they correspond to the last 50 variables in figure 
1).  

 
Fig. 2. Classification error as function of the top ranked variables  

 
 In order to validate the importance of the four chosen 
variables to improve the performance of the classification 
task, the fuzzy reasoning tool of classification proposed in 
the next section can be used. Moreover, to eliminate any 
statistical variation, this operation is repeated randomly 20 
times and the accuracy of classification has been taken as 

        f f/W /Wnc nc(U )- (U )nβ ψ ψ= %       (15) 



the averaged error over all the runs. In figure 2 the 
obtained classification error as function of the top ranked 
variables has been plotted. It can be observed that the 
minimal classification error corresponds to the resulted 
four top ranked variables. 

SMSP for classification of heterogeneous data   

Theory 
Classification is considered as one of the fundamental 
problems in machine learning. Duda and Hart (2000) 
define it as the problem of assigning a physical object or 
event to one of several pre-specified categories. In this 
section, we illustrate the problem of heterogeneous data 
classification as a reasoning problem in a common space 
based on the SMSP principle. Indeed, once the different 
types of variables have been mapped into a common space 
it is possible to establish a unified reasoning scheme for a 
classification purpose. The performance of the proposed 
approach is illustrated on a real-world problem. This 
approach is based on using the resulted fuzzy partitions in 
the previous section, to establish a fuzzy inference engine. 
In this approach, for each class Ck only a single fuzzy if-
then rule is generated:  
 
Rk:  If x1 is Α1  and x2  is Α2...and xm  is Αm then class Ck 
 
where the antecedent fuzzy sets Ai correspond to 
membership functions μk

i(xi) for each class Ck defined 
previously according to the type of the variable xi. It must 
be noticed here that the set of variables xi used to evaluate 
each fuzzy if-then rule can possibly be of mixed types 
(quantitative, qualitative or interval-valued).  
 Then, the truth value of the consequent of each rule is 
determined by a fuzzy logic implication function which 
consists in a linear interpolation between a t-norm and a t-
conorm. Finally, the individual is assigned to the class 
corresponding to the maximum membership obtained using 
the following fuzzy inference engine:  

{ }1 1
1 1R*= arg max  ( ), , ( ) (1 ) ( ), , ( ) 1, ...,n n

k k n k k n
k

x x x x k l
R

αγ μ μ α β μ μ+ − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦L L
 

where γ and β are dual fuzzy aggregation functions that 
combine memberships, given by the components of the 
MDV 

kncU , of an individual xn=[xn1,xn2,...,xnm] to a class 
Ck. The parameter α, called exigency allows to adjust the 
compensation between the union and the intersection 
operators which can be pre-specified by the user or 
estimated based on the training data. 
 Without the unification of the space of variables, this 
simple inference mechanism could not be applied, and the 
influence of the different types of variables would not be 
balanced. 

                                                 
 

Application example 
Heart Dataset. The dataset used in the application of the 
proposed fuzzy reasoning mechanism for a classification 
purpose concerns Heart disease (Murphy and Aha 1995). It 
contains 270 observations described by 13 heterogeneous 
variables of patients diagnosed whether having a heart 
disease. The thirteen variables include 7 of quantitative 
type and 6 of qualitative type which are respectively:  
 

• Age  in years 
• Resting blood pressure (in mm Hg on admission 

to the hospital) 
• Serum cholesterol in mg/dl 
• Maximum heart rate achieved 
• Oldpeak = ST depression induced by exercise 

relative to rest 
• The slope of the peak exercise ST segment 
• Number of major vessels (0-3) colored by 

fluoroscopy 
• Sex: male, female. 
• Chest pain type : typical angina, atypical angina, 

non-angina pain, asymptomatic 
• Fasting blood sugar > 120 mg/dl: yes, no. 
• Resting electrocardiographic results: normal, 

having ST-T wave abnormality, showing 
probable or definite left ventricular hypertrophy. 

• Exercise induced angina: yes, no. 
• Thal: normal, fixed defect, reversible defect 
 

Experimental setup and results. In order to validate the 
proposed methodology for classification on this 
heterogeneous dataset, cross-validation was performed. It 
consists of partitioning the dataset on two subsets: training 
and test. The training subset of patients is used to perform 
the fuzzy partition of variables and generate the rules used 
in the fuzzy engine inference, whereas the test subset is 
used to assess the performance of the resulted mechanism 
on unseen patients. The same procedure of cross-validation 
and statistical variation elimination as in section 4, is 
adopted here. To further demonstrate the effectiveness of 
the proposed methodology, a comparison on the same 
dataset with the well known k-Nearest Neighbor (Cover 
and Hart 1967) method is performed. It must be noticed 
here that this classification method is suitable for pure 
quantitative data whereas a random transformation of other 
data types is required. The obtained test error rate with 
both methods is shown in Table1. It can be observed that 
the proposed fuzzy reasoning mechanism enhances 
significantly the performance of the classification task. 

Table1.Classification error for Heart dataset 

Method Training subset size Test subset size Test-Accuracy 
Proposed approach 80% 20% 82.13 

k-NN 80% 20% 69.9 



Conclusion 
In this paper a unified principle is introduced to cope with 
the problem of data heterogeneity. This principle is based 
on a simultaneous mapping of data from initially 
heterogeneous spaces into only one homogeneous space 
using appropriate characteristic functions. Once the 
heterogeneous data are represented in a unified space, only 
a single processing for various analysis purposes such as 
machine learning tasks can be performed. It has been 
shown that applying this principle within a fuzzy logic 
framework can significantly improve the mechanism 
performance to reason about heterogeneous data. Firstly, a 
simultaneous mapping is performed based on an 
appropriateness measure of variables values to each class 
using suitable membership functions according to each 
type of variable (quantitative, qualitative, interval). Then, 
simple fuzzy reasoning mechanisms were proposed to deal, 
in unified way, with heterogeneous data either for 
classification or variable selection tasks. For each 
application task, a validation on real-world problem was 
performed using heterogeneous datasets from the UCI 
repository. The proposed methodology leads to meaningful 
results and improves significantly tasks performance.  
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