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Abstract

Human knowledge about monitoring process variables is
usually incomplete. To deal with this partial knowledge
many types of representation other than the quantitative one
are used to describe process variables (qualitative, symbolic
interval). Thus, the development of automatic reasoning
mechanisms about the process is faced with this problem of
multiple data representations. In this paper, a unified
principle for reasoning about heterogeneous data is
introduced. This principle is based on a simultaneous
mapping of data from initially heterogeneous spaces into
only one homogeneous space based on a relative measure
using appropriate characteristic functions. Once the
heterogeneous data are represented in a unified space, a
single processing for various analysis purposes can be
performed using simple reasoning mechanisms. An
application of this principle within a fuzzy logic framework
is performed here to demonstrate its effectiveness. We show
that simple fuzzy reasoning mechanisms can be used to
reason in a unified way about heterogeneous data in two
well known machine learning problems.

Introduction

Qualitative reasoning is taken in this paper as the
mechanism of reasoning about qualitative information.
Such information is given by qualitative valued data,
which can be nominal or ordinal, mixed with quantitative
and interval data. We address here one of the main
difficulties encountered in qualitative reasoning: the
diversity of types of information. The focus of the present
paper is to propose a unified principle to establish various
reasoning mechanisms using simultaneously three types of
data: pure quantitative, symbolic interval and pure
qualitative modalities. During the last decades, few
research works have been directed to defy the issue of
representation multiplicity for data analysis purposes
(Michalski and Stepp 1980; Aha 1992; Cost and Salzberg
1993; Mohri and Hidehiko 1994; Giraud-Carrier and Tony
1995; Gowda and Diday 1992; Hu et al. 2007; De
Carvalho and De Souza 2010; Kononenko 1994).
However, no standard principle has been proposed in the

literature to handle in a unified way heterogeneous data.
Indeed, a lot of proposed techniques process separately
quantitative and qualitative data. In data reduction tasks for
example, they are either based on distance measures for the
former type (Kira and Randell 1992) and on information or
consistency measures for the later one ( Dash and Liu
2003). Whereas in classification and clustering tasks,
eventually only a Hamming distance is used to handle
qualitative data (Aha 1992; Kononenko 1994; Aha 1989).
Other approaches are originally designed to process only
quantitative data and therefore arbitrary transformations of
qualitative data into a quantitative space are proposed
without taking into account their nature in the original
space (Kira and Randell 1992; Weston et al. 2001; Cover
and Hart 1967). Another inverse practice is to enhance the
qualitative aspect and discretize the quantitative value
domain into several intervals, then objects in the same
interval are labeled by the same qualitative value (Liu and
Hussian 2002; Hall 2000). Obviously, both approaches
introduce distortion and end up with information loss with
respect to the original data. Moreover, none of the
previously proposed approaches combines in a fully
adequate way the processing of symbolic intervals
simultaneously with quantitative and qualitative data.
Although extensive studies were performed to process this
type of data in the Symbolic Data Analysis framework
(Bock and Diday 2000), they were focused generally more
on the clustering tasks (Gowda and Diday 1992; De
Carvalho and De Souza 2010) and no unified principle was
given to handle simultaneously the three types of data for
different analysis. In this paper a new general principle,
introduced here as ‘“Simultaneous Mapping for Single
Processing (SMSP)”, enables the reasoning in a unified
way about heterogeneous data for several data analysis
purposes. To illustrate the possible use of the proposed
approach, two methodological applications are considered:
dimensionality reduction and classification. This paper is
organized as follows: in the second section the SMSP
principle is introduced. In section 3, an example of
simultaneous mapping of mixed variables into a common
space is presented within the framework of fuzzy logic.
Section 4 presents the use of this principle to establish a
reasoning scheme for a variable selection task of



heterogeneous data. Another reasoning mechanism using
this principle, devoted to the classification of
heterogeneous data is presented in section 5. In each of
these three sections, an application example on real-world
heterogeneous data sets from the UCI Repository database
is given to exhibit the performance of the proposed
method. The final section gives conclusions.

SMSP Principle

As the name indicates it, SMSP principle is based initially
on an appropriate simultaneous mapping of heterogeneous
data into a unified space. This mapping can be obtained by
using a characteristic function for each type of data to
bring them into a homogeneous space. These functions can
be designed in such a way that they express a relative
measure, as for example the measure of the
appropriateness of each variable value of individuals to
existing partitions, based on available prior knowledge. For
instance, in a fuzzy sets theory framework, this measure is
technically synonymous with the terms of membership
measure which is a number of the real unit interval 1.

In this paper, the SMSP principle is applied within a
fuzzy set theory framework to reason about heterogeneous
data. Once suitable membership functions that characterize
the adequacy to each class are chosen according to a
variable type, a fuzzy partition of variables can be
performed based on empirical data. It results that the initial
data is mapped into a homogeneous space isomorphic to an
n"™ dimensional unit cube I". Therefore, a unique and
simple fuzzy reasoning mechanism can be used to reason
about the resulting data whatever its original type. It will
be shown thereafter that it enables to perform a wide
variety of analysis (classification, dimensionality
reduction, clustering...).

Homogeneous Space of Variables

Fuzzy partition of variables

Basically we consider the three above mentioned types of
data: Quantitative variables, Symbolic intervals and
Qualitative variables.

Definition 1. Fuzzification of variables

Let D={x,,C/},,eXxC be a

Xn=[Xn1,Xn2+-»Xnm] 1S the n™ individual (item) and N is the
total number of individuals. Each individual is represented
by m variables possibly of different types (quantitative,
qualitative or symbolic interval), and Cy is the class label
assigned to each individual in the pre-established
partitions: k=1,2,...,l.

Namely, let { mff,',..., mff;' } represent the | fuzzy sets that
form a fuzzy partition for the i“_‘ variable.

The membership function mff,' is defined in the i" rank X;
of the i" variable:

dataset, where

mff' = (x;/ " parameter of class Cy ); k=1,2,...,1 €]

Where z4! is the membership function of the i variable to
the class Cy.
The membership function will be written using a parameter
6 representing the ith prototype of class Cy as:

1k (%)= £i(Xi, Oyi) (2)
In the following, we define the particular membership
functions that will be used here for the three different
types.
Quantitative type variables. When the variable is
quantitative, its numerical values are normalized within the
interval [Ximin, Ximax],» Where the bounds can be the extremes
of a given dataset or independently imposed. This linear re-
scaling of the variable into the interval [0,1] is performed
by:
X = Xi = Ximin 3)

Xi max Xi min

Where )A(i is the i variable measured value and X is its
normalized one.
In this work the binomial membership function has been

chosen:

ﬂ|i((Xi)=¢|i(l_Xi(l—¢f<Yi 4

where ¢, represents for each class k the mean value of the
i" variable of the my individuals belonging to this class :

. 1 j=mg .
op =— ¥ x )
Interval type variables. The membership function for
interval type variables is chosen as the similarity between
the symbolic interval value of the i variable X; and the

interval g :[,q( , ,q'f] representing the class Cy as:

i (x) =5 (o) ®)

Symbolic interval variables are extensions of pure real
data types, in the way that each variable may take an
interval of values instead of a single value (Gowda and
Diday 1992). In this framework, the value of a quantity X is
expressed as a closed interval [X ,X"] whenever only an
incomplete knowledge is available about it; representing
the knowledge that x* < x < x" (Kuipers 1994).
Let us consider the global domain U, continuous or
discrete, in which the intervals are defined. U must be a
compact subset of the real line R.
The measure @ of an interval X is given by its length:
w[x ] = upper .bound (X )f lower .bound (X )

Given 2 intervals A= [a+, a_] and B = [b+ , b_], their
distance O is defined as:

o[ A, B] = max [o, (max {a= b~} - min fa* ,b+})}

Definition 2. Similarity measure between two intervals



The similarity measure is defined here as:

ﬁAB):lvﬂAmBL4_dABU

2\ w[AUB] z|U]

It is worthwhile to note that the function S(A,B) fulfils the
following properties :
(i) 0< S(AB) <1;
(i1) S(A,B) =1 if and only if A equalstoB;
(iii) S(A,B) =S(B,A).

@)

These properties are commonly used to characterize a
general similarity measure (Li and Wu 2008).

Lets consider that my individuals have been assigned to
class Cy, this class will have as prototype a vector whose
components are the intervals obtained by the mean bounds:

pi- = L > xisand piv o 1_2 xi© (®)
mk j=

koj=1

Where X!~ is the i variable lower bound of the j" sample
and X" is its upper bound. Consequently, the resulted
class prototype for the r interval variables is given by the
vector of intervals:

pi = lpbpie piT ©)

Qualitative type variables. For qualitative variables, the
possible values of the i" variable form a set of modalities:

D = {Q....Q}....Qu ) (10)

The membership function of qualitative variable X; is
specified as:

#Q(Xi)=(‘bik1)q” *"'*((D:(Mi)qlm (1)
Where CI)LJ. is the frequency of modality Q; in the class Cy
and )] i_f X =Q;

F0if x #Q;

Therefore, the class prototypes are represented by
Q, =[®},.,....D}..... D}, |

Common membership space

Thus, having a quantitative space R", a qualitative space RY
and an interval space R', for each class the resulting
membership space is R™ with m= v+q+r which is the total
number of variables. In case of dichotomy problems only
one R™ space is necessary as the other can be obtained by
complementary of membership.

Definition 3. Membership Degree Vector

A Membership Degree Vector (MDV) of dimension m, can
be associated for a given individual x, to each class as
follows:

T
Unq< :|:uli (Xn])’ ‘ulf (Xn2)""3 :ulin (Xnm)] > k =1’2""’| (12)

Where ,uki(xni) (i.e. ,uki(xi: Xni) ), is the membership function
of class Cy evaluated at the given value x,; of the i
variable of individual x,, .

MDV is a m" dimensional image of individual x, with
respect to the considered class. All the components of the
MDV are positive numbers in the unit interval [0,1],

therefore U, can be considered as a discrete fuzzy subset

and the function yU, . )=X :uli(xni) represents its scalar
k "

cardinality (power or sigma count) as defined by (Zwick et
al 1987).

SMSP for heterogeneous variable selection

Theory

Variable selection is defined as the problem of choosing a
small subset of variables that ideally is necessary and
sufficient to describe the target concept (Kira and Randell
1992). Generally, in classical dimensionality reduction
methods, the variable relevance is estimated in the space
assumed to be quantitative (Kira and Randell 1992;
Weston et al. 2001). This restrictive assumption requires
that other variable types must be transformed arbitrary,
without taking any consideration about their original space.
The margin concept extensively studied in statistical
learning theory (Vapnik 1998) is used here to perform a
heterogeneous variable selection task. A Membership
Margin is introduced in this section to accomplish
heterogeneous variable selection task based on the SMSP
principle.
Definition 4. Membership Margin (MM).
Let us consider classc, and its complement . We assume
that the n™ individual x,=[Xn1,Xn2,....Xnm] is labeled by class
C.
The membership margin for individual x, is given by:

Bn:\V(Unc)'\V(UnC) (13)
Where U, . and U . are the MDVs of individual x,
respectively to classesCand C , computed with respect to
all individuals contained in D excluding x, (“leave-one-out
margin”) and (U ) is the scalar cardinality of the

discrete fuzzy setU, . Individual x, is considered

correctly classified if B,>0.

Definition 5. Weighted adequacy of an individual

Given a vector of positive Weightsw =[Wf - .meJ €R", the
weighted adequacy of the n™ individual is defined by the
cardinality of the new fuzzy set that takes into account the
weight of each variable adequacy. It is given by the scalar
product:

T _
YUy W)= We Up = Wy 44 (%) (14)



These weights are non-negative numbers expressing the
discriminative power of the fuzzy sets between existing
classes. Therefore, a weighted membership margin for
individual x, can be defined as:

By =0 (U )-w (U o ,) (15)

The basic idea to determine the adequacy weights is to
scale variable memberships in the membership space by
minimizing the leave-one-out error.

This problem can be written as an optimization problem in
the membership space:

Min X7, I1(B, (w,)<0) (16)

Where B,(wy) is the x," margin computed with respect to
Wi and I is an indicator function. To solve the above stated
problem, an objective function has been used so that the
averaged membership margin in the resulted weighted
membership space is maximized:

N\{I?XZL\‘:] B,(w;)= Zr’:‘:l {ZL Wfi:uci (Xni )_ZL Wfi/ué (Xni )}

2
st weli=1, w; 20

17)
The first constraint has been introduced to bound the

weight vector Wy whereas the second one ensures its non
negativity.

To solve the stated optimization problem, the well known
Lagrangian optimization method can be used and yields an
analytical solution, whose closed-form expression is given
by:

+
we =" (18)
e
\4
With v'= [max(v,0), ..., max(Vy,0)]"
It is interesting to note that, by minimizing the objective
function (16) within a membership margin framework, this

mechanism avoids the combinatorial search and enables to
reason about data regardless the number of variables.

Application example

Ljubljana Prognosis Dataset. The dataset used here
concerns Ljubljana Prognosis dataset which deals with
breast cancer prognosis; it contains a total of 286 patients
where 201 among them have not relapsed after five years
and 85 have relapsed (Murphy and Aha 1995). Patients
with missing data were excluded from this study (9
patients). All patients are described by 9 variables (6
qualitative and 3 interval type):

e Menopause: >40, <40, pre-menopause.
Ablation Ganglia: yes, no.
Malignancy Degree (Grade): I, 11, III
Breast right, left
Quadrant: sup. left, inf. left sup. right, inf. right,
center.

Irradiation: yes, no

e Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69,
70-79, 80-89, 90-99

e Tumor Size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-
29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.

e Invaded Nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-

17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35,

36-39.

Experimental setup and results. The proposed reasoning
tool in this section is used to find the set of important
factors for this problem. Moreover, 50 random quantitative
variables were added also to assess the robustness of this
mechanism against irrelevant variables.

Ljubljana\ 50 imelevant quantitative features
1

09

08
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e © o o o o
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Fig. 1. Adequacy weights of variables

In figure 1, it can be observed that the order of the most
relevant variables appears to be: Invaded Nodes (interval),
Ablation ganglia (qualitative), Malignancy Degree
(qualitative), Irradiation (qualitative). Moreover, the
proposed mechanism succeeds to identify the 50 added
irrelevant variables by assigning them approximately zero
weights (they correspond to the last 50 variables in figure

1).

Classification error
o
N
N

0.245

4 5 8 7 8 9
Number of features

1 2 3

Fig. 2. Classification error as function of the top ranked variables

In order to validate the importance of the four chosen
variables to improve the performance of the classification
task, the fuzzy reasoning tool of classification proposed in
the next section can be used. Moreover, to eliminate any
statistical variation, this operation is repeated randomly 20
times and the accuracy of classification has been taken as



the averaged error over all the runs. In figure 2 the
obtained classification error as function of the top ranked
variables has been plotted. It can be observed that the
minimal classification error corresponds to the resulted
four top ranked variables.

SMSP for classification of heterogeneous data

Theory

Classification is considered as one of the fundamental
problems in machine learning. Duda and Hart (2000)
define it as the problem of assigning a physical object or
event to one of several pre-specified categories. In this
section, we illustrate the problem of heterogeneous data
classification as a reasoning problem in a common space
based on the SMSP principle. Indeed, once the different
types of variables have been mapped into a common space
it is possible to establish a unified reasoning scheme for a
classification purpose. The performance of the proposed
approach is illustrated on a real-world problem. This
approach is based on using the resulted fuzzy partitions in
the previous section, to establish a fuzzy inference engine.
In this approach, for each class Cy only a single fuzzy if-
then rule is generated:

Ry If Xy is A; and X, is A,...and X, is A, then class Cy

where the antecedent fuzzy sets A; correspond to
membership functions z4'(X;) for each class Cy defined
previously according to the type of the variable ;. It must
be noticed here that the set of variables X; used to evaluate
each fuzzy if-then rule can possibly be of mixed types
(quantitative, qualitative or interval-valued).

Then, the truth value of the consequent of each rule is
determined by a fuzzy logic implication function which
consists in a linear interpolation between a t-norm and a t-
conorm. Finally, the individual is assigned to the class
corresponding to the maximum membership obtained using
the following fuzzy inference engine:

R*:argRr:ax{ ar [ 1Ot 00) |+ (=) B (%) 1 (%) |

where y and B are dual fuzzy aggregation functions that
combine memberships, given by the components of the

MDV U

ney * of an individual X,=[Xn1,Xn2,---,.Xnm] t0 a class
Ck. The parameter a, called exigency allows to adjust the
compensation between the union and the intersection
operators which can be pre-specified by the user or

estimated based on the training data.

Without the unification of the space of variables, this
simple inference mechanism could not be applied, and the
influence of the different types of variables would not be
balanced.

Application example

Heart Dataset. The dataset used in the application of the
proposed fuzzy reasoning mechanism for a classification
purpose concerns Heart disease (Murphy and Aha 1995). It
contains 270 observations described by 13 heterogeneous
variables of patients diagnosed whether having a heart
disease. The thirteen variables include 7 of quantitative
type and 6 of qualitative type which are respectively:

e Age in years

e Resting blood pressure (in mm Hg on admission
to the hospital)

e Serum cholesterol in mg/dl

e Maximum heart rate achieved

e Oldpeak = ST depression induced by exercise
relative to rest

e The slope of the peak exercise ST segment

e Number of major vessels (0-3) colored by
fluoroscopy

e Sex: male, female.

e Chest pain type : typical angina, atypical angina,
non-angina pain, asymptomatic

e Fasting blood sugar > 120 mg/dl: yes, no.

e Resting electrocardiographic results: normal,
having ST-T wave abnormality, showing
probable or definite left ventricular hypertrophy.

e Exercise induced angina: yes, no.

e Thal: normal, fixed defect, reversible defect

Experimental setup and results. In order to validate the
proposed methodology for classification on this
heterogeneous dataset, cross-validation was performed. It
consists of partitioning the dataset on two subsets: training
and test. The training subset of patients is used to perform
the fuzzy partition of variables and generate the rules used
in the fuzzy engine inference, whereas the test subset is
used to assess the performance of the resulted mechanism
on unseen patients. The same procedure of cross-validation
and statistical variation elimination as in section 4, is
adopted here. To further demonstrate the effectiveness of
the proposed methodology, a comparison on the same
dataset with the well known k-Nearest Neighbor (Cover
and Hart 1967) method is performed. It must be noticed
here that this classification method is suitable for pure
quantitative data whereas a random transformation of other
data types is required. The obtained test error rate with
both methods is shown in Tablel. It can be observed that
the proposed fuzzy reasoning mechanism enhances
significantly the performance of the classification task.

Tablel.Classification error for Heart dataset

Method Training subset size Test subset size Test-Accuracy

Proposed approach 80% 20% 82.13
k-NN 80% 20% 69.9




Conclusion

In this paper a unified principle is introduced to cope with
the problem of data heterogeneity. This principle is based
on a simultaneous mapping of data from initially
heterogeneous spaces into only one homogeneous space
using appropriate characteristic functions. Once the
heterogeneous data are represented in a unified space, only
a single processing for various analysis purposes such as
machine learning tasks can be performed. It has been
shown that applying this principle within a fuzzy logic
framework can significantly improve the mechanism
performance to reason about heterogeneous data. Firstly, a
simultaneous mapping is performed based on an
appropriateness measure of variables values to each class
using suitable membership functions according to each
type of variable (quantitative, qualitative, interval). Then,
simple fuzzy reasoning mechanisms were proposed to deal,
in unified way, with heterogencous data either for
classification or variable selection tasks. For each
application task, a validation on real-world problem was
performed using heterogeneous datasets from the UCI
repository. The proposed methodology leads to meaningful
results and improves significantly tasks performance.
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