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Series Foreword 

Artificial intelligence is the study of intelligence using the ideas and 
methods of computation. Unfortunately a definition of intelligence seems 
impossible at the moment because intelligence appears to be an amal-
gam of so many information-processing and information-representation 
abilities. 

Of course psychology, philosophy, linguistics, and related disciplines 
offer various perspectives and methodologies for studying intelligence. 
For the most part, however, the theories proposed in these fields are too 
incomplete and too vaguely stated to be realized in computational terms. 
Something more is needed, even though valuable ideas, relationships, 
and constraints can be gleaned from traditional studies of what are, after 
all, impressive existence proofs that intelligence is in fact possible. 

Artificial intelligence offers a new perspective and a new methodol-
ogy. Its central goal is to make computers intelligent, both to make them 
more useful and to understand the principles that make intelligence pos-
sible. That intelligent computers will be extremely useful is obvious. The 
more profound point is that artificial intelligence aims to understand in-
telligence using the ideas and methods of computation, thus offering a 
radically new and different basis for theory formation. Most of the people 
doing work in artificial intelligence believe that these theories will ap-
ply to any intelligent information processor, whether biological or solid 
state. 

There are side effects that deserve attention, too. Any program that 
will successfully model even a small part of intelligence will be inher-
ently massive and complex. Consequently artificial intelligence continu-
ally confronts the limits of computer-science technology. The problem 
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encountered have been hard enough and interesting enough to seduce 
artificial intelligence people into working on them with enthusiasm. It is 
natural, then, that there has been a steady flow of ideas from artificial 
intelligence to computer science, and the flow shows no sign of abating. 

The purpose of this series in artificial intelligence is to provide people 
in many areas, both professionals and students, with timely, detailed 
information about what is happening on the frontiers in research centers 
all over the world. 

J. Michael Brady 
Daniel G. Bobrow 
Randall Davis 



1 	Preface 

Artificial intelligence has matured. Steady scientific progress has led to 
intellectual respectability. Commercially, the 1970s saw a trickle of ap-
plications, while in the 1980s expert systems technology became an ac-
cepted factor in solving information processing problems. Fueled in part 
by the microelectronics revolution, these trends have led to rapid growth 
in the field. Compared to the explosive growth of the 1980s, the trend for 
the 1990s seems to be a continual, quiet propagation of artificial intelli-
gence techniques into mainstream computing. 

One consequence of this growth is a substantial rise in the number 
of people interested in AI research and applications. Unfortunately, the 
dissemination of AI expertise has not kept pace. Artificial intelligence is 
an experimental discipline. Al research invariably requires programming. 
Applying AI as part of a system to perform some large task requires 
either understanding the strengths and weaknesses of subsystems em-
bodying Al techniques or "rolling your own" to meet your constraints. Al-
though the skills required for successful AI programming are mostly the 
same as those needed for any other kind of programming, the technology 
involved is often unfamiliar. Previously these techniques were passed on 
by apprenticeship, but the explosive growth of the field has caused that 
system to break down. As progress moves the frontier farther away, it 
becomes essential to master the fundamentals more quickly. This book 
is designed to help. 



Chapter 1 

1.1 The role of this book 

The goal of this book is to teach the reader how to design and build 
computer problem solvers. Although there have been several books that 
describe Lisp and Al programming, this book is unique in several ways: 

1. We assume a thorough knowledge of Common Lisp. There are several 
good Lisp textbooks already in print; we see no reason to add yet an-
other. Assuming familiarity with Common Lisp allows us to explore 
more advanced topics. 

2. We focus on techniques for building reasoning systems, instead of 
attempting to cover every variety of Al programming. For example, 
we do not explore the design of natural language systems, vision 
programs, learning systems, or neural networks. We believe the tech-
nology of building problem solvers has advanced enough that a book 
about it alone seems both necessary and useful. Specifically, we be-
lieve we give the reader unparalleled coverage of techniques such as 
pattern-directed inference systems, truth maintenance systems, and 
constraint languages. 

3. We assume the reader already has some familiarity with basic Al 
ideas, as one would get from studying a good introductory textbook. 
We often explore theoretical issues, but always with the goal of how 
they relate to designing problem solvers. 

4. We tie principles of problem-solving techniques to practice. We dis-
cuss the underlying principles of each problem-solving technique, 
then demonstrate the ideas through programs that clearly exhibit 
their essence. Finally, how these ideas work is illustrated through 
several examples, often substantial, to provide a deeper understand-
ing. 

5. We discuss the engineering issues required to scale up simple pro-
grams into "industrial strength" Al systems. There is an overall com-
plexity gradient in the programs we present. The early systems are 
written to be easily understood by readers with only classroom expe-
rience in Common Lisp. Later systems illustrate programming tech-
niques commonly used in "industrial-strength" Al systems, where 
efficiency is as important as elegance. 



3 	 Preface 

6. We include exercises, ranging from simple homework problems to 
open research questions, to get the reader started exploring these 
ideas. 

The reader who diligently works through the programs and exercises in 
this book will be rewarded with the ability to apply and develop a variety 
of useful AI reasoning systems. 

This book is designed for two audiences. First, it is designed as a 
textbook for graduate (or advanced undergraduate) courses in Al pro-
gramming. The material can be covered in a single semester, often giving 
new graduate students a head start in the skills they need to complete 
their theses (or for undergraduates, the skills needed to participate in 
research, summer jobs, and honors theses). Second, it is designed to be 
useful for self-study and industrial training, for those with other back-
grounds who wish to master AI technology. To this end we have in-
cluded complete, working programs to simplify experimentation. These 
programs (and their descendants) have already been used in research 
projects at Northwestern University, the University of Illinois, Oxford 
University, the Xerox Corporation, Bolt, Beranek, and Newman, and many 
other universities, companies and government agencies. 

1.1.1 Why use Common Lisp? 

Given the tidal wave of enthusiasm for C (and now C++) in mainstream 
computing and some applied AI circles, why use Lisp? Obviously, one 
could in principle write every program in this book in C++. Our goals 
are pedagogical: we choose Lisp because it is the best generally accepted 
language for easily communicating these ideas. Lisp's treatment of proce-
dures as first-class entities, the provision of automatic storage manage-
ment, and its simplified syntax which allows programs to easily write and 
analyze other programs greatly simplifies our systems and minimizes 
the cognitive load on you, the reader. Developing these facilities in C or 
C++ would make an already long book burst at the seams. 

Logic programming aficionados might argue that Lisp is too "low-
level," and that a language such as Prolog would be more appropriate. We 
believe the goals of logic programming—including providing powerful 
reasoning mechanisms with solid declarative semantics—are extremely 
important. However, we do not believe that today's logic programming 
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languages are necessarily the best starting point for developing the logic 
programming systems of the future. By making fewer a priori commit-
ments to reasoning system design, Common Lisp gives us the ability to 
craft a variety of quite different systems more easily. 

Yet another alternative might have been one of the many commercially 
available knowledge engineering toolkits or expert system shells. Such 
systems are inappropriate for our purpose for three reasons: 

1. A deep understanding of the principles underlying the tools gives 
one a better chance of using them successfully. This understanding 
is best gained by "opening the hood" and looking at how the engine 
is built. 

2. Commercial tools are not appropriate for many purposes. Sometimes 
the reason is efficiency, sometimes source code access is necessary, 
and sometimes reasoning must be done by a computer for which an 
appropriate commercial tool kit is not available. In such cases the 
ability to build your own reasoning system is crucial. 

3. The state of the art in building reasoning engines is far from static. 
While we believe there is now a stable core, many important ideas re-
main to be discovered. To develop the next generation of toolkits and 
AI applications requires exploring new ideas, beyond the capabilities 
of today's systems. 

Finally, why use Common Lisp instead of a simpler dialect of Lisp, such 
as Scheme? Common Lisp has been called the PL/1 of the Lisp commu-
nity: large, ungainly, and tough to implement because of the massive 
libraries it provides. But those massive libraries are precisely the reason 
it has become so popular in AI work. Anyone who remembers the days 
when Lisp programmers were faced with several overlapping and incom-
patible libraries of structure facilities, string manipulation utilities, and 
print routines is grateful for standardized libraries. Because we rely on 
the facilities of Common Lisp, our systems are shorter and simpler than 
they would be otherwise. 

We are sympathetic to readers who, due to limited resources, must use 
Scheme or partial Common Lisp implementations. For such readers there 
are two options: translate the programs by hand into your dialect of 
choice, or write a compatibility package that fills in the parts of Common 
Lisp that are used by the programs you wish to run but that are miss- 
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ing from your implementation. We have ourselves used both strategies 
at various times to run certain of these programs on small microcom-
puters (including 8086-based laptops). It does require extra patience and 
determination, however. 

1.2 About the programs 

The programs in this book are all written in standard Common Lisp for 
portability. They are known to run in Symbolics Common Lisp, Lucid 
Common Lisp on the IBM RT, IBM RS/6000, Sun SPARCStation. At vari-
ous times we have used the Symbolics CLOE environment for Microsoft 
Windows, Gold Hill's GCLisp-LM' and Apple's Macintosh Common Lisp as 
well. Information about setting up the programs can be found in Appen-
dix A. 

Much of the book can be read without looking at the programs. How-
ever, what our students have found most effective is to have both this 
text and the listings in hand while reading. A companion volume of the 
listings, with index, is available from the MIT Press, or listings may be 
generated from the programs themselves. 

An important note: Although the programs in this book have been 
useful in a variety of research settings, they should not be viewed as 
a substitute for commercial toolkits and systems. We do not provide 
telephone support, extensive documentation, newsletters, and regular 
upgrades, as commercial software enterprises do. We do not provide 
amazing user interfaces. We have not concerned ourselves with foreign 
function interfaces, report generators, or the wide variety of software 
issues that any commercial vendor must deal with. We are only trying 
to improve everyone's grasp of the technology and speed the process of 
getting you to the frontiers. 

1.3 Obtaining the programs 

The programs can be obtained in two ways: 

1. In one or two cases this requires implementing a missing Common Lisp primitive. 
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■ For readers with internet access, the code can be obtained via anony-
mous ftp. Since ftp protocols and sites change frequently, please con-
tact us to get detailed information about sites where the code can be 
found. Ways to reach us are described in the next section. 

■ For readers who do not have internet access, a floppy disk can be 
ordered from the MIT Press. 

Due to the increasingly litigious nature of American culture, we must 
make an important disclaimer at this point. The permission to use these 
programs, and legal restrictions on their use, are described by the notice 
in the file legal txt which comes with the code. The contents of this 
file are reproduced below. 

Copyright (c) 1986-1993 Kenneth D. Forbus, Johan de Kleer, and Xerox Corpo-
ration. All Rights Reserved. 
Use, reproduction, and preparation of derivative works are permitted. Any 
copy of this software or of any derivative work must include the above copy-
right notice and this paragraph. Any distribution of this software or deriva-
tive works must comply with all applicable United States export control laws. 
This software is made available as is, and Kenneth D. Forbus, Johan de Kleer 
and Xerox Corporation disclaim all warranties, expressed or implied, includ-
ing without limitation the implied warranties of merchantability and fitness 
for a particular purpose, and notwithstanding any other provision contained 
herein, any liability for damages resulting from the software or its use is ex-
plicitly disclaimed, whether arising in contract, tort (including negligence) or 
strict liability, even if Kenneth D. Forbus, Johan de Kleer, or Xerox Corporation 
is advised of the possibility of such damages. 

1.4 Feedback 

We would greatly appreciate any comments or suggestions about the pro-
grams or the text. The best way to communicate with us is via electronic 
mail. We have set up the alias 

bug-bps@ils.nwu.edu  

for electronic mail. All mail to this address is automatically forwarded to 
both of us. Though we prefer electronic mail, physical mail is also fine. 
Forbus's address is: 
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Kenneth D. Forbus 
The Institute for the Learning Sciences 
Northwestern University 
1890 Maple Avenue 
Evanston, Illinois, 60201, USA 

email: f orbus@ils . nwu edu 
fax: (708) 491-5258 

de Kleer's address is: 

Johan de Kleer 
Xerox PARC 
3333 Coyote Hill Road 
Palo Alto, California, 94304, USA 

email: dekleer@parc .  xerox . com 
fax: (415) 812-4770 

1.5 About the exercises 

Mastering any skill takes practice, and AI programming is no exception. 
To this end we have supplied exercises with each chapter. The problems 
are starred to indicate their level of difficulty. The rating system is: 

* 	Simple test of comprehension. 

** 	Slightly more subtle problem. 

** * A much harder problem, usually involving writing a fairly com-
plex program. Solving it could take days or weeks. 

** ** An even harder problem that could take weeks or months. Some 
of these are topics of active research. 

* * * * * An open research question. Could be the topic of a great Ph.D. 
thesis. 

We recommend that everyone do the * and ** exercises. If you re-
ally want to grasp the technology, do all of the * ** and some of 
the ** ** exercises as well. And if you do a good job on one of the 
* * * ** problems, you might well become famous for it! 
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2 	Introduction 

What makes an AI program different from other programs? Two key dif-
ferences are explicit representation of knowledge and increased modular-
ity. The ability to use explicit representations of knowledge is perhaps 
the best hallmark of Al programs. Traditional programs, to be sure, have 
knowledge embedded in their procedures and data structures. But AI 
programs include structures that can be interpreted declaratively, that 
is, independently of any single usage, both by the program and the pro-
grammer. The program, rather than the programmer, can decide what to 
do based on this knowledge in particular contexts. Often this allows the 
process of making improvements to an AI program to take on more of 
the character of telling it something, rather than of programming. 

The increased modularity in AI programs comes from decomposing 
procedures into small, fine-grained pieces. This extreme decomposition 
leads some to claim that AI programs necessarily consist of rules, but as 
we shall see, this need not be the case. Explicit knowledge representa-
tions support such fine-grained partitioning of procedures by providing 
a richer vocabulary for different parts of a program to communicate with 
each other. This increased flexibility is not without cost: to obtain the in-
formation a procedure needs to execute requires more complex reference 
mechanisms than the simple notion of variable and binding commonly 
used in programming languages. Often these mechanisms involve some 
form of pattern matching, but not always. The increased modularity and 
explicit communication between parts of a program increase its ability 
to make its own decisions, dynamically, rather than forcing the program-
mer to anticipate all possibilities in advance. 
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2.1 Comparing AI reasoning systems to conventional programs 

How should a problem solver be organized? One way to consider this 
question is to explore the desiderata for traditional programs and for 
AI programs. Let us take as an example of a traditional program one 
that runs the traffic lights in a major city. One may curse any particular 
instance of the operation of said program, while agreeing that in general 
it does a reasonably good job. How does this program differ from an Al 
program? 

Our imaginary prototypical traffic control program was probably writ-
ten in Fortran, has evolved over a decade or two, and was developed by 
dozens of people, many of whom probably never met. It is quite likely 
that no single person really understands in detail exactly what the traf-
fic control program does. (Unfortunately, the same can be true of some 
AI programs.) The fact that it is written in Fortran is not important per 
se. What is important is that it consists of a large slab of procedural code. 
We would like our AI programs to be constructed differently, for a variety 
of reasons. 

Any program must satisfy a number of constraints. Such desiderata 
include (1) efficiency, (2) coherence, (3) flexibility, (4) additivity, and (5) 
explicitness. Let us consider how the traffic control program satisfies 
these desiderata: 

Efficiency: Procedural languages excel at saying "how." Much of the de-
velopment of procedural languages has concerned automatically turning 
them into machine code that runs extremely efficiently. So, with adequate 
care, our traffic control program should be extremely efficient. 

Coherence: A well-written traffic control program handles routine situ-
ations without much dithering around. Like any well-evolved organism, 
its behaviors are highly tuned to its normal ecological niche. 

Flexibility: Human programmers can often perform prodigal feats of 
planning and design, anticipating an amazing variety of problems and 
conditions. But anticipating all possible conditions is impossible. The 
implicit nature of its world model makes the traffic control program 
difficult to change. In many cities, parades or other special events often 
cause them to turn the traffic control program off, since it is just too 
difficult to get the traffic control program to adapt to the new conditions. 
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Viewed as an organism, the traffic control program can only survive in a 
tightly constrained niche. 

Additivity: Anyone who has dealt with large conventional programs 
knows that they can be extremely hard to change. A small modification 
in one routine may have unexpected effects that crop up all over. Besides 
brittleness, the implicit encoding of knowledge often leads to a dreadful 
kind of inertia. Since any particular fact of the world may play a role in 
many design decisions, each decision must be reexamined. This means 
system-level programmers are often needed for even simple changes. 
Great job security for programmers, but frustrating for city planners. 

Explicitness: The traffic control program works, in that it handles the 
lights appropriately according to the policies embedded in it by its de-
signers. But it is opaque in its operation: it is hard to find out why one 
action was taken rather than another. Conventional programmers often 
make it easy to display the data the system used to make its decision, 
but rarely provide tools that can give non-programmers insight into the 
tangled skein of conditionals and subroutine calls underlying that deci-
sion. 

To summarize, the traffic control program does well on efficiency and 
coherence, but not very well on flexibility, additivity, and explicitness. 
This should not be surprising: efficiency and coherence almost always 
trade off against the others. Consider efficiency first. A program that 
stores the absolute minimum amount of information required to get a 
particular job done will always perform faster than one that must consult 
explicit knowledge and record the rationales for its decisions. And it is a 
sad reality that the more a program knows, the more storage space it 
requires. What about coherence? Coherence often demands performing 
actions in a particular order. The ability to respond to new facts implies 
the ability to change course, and thus to change when things happen. So 
coherence trades off against flexibility and additivity. 

In this imperfect world we will never succeed at optimizing along all 
these dimensions simultaneously. Where we choose to optimize in any 
particular program depends on its purpose, as we discuss below. As a 
gedanken experiment, suppose we wanted to transform a huge, mono-
lithic conventional program, such as our traffic light program, into an 
organization more like an AI problem solver, to optimize along the other 
dimensions. How should we proceed? 



12 	 Chapter 2 

We might start by carving up the procedural knowledge in the system 
into tiny pieces, so that each piece is as small as can be while still making 
sense as a module. These modular pieces correspond to the problem-
solver's rules. When these pieces of procedure lived inside the monolith, 
the environment they needed was supplied by the program's variables. A 
different, more sophisticated reference mechanism is needed to provide 
the context that would allow these procedure fragments to run. Pattern 
matching provides one such mechanism. Each piece of data needed by 
the rule must be either an assertion or some piece of an assertion. One 
can think of the inference engine's job as providing for each rule all pos-
sible environments constructible from known assertions for it to execute 
in. To be useful, the rule's results must be expressed as assertions, so 
that other rules can execute based on its results. 

Consider what happens if we execute the rules obtained by transform-
ing the monolithic program. Everything that happens in the monolithic 
program will also happen when executing the rules. The actions may take 
place in a different order, if the logical dependencies between them allow 
it, since many events in the traditional program are ordered by program-
mer preference rather than by need. Other actions may take place as well, 
corresponding to actions that follow from the data but that the program-
mer optimized out. This new program will be less efficient than the old 
one. Besides the possibility of performing extra actions, even executing 
the minimum necessary actions now takes more work, due to the extra 
overhead of using pattern matching to establish execution environments 
rather than more compact and efficient stack (or even static) structures. 
Consequently, any rule-based program will invariably be slower than the 
corresponding procedural program. 

What have we bought with this reconstruction? First, each small pro-
cedure fragment (i.e., rule) can be easier to understand on its own, both 
because of its size and because of the more expressive description of the 
information it is executing on. (To use a real-life example, (>> speed 
propeller frigate32) is easier to read than ETTNS.) By using a truth 
maintenance system, the reasons for taking actions can be recorded for 
later inspection and contemplation. Thus the increased bandwidth be-
tween the procedure fragments provides the infrastructure for increased 
explicitness. Since the order of execution of pieces of procedure is now 
governed by some execution strategy, rather than the preplanned deci-
sions of a human programmer, the system can be more flexible. And 
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finally, additivity is enhanced because new procedure fragments can be 
expressed in terms of the kinds of knowledge they use and produce, and 
thus can be automatically used when relevant. 

Depending on the task, these advantages can be substantial. Further-
more, it is often the case that the AI problem solver can come very 
close to the original system in performance, given careful design and 
programming—so close, in fact, that the increased flexibility, additivity, 
and explicitness of the AI system will make it far more valuable. 

2.1.1 A design space for problem solvers 

In looking at the AI literature it appears that there is a bewildering va-
riety of ways to build problem solvers. We believe that underlying this 
diversity is a design space that can be characterized, at least in a general 
way, by a few major distinctions. This belief is based on many years of 
experience in building and analyzing such systems. Since the science of 
designing and understanding problem solvers is still developing, any ac-
count at this stage is necessarily incomplete. Our map of the terrain is 
thus sketchy, but it is better than no map at all. 

Briefly, the "axes" of this space are: 

Knowledge model: How is the system's knowledge represented? 

Reference mechanism: How do procedures get the data they need to 
execute? 

Procedure model: How are procedures decomposed and organized? 

Execution strategy: How are procedures carried out? 

Dependency model: What information is recorded about the relation-
ships between a system's beliefs? 

Understanding this design space is important in figuring out when a 
technique could be useful. For example, in 1980s expert systems tech-
nology a common set of choices was: 

Knowledge model: object, attribute, value triples. 

Reference mechanism: Pattern matching within global or nested con-
text database. 

Procedure model: IF-THEN rules. 



14 	 Chapter 2 

Execution strategy: Backward-chaining. 

Dependency model: Trace of rule executions. 

Since this part of the design space has been heavily explored, we in 
fact ignore it in this book. Instead, we focus on areas in this design 
space which we believe have seen significant advances and are potentially 
extremely useful. 

2.2 Phases of AI programming 

Traditional system design methodologies are rarely appropriate for prob-
lems where AI techniques are needed, because solving the problem often 
requires figuring out what it really is, as opposed to having a complete, 
formal specification to begin with. Nevertheless, the general outlines of 
how programs come to be written and how they evolve apply to AI pro-
grams as well. The typical life of an AI program can be viewed as having 
four phases, described roughly as follows: 

1. Conceptualization: A problem is carefully chosen and analyzed. The 
literature is combed to see how others have fared on it.' After think-
ing about it a long time, inspiration strikes, and a promising new idea 
or solution is generated. 

2. Initial exploration: Rapid exploratory programming provides a pro-
gram that embodies your ideas so that you can test them to see if 
they have any merit. Quick development is important so that ideas 
that look good on paper but fail on further consideration can be 
weeded out as soon as possible. 

3. Experimentation: Once the idea has passed through the exploratory 
phase it is time to give it a really good workout. This means running 
the program on dozens or even hundreds of examples. Often this 
leads to a complete rethinking, or even abandoning, of the idea. 

In the early days of AI, "one example wonders" were common. 
Often, this was due to the poor machine resources available at the 

1. A saying among scientists is "Six months in the lab can often save an hour in the 
library." 
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time—the micros found on most people's desks today have as much 
memory as those early 1970s mainframe computers shared by a 
whole laboratory of scientists. Today, we do not have the same ex-
cuse. Serious experimentation is now a central requirement of re-
spectable AI research. 

4. Production: Once an idea has proven itself, it is time either to apply 
it or to move on to studying something else. Often this means con-
verting the program embodying your idea into a module that can be 
used in other projects and by other people. Sometimes, the program 
becomes a product, part of a product, or is put into daily use. Some-
times this is done by transforming the programs built in previous 
phases, but sometimes it is better to start over. Here issues of robust-
ness and clean interfaces become paramount, while speed of coding 
and program simplicity fade into secondary status. 

Only experience can teach you the skill of knowing which kind of pro-
gramming activity you should be doing when. We touch on this issue only 
peripherally in this book. 

It is important to notice that the requirements of each programming 
phase are very different. In exploratory programming, it is a sin to spend 
much time optimizing. Spending a day optimizing a program is foolhardy 
if you are going to throw it away next week. Conversely, not optimizing is 
a common mistake in experimental programming. It is equally foolhardy 
to wait hours a day for several weeks (or even months) for a program to 
solve a problem when spending a day on optimization could turn those 
run times into minutes or even seconds. In production programming, it is 
often worth sacrificing some modularity for greatly increased efficiency. 
Programming techniques often viewed as "evil" in pedagogical settings, 
such as side-effects on list structure, are often a practical necessity. We 
do not attempt to shield the reader from these realities. Instead, we illus-
trate how to do such things, so that you can do them when necessary. 

The amount of effort spent on user interfaces differs in each phase. In 
exploratory programming it is not worth spending much time on the in-
terface. But a good interface for an experimental program can pay great 
dividends. If, for example, you spend several hours plotting the results 
of your program, it may be time to consider spending a day or two writ-
ing a graphical system that does the plotting automatically for you more 
rapidly. Making production-quality interfaces is a difficult topic in its 
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own right, so we do not deal with it at all in this book. We do illustrate 
techniques that are important in exploratory and experimental program-
ming, restricting ourselves to non-graphical interfaces for portability. 

In all phases of programming, readability is always important. Pro-
grams are a means of communicating ideas, just as prose and mathemat-
ics are. Therefore programs should be understandable by human beings 
as well as by highly organized pieces of beach sand (i.e., our computers). 
Even if you are the only person using your program, readability is impor-
tant. After all, you must be able to understand your own program when 
you come back to it after six months of doing something else. 

2.3 Outline of the book 

Chapter 3 begins by examining classical problem solving. This is a warm-
up exercise, since we expect that readers have seen simple search pro-
grams in introductory AI or Lisp texts. After briefly reviewing the prob-
lem space model of problem solving, we show how a modular program 
can be used for applying search strategies to several domains. Our sam-
ple problems include navigating the Boston subway system and solving 
simple algebra problems. Our focus is on writing clean, portable, and ef-
ficient code, setting the style for the exploratory end of programming. 

Chapter 4 describes a specific form of pattern-directed inference sys-
tems. Pattern-directed inference systems of various forms dominate AI 
reasoning research today, and there is little sign (save stirrings from con-
nectionism) that they will not continue to do so in the future. We begin 
by introducing an antecedent rule model, in the form of the Tiny Rule 
Engine, or TRE. We show how aspects of natural deduction can be imple-
mented in this framework. TRE is designed for simplicity, illustrating the 
kind of system that might be developed in exploratory programming. 

Consideration of TRE's limitations lead us to examine extensions of 
this model in Chapter 5. Problem-solving programs often must manip-
ulate assumptions and retract data. We examine a simple stack-oriented 
context mechanism which allows assumptions and their consequences 
to be temporarily made and then withdrawn. Pattern matching and rule 
execution can be inefficient, so we explore how pattern matching may 
be open coded and how rules may be compiled for better performance. 
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These ideas are embodied in another version of TRE, called FTRE. We 
show how FTRE can be used to build a powerful natural deduction sys-
tem for propositional logic. We also show how search problems, includ-
ing the classic N -queens puzzle, can be solved via chronological search. 

The bulk of this book focuses on exploiting truth maintenance sys-
tems in building reasoning systems. The literature on truth maintenance 
systems has often been turgid and confusing. We impose a classifica-
tion scheme on such systems, in hopes of bringing order. Roughly, we 
break truth maintenance systems into justification-based, logic-based, 
and assumption-based systems. These basic ideas are developed in Chap-
ter 6, with the next eight chapters devoted to exploring their implica-
tions, including how to interface truth maintenance systems to various 
inference engines, and how to use them effectively as part of a larger 
problem-solving system. 

Justification-based truth maintenance systems are explored in Chap-
ters 7 and 8. Chapter 7 covers the basics, including how they operate and 
linking their semantics to definite clause logic. Chapter 8 explores how 
to interface a JTMS to a pattern-directed inference system. The resulting 
program, JTRE, is used to illustrate the notion of dependency-directed 
search. We also partially reconstruct Slagle's symbolic integration pro-
gram, SAINT, to illustrate how dependencies can be used to record data 
and control dependencies and produce explanations. 

Logic-based truth maintenance systems and their applications are cov-
ered in Chapter 9, Chapter 10, Chapter 11, and Chapter 13. Chapter 9 
discusses the use of unrestricted clauses as dependencies and describes 
how Boolean constraint propagation (BCP) works. Chapter 10 explores 
how the LTMS impacts inference engine design and describes a technique 
for contradiction handling that supports powerful reasoning techniques 
for making closed-world assumptions and more general dependency-
directed search facilities. Chapter 11 shows how these inferential facili-
ties can be combined to yield a program, TGIZMO, which uses qualitative 
physics to interpret observations of simple physical systems. Boolean 
constraint propagation is efficient but incomplete; Chapter 13 explores 
the trade-offs in making it more complete. (This chapter uses several 
ideas from assumption-based truth maintenance, which is why it comes 
later than the other LTMS-related chapters.) 

Assumption-based truth maintenance systems are explored in Chap-
ters 12 and 14. Chapter 12 explores the radical shift in perspective re- 
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quired to use an ATMS efficiently and describes a logical specification for 
it as well as efficient implementation techniques. Chapter 14 describes 
two basic execution strategies, many-worlds and focused, used in ATMS-
based problem solvers. Two ATMS-based planners are illustrated, and we 
outline techniques for using an ATMS to reason about open worlds. 

In examining truth maintenance systems we stick with the model of 
pattern-directed inference systems for simplicity. In the rest of the book 
we explore a different set of design choices, corresponding to constraint 
languages. Constraint languages sacrifice generality of reference for ef-
ficiency. That is, instead of pattern matching, inheritance schemes sim-
ilar to those found in object-oriented programming are used to pro-
vide environments for rules. By restricting rules to work in purely local 
structures, and by requiring the kinds of assertions to be determined in 
advance, these systems provide facilities for describing much larger—
but more restricted—problems than would be possible in standard rule-
based paradigms. These advantages are why constraint languages are 
commonly used in model-based reasoning systems, for example. 

Chapter 15 illustrates the basics of constraint languages by way of the 
TCON constraint interpreter, showing how to implement diagnosis via 
constraint suspension. The dependency model used in TCON is essentially 
a JTMS; Chapter 16 explores the issues involved in using an ATMS with 
the constraint knowledge and procedure model. Chapter 17 illustrates 
how the General Diagnostic Engine (GDE) can be implemented using the 
ATCON interpreter developed in Chapter 16. The final chapter on con-
straints (Chapter 18) examines a radically different form of constraint 
language, one that supports symbolic relaxation or constraint satisfaction. 
We outline the basic ideas of constraint satisfaction, and show how they 
can be embodied in a simple constraint language WALTZER (named in 
honor of David Waltz). We show how certain scene labeling and temporal 
reasoning can be cast as constraint satisfaction problems and solved by 
WALTZER. Finally, Chapter 19 briefly highlights what we believe are some 
important frontiers in building problem solvers. 



3 	Classical Problem Solving 

In the early days of AI, it was often hoped that a small set of grand princi-
ples could be found that provided the basis for understanding the nature 
of intelligence, much as Newton's laws provided a basis for understand-
ing the interactions of force, matter, and motion. One of the first princi-
ples proposed was search. Why search? Cognitive science starts with the 
assumption that human intelligence is a computational process. A natu-
ral question to ask is, what kind of computation is it? Intelligence seems 
utterly unlike simple algorithms, such as sort routines or accounting sys-
tems. Such algorithms perform a single task extremely well, but cannot 
deal with situations where what to do next isn't clear. Intelligence seems 
to require the ability to try something out, look at how well it did, and 
try something else until you get something that works. That is search. 

While few today hold that search is the single key idea underlying 
intelligence, most would agree that search has a central role to play in 
building Al programs. Here we examine how to implement a classical 
model of problem solving, the problem space model[5], in a clean and 
modular fashion. 

3.1 The problem space model 

People deal fluently with physical space. Thus it seems natural that ab-
stractions from physical space play a major role in our formalisms. 
Mathematicians speak of metric spaces and other topologies, physi-
cists use phase space to reason about complex dynamical systems, and 
self-help books are filled with admonishments to "get your head into a 
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good space." The problem space model of problems and problem solving 
makes similar use of the ideas of location, shape, and distance that are 
so useful in physical space. 

Suppose we are playing a game of chess, or solving an algebraic equa-
tion. The class of problem or domain we are working on is represented 
as a problem space. A problem space is a set of states that represent dis-
tinct configurations of the objects and relationships of the domain, and 
a set of operators which define how to move between states. If we are 
playing chess, the states consist of arrangements of chess pieces on the 
board, the operators are the legal moves between states, and the problem 
space is the set of all legal configurations and moves. If we are solving an 
equation, the particular form of the equation we are working on is the 
state, the operators are the laws of mathematics we can apply to trans-
form one equation into another, and the problem space is all possible 
equations. Clearly problem spaces are usually large, and often infinite. 

Operators typically have parameters. In chess, for instance, the legal 
moves available in a board position depend on what types of pieces 
are on the board and where they are. Suppose we decide to include an 
operator MOVE-KNIGHT in creating a problem space for chess. Depending 
on its position and the position of other pieces on the board, there are 
up to eight places a knight can move, and thus up to eight instantiations 
of this operator per knight on the chessboard. 

Defining a problem in a given problem space requires two things: an 
initial state, and a goal. The initial state is a distinguished state that rep-
resents the starting point within the space, such as the opening position 
on a chessboard or the equation you are given to solve. The goal is a 
specification of the subset of the problem space which could serve as 
a solution to the problem. In chess the goal is to find a board position 
that leaves the opponent's king checkmated. In algebra the goal is to 
transform the given equation into a new equation whose left-hand side 
consists of the unknown variable and whose right-hand side consists of 
an expression without the unknown. Notice that while we know exactly 
what the initial state looks like, we often don't have a single, predeter-
mined goal state. While each algebra word problem typically has a unique 
numerical answer, for instance, there are many ways to win at chess. 

Solving a problem in this model is accomplished by finding a sequence 
of operators which, when applied to the initial state, allows one to reach 
a state satisfying the goal criterion. In playing chess a solution is a se-
quence of moves that leads to checkmate, and in algebra a solution is a 
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sequence of transformations that solves the equation. Sequences of op-
erators are generated by search; for instance, trying different operators 
on the initial state and recursively on the states that result, until a state 
satisfying the goal criterion is found. 

It is easy to see why this is an attractive model of problem solving. 
To solve a problem, all we have to do is define the problem space and 
then unleash a general-purpose search engine on it. A problem space can 
be defined by developing a representation for states and operators. For-
mulating a problem consists of defining the initial state and developing 
the goal criterion. The only issue left for problem-solver design is what 
search strategy to use. 

Implementing simple search strategies is one of the first programming 
tasks used in AI textbooks and introductory Lisp books. We presume, 
therefore, that you have seen programs illustrating search before. The 
program we describe here, CPS, is a warm-up exercise, to highlight some 
stylistic issues in a familiar setting. We concentrate on making an imple-
mentation general yet efficient, showing some techniques for sound "eco-
logical programming" along the way. We illustrate how CPS can be ap-
plied to two kinds of problems: subway navigation and solving algebraic 
equations. By analyzing what is required to implement problem solvers 
for these domains, we gain insight about why Al practitioners became 
so concerned with issues of representation and knowledge-intensive rea-
soning techniques. 

3.2 CPS design 

Conceptually, CPS consists of two parts: an interface for user-supplied 
problem spaces, and a search engine. We begin with the problem space 
interface. Clearly we need the ability to manipulate states and operators. 
What kinds of manipulations are needed? 

There are three things we need to do with states. 

1. Goal detection: Ascertain whether a given state satisfies the goal cri-
terion. 

2. State identity: Detect when two descriptions of states refer to the 
same state. 

3. State display: Produce a human-readable description of a given state. 
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The importance of goal detection is obvious. State identity is important 
because we make no progress by reexploring already examined states. 
Displaying states is important even if the results of CPS are only intended 
to be used by another program: such displays are often necessary for 
debugging. 

In many domains goal detection and state identity are simple opera-
tions. In chess, for instance, a board position represents a win if the king 
for the side to move is under attack and cannot escape. Two chess posi-
tions are the same if they are described as having exactly the same pieces 
in exactly the same positions. In other domains carrying out these opera-
tions can be substantial tasks in themselves. Consider the problem space 
consisting of all possible programs, with the goal being transforming a 
program to ensure that it halts on all inputs. Since detecting that one has 
achieved this goal requires solving the Halting Problem, which is unde-
cidable, in the worst case goal detection is undecidable. Determining that 
two arbitrary programs are the same is also undecidable, so recognizing 
that two descriptions actually refer to the same state is also, in the worst 
case, undecidable.1  Intelligence is possible because Nature is kind. How-
ever, the ubiquity of exponential problems makes it seem that Nature is 
not overly generous. 

What should the interface for operators look like? Conceptually, there 
are four distinct manipulations required: 

1. Identify what operators are available. 

2. Determine whether a given operator is applicable to a particular 
state. 

3. Given a state and an operator applicable to it, ascertain all the ways 
the operator can be instantiated on that state. 

4. Figure out what new state results from applying an instantiated oper-
ator to a state. 

Collectively these operations are often called expanding a state, and a 
state for which all successive states have been calculated is said to have 

1. This is not a fault of the problem space metaphor: Any sufficiently powerful repre-
sentational system contains such cliffs, if you will, in what it can express. In natural 
language, for instance, we can easily spend hours pondering "what happens when an 
irresistible force meets an Unmovable object." 
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been expanded. They typically are tightly intertwined, which is why it is 
common to view them as an atomic operation. Figuring out whether an 
operator is applicable usually requires finding legal instantiations of it, 
and finding legal instantiations often involves producing the resulting 
state. For instance, determining whether a knight move is possible re-
quires finding both knights and unblocked destination squares for them. 
We exploit this intertwining below to simplify our problem space/CPS in-
terface. 

Now let us consider the implementation of the problem space/CPS in-
terface. It is tempting to choose a particular representation for states and 
operators and stipulate that problem spaces must be written with it. But 
this would restrict CPS unnecessarily—no matter what choice we make, 
inevitably we will find a problem space that would profit from a differ-
ent convention. Instead, we make as few assumptions as possible about 
the implementation of problem spaces by defining generic procedures to 
perform the necessary tasks on states and operators. Only these generic 
procedures are used in the search engine. 

The first decision is whether we are defining a problem space, a partic-
ular problem in that space, or some mixture of the two ideas. A pure 
problem space should include all the procedures necessary to define 
states and operators, but leave out the initial state and the goal crite-
rion. If we are defining a specific problem, we would include those last 
two pieces of information as well. Both extremes have their advantages. 
A pure problem space description could be shared across many copies of 
CPS, each solving a different problem in that space. On the other extreme, 
a complete problem description encapsulates all the information defin-
ing a specific problem. Notice, however, that in many problem spaces the 
goal criterion is always the same. In playing chess, for instance, the goal 
is to achieve a checkmate (or at least a stalemate). In solving equations, 
the goal is always to isolate the unknown on one side of the equation. 
Thus we choose an intermediate course here by including the goal crite-
rion, but not the initial state, in the problem space description. 

To define the interface more precisely, we must name the procedures 
that are included (and specify their arguments and outputs) as well as 
any other data assumed. With this information in hand, we can proceed 
to building search engines. We attach a pr- prefix to each procedure as a 
mnemonic. The procedures associated with states are: 
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pr-goal-recognizer Implements the goal criterion for the problem 
space. 

pr-states-identical? Detects when two given states are identical. 

pr-display-state Produces a human-readable description of a state. 

Each procedure takes either a single state or, in the case of pr-states-
identical?, a pair of states as input. What should their output be? 
Essentially, CPS only needs a Boolean result from these procedures, and 
presumably only executes pr-display-state for its side-effects. 

Recall that the interface procedures for operators consisted of several 
conceptually distinct operations, but that these operations in practice are 
often intertwined. From the perspective of CPS, it makes sense to use just 
two operations in the interface: 

pr-operators Provides a list of operators for the problem space. 

pr-operator-applier Given a state and an operator, finds all com-
plete instantiations of that operator to that state and the states that 
result from applying them. 

Presumably in implementing problem spaces the representations for op-
erators will provide the data that the operator application procedure 
needs to do its work. 

What about the search engine itself? The design of such programs 
should be familiar to the reader. Basically, there is a queue, which initially 
contains just the initial state for the search. Search proceeds via the 
following steps: 

1. Pop a state from the queue. 

2. If the state satisfies the goal criterion, halt and signal success by 
returning the successful path. 

3. Otherwise, calculate the operators that can be applied to the current 
state and the states that will result from each of them. Update the 
queue accordingly, and begin again. 

4. If the queue is empty then return, signaling failure. 

The details of how the queue is organized and updated determine 
which search strategy is being followed. An unordered FIFO queue cor-
responds to breadth-first search, and an unordered LIFO queue corre-
sponds to depth-first search. Given a heuristic estimate of distance re- 
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maining to a goal state, more powerful search strategies are possible. 
Sorting the queue according to the minimum estimated distance to the 
goal constitutes best-first search. Beam search is a resource-limited ver-
sion of best-first search which places a fixed upper bound on the size 
of the queue. As shown below, all these variations are quite simple to 
implement given our basic design. 

What should elements of the queue be? Clearly the state to be explored 
must be part of it. For some problems, that would be enough—we may 
only care about the solution to an equation, for example, not how it was 
derived. For other problems the path taken to the goal is of paramount 
importance: a chess program needs the path the search took in order to 
move towards a win. Consequently, when a search succeeds we stipulate 
that the search engine must return the path it found between initial and 
goal states. The path is a list of alternating states and operator instances. 

With our design finished, we begin considering how to implement it. 

3.3 CPS implementation issues 

There are several ways to encode these interface procedures. One good 
way would be to use the new object-oriented programming features of 
Common Lisp, CLOS. Using CLOS one would define problem-spaces, op-
erators, and states as objects, and the interface routines would be generic 
procedures. We have chosen not to use CLOS in this book for two rea-
sons. First, the CLOS specification was not completely standardized when 
most of this book was written. Second, we want to ensure maximum 
portability, including the ability to run many of the systems on today's 
micros. Many Common Lisp subsets available for such machines do not 
include CLOS, nor would they have enough memory left over for reason-
able examples if they did. 

Given that we are eschewing CLOS for the present, we must fall back 
on more traditional techniques. The most obvious approach is to define 
a set of global variables that hold the required constants and procedures. 
The only advantage to this time-honored technique is simplicity, and its 
disadvantages are legion. It is very hard to keep track of exactly what set 
of variables must be defined before firing up the search engine. Worse, 
subtle bugs can occur when not every variable is appropriately initialized 
(or reinitialized when switching from one type of problem to another). 
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Using global variables prevents several copies of the system from being 
active at once. This is not problematic when using CPS by itself, but it 
makes CPS harder to use as a module in a larger system. 

The best compromise, given our constraints, is to define a structure 
that combines the necessary information "under one roof", so to speak. 
The Common Lisp structure facility provides just what we need. We can 
provide slots for procedures corresponding to each operation which our 
search engine will access to get the appropriate procedures. 

Now let us further specify the constraints on the interface procedures. 
Consider the goal recognition procedure. For some problem spaces, like 
subway navigation, a distinguished goal state can be named in advance. 
In such cases the test is a straightforward identity check. For others, like 
chess or design, the goal can only be characterized indirectly, and the 
test can be more complicated. As noted above, we only need a Boolean 
result from this procedure and from the test as to whether states are 
identical. Any other details about how these procedures operate are up 
to the designer of the problem space. 

Similarly, the output for the procedure pr-operators must be a list 
of operators. Any representation whatsoever can be used for operators, 
as long as the procedure the problem space designer supplies for pr-
operator-applier can handle it. What should pr-operator-applier 
produce? Since the number of applicable operator instances cannot be 
predicted in advance, the easiest data structure for it to return is a list. 
Each element of the list must contain the operator instance and the given 
state. We stipulate that each entry will be a pair of the form 

((OperatorInstance) . (ResultState)) 

This gives us all the information needed to extend a path. 
At this point we turn to the CPS listings, to explain the code in detail. 

3.4 The CPS implementation 

The CPS program is contained in three files: 

cps . lisp System definition. 

search. lisp Structure definitions and breadth-first search. 

variants . lisp Other search strategies. 
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The system definition in cps . lisp provides information for compiling 
and loading CPS. It assumes the utility procedure load-files, which, 
given a list of files and a path, loads each file in turn. (If your environ-
ment has a compiler, use compile-load-f iles the first time, and then 
load-files. compile-load-files, given a list of files, compiles and 
loads each in turn.) The variable *cps-path* indicates where the code 
is to be found;2  when installing it on your computer you should change 
the value to reflect the directory structure of your system. In the rest of 
the book we include similar files without comment; for more details, see 
Appendix A. 

3.4.1 The basic search system 

Turn now to the first page of the listing search. lisp. Notice it is mostly 
comments. We highly recommend starting your programs out this way, 
and recommend liberal use of comments throughout your programs. 
Remember, programs should be read by people as well as computers. 
Even if you don't have other humans reading your code, you will end 
up having to read it yourself months or even years later. Unless you 
document the interfaces, typical procedures to call, intent, and implicit 
assumptions in the code, you may not understand your own programs 
six months later. The alert reader may notice that we seem to be violating 
our own advice in later chapters, since the number of comments in our 
code drops precipitously. We have done this to save space in the listings, 
since the text itself provides more documentation than one is likely to 
receive from even the most prolific commenter. 

Another variation from our normal Common Lisp programming prac-
tice is that, for simplicity, in this book we do not place our programs into 
separate packages. In using Common Lisp we normally strongly recom-
mend the use of packages as a tool for enforcing modularity. However, 
to make it easier for readers with simpler Lisp implementations to ben-
efit from this book, we place all of our code and datastructures in the 
user package. 

The program begins by defining the variable *debug-cps*, a debug-
ging aid. When non-nil, it causes CPS to print extra information about 

2. We use a common convention among Lisp programmers: All global variables have 
*'s as their first and last character. This allows globals to be easily recognized as such 
when reading a program. No Lisp environment enforces this convention, however. 
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the state of the search. Often programmers include print statements 
when developing a program and comment them out when it is running 
properly. Here we prefer to let such print statements remain as a per-
manent part of the code, and condition their execution on flags. Using 
debugging flags enhances flexibility in two ways. First, what is traced can 
be changed without recompiling or reloading the source code. Second, 
debug flags can be set by other programs, thus providing tighter control 
over the amount of material printed. The only disadvantage is a slight 
increase in code size and the overhead for testing the flag. Invariably we 
have found this overhead to be negligible. 

Next, the problem struct is defined which implements the design laid 
out in Section 3.2. Since this is our first use of defstruct, it is worth 
mentioning some useful conventions. : CONC-NAME provides an abbrevi-
ation for the struct's fields. Generally it is easiest to use the name of 
the struct itself, since it presumably is chosen for mnemonic value. But 
sometimes prepending the struct's name to field names would result in 
long, unwieldy names, and : CONC-NAME provides a solution. Here, for in-
stance, we specify pr- as the prefix, to enforce the naming convention 
decided upon previously. 

When defining a struct it is almost always worth using the : print-
function option. Why? In faithful Common Lisp implementations, the 
default printed form of structures is: 

#s (StructureContents) 

where (StructureContents) is a list of the values of the struct's fields. 
Often these fields will contain other structs, which in turn point to other 
structs, and so forth. Often this leads to circular chains of pointers, 
which usually spells disaster for printing.3  

The problem struct contains all the fields mentioned in our design, 
namely goal-recognizer, operator-applier, operators, states- 

3. Some dialects of Scheme (such as PC-Scheme) and partial implementations of Com-
mon Lisp on small micros adopt the convention of printing a struct's internals without 
providing an equivalent to the :PRINT-FUNCTION option. Alas, this makes such structure 
facilities virtually useless, since structures involving backpointers cannot be printed 
without causing infinite loops. For such implementations it is often better to write a 
separate structure facility. A traditional method is to use the property lists, since sym-
bols have a compact printed representation. 
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identical?, and state-printer. It includes several other fields as 
well, containing information which is so commonplace as not to need 
mentioning or whose necessity may not be apparent in an initial, high-
level design. An example of the former is the name field, a string for 
human consumption which distinguishes a problem struct from others. 
Examples of the other kind are: 

path-filter Supplies domain-specific guidance to prune search paths 
that do not make sense. Its use is exhibited in Section 3.5. 

distance-remaining Optional procedure which provides a numerical 
estimate of "distance" from a given state to a goal state. This proce-
dure is needed by search engines implementing best-first search or beam 
search, discussed in Section 3.4.2. 

solution-element-printer Produces a string which can be printed 
as part of an explanation of a solution path. This procedure is used by 
print-answer, defined below. 

The path struct defines queue elements. Each path includes the cur-
rent state (called current) and the sequence of states and operators 
traversed to arrive at this current state (called so-far). so-far is imple-
mented as a list of alternating states and operator instances. Some search 
strategies require the estimated distance to the goal along the path, so 
we include the distance slot to hold this information. Notice that the 
pr slot points back to the problem that generated this search effort. This 
backpointer provides access to the procedures for expanding states and 
printing them. 

Generally the printed representation of a struct should be short, but 
contain enough information to distinguish one instance of it from an-
other. In the case of paths, this would be the contents of so-far. Since 
printing the entire path would be too ungainly, we compromise by us-
ing the value of current to distinguish one path from another. This is 
not perfect, since the same state could be reached from several different 
paths and hence different path structs could print identically. However, 
since paths are loop-free, we count on the context provided by other de-
bugging statements to discriminate in such cases. 

Since breadth-first search is simple and finds a shortest path (with re-
spect to the number of operators applied), we implement it as the basic 
search strategy. Other search strategies are explored in Section 3.4.2. The 
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(defun bsolve (initial) 

(bsolvel (list (list initial initial)))) 

(defun bsolvel (queue) 

(if (goal-recognizer (caar queue)) 

(values (caar queue) (cdar queue)) 

(bsolvel (append (cdr queue) 

(expand-path (car queue)))))) 

Figure 3.1 Elegant but inefficient breadth-first search 

procedure bsolve implements breadth-first search. The first thing to no-
tice is that it doesn't look much like the versions one sees in introductory 
textbooks. (The alert reader might have been expecting this, given that 
we have already defined two structures where most introductory text-
books define none.) There are good engineering reasons for these differ-
ences, so let us explore them. 

Suppose for a moment that the queue consisted of dotted pairs of the 
form 

((EndState) . (Path)) 

instead of structs. Figure 3.1 shows how bsolve might be written in 
an introductory text. This code is short and elegant. However, it is not 
appropriate for building usable AI problem solvers. Let's examine why. 

The first problem is the recursion in bsolvel. Of course, it is only re-
cursion in a syntactic sense. Because no operations are performed "on 
the way out" it is an example of tail recursion. A good compiler should 
turn a tail recursive procedure into an iterative program. Still, there are 
several reasons to avoid purely syntactic recursion when the description 
being traversed is large. First, as every seasoned programmer knows, not 
all compilers are good compilers. Writing code that assumes tail recur-
sion is automatically recognized and dealt with appropriately is a bit like 
only knowing how to eat when your place setting has fingerbowls—you 
can do well in high society, but might have difficulty in rougher envi-
ronments. Second, it is easy while debugging to transform inadvertently 
a program with merely syntactic recursion into one with true recursion, 
with dreadful results the next time it is executed on large datastructures. 
Finally, in tail-recursive procedures with several arguments understand-
ing their functional role can be difficult. A good iteration construct, on 
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(defun bsolve (initial) 
(do ((queue (list (list initial initial)) 

(append (cdr queue) new-paths)) 

(new-paths nil nil)) 
((null queue)) 

(when (goal-recognizer (caar queue)) 
(return (values (caar queue) (cdar queue)))) 

(setq new-paths (extend-path (car queue))))) 

Figure 3.2 A better version of breadth-first search 

the other hand, makes functional roles more explicit in its syntax. Com-
mon Lisp provides a plethora of iteration constructs, and a careful choice 
of construct can make the programmer's intent more apparent. 

Figure 3.2 illustrates a better version. It requires fewer assumptions 
about the operating environment and would be implicated in fewer stack 
overflow errors. However, the translation to a do loop has left us with-
out the ability to easily debug the program using trace, since most of 
the work is encapsulated in one procedure. The version in the listing 
search. lisp remedies this oversight by using *debug-cps* to deter-
mine whether or not internal details are printed. 

Let us return to the version of bsolve in search. lisp. The do variable 
queue represents the state of the search. Each element of the queue is a 
path struct, starting with a path consisting solely of the initial state. Each 
path is examined exactly once, since its current is either a goal state, a 
dead end, or a state that can be extended. In the first two cases there 
is no need to examine it ever again, and in the last case it is the newly 
extended paths we are interested in. These extended paths are stored in 
new-paths. number-examined keeps track of how many states we have 
examined for statistical purposes. 

Notice that the end test of the do only checks for the queue being 
exhausted. This corresponds to the search failing. Success is noted by 
the first when in the body, which uses pr-goal-recognizer to ascer-
tain when the path being examined has reached a goal state. The return 
statement is used to provide a non-local exit from the loop. Some stylists 
think that such non-local exits are a sin. We disagree. When there is more 
than one exit condition, the only alternative to using a non-local exit is to 
use a disjunctive end test in the do. If there are several termination con-
ditions the logic of the end test can become quite baroque. Furthermore, 
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care must be taken to ensure that the loop variables are incremented 
properly in such cases. Worse yet, if the body contains several actions, 
often they must be conditioned on whether or not one of the exit cri-
teria has been triggered. Using return, especially with multiple values, 
actually provides better modularity in such cases. Here, we immediately 
return with the successful path and the number of states examined, to 
indicate how much effort was expended during the search. 

If the current state doesn't satisfy the goal criteria, extend-path is 
called to generate new paths from the current one. Each such path is ap-
pended to the end of the current queue when the do updates queue, thus 
ensuring breadth-first exploration. This essentially completes our search 
engine. Notice that two debugging statements provide all the details we 
need to follow the search: The first statement reports any success; the 
second describes the state being examined currently and how it is being 
extended. 

Now let us turn to extend-path. This procedure depends only on 
the state and the set of potential operators, and is independent of the 
particular search strategy. This means it makes sense to keep it distinct 
from bsolve. Recall that a problem space typically has several operators, 
and often each operator can be applied in several different ways to a 
situation. (For instance in chess one might have several pieces to move, 
including a knight, and the knight in turn might be able to move to one 
of several squares.) This suggests organizing the program as a double 
iteration. The outer loop goes through the list of operators, and the 
inner loop examines each operator instance and the result of applying 
it. The information needed by these loops (i.e., pr-operators and pr-
operator-applier) is obtained from the problem struct pointed to by 
path-pr. 

(Another stylistic note: We tend to use &aux with setq instead of let 
when defining parameters which are local to an entire procedure. The 
reason is aesthestic: The indentation conventions which normally make 
Common Lisp quite readable can sometimes result in code that clumps 
on the right-hand side of a page and leaves large amounts of blank space. 
The combination of &aux and setq typically leads to less indentation 
than let.) 

Recall that pr-operator-applier returns a list of pairs whose car is 
an instance of the operator and whose cdr is the state that results from 
applying that instance to the argument state. The extension of the path 



33 	 Classical Problem Solving 

represented by each pair is encapsulated in a path struct, and the set of 
these structs is cached in the variable new-path. Recall that the original 
path was a list whose sole element was the initial state. To update the 
path correctly, the so-far field of the new path is the contents of the so-
f ar of the path being extended, plus the operator instance and new state. 
This ensures that we have a complete record for each path explored. 

Before this extended path is accepted as part of the search (by pushing 
it onto the result variable new-paths) two tests are made. The first check 
is looping; as mentioned before, it is pointless to reexamine a state that 
we have already seen. path-has-loop? checks for looping by skipping 
down the path (via cddr) and using the pr-states-identical? proce-
dure to see if any of the states are the same as the current state. The 
second test is a domain-specific path filter, which the problem space de-
signer may or may not supply (hence the and check). We stipulate that 
pr-path-filter returns nil if the path is okay, and non-nil otherwise. 

The last two procedures in search. lisp concern printing. print-
new-paths is used by bsolve to show the operator instances along a 
path. print-answer assumes that its argument is a path struct cor-
responding to a legitimate solution. It also assumes pr-solution-
element-printer is a procedure that takes an operator instance and 
a state and produces a string that makes sense to the user. To be under-
standable we should clearly start with the initial state and end with the 
goal state, so print-answer begins by reversing the path and caching it 
in rpath. step produces "line numbers" in the answer for easy reference. 

We make two more stylistic notes here. First, notice the use of the op-
tional variable stream. Often programs become modules in yet larger 
systems. This can involve having the module's results become part of a 
report generated by the calling system. By using the optional stream vari-
able we provide the flexibility needed to do this. For example, the caller 
could use with-output-to-string to generate a subsection of a large 
report. Second, notice that the exact details of printing a state or print-
ing an operator instance applied to a state are supplied by the domain 
model itself via the procedures pr-state-printer and pr-solution-
element-printer. All that print-answer assumes is that the state is 
printable, that the path takes the form of alternating states and operator 
instances, and that line numbers are appropriate. These weak assump-
tions suffice to produce quite readable output. In general, providing such 
report procedures is a useful thing to do. Far from a frill, they can pro-
vide valuable insight into what a program is actually doing and make the 
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results more understandable. The only danger is that, as with graphics, 
it is easy to waste time fooling around making minor improvements to 
such facilities. 

3.4.2 Alternative search strategies 

It is easy to vary bsolve to explore different search strategies. The listing 
variants . lisp contains implementations of several alternate strate-
gies. The major source of variation lies in how the queue is managed. In 
dsolve, for instance, depth-first search is implemented simply by plac-
ing new elements on the front of the queue rather than the end. 

best-solve implements best-first search. Recall that best-first search 
requires that the caller supply a procedure which, given a state, provides 
an estimate of the distance remaining to the goal. This estimate is pro-
vided by assuming a procedure pr-distance-remaining. best-solve 
begins by first checking to see that this procedure is actually defined. 
(After all, the best-solve procedure might be called by some innocent 
user who did not know that this optional procedure was required for this 
strategy.) Aside from this error management and how the queue is ma-
nipulated, best-solve is the same as the others. 

The secret of best-solve is to update the queue so that the "best" 
path will be the next one tried. This is carried out when queue is incre-
mented in the main loop. First, a temporary variable nqueue is initialized 
so that the state we just expanded is no longer available for consider-
ation. Then we use pr-distance-remaining to cache the distance es-
timate for each new path in its path-distance field. Finally, we merge 
the new paths into the queue, preferring those whose estimated distance 
is smallest. (It is straightforward to prove that this always leaves queue 
properly sorted.) 

Our final variation of classical search strategies is beam search, imple-
mented in the beam-solve procedure. Notice that beam-solve takes an 
optional argument n. n is the maximum size of the queue, which cor-
responds to the "width of the beam" used to search through the space. 
Updating the queue works almost exactly like best-solve. The only dif-
ference is that we clip the queue off whenever it gets longer than n, using 
nthcdr to access the new end of the list and setf to do the clipping. 

Again, we note that some stylists would eschew the use of merge, 
which destructively affects the list given as input, and our use of setf 
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on a list (also known as rplacd). The alternative to such side-effects is 
to create new list structure instead, but this can lead to gross inefficien-
cies, such as needless extra garbage collection. Good engineering practice 
consists in part of knowing when to optimize. Here we know that the 
queue is not accessible to external routines, and hence it is safe to per-
form destructive operations on it. In general, destructive operations on 
datastructures can be crucial in making programs efficient. 

With search engines in hand, it is time to develop some problem spaces 
to try them out on. 

3.5 Navigating the Boston subway 

Finding routes is a classic search problem. And since subways constrain 
travel to occur between well-defined stations along particular paths, they 
are naturally represented by labeled graphs, as in Figure 3.3. Since the 
graph is small and explicitly known, it is a trivial problem space to define. 
This trivial example lets us focus on program style; a more complex 
problem space is explored in Section 3.6. 

Green Line 

Figure 3.3 A subset of the Boston subway 
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We begin by implementing a means for representing subways. We store 
stations and lines in the global variables *stations* and *lines*. A 
subway station struct includes the name of the subway station, the lines 
that station is on, and, optionally, the coordinates of the station. The 
subway line, in turn, has its name and the list of stations on that line. 
Notice again that we have used the : PRINT-FUNCTION option to define 
how stations and lines are displayed. We assume the names of stations 
and lines are represented by symbols instead of strings. This way we 
can set the value of the associated symbol to the struct representing the 
station, and thus provide a simple mapping from what users can type in 
to the internal datastructures. 

An engineering note: There are many alternative representations we 
could use to simplify the mapping from typed input to the program's 
internal structures. For instance, an alist or hash table could associate 
strings with structures. However, using symbols is simpler in this case. 
For example, we use symbols in the lines slot of the subway station 
struct and in the stations slot of the subway line struct. These symbols 
act as placeholders, allowing us to define stations and lines in any order 
we please. Even if we choose another means to associate names with 
internals, it still makes sense to use indirection. Otherwise, one must 
enforce a rigid format on how subways are defined, to avoid referring 
to a name before it is bound. 

The macros defline and def station provide readable input. Using 
these macros, a user can define a map of a subway while knowing very 
little about the internals of the representation. That is the way it should 
be. Modularity requires hiding irrelevant details from both programs and 
people. A guiding principle of AI interface design is that, whenever pos-
sible, any facility available to a human user should be available to other 
programs, and vice-versa. 

Typically one has several related problems to solve or additional ques-
tions about some scenario. It would be tedious in such cases to sit down 
at a computer, load the program, solve the first problem, then be forced 
to boot the machine to solve the next, and so forth. Good ecology in pro-
gramming requires returning the environment to a usable form when you 
are finished with it. Ecological issues are especially important when you 
try to use a program as a module in a larger system. The costs of cleaning 
up after a computation should always be considered as part of designing 
the procedures to carry it out. 
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Good ecology in this case requires removing pointers to the structs 
from symbols when the subway map is no longer required. This is what 
the procedure clear-subway-map does. It iterates over the list of sta-
tions and lines, calling makunbound on each. Thus, the symbols are no 
longer known when irrelevant, and the garbage collector can pick up 
the contents. We end clear-subway-map by resetting the variable *sta-
tion* and *line* to nil, thus ensuring that we keep no references to 
these structures so the garbage collector can do its job. In general, the 
cost of writing such cleanup procedures and determining when to invoke 
them is an issue that should be considered when making implementa-
tion choices. Typically one uses global variables sparingly to avoid such 
problems. 

Finally we must define the interface procedures that CPS expects. Both 
recognizing goals and recognizing identical states are quite simple. Since 
the goal of navigating the subway is to reach a particular named station, 
we can use the procedure that recognizes identical states as the goal 
recognizer, too. We define the procedure subway-states-identical? 
as an eq test. Notice that this works either if the states are both symbols 
or if the states are both structs, but not if one is a symbol and the other 
is a struct. 

There is only one operator in the subway domain, the act of taking a 
subway line from one station to another. Consequently, we can simply 
use a symbol take-line as our operator, and put the definition of oper-
ator instantiation into the procedure subway-operator-finder. We de-
fine an instance of an operator in the subway domain to be 

(take-line (OldStation) (line) (NewStation)) 

That is, taking the subway line (line) from (0/dStation) to (NewStation). 
A simple double iteration suffices to find operator instances. 

By looking at the station we can find what lines it is on. By looking 
at the list of stations on that line, we can find out what stations can 
be reached by one trip. Since we are already at a station on the line, 
namely the current state, the inner loop removes that state from the 
list of stations considered. (After all, getting on the train and not going 
anywhere is a pretty silly thing to do.) 

We can provide some "street smarts" by including domain-specific fil-
tering information. For example: Suppose CPS proposes that you take 
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the green line from Haymarket to Government Center, get off, get back 
on the green line at Government Center and go until you hit Park Street. 
That's silly. While perhaps a scenic route, it's not the most efficient way 
to get from one place to the other. Therefore, unless we had some other, 
unstated, goal, heuristically we do not want to take the same subway line 
two trips in a row. prune-subway-path? prevents us from doing that, 
by ruling out trips that use the same line in two successive operator in-
stances. 

Part of good programming ecology is providing easy ways to set up 
an environment for your work. Consequently, we provide the proce-
dure setup-subway-problem, which creates an instance of the problem 
struct that holds the appropriate interface procedures. The goal recog-
nizer is created by using lambda to generate a closure, thus encapsulat-
ing the goal state available when the problem space was defined. All the 
other initializations are straightforward, basically "plugging in" the parts 
defined in this file to the problem interface. The only non-obvious bind-
ing is :OPERATORS, which includes the symbol take-line to provide the 
outer loop of extend-path something to chew on. 

The rest of the file contains ancillary definitions. print-path-
element defines how to print an element of a solution, by produc-
ing a string incorporating the subway line and the start and end sta-
tions. subway-distance uses grid coordinates provided with the station 
definitions to provide a notion of distance for search strategies that re-
quire it. 

These definitions are illustrated in the file boston . lisp, which pro-
vides a map of a subset of the Boston subway. 

Now let us look at how various search strategies perform on our sub-
way problem. Suppose we are trying to get to Kendall Square (which is 
near MIT) from the airport. If we call bsolve of airport we get back 
a CPS struct (indicating a successful solution) and note that we exam-
ined twenty-two states to find this path (see Figure 3.4). Calling print-
answer on this struct shows us our route, and indeed that is the best 
route if you are using the subway. 

If we call dsolve to try out depth-first search we notice two things (Fig-
ure 3.5). First, we only examine seven nodes instead of twenty-two, and 
thus have an answer more quickly. Unfortunately, the solution is not as 
good since the trip it recommends is longer. Given the typical delays on 
the Boston subway, this extra leg is a considerable disadvantage (unless 
we want to get out at Washington Street and shop at Downtown Cross- 
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>(setq mit (setup-subway-problem 'kendall-square)) 

<Problem: KENDALL-SQUARE> 

> (bsolve 'airport mit) 

<path KENDALL-SQUARE> 

22 

>(print-answer *) 

Initial state: AIRPORT. 

1. Take the BLUE-LINE to GOVERNMENT-CENTER. 

2. Take the GREEN-LINE to PARK-STREET. 

3. Take the RED-LINE to KENDALL-SQUARE. 

Done. 

NIL 

Figure 3.4 Getting to MIT from Logan Airport on the Boston subway. In 
depicting human/machine dialogs, lines typed by the user begin with ">." 

> (dsolve 'airport mit) 

<path KENDALL-SQUARE> 

7 

> (print-answer *) 

Initial state: AIRPORT. 

1. Take the BLUE-LINE to GOVERNMENT-CENTER. 

2. Take the GREEN-LINE to HAYMARKET. 

3. Take the ORANGE-LINE to WASHINGTON. 

4. Take the RED-LINE to KENDALL-SQUARE. 

Done. 

NIL 

Figure 3.5 Depth-first subway navigation 

ing). The best mix of computation and result is provided by best-solve, 
which only examines five states and yet provides the optimal answer. We 
leave it as an exercise for the reader to explore different widths of beam 
in using beam-solve to determine what is a safe setting to allow you to 
successfully navigate the Boston subway. 

3.6 Solving algebra problems 

Aristotle once claimed that one could detect intelligence by the ability to 
do sums. If he were alive today, Aristotle might have modified that state- 



40 	 Chapter 3 

ment given the existence of pocket calculators. He might say instead that 
the ability to do algebra is a better indication that something is smart. 
The difficulty people have in learning algebra is suggestive evidence for 
this view. Since algebra is used heavily in engineering and scientific dis-
ciplines, and since solving equations can be intellectually challenging, 
there have been several AI studies of equation solving. Here we use CPS 
to implement a simple equation solver. This example serves two pur-
poses. First, it shows what is involved in using CPS in a more substantial 
problem space. Second, it provides a good way to examine some issues in 
pattern matching that we return to with different perspectives in Chap-
ters 4 and 5. 

Our system is based on an elegant theory of mathematical reason-
ing due to Alan Bundy. Figure 3.6 contains one of Bundy's examples, a 
typical equation and a derivation of the solution for that equation. The 
left-hand side of the initial equation contains a complicated expression 
involving logarithms and sums, but is transformed by a series of small 
steps into an equation whose left-hand side contains only the unknown 
x and whose right-hand side is an expression without x. This is the gen-
eral character of solutions to algebraic equations. (For simplicity, in this 
chapter we always refer to the unknown by its classical moniker, x.) 

Mathematics provides many laws to use in solving equations like this 
one. Figure 3.7 shows a group of these laws sufficient to solve the prob-
lem in Figure 3.6. You can find laws like these, and many more, in any 
standard mathematics reference work. Already we have what we need to 
cast equation solving as a problem for CPS. The problem space is simply 
the set of mathematical equations, and the operators are the laws that 

Solve for x, given: 

loge(X + 1) + loge (X —1) = c 

1. 10.9e(X +1)(X — 1) = C 

2. loge(X 2  —1) = C 

3. X2  — 1 = ec 

4. X2  = ec +1 

5. X = 4- \ ec + 1 

Figure 3.6 A sample algebra problem 
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logu  V = W V = Uw  

U — V = W U = W + V 

u2  = v 	u = ±-,/V 

(U + V)(U — V)U2 -V2   
UV + UW U(V + W) 

logwU + logwV logwUV 

(wU)V WUV 

Figure 3.7 Some laws of algebra 

allow the transformation of one equation into another. The goal criterion 
is an expression of the form 

x = expression not containing x 

Unfortunately, this account is too simple to capture the expertise of 
human mathematicians. As anyone who has done trigonometry knows, 
applying the wrong law, or even the right law at the wrong time, can 
make the situation much worse. The sheer number of laws and ways 
that they might be applied suggests that we face a potentially explosive 
search problem. Let's do a worst-case analysis. In Figure 3.7 there are 
seven laws. Each law can be used in at least two distinct ways. For ex-
ample, if we find some part of the equation we are solving that matches 
the left-hand side, we may replace that with the right hand side, and vice 
versa. Thus, seven laws gives us a branching factor of perhaps thirteen 
per node. Suppose the shortest solution takes five steps. This means it 
lies in a tree of depth 5. Assuming the search looks like a tree with a 
branching factor of 14, the worst-case size of the space we must search 
is 135, or 371, 293 states. 

This is a horrible prospect. Fortunately, though, this analysis is far too 
pessimistic. There are several constraints we did not take into account. 
First, the form of the equation strongly limits the set of laws applicable at 
each stage, so the branching factor is invariably smaller than 13. Second, 
many pairs of transformations negate each other, and hence the search 
space is not actually a tree, but a (much smaller) graph. This still does not 
mean that equation solving is trivial. Beginning students do indeed seem 
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to start out searching blindly for solutions to problems that experts solve 
easily. But the problem in Figure 3.6 is one that most mathematicians 
can solve in their sleep. What do experienced mathematicians have that 
novices do not? 

Bundy [2, 3] has suggested that what expert mathematicians have, and 
that beginners lack, is a set of implicit methods which control how they 
use algebraic laws. Formalizing these methods requires an explicit vocab-
ulary of control. For centuries mathematicians have discovered, named, 
and taught certain explicit methods, like Gaussian elimination, as part 
of mathematics. However, traditional mathematics has rarely codified 
guidance about when and how to use transformations like those of Fig-
ure 3.7 in solving equations. Bundy argues that if we create a vocabulary 
that allows these implicit methods to be codified, then we could then 
teach them as efficiently as we teach Gaussian elimination. Telling hu-
man learners this control vocabulary, instead of forcing them to induce 
it, should thus improve mathematics education. And for our purposes, 
making this vocabulary explicit means we can encode it in CPS. 

Bundy divides these implicit methods into three distinct categories. 
The first kind are called attraction methods. Attraction moves occur-
rences of the unknown "closer together" in some sense. If we have an 
x in one part of the equation and a hundred terms separating it from the 
other occurrence of x, it is hard to imagine that we can find a law that 
directly merges those two x's into one. By bringing them close together, 
we improve our chances of finding some identity that helps to get rid of 
them. 

Collection methods are the second kind. They reduce the number of 
occurrences of the unknown in the equation. Thus, if we can get several 
x's closer together, a collection method would suggest a change that 
reduces the number of x's. This is useful since it brings us closer to our 
goal, namely having just one occurrence of x by itself on one side of the 
equation. 

The third kind of methods are isolation methods. Isolation methods re-
move stuff that isn't the unknown from the left-hand side of the equation 
by moving it to the right-hand side. Essentially, they "strip off" layer after 
layer of expressions from the left-hand side until the single remaining x 
stands alone. 

Where do these methods come from? Essentially, they are descriptions 
of the roles that the laws of algebra can play in the equation-solving 
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Assumptions: 
1. The term being rewritten is the least dominating term in x. 

2. U and V match terms containing x. 
3. No other parts of the expression contain x. 

WU + WV — W(U + V) 

logwU + logwV logwUV 

WU)V wUV 

UVW 	(UV )W 

Figure 3.8 Attraction methods. Attraction methods rewrite terms to move 
occurrences of x closer together. 

process. Students learn the ways that algebraic laws can be used by trial 
and error. Bundy points out that we can perform a syntactic analysis of 
each law to determine directly what roles it can play. 

To see how to assign problem-solving roles to a law, consider an al-
gebraic expression as a tree. An equation is just two trees, one for the 
left-hand side and one for the right-hand side. Suppose that the tree for 
the left-hand side contains several occurrences of x but the tree repre-
senting the right-hand side contains none. The intuitive role of attraction 
methods in bringing occurrences of x closer together can be precisely 
defined as reducing the total distance between occurrences of x in the 
tree, as measured by the number of steps required to move through the 
tree from one occurrence to another. Collection methods produce a tree 
with fewer occurrences of x. Isolation methods reduce the depth of oc-
currences of x in the left-hand tree. Since the goal is achieved by the 
left-hand tree becoming a single occurrence of x, each method always 
brings us closer to that goal. Applying a law that does not perform one 
of these roles, in this simple theory, does not lead us toward the goal.' 

Let us arrange the identities in Figure 3.7 into sets of attraction, col-
lection, and isolation methods. Figure 3.8 shows how a subset of these 
identities can be written as attraction methods. In what follows, U, V, 

4. In some equation-solving problems a change of variables is required, which can lead 
to intermediate expressions that are larger than previous steps. We ignore such cases 
here. 
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(u + V)(U — V) 	U 2  — V 2  

UW + UY U(W + Y) 

Figure 3.9 Collection methods. Collection methods reduce the number of 
occurrences of x. Here we assume U and V contain x, but W and Y do not. 

and W are variables which are matched against parts of an expression. 
(Notice we now have three kinds of variables around—Lisp variables, al-
gebraic variables (such as x), and pattern variables, such as U. Algebraic 
variables have numbers as values, while pattern variables have structures 
as values, which could be numbers, algebraic variables, or expressions. It 
should be clear from context which is which, but it can be confusing ini-
tially.) In attraction laws we assume that U and V are terms containing 
x, and that W does not contain x. Notice that in each case we map the 
left-hand side of the rule into an expression on the right-hand side of the 
rule, but not vice versa. For example, if we are looking at the sum of two 
products, each containing a common term which does not involve x, then 
by factoring out that common term we have brought the occurrences of 
x closer together: they are now separated only by a sum. Running this 
rule in reverse would actually make things worse. Hence we only apply 
such laws in the given direction. 

Bundy notes that attraction laws should not be applied to every part of 
the expression. A least dominating term is a term that contains at least 
two subterms that contain the unknown. Notice that an expression may 
have more than one least dominating term. For instance, the expression 

[log(x) x xP] + [(x — 1) x (x + 1)] + q 

has three least dominating terms, 

[log(x) x xP] + [(x — 1) x (x + 1)] + q 

log(x) x xP 

(x — 1) x (x + 1) 

Both attraction and collection laws are applied only to least dominating 
terms. 

Figure 3.9 shows collection methods based on the identities. Here we 
stipulate that the subterms U and V contain at least one occurrence of x 
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logwU = 	U = W Y  

U—W=Y—U=Y+W 

U 2  = W U = 

Figure 3.10 Isolation methods. Isolation methods reduce the depth of oc-
currences of x. These methods apply to the whole equation, unlike the oth-
ers. 

and the variables W and Y do not. As with attraction methods, collection 
methods apply only to the least dominating term in x. 

Finally, Figure 3.10 shows how a subset of the identities are used as 
isolation methods. Only the pattern variable U may have occurrences 
of x. Isolation laws are directed, and apply only to the entire equation. 
They reduce the depth of occurrences of x by making U be the only 
term on the left hand side of the equation. In general U may not be x 
itself, but is some other complicated expression containing a number of 
occurrences of x. One must then in turn attract the occurrences of x 
together in these new subexpressions, collect them together, and isolate 
them again. Unless we get stuck somewhere along the way, applying the 
laws repeatedly in this fashion must achieve a solution because we are 
always reducing either the number of occurrences of x or reducing their 
depth in the equation. 

We can implement a simple equation solver in CPS by implementing 
these methods as operators. To create operators we must encode some 
set of the attraction, collection, and isolation methods we have already 
described. Next we consider the design issues and then delve into the 
code. 

3.6.1 CPS algebra system design 

The outline of our design is fixed by the structure of CPS: Our job as 
problem-space designers is to develop a representation for states and 
operators that will allow the search engine to do its job. If best-first 
or beam search are to be used, we also must supply a procedure that 
estimates the distance remaining between a given state and some goal 
state. 

The first choice we must make is how to encode states. A straightfor-
ward representation is to use a list to represent an equation. We use 
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(= < Le ftHandSide > < RightHandSide >) 

to represent an equation, and use the standard prefix Lisp notation to 
represent algebraic expressions. That is, our original example takes the 
form 

(= 	(log (+ x 1) E) (log (- x 1) E)) C) 

Given this choice of representation, we must now figure out how to 
represent operators and provide a procedure that uses them to expand a 
state. We choose a very simple representation here, in keeping with the 
mode of exploratory programming. An operator will simply be a list of 
two elements whose form is 

( (OperatorName) (ExpansionProcedure)) 

where (OperatorName) is a symbol indicating the operator's name and 
(ExpansionProcedure) is a procedure which, when executed on a state, 
produces the kind of result CPS expects from an operator applier proce-
dure. 

The notion of pattern matching is a natural way to think about alge-
braic laws and their applications. Our code will be simplest if we incor-
porate a pattern matcher into it, for then we may simply define operator 
procedures in terms of pattern-matching operations. What should the 
matcher do? First, it must provide a representation for pattern variables, 
and means to bind them to values. Second, we must provide substitution 
facilities for using the results of the match process. 

A concrete example will make the constraints on the matcher clearer. 
Consider again the isolation law 

logtvU = Y U = 

Suppose we indicate pattern variables by a list whose first element is ? 
and whose second element is the name of the variable (i.e., (? f oo)). 
Then we could write the left-hand side of this rule as 

(= (log (? arg) (? base)) (? rhs)) 

where (? arg) is U, (? base) is W, and (? rhs) is Y. A successful 
match of this pattern to a state should yield values for the variables (? 
arg), (? base), and (? rhs). Since there can be any number of vari-
ables in a pattern (including none), we will use a list to serve as a dictio-
nary of bindings linking variables to values. Given such a dictionary, the 
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substitution facility should then be able to take a pattern corresponding 
to the right-hand side of the law, in this case 

(= (? arg) (expt (? base) (? rhs))) 

and produce a new state by substituting the values from the dictionary 
for the pattern variables. 

This design is fine so far, but we can add still more features to make 
our job as domain modelers easier. Recall that there are additional re-
strictions on what the pattern variables can match. In the isolation law 
just defined, for instance, (? arg) must contain an occurrence of x 
while (? base) (? rhs) must not. Such restrictions could easily be 
stored with pattern variables by adding an extra element to the list that 
comprises them. If the procedures contains-x? and no-x? return non-
nil if their argument does and does not contain an occurrence of x, 
respectively, then we can encode the value restrictions by modifying the 
left-hand side to be 

(= (log (? arg contains-x?) (? base no-x?)) (? rhs no-x?)) 

There is one more complication which may not be apparent at first 
glance. Some laws of algebra are always worth applying. For example, no 
matter what the value of U is, the following laws always decrease the 
complexity of the expression: 

U + 0 U 

U x 0 — 0 

U xl—U 

Similarly, suppose some subterm consists of an operator such as + 
which has a procedural definition, and all of its arguments have numeri-
cal values (e.g., (+ 2 2)). Replacing this subterm by the value computed 
by applying the operator's procedure to its arguments results in replac-
ing a subtree with a leaf, and hence always results in a simpler expres-
sion. 

We could encode these laws as operators, using our pattern-matching 
facility. However, since they are always appropriate, we instead provide 
a separate facility for applying such transformations. This is standard 
practice in symbolic algebra systems, which call such facilities simpli-
fiers. We can use the same pattern-matching abilities used for applying 
operators to define the rewrite rules that comprise a simplifier. The de- 
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tails of this system are explained in Section 3.6.4. The important point 
to consider right now is that the special properties of algebraic laws sug-
gest designing a slightly more powerful pattern matcher. Rewrite rules 
typically have a left-hand side, consisting of a pattern which is to be 
matched, and a right-hand side, consisting of an expression that replaces 
the pattern just matched. The pattern variables bound when matching 
the left-hand side are used in the right-hand side. For instance, the law 

U + 0 U 

says that U + 0 can be replaced by U, for any U. Of course, this same law 
holds when there are additional terms besides U involved in the sum as 
well. What this rule really says is that we can remove all terms of a sum 
which evaluate to zero. That is, 

• • • + 0 + • • • 	• • • + • • • 

Laws like this suggest introducing segment variables, which can match 
several elements of a list. Suppose we agree that (?? f oo) indicates a 
segment variable. Then the left-hand side of the law for removing zeros 
could be written 

(+ (7? pre) 0 (?? post)) 

and the right-hand side could be written as 

(+ (?? pre) (?? post)) 

We call the kind of variable that can only match a single item in a list 
element variables, to distinguish them from segment variables. 

One complication of segment variables is that they enable a pattern to 
match an expression in more than one way. For example, the pattern 

((?? before) Foo (?? after)) 

can match the expression 

(a b Foo Foo Foo c d) 

in three different ways, resulting in the following sets of variable bind-
ings: 

(?? before) = (a b) 	(?? before) = (a b Foo) (?? before) = (a b Foo Foo) 
(?? after) = (Foo Foo c d) (?? after) = (Foo c d) 	(?? after) = (c d) 
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To simplify matters, we only require our matcher to return a single 
set of variable bindings. Furthermore, we presume that the expression 
we are matching our pattern against is free of pattern variables. (The 
problems caused by allowing pattern variables in data are described in 
Chapter 4.) 

Let us pin down these design decisions by specifying the data abstrac-
tion for pattern variables. Even though we have made assumptions about 
their structure (e.g., lists with particular first elements) to simplify their 
use, it is still important to keep the interface clean. 

pattern-variable? Returns non-nil if its argument is a pattern vari-
able, nil otherwise. 

element-var? Returns non-nil if its argument is an element variable, 
nil otherwise. 

segment-var? Returns non-nil if its argument is a segment variable, 
nil otherwise. 

var-name Returns name of a pattern variable. 

var-restrict ion Returns procedure of one argument corresponding 
to a restriction on the binding of the variable if such a restriction is in 
force, returns nil otherwise. 

var-value Given a dictionary and a variable, returns its value, signal-
ing an error if it isn't bound. 

lookup-var Takes as input a dictionary and a variable. If the variable 
is bound in that dictionary, returns a pair whose second element is the 
value of the variable. Otherwise it returns nil. 

bind-element-var Takes as input a dictionary, an element variable, 
and a new value. Produces a new dictionary consisting of the old dictio-
nary augmented by the binding of the given variable to the given value. 

bind-segment-var Like bind-element-var for segment variables. 

The implementation of this data abstraction is covered in the next sec-
tion. 

Implementing a simplifier by using rewrite rules forces us to extend 
the substitution facilities of the pattern matcher beyond just plugging in 
constant values. For instance, one way to simplify a sum is to add up 
all the numerical terms in it. The pattern that would trigger such a rule 
might be 



50 	 Chapter 3 

(+ (? numl numberp) (? num2 numberp) (?? terms)) 

where what we want to do is plug in the result of evaluating an expres-
sion containing the variables in the dictionary. We define a special form 
:EVAL to be used in such cases, as an instruction to the substitution fa-
cility that it should evaluate its argument. Thus the right-hand side of the 
simplification rule could be written 

(+ (:eval (+ (? numl) (? num2))) (?? terms)) 

Yet one other special form will be allowed in substitutions. Sometimes 
it is useful to rearrange the arguments to an operator. Simplifiers often 
include one or more canonical forms to simplify pattern matching. For 
instance, the rule just suggested for simplifying sums would not trigger 
on the expression 

(+ A 2 3) 

since the first two elements of the sum are not numbers. If we had 
written the sum instead as 

(+ 2 3 A) 

the rule would have triggered. If we define an ordering on terms such 
that all numerical terms are "less than" all non-numerical terms, and 
sort the argument lists to + and * accordingly (which is safe since both 
operations are commutative), then our simplification rules can be less 
complex than they would be otherwise. 

To support this and similar operations, we define : SPLICE to be like 
:EVAL, except that its results are presumed to be a list that is spliced 
into the containing list rather than simply being a member of it. The use 
of : SPLICE is described in Section 3.6.4. 

It is important to realize that algebraic simplification is actually an ex-
tremely hard problem. In fact, showing that any two arbitrary algebraic 
expressions are identical is NP-hard. Consequently, our simplifier only 
handles some easy cases of removing constants, combining numerical 
subexpressions, and canonicalizing expressions to make finding applica-
ble operators easier. 
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3.6.2 The CPS algebra implementation 

The algebra system consists of the following files: 

match. lisp: The pattern matcher. 

algebra. lisp: Operator implementations and environmental setup. 

simplify. lisp: A simple algebraic simplifier. 

We describe each in turn. 

3.6.3 Implementing the pattern matcher 

Turn to the listing match. lisp. The basic routine is match, which takes 
a pattern (pat) and an expression (dat). It also accepts an optional argu-
ment dict, a dictionary of bindings. Any match must respect the vari-
ables already bound in dict. match returns a dictionary corresponding 
to the complete set of bindings required to complete the match. The spe-
cial value : FAIL for a dictionary indicates that the match is impossible. 
If an initial dictionary was provided through the optional argument dict, 
if the match succeeded then the dictionary returned necessarily includes 
those bindings as well. 

The basic structure of match is a recursive tree walk, stepping through 
the pattern and the expression together looking for mismatches and po-
tential variable bindings. This means that additions to the dictionary 
made stepping down one part of the structure must be passed down into 
the other parts as well to ensure consistent bindings. If a substructure 
fails to match, match could be called with a dictionary of :FAIL, and 
hence we check for that possibility first. The next two clauses concern 
the possibility that pat is a constant which matches dat directly. The 
eq test comes first, since it will detect identical symbols (and, depend-
ing on your implementation, identical small integers). The equal? test is 
used only if pat is not a cons, since a piece of list structure might be (or 
include) a pattern variable, and those take special handling. Notice that 
equal? is simply Common Lisp equal, but will return t if its arguments 
are floating-point numbers within a preset tolerance. 

The cases where pat is a pattern variable are handled next, by the 
procedures match-element-var and match-segment-var. It is worth 
splitting them off for two reasons. First, as described below, each in-
volves several chores. Second, the segment variable must detected while 
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we are still one level above it in the expression, since its binding must 
potentially be able to range over the entire list, rather than just matching 
against the corresponding element in dat. Once the last two clauses are 
reached we know that pat is a cons. If dat is not, then clearly we have 
a mismatch, and hence return :FAIL in the next-to-last clause. The last 
clause is a classic car-cdr tree walk with result passing. 

match-element-var is straightforward. It uses lookup-var to access 
the value for the variable from the dictionary, if any. If there is an exist-
ing value, then unless that value is the same as the datum the match fails. 
If the variable has not yet been bound, the restriction associated with the 
variable (if any) is applied to the potential new value, and if successful, 
a new dictionary is returned which includes the old dictionary plus the 
binding of the element variable to this piece of the pattern. Otherwise 
the match fails. 

When we defined our dictionary data abstraction we specified that the 
value of a segment variable must be a list. How this is implemented has 
a strong impact on how efficiently segment variables are matched, so let 
us consider now how to do it. In figuring out how we wanted segment 
variables to behave, we saw that they could typically be bound in more 
than one way. Even though we only want one match ultimately, we must 
still allow for backtracking, since several possible bindings for segment 
variables might have to be tried before a globally consistent match is cre-
ated. The obvious implementation of segment variables, that is, storing 
as its value a copy of the piece of the original list, thus could result in 
many wasted conses since a copy would be made for each guess for a 
segment variable's binding. A more efficient implementation is to specify 
the value of a segment variable by two pointers into the original list, one 
to the start of the segment and the other to the end. Call these pointers 
beg and end respectively. With this implementation a fixed-size structure 
represents a segment of arbitrarily length. Of course, to evaluate variable 
restrictions or use the binding we must make a copy of that segment of 
the list (a chore performed by segment->list). As it turns out, most 
segment variables do not have restrictions, so this implementation is ac-
tually a very good idea. The procedures segment-beg and segment-end, 
defined below, extract these pointers from a dictionary entry. 

match-segment-var has the same overall structure as match-
element-var: See if the variable has already been bound, check its value 
if so, and otherwise bind it. But since we haven't stored the value ex- 
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plicitly, the procedure check-segment walks down the datum and value 
to perform the identity check. Since there can be several possible bind-
ings for a segment variable, we embody that guessing mechanism in 
the procedure try-segment-bindings. It iterates through the possible 
bindings of the segment variable, ranging from nil to the entire list it-
self. This is accomplished by the do loop, which uses beg and end to 
point at the beginning and ending of the segment. Initially both beg and 
end point to the beginning of the list. Since it is the piece of the list 
between beg and end that will be the current guess at the segment vari-
able's value, in this case the value guessed is nil. If another guess is 
needed, end is moved down the list. Thus the guess grows by one ele-
ment each time, reaching its maximum size (i.e., the whole list) when end 
falls off the end of the list and becomes nil. For each guess, the vari-
able restriction is checked (using segment->list to produce a copy of 
the list the restriction procedure can execute on), the segment variable is 
bound (using bind-segment-var) and the rest of the list is tested using 
match. 

Now let us implement the dictionary and variable data abstraction. The 
procedure pattern-variable? is defined in terms of element-var? 
and segment-var? for simplicity. Recall that variables are implemented 
as lists (a choice we made early in the design phase to simplify the 
task of typing in patterns), with the second element being the variable's 
name and the third element, if any, representing the value restriction. 
var-name and var-restriction are just syntactic sugar for cadr and 
caddr, in this implementation. lookup-var is implemented via assoc, 
as is var-value. They differ in two ways, though, since lookup-var is 
intended to be used during the matching process and var-value is in-
tended to be used by the substitution facilities after a match is complete. 
The first difference is that, as per our specification, var-value signals 
an error if asked about a variable that isn't bound. The second differ-
ence is that var-value constructs a list when asked about the value of 
a segment variable, while lookup-var does not. A binding correspond-
ing to an element variable is a two-element list whose car is the variable 
name and whose second element is the value. The binding for a segment 
variable is a list consisting of the name and the beg and end pointers. 
This makes it easy for var-value to figure out what kind of variable it 
is dealing with. bind-element-var and bind-segment-var do the ob-
vious alist updates. 
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How are the results of a match used? Any program can use var-value 
to access the bindings created by match. For our purposes, the most 
important use of the bindings is to create new expressions containing 
them, such as the right-hand side of a simplification rule. The procedure 
substitute-in provides a handy facility for doing this. Since dictionar-
ies are alists, one might think that subst would suffice for this purpose. 
However, segment variables demand to be treated differently, and we 
must support : EVAL and : SPLICE, as noted in the previous section. 

substitute-in starts with an expression (exp) that may include vari-
ables and a dictionary (dict). Its output is a new expression with appro-
priate substitutions made. The basic structure is a recursive tree walk, 
with element variables being replaced by their values, just as one might 
implement subst. However, there are three critical differences in the 
code. The first difference is the treatment of segment variables, whose 
values are spliced into the new expression using append. Suppose the 
dictionary included (1 2) as the value for (?? A) and (3 4) as the 
value for (?? B). Then calling substitute-in on the expression 

(+ (?? A) (?? B)) 

returns (+ 1 2 3 4). 
The second difference is the test for expressions of the form ( :eval 

< form >), where the value of the expression obtained by applying 
the dictionary substitutions on < form > becomes part of the output 
expression rather than the newly derived version of < form > itself. 
Assuming the same dictionary as above, the expression 

(:eval (+ (?? A) (?? B))) 

yields 10. 
The third difference is the test for subexpressions starting with 

: SPLICE, which indicate that the rest of that subexpression should be 
spliced into the result expression. Continuing with the same dictionary, 
calling substitute-in on the expression 

(* (:splice (42 (?? A) (?? B)))) 

would yield (* 42 1 2 3 4). 
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Notice that we can combine : EVAL and : SPLICE to do some interesting 
things. For instance, suppose we want to ensure that the arguments to 
an operator were sorted in some particular way (as the simplifier must 
do when canonicalizing expressions). If using the same dictionary we call 
substitute-in with 

(+ (:splice (:eval (sort (append (quote (? A)) 

(quote (7 B))) #'>)))) 

The subtlety is that when we access the value of a variable, we do not 
check to see if it is a variable of the same type. That is, we might have 
treated a particular name as a segment variable when binding it, but 
in substitution treat it as an element variable. As this example demon-
strates, this can be handy when one needs to perform some operation on 
an entire segment. 

3.6.4 Implementing a simplifier 

A concrete example helps illustrate the importance of simplification. 
Suppose we used the collection method 

UW + UY U(W + Y) 

on the expression 

(+ (* X -2) (* X 2)) 

If we apply this rule literally, the result would be (* X (+ -2 2) ), 
which is zero. Simplification gets rid of redundant expressions by per-
forming such "obvious" transformations. The bulk of a simplifier con-
sists of a set of rewrite rules which take the following form: 

( (pattern) (result) ) 

where if an expression matches <pattern> it is replaced by <result>. 
An example of a rewrite rule is 

((* (? e) (? e)) (sqr (? e))) 

which transforms a product of two identical terms into the square of 
those terms. The knowledge of simplification can be encoded by a set 
of such rules. This makes the job of maintaining and extending this 
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knowledge easier. We implement such rules as lists, using the procedures 
rule-pattern and rule-result to access a rule's parts. 

How should such rewrite rules be applied? The recursive nature of 
algebraic expressions suggests that we should try each rule on every 
subexpression. Does the order of trying the rules matter? Yes. As it 
happens, efficiency can change dramatically depending on how they are 
ordered (more on this later). When should we stop? If the result of sim-
plifying an expression is the expression itself, then further attempts to 
simplify it will achieve nothing. 

With these ideas in mind, examine the listing simplify. lisp. The pro-
cedure simplify is our entry point into the simplifier. It calls simplify-
it to do the real work. Notice that a hash table (*simplify-cache*) is 
used to cache results of previous calls to simplify. Caching the simplifi-
cation of an expression makes sense because there are many regularities 
and symmetries in algebraic problems, and hence one sees the same ex-
pression repeatedly. 

The procedure simplify-it begins to simplify an expression (exp) by 
attempting to simplify its subexpressions, if any. exp itself is processed 
by calling try-match-rules. try-match-rules looks for a rewrite rule 
that can be applied to exp, and if it finds one, returns the instantiated 
result. In finding out if a rule is applicable, it first uses match to attempt 
to generate a binding list. If match succeeds, then substitute-in is 
used to provide the replacement expression. 

A few useful utilities come next. The procedure alg< provides a par-
tial order on algebraic expressions. Having such an ordering is useful 
because it allows expressions to be turned into a canonical form, which 
simplifies further matching operations. A canonical form helps make 
expressions that mean the same look the same. For instance, the ex-
pressions (+ a b) and (+ b a) would not be considered the same by 
match, even though the commutative nature of addition means they are 
the same. We use rewrite rules to sort the arguments to commutative op-
erations, and thus make it more likely that match will recognize common 
subexpressions. These reorderings can greatly reduce the complexity of 
the rewrite rules needed, and hence reduce the computational cost of the 
simplifier. 

The rest of these utilities are all quite simple. alg= provides a heuristic 
equality check for algebraic expressions. The predicate sorted? is satis- 
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fled if the list it is given is properly ordered by the order procedure pred. 
The predicate +/*? recognizes the two commutative operators used in 
our examples. The predicate same-constant? requires strict identity 
for integers and identity within a tolerance for floating-point numbers. 
same-constant? is used in turn to provide procedures that recognize 0 
(zero?) and 1 (one?), since they play a central role in the simplification 
laws. 

The rules used by simplify are stored in the global variable 
*algebra-rules*. The first thirteen rules take care of special case argu-
ments to operators. The next four rules handle equivalences involving 
multiplication, squaring, and exponentiation. The next nine rules re-
duce expressions when numerical values are available. The last two rules 
provide some canonicalization, by using the associative law to sanction 
"flattening" nested additions and multiplications and by using alg< to 
sort the arguments to commutative operations. 

Notice that the simplifier rules are tested in order. Does the order 
matter? In some systems of rewrite rules order can affect both efficiency 
and what answer is derived. However, some systems of rewrite rules can 
be proved to be commutative, that is, the answer derived is independent 
of the order in which the rules are used. We leave it to the reader to figure 
out whether order matters, and if so how much, in this case. 

3.6.5 Implementing operators and the environment 

The file algebra. lisp completes the algebra problem space implemen-
tation for CPS by defining the interface procedures it needs and a collec-
tion of operators. The macros lhs and rhs provide some abstraction for 
defining our operator-finding procedures, and occurs-in? is the predi-
cate we assumed earlier in this discussion. 

Most of the interface procedures are very simple. For the algebra sys-
tem, we define operators as a list of two elements. The first element is 
the name of the operator, and the second element is the name of the 
procedure which finds instances of that operator. This means that pr-
operator-applier, defined here as find-algebra-operator, simply 
calls the associated procedure on the given state. The goal recognizer 
is provided by the procedure got-algebra-goal?. print-derivation- 
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step provides the hook print-answer needs to show a solution, and 
equal suffices to detect if two states are identical. 

Using beam search or best-first search requires an estimate of how far 
a state is from a goal. For algebraic equations a reasonable heuristic is 
the sum of the depths of occurrences of x in the expression tree. Why? 
The value calculated by this procedure is 1 for a solved equation, since 
the only occurrence of x is one side of the equation. Suppose there is 
only one occurrence of x, but it is at depth d. Then at least d applications 
of isolation methods are required to reach a goal state. Furthermore, 
each additional occurrence of x will require additional applications of 
attraction and collection methods, so the more occurrences there are, 
the farther a state is from a solution. The.procedure algebra-distance 
implements this heuristic. 

The rest of the interface to the search engines is provided by the proce-
dure setup-algebra-problem. Notice that the list of operators is fixed 
by the definition of this procedure, in that : OPERATORS is always initial-
ized to the same constant list for each problem. A classic test case is 
stored in the variable *bundy*. 

The rest of this file defines the procedures needed to implement a 
particular set of operators. Given the substantial effort we have already 
invested in defining a pattern matcher and simplifier, one might expect 
that this part would be relatively easy. And it is. 

The procedures associated with operators all have a common form. 
First match is called to establish whether or not the operator is relevant 
to the given expression. For isolation methods this expression is the left-
hand side of the equation. For attraction and collection methods the 
matching is done against all least dominating terms, as found by the 
procedure find-least-dominating-terms. Liberal use is made of the 
ability to filter matches by variable restrictions. The definitions included 
are a subset of those in the figures above. The only new operator is 
canonicalization which calls simplify on the equation to put the terms 
in an order more conducive to matching. 

Some find it hard to see how to implement the notion of least dominat-
ing term. A recursive argument shows that the procedure find-least-
dominating-terms is correct. Suppose the whole expression does not 
contain an occurrence of the variable x. Then there is no least dominat-
ing term in x, and checking its subexpressions is useless. Now suppose 
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there is some subterm which is a least dominating term in x. For any 
expression, either no subexpression will contain x, one subexpression 
will contain x, or more than one subexpression will contain x. We have 
just dealt with the case of no subexpressions. If more than one subterm 
contains x then the expression itself is a least dominating term. Those 
subexpressions that contain x must be further searched, but by the ar-
gument above, no subexpression not containing x need be examined. 
If only one subexpression contains x then that term, or some subex-
pression of it, might itself be a least dominating term. So we repeat the 
process on that term. Since expressions are trees, this recursion must 
terminate. 

Should the match succeed, an appropriate form is created for further 
CPS processing. The operator instance is represented by a form consist-
ing of the operator name and the equation it is applied to. The new state 
is computed by substituting the bindings into the form for the right-hand 
side of the operator and calling simplify on the results. 

3.6.6 Analysis of algebra system 

If Bundy's theory is right, we will not see large differences between 
different search strategies because the additional control knowledge in 
the method formulation heavily constrains each step. Figure 3.11 shows 
what happens when we try solving his test case, and indeed this pre-
diction seems correct. If we run bsolve we find we get the answer we 
expect, and in fact, if we run dsolve we get the same answer with fewer 
states explored. The total number of states explored in each case (17 and 
7) makes our earlier dire worst-case prediction of 135  states seem pretty 
naive. The reason for the difference lies in the applicability constraints: 
no matter how complicated the expression, each method can apply to at 
most one expression in an equation. Why? Isolation methods can apply 
only to the whole equation, and attraction and collection methods can 
apply only to a least dominating term in the unknown. Each method ap-
plies only to a specific operator, hence often only a single method makes 
sense. In this example, for instance, using beam-solve with a beam of 
one still leads to a solution! What appeared to be a horrible search prob-
lem has been tamed, turned into a problem that can be solved straight-
forwardly. 
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>*bundy* 

(= (+ (LOG (+ X 1) E) (LOG (- X 1) E)) C) 

> (setq a (setup-algebra-problem)) 

<Problem: ALGEBRA> 

>(bsolve *bundy* a) 

<path (= X (SQRT (+ 1 (EXPT E C))))> 

17 

>(print-answer *) 

Initial state: (= (+ (LOG (+ X 1) E) (LOG (- X 1) E)) C). 

1. (= (LOG (* (+ 1 X) (- X 1)) E) C), via ATTRACT-LOG-SUM 

2. (= (LOG (- (SQR X) 1) E) C), via COLLECT-PRODUCT-SUM 

3. (= (- (SQR X) 1) (EXPT E C)), via ISOLATE-LOG-INSTANCES 

4. (= (SQR X) (+ 1 (EXPT E C))), via ISOLATE-DIFFERENCE 

5. (= X (SQRT (+ 1 (EXPT E C)))), via ISOLATE-SQUARE 

Done. 

NIL 

;;; Depth-first version 

>(dsolve *bundy* a) 

<path (= X (SQRT (+ 1 (EXPT E C))))> 

7 

>(print-answer *) 

Initial state: 

1. (= (+ (LOG 

2. (= (LOG (* 

3. (= (LOG (- 

4. (= (- (SQR 

5. (= (SQR X) 

6. (= X (SQRT 

Done. 

NIL  

(= (+ (LOG (+ X 1) E) (LOG (- X 1) E)) C). 

(+ 1 X) E) (LOG (- X 1) E)) C), via CANONICALIZATION 

(+ 1 X) (- X 1)) E) C), via ATTRACT-LOG-SUM 

(SQR X) 1) E) C), via COLLECT-PRODUCT-SUM 

X) 1) (EXPT E C)), via ISOLATE-LOG-INSTANCES 

(+ 1 (EXPT E C))), via ISOLATE-DIFFERENCE 

(+ 1 (EXPT E C)))), via ISOLATE-SQUARE 

Figure 3.11 Algebra runs on Bundy's example 
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3.7 Sic transit gloria search? 

In CPS we see that a very simple yet general search engine can indeed 
be usefully employed as part of a problem solver. Is search truly the 
core idea of building problem solvers, and thus potentially the key com-
putational idea for explaining intelligence? A closer analysis of our CPS 
examples can shed light on this question. 

The real question is this: what percentage of the work in developing 
problem solvers needs to go into developing search engines? If search 
really is the key idea, then most of our effort as problem-solver designers 
should go into building better and cleverer search routines. On the other 
hand, if the real determinants of performance lie elsewhere, then energy 
poured into improving and tuning search routines may be misspent. We 
will get more leverage if we concentrate our energies on those other 
aspects of problem-solving. 

In the Boston subway problem space, the search engines were a sub-
stantial fraction of the code. However, this was due to the trivial nature 
of the domain. Searching a finite, preenumerated graph is a very simple 
kind of problem. The CPS algebra problem space provides a better test 
case. In the algebra system we ended up creating two systems of roughly 
the same complexity as the search engine (i.e., the pattern matcher and 
simplifier). Search was needed to solve equations, of course, but most of 
the work went into defining the representations and knowledge of alge-
bra. 

This is a well-known AI lesson: knowledge reduces the need to search. 
Caching the results to specific problems is one kind of speedup, but 
the more useful efficiencies are gleaned from careful analyses of classes 
of problems which uncover structure that can be used to guide search. 
Bundy's identification of attraction, collection, and isolation methods is 
a splendid example of such an analysis. Indeed, the language of the field 
has shifted to speaking of domains rather than problem spaces (save 
when thinking about search issues). 

In many situations search is unavoidable. But search should be viewed 
as something you do when you don't have enough domain knowledge 
to figure out an answer more efficiently. Search is exponential, and 
embedding an exponential process unnecessarily in a computation is 
bad design. Faster computers or massive parallelism cannot tame the 
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ravenous computational demands of raw exponential search. Improve-
ments in domain-independent search strategies will not let you beat the 
exponential. For some problems there are linear algorithms that can pro-
vide approximate solutions which are good enough in most cases [4]. But 
in general, only domain knowledge can tame the exponential. 

What are the implications for us, as problem-solver designers? CPS pro-
vided no leverage in defining the control knowledge we needed. Many of 
the interesting concepts ended up embedded in Lisp code: efficient, but 
hardly perspicuous. How could such a program ever learn to improve 
its performance, or explain its results to us, or perform its own real-
ity checks to ensure that its reasoning is sound? We have not provided 
support for building systems where most of the interesting knowledge is 
embedded in an explicit set of beliefs inside the program's head, so to 
speak. What is missing from CPS are commitments about representation. 
In the rest of this book we focus on models that make such commit-
ments, in terms of their knowledge models for domain information and 
procedure models for control knowledge, the "how to" of reasoning. 

Search by itself is no longer viewed as the essence of intelligence. 
Clearly search is a part of it, but only a part. A search routine is just like a 
routine for sorting or taking square roots or printing numbers: simply a 
component that is used as part of a larger system. Search appears repeat-
edly, but we will recognize our old friend simply as a subroutine, part of 
a much larger system in which the interesting work lies elsewhere. 

3.8 Backpointers 

The pattern matcher and simplifier were inspired by a Scheme version 
written by Gerald Sussman for research purposes. 

3.9 Exercises 

1. 	* What setting of beam suffices to successfully navigate the Boston 
subway? That is, what is the smallest value of ri given to beam-solve 
that results in plotting a successful course from Logan Airport to 
Kendall Square? 
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2. * Show that algebra-distance can overestimate the number of 
steps required to solve an equation. 

3. * Rewrite bsolve to detect and discard proposed new paths which 
have reached a previously explored state. Analyze the time and space 
complexity of your solution, and decide whether or not this modifi-
cation is worthwhile. 

4. * * Recall that the algebra system includes a fixed set of opera-
tors. This has two problems. In experimenting it is often useful to 
switch between alternate sets of operators. In extending a system 
it is convenient to be able to add new operators simply by loading 
additional files of operators, without editing existing code. Rewrite 
setup-algebra-problem to allow this, adding any needed ancillary 
definitions to algebra. lisp. 

5. The implementation of operators in the algebra system does not fully 
exploit their common structure. In particular, it would make adding 
new operators much easier if there were generic procedures for each 
class of method. Suppose we had procedures 

(Use-Attraction-Method (Name) (Before) (After)) 
(Use-Collection-Method (Name) (Before) (After)) 
(Use-Isolation-Method (Name) (Before) (After)) 

where (Name) is a symbol naming the operator, (Before) is the pat-
tern representing the left-hand side of the algebraic law and (After) 
is the pattern representing the right-hand side of the law. Thus some 
of our operators might be implemented internally as follows: 

(Use-Isolation-Method 'Isolate-Log 
'(= (log (? arg (lambda (term) (occurs-in? 'X term))) 

(? base (lambda (term) (not (occurs-in? 'X term))))) 
(? rhs (lambda (exp) (not (occurs-in? 'X exp))))) 

'(= (? arg) (expt (? base) (? rhs)))) 

(Use-Collection-Method 'Collect-Product-Sum 
'(* (+ (? v (lambda (term) (not (occurs-in? 'x term)))) 

(? u (lambda (term) (occurs-in? 'x term)))) 
(- (? u) (? v))) 

'(- (sqr (? U)) (sqr (? V)))) 
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(Use-Attraction-Method 'Attract-Log-Sum 

'(+ (log (? u (lambda (e) (occurs-in? 'X e))) 

(? w (lambda (e) (not (occurs-in? 'X e))))) 

(log (? v (lambda (e) (occurs-in? 'X e))) 

(? w))) 

'(log (* (? U) (? V)) (? W))) 

a. ** Define use-attraction-operator, use-collection-
operator, and use-isolation-operator. 

b. * * The job of maintaining the algebra system could be made 
even easier by adding a bit of "syntactic sugar." Implement a 
macro def AlgebraOperator that provides a simple interface for 
defining new operators. It should take as arguments the name 
of the operator, the kind of method it represents, the pattern 
before, and the pattern afterward. 

c. * * Given that the definition of isolation, attraction, and collec-
tion methods is purely syntactic, one can in fact automatically 
translate a given algebraic identity into an appropriate set of 
methods. Define such a translation procedure, build a civilized 
interface macro for it (defAlgebraLaw), and test it by adding sev-
eral new algebraic identities to your system with it. 

6. * * Using the programs in variants . lisp as a guide, implement A* 
search. 

7. Suppose we wanted to use match in a rewrite system that performed 
more backtracking. This new constraint on match means it should be 
more exhaustive. That is, we now want to find all the ways a pattern 
might match a given expression, not just one match, as the program 
does now. 

a. * One motivation for such a system is the desire to write more 
complex transformation rules. Explain why the following call to 
match returns : FAIL. 

(match '(+ (* (?? A) x (?? B)) (* (?? A) (- 1 x))) 

'(+ (* 2 x x) (* 2 x (- 1 x)))) 

b. * Write a new version of match. lisp that returns a list of dic-
tionaries, each representing a different way a pattern can legally 
match an expression. 
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c. 	* * Given the large number of potential matches, incremental 
generation strategies are usually more desirable than exhaus-
tive enumeration. Rewrite match. lisp to produce matches in-
crementally by creating a generator. That is, match should now 
return two values: a dictionary representing the current match, 
and a procedure of no arguments which, when evaluated, returns 
the next match (if any) and a new generator. 

8. An important wrinkle in search strategies is the idea of iterative deep-
ening [6, 4]. Iterative deepening is based on the observation that in an 
exponentially growing search tree, the number of nodes at depth d is 
roughly the same as the number of nodes in the entire tree of depth 
d - 1. Therefore it makes sense to exhaustively explore possible solu-
tions at depth d - 1 before expanding the search to depth d. Iterative 
deepening can be implemented by adding a cutoff to a depth-first 
search algorithm, and using this modified algorithm to explore the 
search tree with ever-increasing depth bounds. 

a. * Implement id-search, an iterative deepening version of 
depth-first search. 

b. * * How does id-search compare empirically with other search 
strategies on the subway and algebra domains? 

c. * * Iterative deepening can be applied to A* search as well. Im-
plement a version of A* which uses iterative deepening, and eval-
uate its performance empirically. 

9. The algebra system has two glaring limitations: the use of a fixed 
unknown and the ability to manipulate only one equation at a time. 

a. * Change the algebra system so that the variable to be solved for 
can be specified as part of the problem. 

b. * * Extend the algebra system so that states now consist of a 
set of algebraic equations, and the goal is to find a state which 
contains an equation that has only the designated unknown on 
its left-hand side. (Hint: A useful strategy is to treat the choice of 
what variables to substitute for as a search problem itself, and 
call CPS recursively to solve equations for those variables.) 

c. * Using your new algebra system, come up with an expression 
for We, a person's equilibrium weight, assuming the following 
equations are valid: 
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SW = 7MW—Cf+ Ce  

3500 

C1 = 7Cfd  

NW 
Ce — 

150 

where 

W = Weight at the beginning of a week. 

SW = Change in weight at the end of the week. 

Cfd  = Food calories taken in each day. 

N = Number of miles walked that week. 

M = Metabolic factor; about 11 for men, 10 for women. 

10. * * * A classic early use of pattern matching in AI research was Bo-
brow's STUDENT program [1], which solved algebra word problems. 
For example, given the following problem 

Bill's father's uncle is twice as old as Bill's father. Two years from now Bill's 
father will be three times as old as Bill. The sum of their ages is 92. Find 
Bill's age. 

STUDENT is able to figure out that Bill is eight years old. Reconstruct 
STUDENT by: 

a. Creating a set of rewrite rules that translate sentence fragments 
into algebraic expressions. 

b. Extending the CPS algebra system to solve the algebraic expres-
sions so generated. 
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4 	Pattern-Directed Inference Systems 

As we saw previously, the classical problem-space model itself makes no 
committment to any particular form of representation. This lack of re-
strictions gave us generality, in that we could encode problem spaces 
any way we liked. But without some conventions, the inference engine 
cannot provide us with much leverage. A good compromise is to choose 
a common underlying "medium" in which particular representations can 
be encoded. The most common choice is the use of list structure to im-
plement assertions. Informally, an assertion is a statement, an encoding 
of some kind of knowledge into a language that can be used in reason-
ing. As we shall see, assertions are an extremely powerful medium that 
can be used to encode a wide variety of representations. By using pattern 
matching as a reference mechanism, much like the rewrite rules used in 
the CPS symbolic algebra system, we can achieve far greater modular-
ity. Systems organized around this idea are often called pattern-directed 
inference systems (or PDIS for brevity). 

This chapter explores the ideas of pattern-directed inference systems. 
We begin by outlining the basic ideas underlying such systems. Next, we 
describe the Tiny Rule Engine, or TRE, which implements this model. 
TRE is an exploratory program, designed to be extremely simple. This al-
lows us to focus on the essentials of pattern-directed inference systems 
before showing how to make them both more powerful and more effi-
cient in Chapter 5. Designing problem solvers using TRE-like systems is 
something of an art. To illustrate, we use natural deduction as a source 
of examples. We describe a particular natural deduction scheme, KM*, 
adapted from the work of Kalish and Montague [7], and show how far 
TRE goes in allowing us to implement this scheme. The limitations that 
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prevent THE from providing a full implementation of KM* will be over-
come by the extensions presented in Chapter 5. 

4.1 The pattern-directed inference system model 

We begin with assertions, then describe the format of rules. Then we 
describe how assertions and rules interact in detail. 

4.1.1 Assertions 

Data, whether it be raw information, facts about the world, or the con-
sequences of internal deliberations, is encoded in the form of assertions. 
Assertions take the form of lists, containing symbols, lists, and numbers, 
such as: 

(Robot Robbie) 
(Implies (Physical-Being Robbie) (Mortal Robbie)) 
(= (Height Robbie) (6 feet)) 
(= (Position (House Robbie)) :lattitude (32 degrees) 

:longitude (45 degrees)) 

Assertions provide a flexible representational medium. The previous 
examples, for instance, can be interpreted as terms in first-order predi-
cate calculus. But assertions can be used to model many other kinds of 
data as well. An OPS datum can be modeled as an assertion consisting of 
alternating indicators and properties, such as: 

(Name Datum32 Color Red Recency 32) 

We can also encode knowledge in assertions via English sentences, such 
as 

(THE MOON IS MADE OF GREEN CHEESE) 
(THIS STATEMENT IS FALSE) 

Assertions can also provide a declarative expression of procedural 
knowledge, such as 

(defun fact (n) 
(if (= n 0) 1 (* n (fact (- n 1))))) 
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Some encodings are more useful than others. The particular conven-
tions for interpreting assertions must be established by the author(s) of 
a particular system's rules. In these examples, human readers easily as-
cribe meaning to each assertion. However, assertions have no particular 
meaning by themselves to the PDIS system. Any meaning they have for 
the system is entirely determined by how they are used by the system's 
rules. 

Assertions are stored in a database. In some systems the internal rep-
resentation of an assertion is more complicated than a piece of list struc-
ture. For example, as Chapter 6 explains, programs which use truth main-
tenance systems associate extra structure with each assertion to record 
whether or not, and why, an assertion is believed. In such cases we use 
the term assertion to refer to the entire structure, and we use the term 
form to refer to the actual list structure expression of the assertion. For 
now, we make two simplifications: 

1. The assertion is identical to its form. 

2. An assertion is believed exactly when it can be found in the system's 
database. 

More complex models of belief are introduced when we discuss truth 
maintenance systems. 

The primary interface between the assertion database and the rest of 
the system consists of two procedures, assert! and fetch. assert! 
inserts a form into the database as a new assertion. If the form has 
already been asserted, assert! does nothing. Given a pattern, fetch 
retrieves assertions in the database that match it. 

The kind of pattern matching appropriate for pattern-directed infer-
ence systems is somewhat different from the form of pattern matching 
used in the CPS algebra system. Patterns can contain variables, as be-
fore, but no value restrictions can be associated with variables. This 
stipulation forces us to put more of the knowledge into assertions and 
rules rather than special-purpose procedures. Furthermore, there are no 
segment variables. Segment variables were motivated by the need to 
manipulate algebraic expressions, where the added complexity of non-
deterministic matching was worthwhile. For most pattern-directed in-
ference systems the extra overhead of considering segment variables is 
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not worthwhile.1  Instead, we use a form of pattern matching first devel-
oped in logic, called unification. Two patterns unify if there exists a set 
of values for their variables so that, when substitutions are made, the 
patterns become identical. Notice that unification can match two expres-
sions when both contain variables, unlike our previous pattern matcher. 
Detailed treatments of unification can be found in most logic or AI texts 
(e.g., [7, 3, 8]), so we shall not dwell on it here. 

From this point onward we represent pattern variables by symbols with 
"?" as their first character. Thus ?f oo, ?BAR, and ?Grumble are variables, 
while Foo, bar?, and ! Grumble are not. These two patterns unify 

(Has-Value (gain ?amp) ?beta) 
(Has-Value (gain Amplifier32) 10000) 

assuming the bindings 

?amp = Amplifier32 
?beta = 10000 

whereas these two patterns do not unify 

(Has-Value (gain ?amp) ?beta) 
(Has-Value (Output-Voltage Amplifier32) (5.0 V)) 

There can be some interesting subtleties when both patterns contain 
variables. For instance, these two patterns unify 

(Caused-by ?agent Event543) 
(?rel ?robot ?event) 

while these two patterns do not 

(Mystical ?agent (friend ?x)) 
(Mystical ?x ?agent) 

Why? Recall that unification is defined by the existence of a set of substi-
tutions that makes two expressions equal. In the first pair, we can make 
the second assertion identical to the first by making the following substi-
tutions 

1. Simplifiers can always be used as a subroutine by pattern-directed inference sys-
tems, as JSAINT in Chapter 8 illustrates. 
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?rel = Caused-by 
?robot = ?agent 
?event = Event543 

In the second pair, it may look as though we can use the substitutions 

?agent = (friend ?x) 
?x = ?agent 

to make the two expressions identical. This doesn't work because we 
must apply substitutions uniformly. Attempting to do so reveals that ?x 
does not correspond to a finite expression 

?x = (friend (friend (friend ,(... ) ))) 

In defining a unifier we must be careful to ensure that we compute 
correct substitutions. We return to this issue later. 

All of the state in an assertion must be expressed in its structure in 
order for pattern matching to be sufficient as a reference mechanism. 
In implementation terms, this means assertions should only be built 
out of lists, symbols, and numbers. There are cases where assertions 
must contain complex data structures, as when interfacing a PDIS to 
another module (such as a spatial reasoning system). Such compound 
datastructures should be used with great caution. Changes in the value 
of a struct's slot, for instance, will not show up when matching patterns. 
This subverts the explicit representation of knowledge via assertions. 

Alert readers may have noticed that the database interface does not 
contain any mechanism for deleting assertions. This is deliberate. The 
semantics of deletion, given that we identify belief in a fact with the 
appearance in the database of the assertion corresponding to that fact, 
would be retracting belief in that fact. Our design so far has just a single 
global database, with no particular links between beliefs. This means we 
have no easy method for removing the consequences of a belief, which in 
turn means we cannot correctly handle deletion. We return to this issue 
later. 

4.1.2 Rules 

Procedural knowledge is expressed in rules. Like assertions, rules are 
stored in a database. Each rule has two parts, a trigger and a body. The 
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trigger is a pattern that specifies the kinds of assertions to which the rule 
is intended to respond. In effect, whenever an assertion matching the 
trigger enters the database, the rule will "wake up" and execute its body 
on that piece of data. The body consists of Lisp code, evaluated in the 
environment formed by unifying the pattern with a particular assertion. 
The syntax we use here for rules is 

(rule (trigger) . (body)) 

A rule one might use for debugging is 

(rule (foo ?x) (format t "foo("A) has been asserted." ?x)) 

which will inform us whenever any instance of (foo ?x) has been as-
serted. 

Typically it is desirable to have rules trigger when a combination of 
assertions hold. For instance, we might want to create a rule asserting 
that three blocks sitting one on top of the other comprises a special kind 
of tower, a "three tower." We can write such a rule by nesting several 
simpler rules. Rules are lexically scoped. That is, the environment used 
to execute the body of a rule includes all the variable bindings made by 
the trigger patterns for the rules that contain it. An example will make 
this clearer. Here is a rule for spotting towers that are three blocks high: 

(rule (on ?x table) 
(rule (on ?y ?x) 
(rule (on ?z ?y) (assert! '(3-Tower ,?x ,?y ,?z))))) 

Suppose the database includes the following set of assertions: 

(ON D TABLE) 
(ON E D) 
(ON F E) 

The first trigger would match (ON D TABLE). The environment for exe-
cuting the body of the outer rule now has ?x bound to D. This binding will 
now form part of any environment created for any rule defined within the 
body of the outer rule. One consequence of this fact is that the trigger of 
the next rule is effectively (ON ?y D), not (ON ?y ?x). Of course, this 
only applies for this particular usage of the rule—other new rules may be 
generated when other assertions are matched. But in each case, when the 
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rule comprising the body of the outermost rule is added to the database, 
its environment will include whatever binding for ?x was discovered in 
matching the first pattern. 

The same thing happens when the first inner rule is successfully 
matched against (ON E D). A new rule is added to the database (us-
ing the specification of the innermost rule, since it is the body of the 
rule whose trigger is (ON ?y ?x)), whose environment contains bind-
ings for ?x and for ?y, whose trigger pattern is (ON ?z ?y) , subject to 
the binding for ?y matching its current value, and whose body is the as-
sert ! statement. This third rule triggers on (ON F E), and thus causes 
(3-TOWER D E F) to be asserted. 

To summarize: When an assertion is found that matches a rule's trigger 
pattern, the body of the rule is queued for eventual execution. When 
the body of a rule includes the specification of other rules (i.e., forms 
beginning with the symbol rule), one result is the creation of a new 
rule which is added to the database and treated like any other. Both the 
trigger and body of this new rule have as their defining environment any 
bindings introduced by triggers for the sequence of rules that contained 
the specification. 

Rules have indefinite extent: each rule spawned remains in the data-
base forever. This holds for rules created by nested specifications as 
well as for their progenitors. In this model, rules are never deleted from 
the system or made inactive: they always trigger on any matching asser-
tion that appears. Returning to our three-tower example, suppose there 
were some other block, say G, on top of E as well. Then the innermost 
rule would trigger again on the assertion (On G E), and (3-Tower D E 
G) would also be asserted. Since traditional procedures don't work this 
way, this can take some getting used to. One important benefit of the 
infinite extent of rules is that pattern-directed inference systems can be 
designed to be order-independent. That is, rules and assertions can be 
put into the system in any order you choose, and eventually the same 
set of consequences should be produced. A drawback of this property 
is that it becomes easier to generate combinatorial explosions and can 
be harder to maintain efficiency. The trade-offs involved in designing 
problem-solver operations to be order-independent versus exploiting as-
sumptions about ordering to gain efficiency and inferential power show 
up repeatedly through this book. 
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4.1.3 Variations on the PDIS theme 

The model described so far represents one family of pattern-directed in-
ference systems. All such systems include assertions as their knowledge 
model and rules as their procedure model, but vary in both the details of 
these aspects and in their execution strategy. The PDIS model described 
here uses an antecedent, or forward-chaining strategy. Another choice, 
found in systems such as MYCIN and its descendants as well as Pro-
log and other common logic-programming languages, is a consequent, 
or backward-chaining, strategy. Much has been written about organizing 
expert systems using backward-chaining rule strategies (see for example 
[1, 5]), so we do not cover them further here. 

Another important class of pattern-directed inference systems com-
prises those organized around production rules. Most production rule 
systems allow assertions to be deleted and even modified as part of 
the effects of rules. This enhances storage economy, but makes keeping 
track of relationships between beliefs more complex (Chapter 6 examines 
these issues in detail). The execution strategy of such systems is typi-
cally designed to select a single best rule to execute during each cycle 
of the interpreter, rather than executing all applicable rules. Production 
rule systems have seen wide application both in expert systems and in 
cognitive simulation research. 

A third class of pattern-directed inference systems is made up of pro-
cedural deduction systems, such as MicroPlanner [12], Conniver [8], and 
Schemer [14]. Procedural deduction systems sometimes include rules, 
but generally organize their procedures around traditional programming 
constructs which include pattern matching and non-deterministic opera-
tions to provide more flexible control structures. Procedural deduction 
systems have received less attention to date than the other forms of 
pattern-directed inference systems, and have not seen widespread appli-
cation. 

One reason for our focus on the antecedent model for pattern-directed 
inference systems comes from our observation of how such systems tend 
to be used. Designers of problem-solving architectures tend to view their 
systems as all-encompassing. That is, users of their systems—designers 
of problem solvers for specific classes of problems—should be able to 
work entirely within their systems. This is natural, given the designer's 
goal of creating powerful, general-purpose architectures. In our experi- 
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ence, though, a single pattern-directed inference system rarely consiti-
tutes a complete architecture by itself. Instead, problem solvers are built 
from several modules whose interactions are carefully designed to pro-
vide an efficient division of labor. Consequently, we tend not to view a 
problem solver as consisting entirely of an antecedent PDIS. Instead, a 
PDIS is typically used as a module in a larger system. A problem solver 
might use one PDIS as its database or several, and may have more or 
less of its procedures cast as rules. Typically ultimate responsibility for 
control lies elsewhere, in the rest of the problem solver. Other programs 
start up a PDIS, examine their output, toss in new assertions when an 
impasse is reached, and so forth. We explore such organizations in Chap-
ters 5, 8, 11, and 14. 

The Tiny Rule Engine, or TRE, provides a simple implementation of our 
pattern-directed inference system model. We begin by laying out TRE's 
design, following with its implementation in Section 4.3. 

4.2 The design of TRE 

We have seen the knowledge model for pattern-directed inference sys-
tems (assertions), the reference model (pattern matching, in this case 
unification), and the procedure model (rules). Here we examine how com-
putation is organized in such systems by looking at their execution strat-
egy and its consequences. 

Rules and assertions are added incrementally. The goal of the execu-
tion strategy for antecedent inference systems is to ensure that each rule 
is run on every assertion that matches its pattern. To achieve this, when-
ever an assertion is added each rule that might trigger on that assertion 
must be tested to see if it actually matches. Similarly, whenever a new 
rule is added all assertions that might match its trigger pattern must be 
retrieved and tested against it. In both cases, a successful match results 
in a set of bindings which form part of the environment for executing 
the body of the rule. The body and this environment are then queued for 
eventual execution. 

As we have just seen, when a rule is executed it can in turn create new 
rules and assertions, which are treated exactly as those added previously. 
The whole cycle continues until the system attains quiescence, that is, 



Rule 
database 

Assertion 
database 

Newly derived 
assertions 

Newly instantiated 
rules 

Queue 

78 	 Chapter 4 

User-supplied 
assertions and rules 

Figure 4.1 Antecedent architecture 

when no more rules can be executed. Figure 4.1 depicts this cycle and 
the its components. 

Any system can be viewed from several perspectives, each highlighting 
a different set of issues. From the perspective of a potential TRE user, 
one consequence of this organization is that we must be careful when 
designing a set of rules to ensure that they will reach quiescence. That is, 
given a starting set of assertions, the operation of the TRE should stop 
after a finite number of rule executions. This can fail to happen if the sys-
tem of rules "feeds on itself," producing an infinite number of assertions. 
Another consequence is that we should not presume that rules will be ex-
ecuted in any particular order. Rules that attempt to interact via setting 
values of global variables, for instance, may or may not work depending 
on the order in which matching combinations of rules and assertions are 
executed. All interactions must be carried out through the databases. 

From the perspective of designing TRE, these user expectations are 
both constraining and liberating. Since the TRE user (who may be an end 
user, but more commonly will be a problem solver designer using TRE 
as a tool in creating a problem solver) must worry about quiescence, 
we as designers are not required to detect infinite loops or to supply 
mechanisms for bounding resources. Since TRE users are not assuming 
any particular execution order for triggered rules, we may arrange for the 
execution of such rules in whatever order is simplest for us. However, 
the central role of rules in the procedure model and the total reliance 
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on pattern matching as the reference mechanism suggests that we must 
make the triggering of rules and their subsequent execution as efficient 
as possible, to keep our users (even if they are ourselves!) happy. 

Efficiency is relative, of course. Industrial-strength PDIS efficiency tech-
niques are covered in Chapter 5. THE is designed for exploratory pro-
gramming. It is extremely simple, and not terribly efficient, as is proper 
for exploratory programming. 

Several of our design choices are obvious: 

Assertions: Implement as list structure. 

Pattern matching: Implement as unification 

Others are not so obvious: 

Databases: How do we store rules and assertions to simplify getting 
matching ones together? 

Rules: What needs to be included in a rule, and how should we imple-
ment them? In particular, how should we arrange for the appropriate 
execution environments? 

Queuing rules: What exactly should go on the queue, and how should it 
be serviced? 

Let us consider each in turn. 

4.2.1 PDIS database design 

There are many ways to organize a pattern-directed database. The easiest 
way to organize the database would be to use two lists, one for assertions 
and one for rules. Every time a new assertion is added it would be unified 
against every trigger pattern in the list of rules. Every time a new rule is 
added, its trigger would be unified against every item in the list of asser-
tions. Each successful unification would result in the combination of rule 
and assertion being queued for execution. Unfortunately this scheme is 
too inefficient even for simple problems. Instead, we use a simple but 
powerful technique called class indexing (also known as car indexing). 

The idea of class indexing is to partition both assertions and rules into 
dbclasses (i.e., database classes), corresponding to sets whose elements 
are likely to match. We define the class of an assertion (or trigger pattern) 
as its leftmost constant symbol. For example, 
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DBC1ass( (implies foo bar)) = implies 

DBC1ass(f oo) = foo 

DBC1ass(( (grumble mumble) bar)) = grumble 

Clearly, unless an assertion and a trigger are in the same database class 
they cannot match, for we already know they differ in one position. This 
means that when adding a new assertion we need only test it against 
rules indexed under its own database class, and when adding a new rule 
we need only test it against assertions in its own database class. Sup-
pose the leftmost symbol in a pattern is a variable. In that case, we take 
the database class of that variable's value. We consider it an error if the 
variable is unbound. Why? Because in that case our only option would be 
a linear search through the entire database, which is unacceptably ineffi-
cient. In practice this restriction is rarely chafing, and more sophisticated 
schemes are described in Chapter 5 for such circumstances. 

Using this scheme, we now have one database, consisting of a set 
of classes, each containing both facts and rules. Given an assertion or 
trigger pattern we should be able to easily find its database class, by first 
extracting the appropriate symbol from its structure and retrieving the 
associated database class datastructure for that symbol. 

An aside: one problem with class indexing is that it is very hard to do 
certain kinds of queries. For instance (?X Foo) is not a legitimate query 
unless it appears in some scope where ?X is bound. Is this a serious prob-
lem? One can imagine cases where it would be—suppose, for instance, 
one wanted to know all the two-place predicates that held between A and 
B. However, in realistic situations such queries do not arise often and can 
be handled with special-case procedures anyway. (In the worst case, one 
could do a linear search of all the assertions in the database.) By optimiz-
ing this database for the most common cases, we gain great efficiency 
without sacrificing simplicity. 

Once this implementation choice is made, it does affect how one en-
codes knowledge in the system. Suppose that in fact one did want to 
know all the binary relationships that held between A and B, and that in 
fact such queries were quite common in the task at hand. Then instead 
of encoding binary relations as 

((Predicate) (1st arg) (2nd arg)) 

one might instead choose to encode them as 
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((lst arg) (Predicate) (2nd arg)) 

which gives a slightly "frame-ish" flavor. 
Why restrict database classes to symbols? After all, one could imagine 

using floating-point numbers, say, as database classes. The problem with 
things that are not symbols is that identity testing can become tricky. 
For instance, is 3.14159292 the same or different database class from 
3.14159265? List structures might at first be a reasonable exception, 
since one could always use equal. But consider the following assertion 

((distance-between A B) . (3 km)) 

which might say that the distance between A and B is three kilometers. If 
we let the database class be the car of this expression the database class 
would be (distance-between A B). This choice disallows queries like 

((distance-between A ?x) . (?val ?units)) 

where we might want to find all the distances involving some interesting 
place A. By using the leftmost symbol (in this case distance-between) 
this query becomes legitimate. To be sure, we lose the ability to discrim-
inate between 

((distance-between A B) . (3 km)) 
((((((((distance-between)))) foo bar)) Grumble)) 
(distance-between A B) 

at the level of database classes, but this discrimination can be handled 
through the unifier. 

4.2.2 The design of rules 

We have already specified that rules have a trigger, a pattern that speci-
fies what form of assertions the body will be executed on. Once created, 
rules have indefinite temporal extent. This means they must be created 
as distinct computational entities in the THE database. Furthermore, we 
must make the bindings found via pattern matching available during the 
execution of the rule's body. There are several strategies for achieving 
this. Generally the best strategy is to arrange the system so that the val-
ues bound to the pattern variables are bound as the Lisp values of the 
symbols that serve as pattern variables for the duration of the execution 
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(rule (Transitive ?R) ;; Rule R./ 
(rule (?R ?x ?y) 	;; Rule R2 

(rule (?R ?y ?z) 	; ; Rule R3 
(assert! (?R ?x ?z))))) 

Figure 4.2 Nested rules are lexically scoped. In this nested rule, the outer 
rule (labeled R1) binds ?R. This binding is in force for the execution of its 
body, i.e., the definition of the rule labelled R2. Whenever R2 is triggered its 
body is executed in an environment where ?R, ?x, and ?y are bound, resulting 
in the definition of a rule as specified by R3. Every triggering of rules instan-
tiated from R3 will also have ?z bound, in addition to their inherited bindings 
for ?R, ?x, and ?y. 

of the body of the rule. This means we can treat the body simply as a 
piece of Lisp code. 

This alignment strategy for implementing rules is not the only possible 
strategy, of course. A frequently used alternative, a form of substitu-
tion strategy, instead analyzes the rule's body, replacing all references 
to pattern variables with forms that access and set the appropriate pat-
tern variables. This strategy is substantially more complicated than the 
alignment strategy, since it requires the ability to analyze the code in 
the body in detail. The only situations in which the substitution strategy 
might be advantageous are when substantial reworking of the rule body 
is required for other reasons. Otherwise, we believe alignment strategies 
provide the best combination of simplicity and efficiency. 

We also stated that pattern variables in nested rules would be lexically 
scoped. Suppose we had a nested sequence of rules R1, . , Rn. Consider 
the trigger of the ith rule, T,. Any variables appearing in T, that occurred 
in T1„ , 	will be interpreted as bound when matching T1. When T, 
matches an assertion, any variables bound by that match will be part of 
the environment for the rules R,±1, , • . • , Rn. Figure 4.2 illustrates. What-
ever implementation method we choose for aligning rules must enforce 
this constraint. 

Here we pick an extremely simple (but not very efficient) version of 
the alignment method. Let us stipulate that, in addition to returning a 
table of bindings, our unifier must also accept a table of bindings as 
part of its input, and that the match must be made with respect to these 
previously existing bindings. When each rule is created, we can attach 
to it an environment consisting of the table of bindings in force when 
it was created. When executing the body of a rule we must align the 
values of the symbols corresponding to pattern variables with the values 
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in the rule's environment. Furthermore, we must ensure that any rule 
created during the execution of the body must inherit this environment, 
so that its triggering will respect the context of its creation. Section 4.3.3 
describes the implementation. 

4.2.3 The design of the unifier 

Our design for TRE rules requires that we allow a list of previously ex-
isting bindings to be passed in to the unifier, so that a new match will 
respect the bindings established by an earlier match. So the inputs to 
our unifier must be a pattern, an assertion, and a (possibly empty) table 
of bindings. The simplest implementation of tables of bindings uses an 
alist, where the key of an entry is the pattern variable and the value of 
an entry is the binding for that variable. This choice means we cannot 
simply return the traditional value of nil to indicate failure, since we 
could not then distinguish failure to unify from two patterns matching 
exactly. One alternative would be to return two values, a success flag 
and the binding list. But since unifiers tend to be defined recursively this 
would lead to considerable extra work. Instead, we shall return a special 
symbol, : FAIL, to indicate the failure of a match. This value is always 
recognizable since no table of bindings can be a non-nil symbol. 

4.2.4 The design of the queue 

We have not specified any particular order of execution for rules, only 
that all matching rule/assertion pairs must eventually be executed. Any 
strategy, including last-in, first-out (LIFO) or first-in, first-out (FIFO) satis-
fies these conditions, and we can make our choice based on simplicity of 
implementation. 

4.3 The implementation of TRE 

Now let us see how our design can be implemented. The listing for TRE 
consists of five files. The first file is tre.lisp, which defines where the 
system resides and what other files are involved. The other four files are: 

tinter .lisp Interface procedures and basic definitions. 

data. lisp Creating and manipulating assertions. 
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rules . lisp Creating and executing rules. 

unify. lisp Defines variables and pattern matching. 

We describe each in turn. 

4.3.1 TRE definitions and interface (tinter.lisp) 

The routines in tinter.lisp provide an interface for people or other 
programs using TRE. As in CPS, we use a structure to encapsulate the 
variables, flags, and parameters that define the state of a TRE. The title 
contains a string which should allow human users to tell different TREs 
apart. The dbclass-table holds a hash table which is used in retrieving 
assertions and rules. The debugging field controls whether or not extra 
information about a particular TRE's internal operations are displayed. 
rule-counter provides a unique identifier for telling rules apart, and 
rules-run provides a statistic indicating how much work has been per-
formed within this TRE. 

A complex problem solver might use several TREs, each handling a 
different aspect of a problem. Thus it is important when doing something 
with a TRE to make sure that we are using the right one. The next set 
of macros and procedures supports this. It is convenient to provide a 
mechanism for procedures to refer to the "current TRE,", even when 
there is only one copy of TRE around. The global variable *TRE* provides 
this. We require any procedure that is intended to be called by external 
users (be they programs or people)—i.e., any interface procedures—to 
ensure that *TRE* is appropriately bound. Internal TRE procedures can 
then assume that *TRE* is bound correctly. 

As a convenience, TRE interface procedures tend to provide *TRE* as 
an optional parameter, bound by default to its current value. This leaves 
one less thing for humans (or other programs) using the system to take 
care of, and simplifies bookkeeping within the TRE code as well. The 
macro With-TRE and the procedure in-TRE encapsulate this particular 
implementation choice. With-TRE evaluates a list of forms in an envi-
ronment where a particular TRE is the default, by simply lambda-binding 
*TRE* to the appropriate value during the execution of the forms. in-
TRE is analogous to in-package, changing the dynamic value of *TRE* 
and hence (if evaluated outside of any lambda-bindings for it) providing 
a global change. 



85 	 Pattern-Directed Inference Systems 

An example of how the *TRE* mechanism can simplify TRE internals 
is provided by debugging-tre. This macro is used in TRE internals, to 
control when extra information is printed. As expected, it uses the value 
of the debugging field (actually tre-debugging, due to the : CONC-
NAME) to control printing. The choice of TRE to examine is made by the 
binding of *TRE*, rather than passing another argument explicitly. If 
debugging-tre were used indiscriminately this could be trouble, but 
since it is an internal procedure, by the "contract" specified above, *TRE* 
will always be appropriately bound. 

TREs are created via create-tre. The title is required. A keyword ar-
gument provides the option of turning on debugging from the beginning. 
Because the keys to the database class table will always be symbols, the 
hash table can be predicated on eq rather than equal, making it a bit 
faster. The only field of a TRE that a user should be able to change 
directly is the debugging flag. The procedure debug-tre provides this 
ability, insulating users from internals. 

The next two procedures provide interface drivers which take in data 
and compute its consequences. run is intended for human use, furnish-
ing a modified read-eval-print loop which computes the consequences 
of any input for the TRE. Stating new assertions or rules, for example, 
causes rule-data pairs to be queued. run-rules, defined in rules . lisp, 
runs the queue until quiescence before asking for more input. run-
f orms is similar, but is designed for batch operation or use by programs. 
Notice that both drivers ensure that, given a list of additions, all con-
sequences of each new rule and assertion are computed before adding 
another one. This greatly simplifies debugging. 

The final procedure in this file is show, which calls subroutines show-
data and show-rules to do the actual work. show is only useful for 
debugging extremely simple examples. 

4.3.2 The TRE database (data.lisp) 

Database classes are implemented by the dbclass datastructure. Db-
class structs are stored in the TRE's database class table. Each database 
class has an associated name (i.e., the symbol it corresponds to), and the 
assertions and rules that belong to it (facts and rules fields respec-
tively). The dbclass-tre field provides a backpointer to the TRE the 
database class is part of. show-data illustrates how maphash can be used 
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to get information about all assertions (and even all rules) when neces-
sary. 

Recall that the procedure assert ! must take an assertion and install it 
in the database. It is important to check whether the assertion is already 
in the database first, since then we do not have to check what rules might 
be run—presumably that has already occured. assert ! thus begins by 
calling insert, which returns non-nil if the assertion was not already 
in the database. In that case try-rules (defined in the rules module) 
looks for rules that might be triggered by the new assertion and queues 
them as appropriate. Otherwise, assert ! does nothing. insert operates 
by checking the assertion's database class to see if it is already there. If 
not, it pushes the assertion onto the dbclass-f acts and returns. 

Finding the database class of an assertion or pattern is slightly com-
plicated. The basic operation is to compute the database class of an 
assertion, use the database class table to retrieve its struct if already cre-
ated, and build it otherwise. The reason things get complicated is that in 
operating on rules we must sometimes handle patterns as well as fully 
ground assertions. Suppose our rule trigger is (?x ?y ?z). Since ?x is a 
pattern variable, clearly ?x is not the intended database class. We have to 
look at the current binding for ?x to figure out the right database class. 
As described below in the implementation of rules, it turns out we will 
need two notions of binding in TRE, which is why get-dbclass looks 
more complicated than one might at first expect. The first notion is just 
the traditional Lisp notion of binding, handled by the boundp clause. The 
second notion is used in setting up the appropriate lexical scoping for 
rules. The variable *env* holds the substitution environment for a rule, 
and it, too, must be checked for possible values. This is carried out in the 
next cond clause. 

fetch operates in two stages. First it gets a candidate set by retrieving 
the assertions associated with the database class of the pattern. Then 
it uses unify on each candidate to ascertain if it indeed matches the 
pattern. unify returns a set of bindings (possibly empty) when it suc-
ceeds, or the distinguished symbol : FAIL to indicate that the match was 
unsuccessful. If unify succeeds, the candidate is included in the set of 
assertions returned. 

An engineering note: If you are confident that the system that used 
the results of fetch never modified these datastructures, it would be 
more efficient to simply return the candidate rather than using sublis. 
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However, if you don't know how the results of fetch are to be used, 
then you might be allowing external procedures to seriously damage the 
integrity of the TRE database. Since the sublis provides a copy of the 
datum, it can be passed on to other programs and manipulated without 
qualm. 

4.3.3 The TRE rule system (rules.lisp) 

As usual, we implement compound computational entities via def-
struct-defined datastructures. The id field is an integer used to dis-
tinguish rules when printing. There are several ways we might choose 
to provide a unique identity for rules, but this method has several ad-
vantages. First, integers are compact, conserving screen (and paper) "real 
estate." Second, it provides an easy key to use in retrieving rules during 
debugging. Third, it provides some information about when a rule was 
created: since we use a parameter of the TRE itself, rule N is the nth rule 
created by the system, and if M is greater than N, then rule M was cre-
ated after rule N. And, finally, since we keep the counters local to each 
TRE and initialize a new TRE's value to zero, if we have two TREs that 
have been given the same sequence of inputs, the same integer will refer 
to equivalent rules in the two systems. 

This last property of integer structure ids can be used in a variety 
of debugging tricks. Suppose for instance that a particular rule is not 
triggering when one thinks it should. If one knows the id of the rule, one 
can set traps that turn on extra tracing or breakpoints exactly when this 
particular rule is being processed. This increased focus can substantially 
increase one's efficiency when debugging.2  

The dbclass field of a rule points to the database class of the rule's 
trigger. trigger contains the rule's pattern, and body contains the lisp 
code that constitutes the procedural import of the rule. environment 
contains an alist representing the bindings that are inherited from the 
rule's defining context. This alist is used when matching the trigger to 

2. The more traditional Lisp strategy of using an arbitrary symbol as a name does 
not allow this debugging technique. Even if the prefix and counter of the Lisp envi-
ronment's gensym mechanism are reset, its global nature often precludes repeatable 
naming. 
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ensure that nested rules are interpreted correctly. In particular, the rule 
evaluation mechanism binds the dynamic variable *ENV* to this alist 
when the rule is evaluated. This allows various procedures, such as get-
dbclass above, to be informed about the current rule's lexical environ-
ment. 

show-rules lists the rules, using print-rule to provide a more infor-
mative description of each rule. This procedure does not show the body 
of the rule because in this system that code is generally interpreted, and 
thus can take a lot of display real estate. Such a modification is not diffi-
cult (see Exercise 5). 

The macro rule simplifies rule definition by supporting the minimal 
syntax we have defined (so far) for rules. That is, the first element after 
rule is considered to be the trigger and the rest is considered to be the 
body of the rule. (Later variations of THE require more syntax to support 
new facilities.) The real work is done by the procedure add-rule, which 
creates a new rule struct and indexes it under the database class of the 
trigger. Notice that the environment field is initialized to *ENV*, thus 
ensuring the new rule inherits whatever set of lexical bindings was in 
effect when it was created. Finally, the assertions that might match this 
rule are retrieved (via get-candidates, defined above) and tested to see 
if it can be executed on them. 

Recall that rule-assertion pairs can be created either by adding new 
rules or by adding new assertions. No matter where the match started, 
the procedure try-rule-on is where it is tested for compatibility. Given 
an assertion and a rule, try-rule-on checks whether the rule's trigger 
unifies with the assertion, assuming the bindings given by the rule's en-
vironment. If it does, then the body and new binding list (which includes 
any newly bound variables as well as the containing environment) are 
placed onto the queue for eventual execution. 

The procedure try-rules is provided for the database system. It uses 
get-candidate-rules, the dual of get-candidates, to find the rules 
in the appropriate database class and tests each one against the new 
assertion using try-rule-on. 

The procedure run-rules oversees the queue. As noted above, any ex-
haustive queue-servicing strategy will work, so we choose a last-in/first-
out (LIFO) implementation for simplicity. The procedures enqueue and 
dequeue implement this abstraction. Aside from keeping statistics (via 
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the local variable counter), run-rules' job is simply to call run-rule 
until nothing is left to do. 

run-rule must do two things. First, it must create a Lisp environment 
in which the variables bound via pattern matching have the correct val-
ues. Otherwise, the body of the rule cannot be properly executed. Second, 
run-rule must provide a compact representation of the rule's environ-
ment to be passed on to any rules created during the execution of the 
body, in order to enforce lexical scoping. The second task is the easi-
est: we simply lambda-bind *ENV*, using a let statement, to the current 
set of bindings. We have arranged for the current value of *ENV* to be 
packaged up with a rule when it is created, so any rule forms evaluated 
during the execution of the body will include the correct environment. 
The first task requires a little more work. Essentially, we build a let on 
the fly which includes the binding list as its lambda-list and the body of 
the rule as its body, and evaluate this new piece of code. Thus the newly 
constructed let creates an environment in which the Lisp value of the 
pattern variables corresponds to their binding list values. In creating the 
lambda-list, sublis is used to ensure that all known substitutions are 
made in the value assigned to a pattern variable. Values in the lambda-
list are quoted because they could be arbitrary s-expressions. 

The only virtue of this implementation is its simplicity. It is very in-
efficient, since translating between the two different notions of value 
requires creating a new piece of code every time a rule is executed. In 
the next chapter we demonstrate a more efficient way of accomplishing 
the same task. 

4.3.4 Variables and unification (unify.lisp) 

Recall that we need to distinguish variables from constant symbols, and 
that the convention chosen is to prefix variables with "?". The procedure 
variable? returns non-nil if its argument is in fact a pattern variable. 

The procedure unify should actually be called "near-unify" or "sub-
unify," since it does not implement full unification. In particular, it as-
sumes that the sets of variables used in the two patterns do not overlap. 
This assumption is reasonable for the examples we explore here, since 
the assertions in the database tend to be ground terms, i.e., free of vari-
ables (see Exercise 3). As specified earlier, we allow an optional binding 
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list to be passed in to enforce the effects of previous matches and thus 
ensure consistent binding environments. 

unify performs a case analysis. If the two forms are equal then they 
are identical under the current bindings, so unify succeeds. unify-
variable takes care of variables, and we return to it momentarily. If 
both forms are lists then we unify their cars, and if that succeeds, unify 
their cdrs, making sure to pass in any variable bindings made while 
checking the cars (hence the setq in the fifth cond clause). 

When a variable is found, it might have a value already. unify-
variable starts by looking for such a value on the binding alist. If 
bound, the unification continues using that value. If not, it might be safe 
to bind the variable to the corresponding part of the other form. One 
can't always do this: consider binding ?x to (F ?x). In cases like this 
there is no finite set of subsitutions that will produce a form that doesn't 
contain any bound variables (i.e., we get a pathological expression (F 
(F (F , ( . . . )) ) )). Such bindings are not legal, and we use the proce-
dure free-in? to detect such cases. free-in? ensures that the given 
variable doesn't occur in an expression, given the subsitutions available 
on the binding list.3  If the expression does in fact contain the variable, 
unify-variable indicates failure. 

4.3.5 Testing THE (treex.lisp) 

Before testing a system on a complex example it is always a good strategy 
to try some simpler examples first. A common and useful engineering 
tactic is to include a set of procedures that provides a suite of test cases 
with systems that you develop. There are several reasons for this prac-
tice. First, simple cases are easier to debug, and can be designed to stress 
particular components of the system. Second, the test suite can be used 
to ensure that new features (or porting to another Lisp environment) 
have not broken the program. This is especially important when the port 
is done by someone else, perhaps in some geographically (or temporally) 
distant location. The test suite can provide an "acceptance check" if the 
proper answers are included in it. And finally, such routines help others 

3. This is an example of an occurs check, in logic programming terminology. 
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learn how to use the system by demonstrating what it is capable of and 
what the interface procedures are. 

Designing good test suites is an art. Ideally the test suite should exhibit 
all the interesting features and functionality of the system, stressing 
each critical part independently, while minimizing uninteresting compu-
tations. The examples in the listing TRE-EX1 are not perfect, but they 
suffice for our present purposes. Notice they all have the same form: 
a call to create-tre builds a TRE to work with, and run-forms feeds 
assertions and rules into it. They differ only in how they display their 
results. Running these examples with *debug-tre* turned on is a good 
way to get a feeling for how TRE operates. 

ex1 hints at how one can implement natural deduction in TRE, a topic 
we take up in detail below. ex2 illustrates one way to use TRE with other 
systems. Suppose you had a "universal diagnostic system" for homeown-
ers that would help them fix anything they were likely to come in contact 
with. The ability to depict parts graphically would be essential, since a 
typical homeowner isn't an expert on every kind of appliance. The dis-
play system might use an alist to index the parts of the machine(s) being 
repaired. This alist needs to be updated to include the parts for any new 
system being considered. When a new system is asserted (as in the asser-
tions concerning Ariel and Hal-9000), the TRE rules add the parts of 
that system into the database, which in turn causes the has-part rule to 
update the graphics alist.4  

The final example in this file, ex3, illustrates one danger associated 
with antecedent inference systems. You should probably run this exam-
ple last, and be sure you know what the interrupt keys are for your 
system. We return to this phenomenon later. 

4.4 Natural deduction 

Natural deduction provides an interesting domain for testing problem 
solvers. Systems of natural deduction have been studied by logicians for 

4. Notice that we consider "diskless workstation" to be an oxymoron. 



92 	 Chapter 4 

decades, and their inferential power is well understood. Of course, auto-
matic generation of proofs via natural deduction was not a concern of 
logicians. Natural deduction systems tend to use many inference rules, 
leading to the problem of choosing which inference rule to use when con-
structing a proof. Since resolution uses only one inference rule, this prob-
lem is eliminated, leaving only the problem of choosing which data to try 
resolving next. This apparent simplicity led many AI practictioners in the 
1960s to abandon natural deduction for resolution theorem proving. (We 
discuss resolution later, in Chapters 10 and 13.) Resolution can be very 
efficient in many circumstances, especially for propositional databases. 
However, advocates of natural deduction argue that the process of trans-
lating axioms to clause form, required to use resolution, actually makes 
finding proofs more difficult because it destroys structure in the origi-
nal axioms that provides important hints. In natural deduction systems, 
the proof rules and forms of assertions are designed to be more intu-
itive, offering the possibility of producing understandable explanations 
in addition to proofs. 

For our purposes, the control issues in natural deduction form an ex-
cellent laboratory to examine how to write pattern-directed rules that 
encode knowledge about problem-solving tactics, in order to make rea-
soning strategies more explicit. In this section we introduce a particular 
natural deduction system for propositional reasoning. This system will 
be used as a source of examples in several chapters, to highlight the dif-
ferences between alternative techniques. We sketch how TRE can be used 
to partially implement it. As you will discover, this version of TRE lacks 
an essential ingredient, the ability to manipulate assumptions, necessary 
for a full implementation of natural deduction. There are several ways to 
add this missing ingredient, as later chapters illustrate. 

4.4.1 The KM* system 

The particular system we use is adapted from one invented by Kalish 
and Montague [7]. It has three advantages over other systems of natural 
deduction we have seen. First, it is better organized than most. Second, it 
has a natural (at least for computer scientists) formalism for handling the 
introduction and discharging of assumptions. And third, it includes at 
least some control information explicitly in the formalism. This becomes 
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especially handy when we turn to considering how to implement these 
formal rules in TRE. 

4.4.1.1 The format of proofs 

A proof consists of a numbered set of lines. Each line contains three 
parts: 

(LineNumber) (Statement) (Justification) 

where (LineNumber) is the number of the line, (Statement) is what is 
proven (or to be proven) by that line, and (Justification) indicates how 
that line was derived. The line number is used to refer to this result 
elsewhere in the proof. Justifications take two forms. The first is a list, 
whose first element is a tag indicating the inference rule used in the 
derivation (the informant of the justification) and the other elements 
being the line numbers that this application of the rule relied upon. Thus 
we might see in a proof 

453 Made-of (Moon,Green-Cheese) (CE 23 452) 

meaning that this is line 453 of the proof, demonstrating that the moon 
is made of green cheese, shown via inference rule CE (a shorthand for 
CONDITIONAL ELIMINATION, introduced below) on the results of lines 23 and 
452. This clear-cut link between a conclusion and the reasons for believ-
ing it helps provide an ability to produce good explanations, a goal of 
natural deduction systems. 

The second kind of justification consists of a special tag, either 
premise or asn. The tag premise indicates that (Statement) is a given 
in the problem, and thus holds without argument. asn indicates that we 
are assuming (Statement) as part of an effort to prove something. For a 
proof to be valid, all assumptions must be discharged. Assumptions are 
introduced and discharged by the inference rules themselves, and so we 
postpone further discussion of assumptions until then. 

Finished proofs are intended to be crystal clear, elegant arguments. 
Anyone who has constructed proofs knows, however, that the process 
of achieving the proof is often messy, littered with false starts and blind 
alleys. Most mathematical and logical formalisms developed before the 
notion of computation took flower do not include any formal method for 
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recording such information as part of the proof. KM" uses the metalin-
guistic predicate show to indicate intent during the proof process. That 
is, we write show P in a line of a proof we are building to indicate that we 
want to derive the statement P. This line cannot be used as a result else-
where in the proof until it is justified, of course. When it is justified, by 
finding a valid proof for P, we will say that the show is canceled, and in-
dicate this by crossing it out. At that point, for purposes of proving other 
things, the line is now simply a normal line in the proof. (Of course, if we 
were explaining how we got the result, the crossed-out show would help 
us reconstruct the logic of the argument.) show assertions can be intro-
duced at any time, and are both used and introduced by KM* inference 
rules. Let us turn now to an example. 

4.4.1.2 Proof rules 

The proof rules of KM* are specified by schemata that indicate how an 
application of that rule looks. Here is the schema for the rule of indirect 
proof: 

h 	shdw P 
	

(IP i j k) 
(not P) asn 

Q 

k 
	

(not CI) 

The basic idea of indirect proof should is straightforward; if we assume 
(not P) and derive a contradiction (as indicated by lines j and k) then P 
must be true. However, our use of show and the boxes may not be obvi-
ous. Presumably line h started out as the intent to prove P, either because 
it was the goal of the problem or it is a subgoal that appeared in the 
course of finding a solution. This proof schema licenses the introduction 
of the assumption (not P), and indicates that when a contradiction is 
found, one may cancel the show of line h and consider the assumption 
discharged. The box drawn around lines i-k indicate that the contents 
of the box rely on the assumption of line i, and must not be used else- 
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NOT ELIMINATION 
(not (not P)) 

(NE 0 
AND ELIMINATION 
i 	(and P Q) 

(AE i) 
Q 	 (AE i) 

OR ELIMINATION 
i 	(or P Q) 
j 	(implies P R) 

k 	(implies Q R) 

R 
	

(OE i j k) 

CONDITIONAL ELIMINATION 

i 	(implies P Q) 

j 	P 
(CE i j) 

BICONDITIONAL ELIMINATION 
i 	(iff P Q) 

(implies P Q) 
	

(BE i) 
(implies Q P) 
	

(BE i) 

Figure 4.3 Elimination rules for KM" 

where in the proof. Think of the box as a fence that other justifications 
cannot cross. Boxes can be nested, and in fact behave like the contour 
model for variable semantics in procedural languages. 

The rest of the KM" proof rules are organized into two classes: elimi-
nation rules and introduction rules. Elimination rules get rid of a connec-
tive in a term, perhaps resulting in several new terms. Introduction rules 
sanction the construction of terms involving particular connectives. Each 
connective has an introduction rule and an elimination rule. These rules, 
plus indirect proof, are sufficient for propositional reasoning. We begin 
with the elimination rules because they are simpler. 

The elimination rules are given in Figure 4.3. NOT ELIMINATION reflects 
the fact that a double negative is, at least in propositional logic, equiva-
lent to a positive. AND ELIMINATION expresses the fact that if a conjunction 
is true then each individual conjunct must be true. OR ELIMINATION encodes 
a form of arguing from cases: since one of the disjuncts must hold, any-
thing that follows from either disjunct must always be true. CONDITIONAL 
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NOT INTRODUCTION 
s)ics  (not P) 	(NI i  j k) 

P 	 Asn 

J 
	

Q 

k 
	

(not Q) 
AND INTRODUCTION 
i 	P 

(and P Q) 
	

(AI i j) 
(and Q P) 
	

(AI j i) 
OR INTRODUCTION 
i 	P 

(or P Q) 	(0I i) 
(or Q P) 	(DI i) 

CONDITIONAL INTRODUCTION 
s)lcr (implies P Q) 
	

(CI i I) 

J 

Asn 
s10Ei Q 

BICONDITIONAL INTRODUCTION 
i 	(implies P Q) 
j 	(implies Q P) 

(iff P Q) 
	

(BI i j) 

Figure 4.4 Introduction rules for KM" 

ELIMINATION is more classically known as modus ponens, and BICONDMONAL 
ELIMINATION encodes the definition of logical equivalence. 

The introduction rules are described in Figure 4.4. NOT INTRODUCTION is 
actually like indirect proof, but for negative statements. AND INTRODUCTION 
and OR INTRODUCTION are direct applications of the definition of conjunc-
tion and disjunction. CONDITIONAL INTRODUCTION is more interesting: here 
we see a rule that introduces a show assertion as part of its opera-
tion. That is, to show an implication, we assume the antecedent and 
express interest in the consequent. This hint presumably inspires us to 
apply other KM* inference rules to prove the consequent. BICONDITIONAL 
INTRODUCTION, like BICONDITIONAL ELIMINATION, simply encodes the definition 
of logical equivalence, but in the other direction. 



(not B) 
	

asn 
G 
	

(AE 5) 
F 
	

(AE 5) 
(not G) 
	

(CE 2 9) 

(and G F) 	 asn 

4)201 B 	 (IP 7 8 10) 

(and G B) 
	

asn 
qbew B 
	

(AE 12) 

11. gholr (implies 
12.  
13.  

(and G B) B) (CI 12 13) 
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4.4.2 Some examples 

Here is a simple logic problem adapted from [111: 

Either George and Fred were at the scene of the crime, or George and Bob 
were. Fred being at the scene of the crime means George wouldn't have been 
there, of course. Show Bob was at the scene of the crime. 

The first step, which lies outside our present discussion, is to translate 
this problem into its formal equivalent. Here the propositions are: 

G = "George was at the scene of the crime" 

F = "Fred was at the scene of the crime" 

B = "Bob was at the scene of the crime" 

If we translate each sentence into propositional statements, we get 

1. (or (and G F) (and G B)) 

2. (implies F (not G)) 

3. show B 

Think for a moment about how you might attack this proof. Intuitively, 
the disjunction indicates a case split, so showing that the goal follows 
from either choice will give us our result. In terms of the KM* system, this 
corresponds to using the rule of OR ELIMINATION. Indeed, this plan provides 
a valid proof: 

1. (or (and G F) (and G B)) 

2. (implies F (not G)) 

3. 001 B 

4. 001 (implies (and G F) B) 

5.  
6.  
7.  
8.  
9.  
10.  

premise 
premise 
(OE 1 4 11) 
(CI 5 6) 

The use of indirect proof on line 6 may seem unnecessary, since we 
did not in fact use the assumption in line 7. However, if we stay strictly 
within the KM* rules that is what we must do. 
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Let us examine another example: 

"If an AI student gets a good job and has access to fast computers, then that 
student will write neat programs. An AI student will make lots of money and 
have access to fast computers if and only if that student either writes neat 
programs or gets a good job. An AI student will get a good job. Prove that an 
AI student will write neat programs and make lots of money." 

Here the propositions can be encoded as: 

J = "AI students will get good jobs" 

M = "AI students will make lots of money" 

P = "AI students will write neat programs" 

C = "AI students will have access to fast computers" 

By translating the sentences into propositional logic the problem be-
comes: 

1. (implies (and J C) P) 
2. (iff (and M C) (or P J)) 
3. J 
4. Show (and P M) 

Again, think about how you might prove this. The goal is a conjunction, 
so clearly we will use AND INTRODUCTION at some point. This means we 
have to look for the conjuncts. We can get some useful implications from 
the biconditional, since disjunctions are easy to introduce. The other 
byproducts from "cracking" the biconditional is C, which we can then 
use to crack open premise 1 to get P. Using the KM* system, our proof 
becomes: 

1.  
2.  
3.  
4.  

(implies (and J C) P) 
(iff (and M C) 	(or P J)) 
J 
Shaw (and P M) 

premise 

premise 

premise 

(AI 	11 8) 

5.  (implies (or P J) 	(and M C)) (BE 2) 

6.  (or P J) (CI 	3) 
7.  (and M C) (CE 5 6) 

8.  M (AE 7) 

9.  C (AE 7) 

10.  (and J C) (AI 3 9) 

11.  P (CE 1 	11) 

Notice that this proof did not require any assumptions. 
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Many natural deduction systems allow extending their rules by adding 
new tautologies. To determine if something is a tautology, however, first 
requires proving it. Consider how you might prove 

show (implies (implies P Q) (or (not P) Q)) 

There isn't much to start with here, and that makes it very difficult. It 
is worth spending five or ten minutes trying to prove this yourself, for it 
will reward you with a deeper understanding of the KM* system. Here is 
one proof: 

(implies (implies P Q) (or (not P) Q)) 
	

(CI 2 3) 

5hdW 
(implies P Q) 

(or (not P) Q) 
asn 
(IP 4 4 5) 

(not (or 
sh4r67 (or 

shdW 

(not P) Q)) 
(not P) Q) 
(not P) 

asn 
(DI 	6) 
(NI 7 4 9) 

P 
show (or (not P) Q) 

Q 

asn 
(DI 9) 
(CE 2 7) 

The subtlety of this proof lies in the use of multiple nested assump-
tions to build a scaffold upon which to work. For the goal of line 3 there 
simply aren't any premises to play off of, so OR INTRODUCTION cannot be 
used. This leaves us only with INDIRECT PROOF. Showing the negation of an 
implication looks pretty fruitless, so deriving a contradiction in terms of 
the newly introduced disjunction seems to be the best bet. To introduce 
the disjunction requires showing one of the disjuncts. (not P) is a bet-
ter choice because you would need P to get Q via CONDITIONAL ELIMINATION 
anyway. Since NEGATION INTRODUCTION introduces P, we can use that to fi-
nally show a contradiction, again using one of our earlier assumptions. 

4.4.3 A partial implementation of KM* 

To implement the KM* natural deduction system in TRE we must solve 
three general problems: 

1. The representation problem: How do we represent KM" statements 
and rules of inference in TRE? 

1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
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2. The control problem: How do we specify when each rule applies, so 
that problems are solved efficiently? 

3. The assumption problem: How do we control the introduction and 
retraction of assumptions required by several KM* laws of inference? 

This version of TRE does not provide any mechanism for solving the 
assumption problem. Suppose we attempted to model retraction by 
deleting an assumption from the database. We would still need to find 
a way to delete all the assertions derived from that assumption. We 
might try stipulating that each rule that made an assertion required the 
creation of a complementary rule which, when one of its triggers was 
deleted, would delete that rule's consequences.5  This is not a good so-
lution. Often there is more than one way to derive something. In our 
current version of TRE, multiple derivations have no effect on the data-
base. If an existing assertion is rederived, nothing needs to happen since 
the rules that should be tested against it already have been. If we ex-
tended TRE to include deletion, this property would no longer hold. 
Before deleting an assertion, we would either have to check for multi-
ple derivations of it (somehow) or attempt to rederive it after deleting it. 
All such deletion schemes impose critical dependencies between inter-
nal events in the database, and making them work correctly is extremely 
difficult.6  A better solution is introduced in the next chapter, so we defer 
further discussion until then. 

We solve the representation problem in this context by using TRE as-
sertions to represent propositions in a proof and by using TRE rules to 
encode KM*'s laws of inference. This solution is only partial, since it does 
not provide the explanation capabilities found in KM*'s use of line num-
bers and justifications. We could in principle encode such information 
as assertions. However, there are other more serious limitations in using 
TRE to implement KM*, which will be described shortly. Furthermore, the 
most efficient techniques for encoding such justifications involve truth 
maintenance systems (Chapter 6). 

5. Such mechanisms were actually used in some early AI languages, including Mi-
croPlanner and Conniver. 
6. The reader may be struck by the analogy between this problem and the problem 
of reclaiming storage in a dynamically allocated memory. This analogy inspired early 
truth maintenance systems, which were called "fact garbage collectors" [10]. 
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Here are some TRE encodings of KM* inference rules: 

(rule (not (not ?p)) (assert! ?p)) ;; Not Elimination 

(rule (and . ?conjuncts) ;; And Elimination 
(dolist (con ?conjuncts) (assert! con))) 

(rule (implies ?ante ?cons) ;; Conditional Elimination 
(rule ?ante (assert! ?cons))) 

(rule (if f ?argl ?arg2) ;; Biconditional Elimination 
(assert! ?argl) (assert! ?arg2)) 

Each TRE rule directly implements a single KM* inference rule. 
The control problem can be addressed by introducing explicit control 

assertions and adding rules that trigger on control assertions as well as 
data. We have already seen how show assertions are used in the KM* 
system to indicate to the prover (in this case, a person) interest in a 
particular proposition. We will carry this technique much farther, using 
it as a means of encoding the kind of knowledge human reasoners bring 
to bear when figuring out how to proceed with a proof. 

Let us consider the rules in KM* that do not require assumptions, and 
see how careful application of control knowledge can guide the search 
for a solution. First, some rules don't need control knowledge. Think of 
assertions as tree structures. If the effect of a rule is to decompose a 
large structure into smaller structures, it is generally safe to execute that 
rule without further thought. The reason is that the smaller pieces might 
be useful, and since each piece is only finitely large, this rule cannot be 
reapplied forever to its results (which is one way of losing control, as we 
saw in the ex3 example). In the KM* system, the rules we described above 
(NOT ELIMINATION, AND ELIMINATION, CONDITIONAL ELIMINATION, and BICONDITIONAL 
ELIMINATION) are safe rules by this criterion. 

One use of control assertions is to post advice about what to do, based 
on current goals and data. There is little advice to give for NOT, AND, and 
BICONDMONAL ELIMINATION, since they simply operate whenever they can. 
There is some strategy associated with CONDITIONAL ELIMINATION, however. 
Suppose we want to prove a proposition that is the consequent of an 
implication. If we prove the antecedent, we know that the CONDITIONAL 
ELIMINATION rule will prove the original proposition. We can express this 
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advice, which is really a form of backward chaining, with the following 
rule: 

(rule (show ?q) ;; Back-chaining on CE 
(rule (implies ?p ?q) (assert! '(show ,?p)))) 

This rule of course does not know how to show ?p. It merely express 
interest in it via a show assertion which brings the rest of our rule-based 
machinery to bear on the question. A useful optimization is to ensure 
that we don't offer advice when it isn't needed: 

(rule (show ?q) ;; Back-chaining on CE 
(unless (fetch ?q) 

(rule (implies ?p ?q) (assert! '(show ,?p))))) 

It is important to remember that the unless test is performed only 
once for each binding of ?q. Once the body of the unless is triggered, 
the rule that seeks implications for deriving ?q will continue to exist. 
Furthermore, any work started for showing ?p will continue until it 
dies down of its own accord, whether or not ?q has been successfully 
proven in the meantime. Combinatorial explosions can happen with con-
trol knowledge just as easily as with data. 

To further illustrate this point, consider how we might write a back-
ward-chaining rule for OR ELIMINATION. One simple version is 

(rule (show ?r) ;; Or Elimination 
(rule (or ?p ?q) 

(assert! '(show (implies ,?p ,?r))) 
(assert! '(show (implies ,?q ,?r))) 
(rule (implies ?p ?r) 

(rule (implies ?q ?r) (assert! ?r))))) 

The problem with this rule is that the show assertions it produces can 
match the initial trigger as well, leading to the generation of statements 
with unbounded depth. It is useful in such cases to restrict the kinds of 
assertions that are acceptable for ?r, by using a test inside the body of 
the outermost rule. Finding acceptable restrictions can be difficult, since 
each restriction eliminates the possibility of solving particular goals. 

The only introduction rules that do not require assumptions are those 
for and, or, and if f. and and or each have the potential for unbounded 
generation, so we must control them very carefully. In particular, there 
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is no reason to even try using them unless we have a specific reason to 
do so, as indicated by a show assertion. Once interest is shown, each rule 
must in turn post show assertions to express interest in its constituents, 
and then spawn a rule that looks for these constituents and, when it 
finds them, constructs the desired statement. The following three rules 
accomplish this. 

(rule (show (and ?a ?b)) ;; And Introduction 
(assert! '(show ,?a)) 
(assert! '(show ,?b)) 
(rule ?a (rule ?b (assert! '(and 	,?b)))))  

(rule (show (or ?a ?b)) ;; Or Introduction 
(assert! '(show ,?a)) 
(assert! '(show ,?b)) 
(rule ?a (assert! '(or ,?a ,?b))) 
(rule ?b (assert! '(or ,?a ,?b)))) 

(rule (show (iff ?a ?b)) ;; Biconditional Introduction 
(assert! '(show (implies ,?a ,?b))) 
(assert! '(show (implies ,?b ,?a))) 
(rule (implies ?a ?b) 

(rule (implies ?b ?a) 
(assert! '(iff ,?a ,?b))))) 

The major difference between these rules comes from the nature of the 
underlying logical constraints. For and and if,  f , both constituents must 
be found; for or, either constituent suffices. 

The file ND-EX provides both some basic tests of these rules and some 
sample problems, translated from logic textbooks, which these rules can 
solve. 

4.5 Conclusions 

Assertions are a flexible representational medium, providing a power-
ful reference mechanism via pattern matching. How well does the PDIS 
model satisfy the desiderata for Al programming set out in Section 2.1? 
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The PDIS model ranks high on explicitness, because the medium of asser-
tions can express advice as well as data. It ranks high on flexibility, since 
rules will run whenever their triggers match, rather than within some 
complex control structure in a traditional system. It also maximizes ad-
ditivity, since one can always add more rules. 

Within the appropriate restrictions, pattern-directed inference systems 
can be viewed as a mechanism for providing a procedural reading of 
propositional logic and other formal systems. As in traditional program-
ming, side effects are to be avoided if the program is to be easily under-
stood. That is, ideally the body of a rule should only contain the defi-
nitions of more rules or assert !. In this way we keep every operation 
"on the table" and hence potentially subject to reasoned control. The as-
sumption that the operation of the PDIS rules is order-independent, for 
instance, depends crucially on not allowing rules to fiddle with the inter-
nals of the inference engine. 

One drawback of the PDIS model is efficiency. As we saw earlier, the ex-
tra step of pattern matching increases the cost of reference. In Chapter 5 
we see how this inefficiency can be greatly reduced. Another drawback 
is the lack of coherence, since rules can run in any order. Unlike the 
pencil and paper version of KM*, this implementation does not have jus-
tifications, and this lack of coherence makes explanation generation diffi-
cult. This is harder to fix, because coherence generally requires a central 
mechanism to decide what to do next. We will explore such mechanisms 
in later chapters. 

4.6 Backpointers 

There are many variations on the idea of pattern-directed inference sys-
tem, corresponding to different procedure and knowledge models. A 
good historical source is [13]. We focus on the antecedent rule model 
in this book for several reasons. The most important reason is that it 
is the model we have found the most useful for our purposes. There are 
already a variety of good books on popular alternatives, such as prolog-
like systems, OPS-like production rule systems and MYCIN-style expert 
systems. And while there are other variations not well covered in text-
books, such as procedural deduction systems, such systems have not so 
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far been widely used in practice. (In the particular case of procedural 
deduction systems, we suspect the reason is that they tend to hide too 
many control decisions from the author of the problem solver.) 

We thank Carl Hewitt for introducing us to the Kalish and Montague 
natural deduction system. The version we use here is adapted from a 
version he has used in teaching. The control ideas in the implementation 
of KM* are based on [2]. 

4.7 Exercises 

	

1. 	* Why is order-independence a useful property for a pattern-directed 
inference system? 

	

2. 	Select a problem from your favorite logic textbook. 

a. * Solve the problem by hand, using the KM* system. 

b. * Encode it in a form suitable for the natural deduction rules, and 
see if THE can solve it. 

	

3. 	We hinted that unify wasn't correctly implementing full unification, 
in particular because it did not properly handle situations where both 
patterns contain variables. 

a. * Explain how unify fails to operate correctly on the following 
pattern: 

(F00 ?x ?x) and (FOD ?x ?x) 

b. * * Implement full-unify, which correctly handles this case. 

	

4. 	** Write multi-fetch, which takes as input a set of patterns and 
returns a list of sets of assertions which match those patterns. 

	

5. 	* * Write a procedure show-rule that looks up a rule based on the 
integer stored in its counter field and prints a detailed description 
of its trigger and body. The trigger and environment should be shown 
separately. 

6. The rules for AND INTRODUCTION and BICONDITIONAL INTRODUCTION actually 
do unnecessary work. If the system cannot prove one conjunct, for 
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example, there is no reason to waste time on attempting to prove the 
other. 

a. * Write new versions of AND INTRODUC- TION and BICONDITIONAL 
INTRODUCTION that only look for the second constituent when the 
first has been proven. 

b. * These more efficient versions make an important assumption 
about the set of rules as a whole. What is that assumption? How 
might it be violated? 

7. Blackboard systems are often described as collections of knowledge 
sources, each of which are potentially problem solvers in their own 
right. An important feature of blackboard systems is their concern 
with real-time performance, which requires tight control over the 
computational resources allocated to each knowledge source, and 
often entails sophisticated reasoning about control. This problem 
considers how blackboard systems might be implemented, using 
TRE-based problem solvers as knowledge sources. 

a. * Pick out two design decisions in TRE which must be changed 
before such an implementation is possible, explaining what prob-
lems they would cause in this context. 

b. * * * Implement a shell for building blackboard systems, using 
an appropriately extended TRE as the basis for the facility for 
building knowledge sources. 
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5 	Extending Pattern-Directed Inference 
Systems 

The simple pattern-directed inference system model of the previous 
chapter can be extended in several ways. This chapter explores three of 
them. First, we show how to support a cleaner syntax to simplify writing 
rules. Second, we show how to improve efficiency without compromis-
ing the flexibility of reference provided by pattern matching. The two 
methods introduced to do this are rule compilation and open-coded uni-
fication. Third, we address the problem of manipulating assumptions by 
extending the model to include a stack-oriented context mechanism. We 
embody these ideas in FTRE, a new version of TRE. We use the classic 
N-queens puzzle to illustrate how FTRE can be used to perform search. 
Finally, we demonstrate that the combination of these mechanisms al-
lows us to implement a full and efficient version of the natural deduction 
system KM*. 

The structure of FTRE has been kept as close to that of TRE as pos-
sible, so that we may focus here on discussing the issues surrounding 
the extensions. Thus this chapter should not be read without first under-
standing the previous chapter. 

5.1 Designing for convenience, efficiency, and power 

We tackle these extensions in order of increasing conceptual complexity. 

5.1.1 The fine art of syntax 

The art of writing AI programs, like any other kind of programming, in-
volves managing abstractions. Nobody likes to wallow in unimportant 



110 	 Chapter 5 

details. One important way to manage abstractions is to ensure that one's 
language allows common patterns of usage to be concisely expressed.' 
Sometimes this is best accomplished by designing a special-purpose lan-
guage. Our language of pattern-directed inference rules is one example 
of a special-purpose language, and the chapters to come include several 
more. Here let us focus on some changes that will make our language of 
pattern-directed rules more useful. 

There is always a trade-off in designing special-purpose languages be-
tween fidelity to the class of problems being addressed and closeness to 
the host language (i.e., what the special-purpose language is written in). 
Optimizing fidelity to problems and methods maximizes the ability to 
concisely express our ideas in a manner that is unfettered by implemen-
tation details. The cost tends to be expensive, complicated implementa-
tions. Optimizing closeness to the host language simplifies implementa-
tions, but often at the cost of making the special-purpose language less 
useful. Since here we (1) are already starting with a fairly high-level lan-
guage (i.e. Common Lisp), (2) assume that the users of the system are 
familiar with that language, and (3) wish to avoid needless complications, 
we lean here toward solutions that are very close to the host language. 

In designing a language, stylistic issues play a central role. Taste in 
such matters varies, and thus there is some scope for disagreement. 
However, there are some basic properties of languages which everyone 
can agree upon. For our purposes we focus on three such properties: 

1. Support common usage: Every language has idioms, patterns of con-
structs and operations that are used over and over again. Such pat-
terns should be simple, if not atomic operations, in a good syntax. 

2. Support conciseness: Generally the easier it is to do something, the 
fewer chances there are for mistakes. Shorter programs are often 
easier to read and understand than equivalent, longer programs. 

3. Remain close to the host language: It is all too easy to squander 
time and treasure trying to make the "optimal" syntax. Outside of 
production programming, it is far better to pick conventions that are 

1. It is no accident that in natural languages common words tend to be shorter than 
less common words. 
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easy to implement and provide reasonable leverage, than to try for 
complete insulation from the underlying language. 

Let us examine a typical THE rule and see how it might be improved. 
Here is the rule for back-chaining on CONDITIONAL ELIMINATION, from the 
previous chapter: 

(rule (show ?q) Back-chaining on CE 
(rule (implies ?p ?q) (assert! '(show ,?p)))) 

Notice that we have one rule nested inside another, indicating that the 
trigger (implies ?p ?q) depends on having matched (show ?q) first. 
This pattern of nested rules occurs over and over again, and conse-
quently we should enshrine it in the syntax of our rule language. The 
simplest way to do so is to change rules to take a list of triggers, such as: 

(rule ((show ?q) (implies ?p ?q)) (assert! '(show ,?p))) 

This rule also satisfies our other two principles, since we now have less 
to type and the list manipulations to "parse" these triggers are likely to 
be easy. Notice that we now must make triggers be lists. We can no longer 
say: 

(rule (not (not ?p)) (assert! ?p)) 

but instead must say: 

(rule ((not (not ?p))) (assert! ?p)) 

Our change has actually made this rule a bit more complex, but our 
supposition is that nested triggers are more frequent than single triggers 
so that, overall, complexity is reduced. 

There are several similar improvements that are well worth making at 
this stage. For example, since binding variables through pattern match-
ing is our primary reference mechanism, it is extremely common for 
rules to generate new assertions that use the bindings of these variables. 
The statement (assert! ' (show , ?p)) above is one example. Concep-
tually, this is something of a pun: we are treating pattern variables as 
Lisp variables. When viewing ?p as a pattern variable we have substi-
tution, not evaluation, in mind. Thus our implementation is showing 
through more than it really needs to. 
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Recall that we do not allow (or, more precisely, do not guarantee al-
ways to interpret appropriately) variables in database assertions. Conse-
quently, whenever we assert a pattern, we almost always want to substi-
tute in the bindings of its pattern variables for the variables themselves. 
Using backquote and commas certainly is better than explicitly using 
QUOTE and LIST, but we can do even better. We can define rassert ! (for 
rule assert !) to be like assert !, except that all pattern variables (i.e., 
those beginning with "7") are evaluated. Thus our back-chaining rule for 
CONDITIONAL ELIMINATION can be written as: 

(rule ((show ?q)(implies ?p ?q)) (rassert! (show ?p))) 

Although visually this is a small change, anyone who has tried to track 
down a missing comma in a backquoted expression will appreciate the 
convenience. Better yet, we can now more easily indicate when we are 
thinking of variables in terms of substitution versus when we are think-
ing of them as Lisp variables. 

We can carry this alignment between pattern variables and Lisp vari-
ables even farther. Intuitively, if we compute a value for a new pattern 
variable within the body of a rule, any rules spawned within this envi-
ronment should respect the binding of this pattern variable. The macro 
rlet, analogous to let, does this. Consider for instance the following 
rule: 

(rule ((project ?project) 
(needed (cost-estimate-for ?project))) 

(rlet ((?cost (expensive-estimation-method ?project))) 
(rassert! (Cost-of ?project ?cost :1st-cut)) 
(rule ((improve-on (Cost-of ?project ?cost :1st-cut))) 
(rlet ((?new-cost (even-more-expensive-method ?project))) 
(rassert! (Cost-of ?project ?new-cost :2nd-cut)))))) 

The intent of this rule is clear: a first-pass cost is computed when need 
for it is expressed (via the needed assertion appearing in the database), 
and if this estimate is not accurate enough, an even more expensive cost 
estimation method is used to give a more accurate answer. A simple let 
would bind ?cost as a Lisp variable, but the rule system would not know 
that ?cost is, when viewed as a pattern variable, already bound. 

We can support two other common patterns of programming by al-
lowing our syntax for triggers to be slightly more complicated. So far 
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we have moved from a rule having a single trigger to a list of triggers. 
Suppose we also allow optional keywords in the list of triggers. That is, 
we will allow the keywords : VAR and : TEST to appear after any trigger 
pattern. Their meanings are as follows: 

: VAR: The next element of the trigger list is a variable which will be 
given the value of the entire preceding trigger pattern. 

: TEST: The next element of the trigger list is a Lisp expression which 
provides an additional matching test. That is, unless the expression 
returns non-nil when evaluated with respect to the pattern variables 
bound so far, the match will be considered to have failed. 

Here is an example of how these options can be used: 

(rule ((show ?q) :test (not (fetch ?r)) 
(implies ?p ?q) :var ?imp) 

(debug-nd "-% BC-CE: Looking for -A to use -A.." 
?p ?imp) 

(rassert! (show ?p))) 

The : VAR lets us use the trigger pattern freely inside the body of the rule 
without retyping it. This is only a minor convenience for FTRE, but this 
facility will become very useful when we interface the descendant of this 
pattern-directed inference system to various truth maintenance systems. 
The : TEST ensures that we won't waste effort trying to prove something 
that we already know. We could always achieve the same effect by using 
when or unless in the body of the rule, of course. However, such tests 
are often conceptually part of the pattern-matching process, so writing 
them via : TEST expresses our intent more clearly. 

5.1.2 Increasing efficiency 

How can we speed up a pattern-directed inference system? There are 
several aspects that can be optimized. First, we can speed up the process 
of figuring out which rules are runnable. Second, we can speed up the 
execution of rules themselves, by turning them into procedures which 
can be compiled like any other. Third, we can do some of the pattern-
matching work when a rule is defined, and thereby reduce the effort 
required whenever the rule is triggered. We examine each aspect in turn. 
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5.1.2.1 Speeding up rule retrieval 

Recall that when a new assertion is added we must find all the rules that 
match it. Similarly, when each new rule is added we must find all asser-
tions that could trigger it. The access scheme we used in TRE was to sort 
both rules and assertions into classes, according to the leftmost symbol 
in the pattern. Each rule or assertion need only be checked against those 
in its class, since if two forms don't match in one constituent they cannot 
match at all. How can this technique be improved? Considering how the 
class organization can break down provides some insight into possible 
improvements. Suppose we had many assertions of the same database 
class. For instance, we might be building spatial reasoning system which 
could have thousands of assertions of the form: 

(Left-Of ?A ?B) 

If we add a rule whose trigger is (Left-Of CORNER-BAR32 ?X), we 
could waste much effort matching against other kinds of buildings. 

This problem has intrigued many PDIS designers, and many fancy in-
dexing schemes have been created to address it. We outline some of 
these alternatives next. However, our conclusion will be that the indexing 
scheme used in TRE is, for most purposes, the best. 

Discrimination trees provide one indexing scheme. The idea of discrim-
ination trees is that the database can be viewed as a tree whose leaves 
are the assertions and rules. Each vertex of the tree represents a choice 
involving some aspect of the structure. For instance, the first node of the 
vertex might discriminate based on the car of the assertion, the second 
level of the tree might discriminate on the cadr, and so forth. Adding a 
new rule or assertion requires traversing the tree to find the appropriate 
leaf, and the other items at that leaf are the candidate rules or assertions 
to try unifying against. There are several ways to design discrimination 
trees; for instance, if done carefully the unification can be interleaved 
with the indexing, so that no further pattern matching is needed. 

By exploiting more of the structure of the pattern than simply one 
symbol, discrimination trees keep the set of candidates for unification 
small. The cost is the extra overhead involved in indexing each trigger 
and assertion. The database class technique can be viewed as a one-level 
discrimination tree, so the question of relative performance boils down 
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to whether extra levels of indexing (versus unification) are worthwhile. If 
a database class has many triggers and facts, few of which matched, then 
additional levels of discrimination are more likely to become useful. The 
technique of discrimination trees and its tradeoffs are described clearly 
in [1], so we will not dwell further upon it. 

Another indexing strategy is generalized hashing. If we didn't have 
variables in either assertions or trigger patterns, then we could retrieve 
assertions and rules by simply using a hash table. To use variables, we 
have to "carve up" the pattern somehow so we can index based on the 
parts of it we know. Consider again the query (Left-Of CORNER-BAR32 

?X). We might describe this pattern as: 

car = Left-Of 
cadr = CORNER-BAR32 
cdddr = NIL 

Each feature (car, cadr, cdddr) has a value which describes a known 
aspect of the pattern's structure. (Since ?x is a variable, we have no 
value for the CADDR feature for this pattern.) Each pair of feature and 
value is hashed such that given a particular feature-value pair we can re-
trieve the set of all assertions and triggers including this substructure. 
All assertions and triggers matching a given pattern can be retrieved by 
computing the features of the pattern, fetching the sets associated with 
each feature, and intersecting them to find the candidates for unification. 
In our example there are three such sets. The first set contains all asser-
tions whose car is Left-Of, the second contains all assertions whose 
cadr is CORNER-BAR32, and the third contains all assertions of length 
three.2  Several tricks can be used to optimize retrieval. For instance, if 
any of the sets is empty then clearly nothing matches. Furthermore, one 
can order the sets based on size to speed the intersection process (the 
sizes can be cached with the set, and updated whenever a new item is 
added). 

The advantage of generalized hashing is that it is very flexible. For 
instance, we could fetch all Left-Of and Right-Of assertions about 

2. Assuming, of course, that the process of describing the assertion stopped com-
puting features at the first null result in a chain of cars—otherwise, any piece of list 
structure would have an infinite set of features! 
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CORNER-BAR32 by the pattern (?rel CORNER-BAR32 ?other). This 
query would be disallowed in the class scheme used in THE unless we 
bound ?rel. However, generalized hashing has significant drawbacks. It 
is very complicated and can be very expensive. Why? First, notice that 
unification is still required to complete the process, since it does not en-
force consistent variable bindings throughout the structure. For instance, 
both (F00 3 4) and (F00 6 6) would both be retrieved with the query 
(F00 ?x ?x), but only one of them would unify with it. One could in 
principle compute indices like "patterns whose third element is the same 
as their fourth and eighth elements," but the combinatorics are stun-
ningly bad, since one doesn't know which, if any, of these indices will 
ever be used. So now we have to ask if the extra cost of generating and 
maintaining extra indices saves us enough extra unifications to be cost-
effective. There is no good analytic model of this choice, given that it 
depends on the statistical properties of the assertions, the triggers, and 
the queries. Empirically, however, these schemes have been poor per-
formers. Such databases were popular in the 1970s, being the basis for 
CONNIVER and early versions of EL [4]. Users of these systems estimated 
that 90% of the systems' time was spent riffling through the database. To 
our knowledge, this technique was virtually abandoned in the 1980s and 
has never been used in serious practice. 

Since most PDIS systems seem to use either discrimination nets or 
class indexes, we will stick with class indexes. A variant of the class 
index, used in some Prolog implementations, is to subindex on the cadr 
of an assertion when a class gets "too large." We will eschew this and 
other modifications here, although they can be useful in real systems. 
Instead we recommend reorganizing classes and introducing redundant 
classes to overcome retrieval problems. Consider again the problem of 
CORNER-BAR32. If we really want to fetch all the facts about CORNER-
BAR32, we would be better off if the classes in our database corresponded 
to objects. For instance, we might express CORNER-BAR32's location as: 

(CORNER-BAR32 Left-Of CHURCH12) 

(CORNER-BAR32 Right-Of CAR-WASH18) 

While better for our desired queries, this format makes writing many 
spatial rules difficult. For instance, if all our incoming information were 
in terms of Left-Of assertions and we wanted to install the symmetric 
Right-Of assertions, we would write in the old format: 
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(rule ((Left-Of ?A ?B)) (rassert! (Right-Of ?B ?A))) 

But this won't work in the new format. Our trigger would have to be 
(?A Left-Of ?B), which cannot work since we do not know the class 
of ?A. If we know that we will have many Left-Of statements, and will 
be doing many queries with the first argument fixed (corresponding to 
finding the object on the query object's right), then it is worth adding 
the extra assertions to make this fetch easy. The following rule does the 
trick: 

(rule ((Left-Of ?A ?B)) 
(rassert! (?A Left-Of ?B)) 
(rassert! (?B Right-Of ?A))) 

If we never care about the set of all Left-Of or Right-Of assertions, 
this format makes much more sense. True, we are storing three times 
as much information as if we had just used the original Left-Of asser-
tions. But now each fetch takes time proportional to the number of facts 
known about the object, rather than the total number of facts involving 
that predicate in the database. Assuming that fetching object properties 
and completions of relational patterns are very common, this organiza-
tion best exploits the simplicity of the class indexing.3  So we continue 
using class indexing for retrieval, albeit allowing clever organization of 
assertional format to reduce the size of the candidate set. 

5.1.2.2 Compiling rules 

Ideally the body of a PDIS rule is simple, mainly consisting of rassert ! 
and rule statements. But these statements are implemented as Common 
Lisp procedures, of course. Furthermore, we rely on the host language 
for control primitives and other computational needs, so arbitrary Lisp 
code is allowed in the body of a rule. The implementation strategy for 
executing rules used in TRE, of creating at rule execution time a Lisp 
expression to be evaled, is not very efficient. It does not exploit the fact 
that, except for the values of the pattern variables, the code comprising 
the body of a rule is the same across every instance of that rule. We can 
execute rules much more efficiently if we arrange for the body of a rule 
to be a separate procedure. 

3. This is the same intuition underlying some aspects of frame languages. 
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Arranging for the creation of a procedure for each rule body has two 
significant advantages. First, consing up an expression at rule execution 
time is no longer required: the body procedure can simply be called with 
the current values of the pattern variables as arguments. Second, the 
body procedure can itself be compiled, ensuring that its execution is as 
efficient as possible. 

5.1.2.3 Open-coding unification 

Another aspect of rules we can optimize is pattern matching. Consider 
what unify does in the context of triggering PDIS rules. It walks down 
the expressions given as its arguments, analyzing them component by 
component to see if the constant aspects match and if the variables 
in the trigger pattern can be consistently bound. The structure of both 
patterns is unknown, so unify must scrutinize them both carefully at 
run time. However, since we know when defining a rule what the trigger 
pattern is, we could analyze the trigger when the rule is defined. Based on 
this analysis, we can write a special-purpose matcher that will perform 
just those tests that unify would perform on the second pattern and for 
checking properties of both patterns. 

An example will make this clearer. Suppose we have 

(Foo ?A ?B (Bar ?B)) 

as the trigger of a rule, where ?A is bound and ?B is not. We will need 
some name for the other pattern, so let us call it P. If we think about what 
tests are needed on P to ensure that it unifies with our trigger under the 
stated conditions, it is easy to see that the following tests suffice: 

(consp 10) 
(equal 'foo (car p)) 
(consp (cdr p)) 
(equal ?a (cadr p)) 
(consp (cddr p)) 
(consp (cdddr P)) 
(consp (fourth P)) 
(equal 'bar (car (fourth P))) 
(consp (cdr (fourth P))) 
(null (cddr (fourth p))) 
(null (cddddr P)) 
(equal (cadr (fourth P)) (third 

;Ensure it is a cons 
; whose CAR is FOO 
; which continues to be a list 
; whose 2nd element matches ?A 
; and which continues for 
; at least four elements. 
;The 4th element is a cons 
; whose CAR is BAR 
; and is a list not a pair. 
; and is two elements long. 
;There is no fifth element. 

P)) 	;?B is used consistently. 
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The binding for ?B is then given by either (caddr P) or (cadar (cdddr 
P) ), with the former being slightly more efficient. 

This analysis can be automated. By doing so we open-code unification. 
That is, our new system will create for each trigger pattern a match pro- 
cedure that does what a unifier would do, but more efficiently. In addition 
to the trigger pattern itself, to perform this analysis we must know what 
variables are already bound by earlier matches. This information pro-
vides the equivalent of the list of bindings that can be passed into the 
unifier. Since this information is fixed by the lexical scoping of the rules, 
we can figure all this out at rule definition time. By creating a special-
purpose matching procedure we also gain one of the same advantages 
we did for creating procedures for the body of a rule: we can arrange for 
files of rules to be compiled, so they will execute as quickly as possible. 

The decisions to open-code unification and to create procedures for 
rule bodies (as outlined above) interact, so we must establish conventions 
for communications between these two new kinds of procedures. Each 
match procedure must return two things: a flag indicating whether or not 
it succeeded, and any new bindings for the pattern variables imposed by 
the match. Since we define the bound pattern variables to be the argu-
ments of the body procedure, the inclusion of these new bindings with 
the rest of the bindings established so far will provide the correct envi-
ronment for executing the body. Since rules can be nested, this means 
that when defining a rule we must carefully analyze what pattern vari-
ables will be bound when. As Section 5.2.3 illustrates, this analysis has 
its subtleties. 

5.1.3 A stack-oriented context mechanism 

Many forms of reasoning involve making assumptions. To carry out an 
indirect proof, for example, one assumes the negation of that which is to 
be shown and attempts to derive a contradiction. In exploring the conse-
quences of a chess move, one imagines what the board would look like 
after it was made. These assumptions are temporary, in that one pre-
sumes when they are made that they will soon be retracted. The assump-
tion problem, introduced in Chapter 4, consists of correctly managing the 
introduction and retraction of such assumptions. Here we explore a sim-
ple mechanism that solves this problem. 

It is helpful to consider an analogous but simpler problem in computer 
programming. Think about how the value of a variable is determined. The 
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Figure 5.1 How stacks allow manipulations of logical environments 

value of a variable depends on the environment in which it is evaluated. 
Different variable binding disciplines correspond to different environ-
ment structures and means of manipulating them. The simplest envi-
ronment is a global environment, where changing the value associated 
with a variable changes it everywhere. The TRE data model is analogous 
to this global environment, with ground patterns corresponding to vari-
ables and whether or not they are in the database corresponding to their 
possible values (i.e., "believed" or "not believed"). Thus it makes sense to 
speak of the logical environment of a TRE computation, defined by the 
set of assertions in the database. Just as one cannot tell how to evaluate 
an expression containing variables in a standard programming language 
without knowing the environment in which it is to be evaluated, one can-
not always tell what effects a TRE program will have without knowing 
what is already in the database. 

Of course, in standard computer languages one also finds more com-
plex environment structures. For instance, to define recursive procedures 
it is essential to be able to reuse variable names, and stacks are intro-
duced to provide this functionality. The stack provides a local context in 
which variables can take on distinct values for a time, and then can re-
vert to their old values when the computation is finished. Stacks, too, are 
useful for controlling logical environments. Consider the first database 
in the sequence of databases shown in Figure 5.1. Suppose that in addi-
tion to these assertions we have loaded the set of KM* rules described in 
Chapter 4. In order to prove P we might try an indirect proof. To try an 
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indirect proof we need a temporary environment, a context in which we 
can assume (not P) to see if we can derive a contradiction. The context 
plays the role of the box in KM*. Snapshot 2 in Figure 5.1 depicts this 
context as a new database extended below the original (global) database, 
depicted in shapshot 1. In this newly "pushed" context we assert (not 
P) and execute all the rules to determine its consequences. All new as-
sertions and rule instantiations are placed in the new context. Assuming 
we have a rule that detects contradictions (how this works is explained in 
Section 5.3.2), we then discover (snapshot 3) that the combination of the 
beliefs in the new context and the global database are contradictory. De-
tecting this contradiction allows us to conclude P in the global database. 
Since our indirect proof is finished, we "pop" the context used to explore 
(not P) , which throws away all the consequences derived under that as-
sumption. This is the analog of drawing a box around part of a proof in 
KM* when the assumption has been discharged. 

Now that the behavior we want to achieve is clear, how can we actu-
ally do it? We can think of each context as an additional database into 
which assertions can be made. The procedures for asking whether or not 
something holds must then look at all the active contexts. There are three 
slightly subtle constraints that we must respect for our system to be both 
correct and efficient: 

1. Whenever we make an assumption we must push a new context. We 
could push a new context and make several assumptions in it, but 
then if we decide that we wanted to change only one assumption we 
would have to throw all our work away and start over again. If a new 
context is pushed for each assumption, then popping that context 
only discards work based on that assumption and any assumptions 
made after it. 

2. Whenever an assertion is made it must be stored in the most recently 
created context. The reason is that the computation that created it 
may have depended on the most recent assumption, and so it should 
be discarded if that assumption is. 

3. The execution of rules should be arranged so that conclusions are 
drawn in the simplest logical environments (i.e., fewest number of 
assumptions) as possible. In Figure 5.1, for instance, we could con-
clude R holds via CoNnmoNAL ELIMINATION. Suppose we only got around 
to asserting this conclusion after we had assumed (not Q). Then R 
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would hold only in the pushed context, and when we retracted (not 
CO it would be incorrectly lost. Worse, we would never derive it again 
in that way. (Can you explain why?) 

What do these constraints imply about how we should organize our 
rules and their interpreter? First, we need to distinguish between rules 
that make assumptions and those that do not. All rules that do not make 
assumptions should be executed before any rules that do. This ensures 
that conclusions are drawn in the smallest logical environment. Second, 
we have to reorganize our database so that we can correctly push and 
pop both assertions and rule instances. Just as we do not wish to retain 
the consequences of an assumption once that assumption is retracted, 
we also must not retain a rule instance that triggered on a now-departed 
assertion, since it could pollute later contexts. 

By choosing a stack model for logical environments we have also (im-
plicitly) chosen our search strategy for manipulating assumptions. In 
particular, we will be carrying out a depth-first search in the space of 
assumptions. One potential problem of depth-first search—looping--is 
easily avoided by looking to see if we already believe something before 
assuming it. Another potential problem is that depth-first search can 
waste an enormous amount of time searching intricate blind alleys be-
fore coming upon a simpler solution. The only good way to solve this 
problem is to introduce resource bounds. There are two kinds of bounds 
that are easy to impose in this model. First, we can impose a bound on 
the depth of the assumption stack. Notice that this is not the same as 
bounding the number of conclusions that can be drawn from each as-
sumption; each assumption could still spawn an arbitrary number of 
conclusions. Second, we can impose an absolute bound on the number 
of assumptions made in the whole computation (i.e., a limit on the num-
ber of "stack frames" we are willing to generate). In FTRE we implement 
only resource bounds on depth (but see Exercise 12). 

It is possible to view FTRE as a logical system, in the following sense. 
Given a set of rules, the triggers of the rules correspond to the premises 
of an inference rule, and any assertions produced correspond to its con-
clusions. Our goal is to ensure that the stack discipline we use is sound, 
in the sense that if the inference rules are also sound, then all conclu-
sions we draw are sound. It is asking too much of a logical system to 
be sound, complete, and efficient. Having finite life spans and the desire 
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to not be too inconsistent, we generally choose soundness and efficiency 
and let completeness suffer. In Chapter 4 we saw how completeness and 
efficiency trade off in designing rules for KM". Here we are seeing another 
instance of this tradeoff. Resource bounds guarentee that the system 
won't waste too much time trying to prove something it cannot, but un-
fortunately also ensure that there are conclusions it could in principle 
prove but in actuality will not. 

5.2 Implementing FTRE 

With the design of FTRE in mind, let us examine how it is implemented. 
FTRE consists of the following files: 

f inter . lisp Organizing datastructure and context mechanism. 

f data . lisp Database system. 

frules . lisp Rule system. 

unify. lisp Unifier. 

funif y . lisp Open-coding for unification. 

The file unify. lisp is the same as TRE. We describe each of the others 
in turn. 

5.2.1 The FTRE interface (finter.lisp) 

The ftre struct organizes the information about a particular FTRE, and 
in fact is a superset of the tre struct. When non-nil, the debugging-
contexts field causes extra information to be printed when making or 
retracting an assumption. Since we need to derive facts in the logically 
minimal environments we must execute rules that do not make assump-
tions before rules that do. This is accomplished by using two queues. 
asn-queue holds triggered rules that make assumptions and normal-
queue holds triggered rules that do not make assumptions. The field 
depth indicates the current stack depth. It is incremented every time 
a context is pushed and decremented every time a context is popped. 
When the depth is zero, all assertions and rules are placed in the global 
database. Otherwise they are placed in local-rules and local-data, 
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which will be maintained appropriately by the procedures seek-in-
context and try-in-context, the interfaces to the context mechanism. 
(These procedures are defined later in this file and are explained below.) 
The max-depth field is used by these procedures to establish the maxi-
mum depth of assumptions allowed. 

The incorporation of the context mechanism means we must provide 
a few extra arguments to our constructor create-f tre, in order to set 
the maximum depth bounds and to control whether or not debugging 
information is printed about context manipulations. Otherwise, the rest 
of this part of the file is analogous to the definitions in inter. lisp in 
TRE. 

The remainder of the file defines the interface to the context mech-
anism, try-in-context and seek-in-context. try-in-context exe-
cutes a given piece of code (the argument form) in the logical environ-
ment created by adding the argument assumption to the current logical 
environment. seek-in-context is designed for doing proofs. The struc-
tures of these routines are very similar, since their main concern is en-
forcing the abstraction of an assumption stack. Since try-in-context 
is simpler we begin with it. 

try-in-context begins by checking the current depth against the 
maximum depth, to see if the resource bound has been exceeded. If it 
has, try-in-context immediately returns. Otherwise, it begins pushing 
a new context by lambda-binding the local state information (i.e., local-
rules, local-data, normal-queue and asn-queue) so they may be re-
instated when the work in the new context is finished. The current values 
of local-data and local-rules remain in force since assertions and 
rules from containing environments are inherited by new environments. 
The queues are cleared, since the triggered rules of the containing envi-
ronment should be explored in that environment, not in the new one. The 
depth field is incremented to indicate that another assumption has been 
added. (The current value of depth is pushed onto local-data so that 
it will be easy to determine which facts were introduced in each context 
while debugging.) 

Now the stage is set for the next phase, namely making the new as-
sumption and working with it. with-ftre is used to ensure that the 
assumption is made in the current FTRE. After calling assert!, run-
rules is executed to derive its consequences. Finally, the piece of code 
provided by the form argument is evaluated to construct the result to be 
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returned from the procedure. Before try-in-context returns, it undoes 
the effects of making the assumption—that is, it pops the context. This 
is accomplished by resetting the local state information using the values 
saved earlier. 

seek-in-context encapsulates the operations needed to prove some-
thing within a context. There are three things that must be done, in 
addition to the work that try-in-context does. First, interest in the 
goal must be expressed. Asserting show of the goal does this, assum-
ing that the FTRE rules use the convention of show control assertions. 
Second, seek-in-context must return a result that indicates whether 
or not the goal was proven. This is accomplished by setting result to 
the result of calling fetch on the goal before popping the context. The 
third requirement is that if we succeed in proving the goal we want to 
return immediately, rather than allowing the current context to run to 
quiescensce. This is especially important given FTRE's ability to create 
new contexts—otherwise every assumption-making rule will be tried, up 
to the depth bound, even though the goal may have been proven al-
ready. To do this, a rule is created to detect when the goal has been 
found. It uses a throw to prevent doing extra work once the result has 
been found. The reason for the explicit test of depth in the goal detec-
tion rule is somewhat subtle. Recall that a subcontext inherits all rules 
in the context(s) above it (using the spatial metaphors "push" and "pop" 
to be "push down" and "pop up"). Furthermore, since we are running the 
queue to exhaustion, we could run new a-rules, which in turn would 
cause seek-in-context to be called recursively. Consequently, this rule 
could be triggered in some deeper context, where the goal was derived 
using several additional assumptions. Counting such derivations as suc-
cess would render our mechanism unsound, since the derivation relied 
on extra assumptions. The depth test ensures that the rule triggers only 
when the goal is asserted in the appropriate context, and hence protects 
the soundness of the system. 

Notice that both seek-in-context and try-in-context are bristling 
with debugging probes. This kind of information can be essential in de-
bugging complex programs. For example, by keeping track of the lengths 
of the stack one can see just how much effort is invested in each assump-
tion as it occurs. Predicating these probes on a different switch than the 
usual debugging flag is useful because this information is most valuable 
in the later stages of debugging a set of rules. 
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5.2.2 The FTRE database (fdata.lisp) 

The database system has been changed in four ways: 

1. show-data now displays both the global database and the current 
context. 

2. rassert ! is implemented as a macro which calls a new procedure, 
quotize, to convert its argument into an appropriate set of calls to 
QUOTE and LIST. Since quotize is concerned with manipulations of 
pattern variables, it is defined in funif y . lisp (see Section 5.2.4). 

3. Since *env* is no longer required to accumulate the lexical environ-
ment of rules, get-class has been simplified accordingly. 

4. The procedures get-candidates and insert have been changed 
to take the context mechanism into account. get-candidates now 
includes all the data on the stack as candidates for matching, in 
addition to facts of the given class from the global database. insert 
now uses the depth field of the FIRE to ensure that it adds data in 
the appropriate place. 

Notice that this implementation will work best when most assertions 
are made in the global environment and relatively few assertions are 
made in contexts, since a linear search through the elements of the con-
text stack is required for each fetch of data or rules. Exercise 4 explores 
an alternate implementation. 

5.2.3 The FTRE rule system (frules.lisp) 

Our design for FTRE strives for efficiency by eliminating run-time work, 
at the cost of doing more work when a rule is defined. Consequently, the 
implementation of the rule system is substantially more complex than 
the rule system in TRE. 

Let us begin with the rule struct. Like TRE, the counter field of a 
rule provides a unique identifier and the dbclass field points to its 
database class. The environment field is gone; we exploit instead the 
ability of Common Lisp to make closures to package up environments. 
The matcher and body fields hold the rule's match procedure and the 
rule's body procedure, respectively. The field assumption? is non-nil if 
the rule makes an assumption, and nil otherwise. 
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The procedures show-rules, print-rule, and fetch-rule provide 
an interface to the rule system. show-rules, like the new version of 
show-data, ensures that both the local and global rules are displayed. 
print-rule provides a concise way of displaying a rule, while fetch-
rule uses the counter field to access a rule via its unique identifier. 

The macros rule and a-rule serve as the constructors for rules. The 
constraint that we must run all rules that don't make assumptions before 
any rules that do make assumptions means that we need the ability to 
classify rules accordingly. That is the purpose of the distinction between 
rule and a-rule. A non-nil third argument to do-rule indicates that 
the rule makes an assumption. This information is propagated through 
to its ultimate destination, insert-rule, which sets the corresponding 
rule-assumption? field of the struct implementing the instance of that 
rule. Notice that we are counting on the rule author to correctly indicate 
whether or not the body of the rule pushes the assumption stack. This 
is necessary because we allow arbitrary Lisp code in rule bodies, and so 
cannot guarantee that an automatic analysis would make this decision 
correctly. This is a disadvantage, of course. An alternative is to tightly 
restrict the contents of rules, so that we could perform a simple case 
analysis on them to set this flag itself. Since we are opting for simplicity 
in this system, we stick with making the rule author do the work. 

Conceptually, nested triggers are implemented by creating a nested se-
quence of single-trigger calls to rule, which are then analyzed as before. 
In f rules .lisp this is accomplished by the combination of the macro 
internal-rule and the procedure make-nested-rule. The mechanics 
of "unwinding" a list of triggers into a sequence of nested rules is han-
dled by make-nested-rule. We say that a rule is a top-level rule if it is 
not defined within the scope of any other rule, i.e., is not itself a nested 
rule. The indexing form for nested rules must be treated differently than 
for top-level rules. The reason is that nested rules must only be added to 
the database whenever the rule that contains them is triggered. Further-
more, where they are indexed often depends on the bindings provided by 
the containing triggers, since the class of an internal trigger might be a 
variable which is bound by some enclosing pattern. So the "trace" left be-
hind when defining a nested rule is just an indexing form, which appears 
in the body procedure of the containing rule. On the other hand, the in-
dexing form for the top-level rule should actually be executed as soon as 
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it is evaluated, since it doesn't depend on anything else. This distinction 
is why internal-rule is substituted for rule inside the body. 

The procedure do-rule orchestrates the process of creating a rule. 
Recall that every rule now includes a body procedure and a match pro-
cedure. Furthermore, we must arrange for the rule to be created and 
indexed appropriately, even if the file of rules is compiled. Correctly en-
forcing the semantics of nested rules makes this process a bit tricky. To 
make a file of rules compilable, we must ensure that all the body and 
match procedures are visible to the compiler, and that the outermost 
rule will be indexed appropriately. Knowing the form of the answer is 
often a great help in understanding how to derive it, so Figure 5.2 shows 
a simple rule and the code produced for it by FTRE. 

Let us examine the structure of do-rule. The global variable *rule-
procedures* accumulates the defuns generated in the course of ana-
lyzing a rule. The global variable *bound-vars* represents the run-time 
environment of a rule. In analyzing any nested rule, if a pattern variable 
appears as a member of *bound-vars*, then that variable will be bound 
before that rule is executed and will be free otherwise. 

Where do we put the definitions for each rule's match and body proce-
dures? We want these definitions to be processed as top-level forms by 
Lisp, so that they can be compiled. Furthermore, we want to ensure that 
all procedures are defined before the indexing form for the top-level rule 
is evaluated, since executing the indexing form may result in these proce-
dures being called. After all, there may already be assertions that trigger 
them in the database. As mentioned above, we accomplish this by using 
the global variable *rule-procedures* to accumulate procedure defini-
tions. The form returned by do-rule is a progn, so that its contents will 
be compiled, and the procedures are included before the indexing form 
to ensure a correct order of evaluation. 

The actual creation of the indexing form and the match and body pro-
cedures is arranged by build-rule. The process of building the match 
and body procedures is described later. Its final result, the indexing form, 
is an expression consisting of a call to insert-rule, insert-rule cre-
ates a new rule under the class of the rule's trigger. The complications in 
this form stem from the need to maintain the proper lexical environment 
for rules. Think of the process of evaluating a rule definition as repeated 
macro-expansion (which it is). When build-rule is executed, it will be 
within the scope of the definition of any rules that contain the rule cur- 
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vars* is incorporated into the argument list for the match procedure, 
if there will be pattern variables bound in the enclosing pattern envi-
ronment at run time. Uniformity is attained by creating a closure (e.g., 
the use of function) so that only p needs to be supplied when calling a 
match procedure. 

The argument list for the body procedure is a bit more complex, since 
it must include any variables bound by the trigger. These are computed 
by pattern-free-variables (in funify.lisp and described below), 
which uses *bound-vars* to figure out what variables are still free in 
the trigger. Each such variable will be newly bound as a consequence 
of executing that rule's match procedure, and these new bindings are 
combined with the previous bindings to provide the body procedure's 
full environment. 

In general the class of a nested rule can only be determined at run 
time, since the leftmost symbol could well be a variable. get-trigger-
dbclass creates a form that extracts this class, mirroring the logic 
of get -dbclass. If the leftmost symbol is a variable, get-trigger-
dbclass ensures it will be bound at run time, by checking *bound-
vars*. If the trigger's database class is a constant known at definition 
time, then that quoted symbol is used in the call to get-dbclass that is 
constructed. Otherwise, a form that evaluates the variable at run time is 
produced, so that the appropriate database class will be calculated. 

More happens in generate-body-procedure than first meets the eye. 
Its result is a defun form which defines the body procedure. As we saw 
in build-rule, the arguments for this procedure include the variables 
just bound by the current trigger (i.e., newly-bound) and those bound by 
containing rules (i.e., *bound-vars*), and generate-body-procedure 
ensures that the procedure's arguments are defined in a corresponding 
fashion. Creating the body of the procedure takes more work. This work 
is performed by fully-expand-body. It is called within the scope of 
the macro with-pushed-variable-bindings, so that *bound-vars* 
is updated appropriately. fully-expand-body walks through the body 
of a procedure, recursively macro-expanding it. Why? That is the only 
way to ensure that the procedures corresponding to each nested rule are 
created and defined in the correct order. Nested rules, remember, show 
up as calls to the macro add-internal-rule, which calls build-rule, 
which ultimately calls fully-expand-body, which in turn may call add-
internal-rule, and so on. Throughout this activity new procedures are 
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being accumulated on *rule-procedures*. So no matter how deeply 
nested rules are, every nested rule is guaranteed to be completely defined 
before it is triggered. 

The procedure generate-match-procedure is defined in funify 
. lisp, and so we postpone describing how it works until later. 

An engineering note: Notice that the procedure generate-rule-
procedure-name creates a symbol which is used as the name of rule 
and body procedures. The purpose of the format statement is to pro-
duce a prefix string from the pattern, thus giving the rule names some 
mnemonic value. This is a good practice in general, since authors of rule 
systems will often be forced to track down bugs based on these names. 

As mentioned above, fully-expand-body recursively macro-expands 
an expression. One way to implement this procedure is to simply expand 
every subexpression. This method is fraught with peril, because Common 
Lisp is syntactically rich and contains many special forms, which are 
often implemented via macros. Since implementations vary in how they 
implement their primitives, writing such a code analyzer is tricky, as 
anyone who has written compilers or interpreters can attest. A better way 
to implement this procedure is based on the observation that we only 
need to expand macros when they will yield new rules or new bindings to 
pattern variables. By noting such macros in a list (called here *macros-
to-expand*), fully-expand-body can operate by walking recursively 
through an expression, calling macroexpand only when it recognizes a 
situation where expansion is required. Notice that systems which extend 
FTRE must update *macros-to-expand* if they include new macros 
that can appear inside rules and themselves either write new rules or 
bind pattern variables. 

Like insert, the procedure insert-rule uses the depth field to de-
termine where to put a newly created rule. Like get-candidates, the 
procedure get-candidate-rules includes the rules on the stack as well 
as the rules for the appropriate class in the global database. 

The procedure try-rule-on, which evaluates whether a rule should be 
triggered on an assertion, follows our design in assuming that the match 
procedure returns a flag signaling whether or not the match is good and 
a list of bindings it requires. This list of bindings is provided to the body 
procedure as its argument and queued for eventual execution. Instead 
of the complicated consing of an expression, run-rules now simply 
applies the body procedure to the bindings supplied. 

The queuing of rules has been changed to reflect the assumption/non-
assumption distinction. Recall that an FTRE contains two queues, the 
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normal-queue for rules that don't make assumptions and the asn-
queue for those that do. enqueue is passed the flag from the rule struct 
in order to figure out which queue to place it in, and dequeue empties 
the queue of standard rules before returning rules that introduce as-
sumptions. 

5.2.4 The FTRE unification system (funify.lisp) 

The code in this file does two things: it implements several features for 
making rule-writing more convenient, and it implements the open-coding 
of unification. 

The first feature for convenience is quotize, which was used in 
fdata. lisp by rassert !. quotize recurses down an expression, creat-
ing a new expression which, when evaluated, will reproduce the constant 
parts of the input expression while replacing pattern variables with their 
bindings. Thus if we call quotize with 

(foo ?a (Mumble ?b)) 

the result will be 

(cons 'foo 

(cons ?a 

(cons (cons 'Mumble 

(cons ?b nil)) 

nil))) 

As noted above, this allows us to avoid a lot of backquoting. The : EVAL 
option allows more complex results to be computed at run time. 

The macro rlet provides a means of binding pattern variables within 
the scope of a rule. This is yet another aspect of how FTRE ensures that 
Lisp variables and pattern variables are closely aligned. The form re-
turned by rlet is in fact a let expression, but with the value expressions 
in the let's variable list appropriately quotized. Furthermore, the body 
of the new let has been fully expanded, during which time *bound-
vars* was augmented to ensure that the appropriate information about 
bound pattern variables is available. 

The rest of the code to implement match procedures starts with 
pattern-free-variables. This procedure does a car/cdr recursion 
through the expression, accumulating all pattern variables not already 
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appearing on *bound-vars*. These are exactly the pattern variables 
which must be newly bound by the match procedure. The order in which 
this procedure returns the free variables is very important, since it de-
termines in part the order of arguments given for body procedures. In 
defining the rest of the system we must take care to ensure that the vari-
able bindings returned by the match procedure are in this order so that 
rules will execute correctly. 

generate-match-procedure assembles match procedures from tests 
and binding specifications provided by generate-match-body. The 
name of the match procedure is created by generate-rule-procedure-
name. Recall that p is the canonical variable we are using for the pattern, 
so p and the already-bound trigger variables (i.e., *bound-vars*) pro-
vide the arguments for the match procedure. The logic of the procedure 
is that if all the tests hold (the and test in the if), then the first value 
returned is the flag indicating that the match is okay and the other ar-
gument is the list of values that the free variables in the trigger should 
be bound to. The list of expressions that compute these values was the 
value of binding-specs returned from generate-match-body, which 
we describe next. 

We already know the output of generate-match-body: a list of the 
tests on the structure of the candidate assertion and a list of expressions 
which specify where in the assertion the bindings for the trigger's free 
variables can be found. Both of these values must be generated by a 
recursive analysis of the trigger pattern. Consequently, it makes sense to 
use the same recursive analysis to calculate both lists and then sort them 
afterwards. The procedure generate-unify-tests does the recursive 
analysis of the trigger. The elements in its output which specify locations 
for variable bindings are those which have a pattern variable as their first 
element. The dolist sorts the output, stashing normal tests on the local 
variable structure-tests. 

The locations for variables bound in matching the trigger are used in 
three ways. First, one expression is selected to be used in extracting the 
value if the pattern matches. Since generate-unify-tests accumulates 
results "on the way down" and visits cars before cdrs, in general the 
expressions at the front of the list of places where a specific variable 
can occur will be more complex than those at the back of the list. By 
picking the last element of this list, we are thus more likely to have a 
cheaper expression to evaluate. The second use of these expressions is 
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to ensure that the same value appears everywhere the variable is used in 
the assertion. If it isn't, then in fact the pattern does not match. The pro-
cedure generate-pairwise-tests creates an appropriate list of such 
tests. The third use of these expressions is implementing the : TEST op-
tion. Notice that the test, if any, is passed as the argument extra-test 
to generate-match-body. The code of the :TEST is transformed into an 
executable expression by the call to sublis. For increased robustness we 
ensure that no free pattern variables appear in the test, signaling an error 
if any are found. The resulting code is then appended to the end of the 
unification tests, thus ensuring the pattern is correct before attempting 
the final check. 

After sorting out the results of the analysis, generate-match-body fi-
nally returns the combination of the tests on the structure and the equal-
ity tests as the list of tests that must be peformed on any assertion to 
determine if it matches, and binding-specs as the expressions that will 
access the new bindings for the trigger's free variables. Notice again that 
order is important: tests that ensure a particular piece of list structure 
exist must be carried out before others that presume that list structure 
is there. That is why the equality checks are placed after every other 
structural test. This procedure and generate-unify-tests were writ-
ten together, to ensure that the order of the lists involved would come 
out correctly with minimal consing. Similar orchestration occurred with 
the order provided by pattern-free-variables, as noted earlier, to en-
sure that the arguments provided by the binding specifications would be 
in the same order as the pattern variables given as the arguments for 
body procedures. 

We already know what generate-unify-tests produces. What it 
takes as input is the pattern it is analyzing (pattern), a list of free vari-
ables for the trigger (vars), the set of tests accumulated so far (tests), 
and a specification in terms of cars and cdrs about how to arrive at 
the piece of the structure being analyzed (path). Initially pattern is the 
whole trigger and path is P. Each recursive step of the analysis causes 
path to be incremented appropriately. Thus the first clause of the main 
cond in generate-unify-tests detects that the current path has led 
to nothing, so a null test is included in the list of tests. Notice that 
each test result will be considered successful at run time if the result is 
non-nil. Similarly, the numberp and atom tests detect constants in the 
trigger. The final clause is the recursive descent, which goes down the 
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car first and passes back those tests to add to those for the cdr.4  The 
consp test is added to ensure that car and cdr make sense. 

What happens when a variable is encountered in generate-unify-
tests depends on whether or not it was previously bound. If this trigger 
is what binds it (as indicated by its appearance in vars) then the current 
path is pushed onto the list of specifications of where that variable has 
appeared. If the variable is bound, an equality test is added to ensure 
that the value in the run-time environment is the same as that to which 
unifying the pattern with this assertion would bind it. 

5.3 Examples 

Let us now put our context mechanism to work. We first look at a 
toy example, the N-queens puzzle, for two reasons. First, it provides a 
very simple illustration of some basic ideas about organizing searches, 
such as choice sets and chronological backtracking. Second, the perfor-
mance of this system is used as a baseline in evaluating the efficiency 
of dependency-directed search in Chapter 8. Section 5.3.2 contains the 
major example for this chapter: A full implementation of KM* that is 
capable of performing a variety of natural deduction proofs. 

5.3.1 Example: The N-queens puzzle 

They are queens 
Reckless 
Blasting forth 
Insatiable 
They need more 
Ever more 
Dimension 
To conquer 
When they stop 
Panting 
They rest 
Like drowsy cows 
—Locomotives, by R. de L. Furtado (in The Centre 1955) 

4. We do a car/cdr walk to allow "rest" variables, i.e., (Foo . ?x) can match (Foo 1 2) 
and (Foo 1 2 3) with ?x = (1 2) and ?x = (1 2 3) respectively. 
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Good solution 	Bad solution 

Figure 5.3 The N-queens puzzle. This simple puzzle is commonly used to 
illustrate issues in combinatorial searches. 

A classic example of combinatorial search is the N-queens puzzle. The 
question is simple: Given an N x N chessboard and N queens, how many 
ways can you place the queens on the board so that none of them can 
capture any other? For N < 4 the answer is zero, that is, it cannot be 
done. For N = 4 there are two ways (see Figure 5.3), and the number of 
legal combinations rapidly goes up with N. The rapid growth in solutions 
combined with its simplicity of statement makes this an ever-popular toy 
example for programming. 

The files f queens . lisp and fqrule . lisp provide one encoding of 
this puzzle for FTRE. A chessboard is encoded as a two-dimensional grid, 
with zero as the starting coordinate for both rows and columns. Since we 
know that placing two queens in the same row cannot be a legal solution, 
we simply identify each queen with a row. The problem becomes finding 
consistent column placements for each queen. Conceptually, we can view 
the set of alternative placements for the queen as a choice set, and each 
legal placement as a consistent combination of choices from each choice 
set. 

The idea of choice sets as a method of organizing searches in prob-
lem solving is very powerful and is widely used in practice. The general 
principles are: 

1. Each choice set represents some factor or aspect which must appear 
in any complete solution. 

2. Within each choice set, the choices are mutually exclusive and collec-
tively exhaustive. 

3. The collection of choice sets must span the set of possible solutions: 
that is, every solution can be found by a consistent set of selections, 
one from each choice set. 
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4. The converse is also true: Every consistent set of selections, one from 
each choice set, is a solution to the problem. Said another way, the 
span of the choice sets must be no larger than the space of solutions. 

Understanding a problem well enough to carve it up into a collection of 
choice sets is a key step in formulating it. In puzzles (like N-queens) the 
decomposition is often obvious. For more complex problems, such as 
planning and design, figuring out the right set of constraints to narrow 
the problem down to one whose choice sets are obvious is a major part 
of their difficulty. 

Once we have broken a problem down into a collection of choice sets, 
one way to solve it is by chronological search. Abstractly, we can describe 
chronological search as follows: 

(defun Chrono (choice-sets) 
(if (null choice-sets) (record-solution) 

(dolist (choice (first choice-sets)) 
(while-assuming choice 

(if (consistent?) 
(Chrono (rest choice-sets))))))) 

where 

■ record-solution is executed whenever a consistent set of choices 
has been made, to store the results before trying another combina-
tion. 

■ while-assuming makes the particular choice, retracting it when its 
body is finished executing. 

■ consistent? tests the choices so far for consistency. 

The first step in instantiating this abstract procedure is to choose a 
representation for the queens. The assertion (Queen ?I ?J) indicates 
that the queen of row ?I is placed in column ?J. The routine queens-
okay? uses this encoding to determine whether the coordinates of two 
queens imply the potential for capture. This routine is used by the FTRE 
rule in f qrule . lisp to assert the symbol Contradiction if two queens 
are ever discovered to be in mutual peril. 

Given N, the routine n-queens finds all consistent solutions. It begins 
by calling setup-queens-puzzle, which creates an FTRE and initializes 
*n-assumptions* to keep statistics and *placements* to store solu- 
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Table 5.1 
Performance of FTRE on N-queens. Times are for an IBM RT model 125, 
running Lucid Common Lisp. 

N # SoIn's # Asns Time 

4 2 60 0.55 
5 10 220 1.33 
6 4 894 5.13 
7 40 3,584 20.23 
8 92 15,720 95.13 

tions. setup-queens-puzzle then loads the capture rule. The procedure 
make-queens-choice-sets is called to create the choice sets which are 
then passed to solve-queens-puzzle. make-queens-choice-sets is 
straightforward, computing a list of choice sets, each encoded by a list 
of patterns involving a row's queen. 

solve-queens-puzzle does the real work. It begins by checking if 
the last placement led to a capture by seeing if contradiction is be-
lieved. (Notice that on the first call to solve-queens we start with an 
empty board and so this can't occur, but no harm is done, either.) If 
the last placement led to a capture, we simply return without doing any 
further work. Otherwise, solve-queens checks to see if any choice sets 
remain. If there are more choices to be made, the first choice set is se-
lected and each alternative is tried in turn (via the dolist over (car 
choice-sets)). Notice that the form we ask try-in-context to execute 
is another call to solve-queens, with the rest of the choice sets. This is 
the heart of the search. Finally, when no more choice sets remain to be 
explored, we have a consistent solution to the puzzle, and all currently 
believed Queen assertions are pushed onto *placements* to record this 
fact. 

The strategy used by this system is known as chronological backtrack-
ing. It is called that because when an inconsistency is found the program 
backs up to the very last choice that was made. We were careful in this 
system to ensure that contradictions would be detected as soon as pos-
sible, so in fact the last choice was indeed relevant. As we see later, this 
is not always easy to do. 

How well does this system perform? Running times of course depend 
on the specific combination of hardware and software used. But the num-
ber of capture tests and assumptions made are a property of the algo- 
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rithm itself, and thus give us a machine-independent way to characterize 
its behavior. The variable *n-assumptions* records this information for 
each FTRE run. (For concreteness, some sample run times are included in 
Table 5.1 as well.) Clearly, exploring each assumption takes time, both to 
compute its consequences and to test the result for consistency. So these 
figures will give us some estimate of how run time changes as N grows. 

Figure 5.4 plots how run time and assumptions explored grows with N. 
The curve is clearly an exponential, as one might expect from a combina-
torial search problem. Even in this simple puzzle lurks the nemesis of all 
problem-solvers: combinatorial explosion. In later chapters we see how 
dependency-directed search allows one to ameliorate this problem. 

In N-queens, the exponential is inherent in the problem: there are sim-
ply an exponential number of solutions. In other problems, even when 
there is a single solution it can take exponential work to find it. No code 
optimization, no faster clock rate, no increment of parallel processing 
will overcome the computational demands of an exponential procedure 
in the long run. The best you can do is figure out how to formulate your 
problem so that you either eliminate the exponential (perhaps by settling 
for approximate solutions) or keep its growth as small as possible. 

5.3.2 Example: A full implementation of KM* 

In Chapter 4 we saw that the inference rules of a natural deduction sys-
tem could be easily mapped into the rules of a pattern-directed inference 
system. However, we could not completely implement KM*, since we had 
no mechanism for manipulating assumptions. Our new context mecha-
nism allows us to complete the implementation of KM*. 

Recall that three inference rules require temporary assumptions: 
INDIRECT PROOF, NOT INTRODUCTION, and CONDITIONAL INTRODUCTION. Let us be-
gin with INDIRECT PROOF. Its form is: 

0,6E4 P 	(IP i j k) 
(not P) asn 
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where P is what is to be proven and Q is some arbitrary fact embroiled 
in a contradiction, presumably as a consequence of assuming (not P). 
Since the notion of a contradiction is generally interesting, it is worth 
encoding contradiction detection as a distinct rule. In this case we will 
predicate its operation on the desire to show a contradiction. This desire 
is expressed by asserting (show contradiction). (In many other cir-
cumstances, it is advantageous to have contradiction detection occurring 
antecedently. One example is checking consistency of data from multiple 
sources.) The following rule suffices: 

(rule ((show contradiction) 	;; When trying to detect contradictions 
(not ?p) 	 ;; and you find a negative term 
?p) 	 ;; and you believe the positive term, too 

(rassert ! contradiction)) ;; Then you have a contradiction 

Notice that we must put the trigger for (not ?p) before the trigger for 
?p in order for the class of ?p to be bound when spawning the (implicit) 
innermost rule. Actually this is a good idea in any case: typically there 
will be many more positive terms than negative ones. Control assertions, 
for instance, are positive terms whose negations make little sense, so 
spawning rules to look for their negations is a gross waste of resources. 
(Amusingly, at least one early pattern-directed inference system did ex-
actly this!) 

The contradiction rule gives us a means of detecting when an indirect 
proof succeeds. Now we have to define a rule which (1) detects when indi-
rect proof is an appropriate technique to try and (2) sets up a temporary 
context in which to try it. The latter is easy; we can simply call seek-
in-context with the negation of the fact to be shown as the assumption 
and contradiction as our goal. Figuring out just when we want to do 
indirect proof is a little harder. 

Let ?p be the proposition to be proven. One obvious intuition is that 
we should not attempt an indirect proof if we already believe ?p. The 
discipline of show assertions isn't quite enough to guarantee this, since 
even if we succeed in proving something the show assertion remains 
in force. All we have to do is try fetching ?p, and if it is already in 
the database, abort the attempt to use indirect proof. This tactic is also 
useful for implementing other intuitions about when not to use indirect 
proof. For example, indirect proof doesn't make sense for some kinds 
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of assertions. Suppose, for example, that ?p is an implication. Trying 
indirect proof on an implication probably won't do much good. Why? 
There generally isn't much one can conclude in KM* from the negation 
of an implication. No proof rules mention them, for example. Could it 
be used for getting a contradiction directly? This is unlikely, unless you 
already believed ?p itself, in which case we shouldn't be doing an indirect 
proof. 

We can take this argument farther. Each connective already has an 
associated introduction rule for demonstrating propositions using that 
connective. Thus we might as well restrict indirect proof to simple propo-
sitions, namely those not involving connectives. (This is not the same as 
restricting it to atomic terms, of course: (Left-Of X Y) for instance is 
a simple proposition, since its functor is not a connective.) 

There is yet one more restriction to make. Viewed syntactically, con-
tradiction is itself a simple proposition. But using indirect proof to 
show contradiction doesn't make sense, since it is part of the mech-
anism of indirect proof itself. With these restrictions, the rule for INDIRECT 
PROOF becomes: 

(a-rule ((show ?p)) 
(unless (or (fetch ?p) 

(eq ?p 'contradiction) 
(not (simple-proposition? ?p))) 

(when (seek-in-context '(not ,?p) 'contradiction) 
(rassert! ?p)))) 

The fact that INDIRECT PROOF is encoded with a-rule means it will be tried 
only if other rules failed to prove it. The rule for NEGATION INTRODUCTION is 
very similar: 

(a-rule ((show (not ?p))) 
(unless (or (fetch '(not ,?p)) 

(eq ?p 'contradiction)) 
(when (seek-in-context ?p 'contradiction) 

(rassert! (not ?p))))) 

Here restricting ?p to simple propositions doesn't make sense, since the 
assumption will (presumably) be a positive term which might indeed be 
proven by some other rule. 
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CONDITIONAL INTRODUCTION is very similar to INDIRECT PROOF and NEGATION 
INTRODUCTION. The intent is to demonstrate that by assuming the an-
tecedent one can derive the consequent. Given (implies ?p ?q), clearly 
assuming ?p and looking for ?q will do the trick. However, there is 
an important optimization we can make. Suppose in the context of ?p 
we derive contradiction. Then we should claim success in this case 
as well. After all, we could in principle use INDIRECT PROOF (or NEGATION 
INTRODUCTION, depending on ?q's form) to show ?q in one more step. This 
gives us the following rule for CONDITIONAL INTRODUCTION: 

(a-rule ((show (implies ?p ?q))) 	;; Conditional Introduction 
(unless (fetch (implies ,?p ,?q)) ;; Punt if already known 

(when (seek-in-context ?p 	;; o.w. assume the antecedent 
(or ,?q contradiction)) ;; And look for consequent 

(rassert! (implies ?p ?q))))) 

This rule relies on our rule for OR INTRODUCTION, defined in Chapter 4, to 
decompose the disjunctive goal and express interest in its parts. 

These rules, combined with the KM* rules from Chapter 4, provide an 
implementation of KM* with considerable power. For good engineering, 
we need two more things. First, we need to instrument our rules. That 
is, we should add statements that can be switched on when debugging 
to provide more information, and switched off when operating normally. 
We can do this by including format statements, conditionalized by a 
global variable such as *debug-nd*. The macro debug-nd provides a civ-
ilized interface. Second, we need to develop a suite of test cases designed 
to give each rule a workout. The instrumented rules can be found in the 
file fnd. lisp, while the file fnd-ex. lisp provides a suite of test cases. 
The test cases all have a common form: setup-ftre creates a new FTRE 
and loads the rule set, and then the assertions that define the problem 
are evaluated by run-forms, which unleashes the rules on them. Exam-
ples exi through ex5 provide simple checks of the basic rules. Examples 
ex6 through ex9 provide more substantial fare, with all but ex6 being ex-
amples from Chapter 4. By studying FTRE's behavior on these examples, 
one can gain useful insights into the construction of pattern-directed in-
ference systems. 
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5.4 Reprise 

This chapter carries the simple antecedent pattern-directed inference 
system model about as far as it can go. We have seen that by using 
some simple macros it is possible to provide "syntactic sugar" which sim-
plifies the rule author's work. We also saw techniques for speeding up 
such rules, by turning them into compilable procedures and open-coding 
pattern matching. Finally, we saw how temporary assumptions could be 
introduced and manipulated via a stack discipline. This simple context 
mechanism provided the basis for searching through board placements 
in the N-queens problem and searching through possible assumptions in 
finding natural deduction proofs. 

One of the key ideas of this chapter is the notion of logical environ-
ment. Recall that we defined a logical environment as the set of as-
sertions believed at some particular point in a computation. The stack-
based context mechanism used in FTRE provides the simplest mecha-
nism for controlled introduction and retraction of temporary assump-
tions and their consequences, and thus for manipulating logical envi-
ronments. However, it has certain important disadvantages. First, the 
choice of a stack limits us to depth-first search. Often other search strate-
gies would be more appropriate. Implementing any other search strategy 
would require substantial changes to the system. Another disadvantage 
of the stack mechanism is that it provides no means for caching the re-
sults of rule firings. This means the system must rederive what follows 
from an assumption each time it is reintroduced. 

One obvious method that overcomes part of these problems would be 
to generalize the assumption stack into a tree. Switching between con-
texts then would only require changing pointers into a different logical 
environments Many inefficiencies would remain, however. For example, 
the same logical environment could show up in many different branches, 
due to assumptions being introduced in different orders. In each case the 
same rules would be run over and over again, rederiving the same conse-
quences. Truth maintenance systems, which we begin to explore in the 
next chapter, provide better ways to manipulate logical environments, as 

5. This is essentially the strategy used in the CONNIVER language of the 1970s. 
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well as providing other advantages. Consequently, we turn our attention 
to them. 

5.5 Backpointers 

The idea of open-coding unification was invented by David Warren, in the 
DEC-10 Prolog compiler [5]. Our discipline of show assertions to provide 
more explicit control of reasoning derives from [2]. 

5.6 Exercises 

1. * Consider the first two tests in the match procedures in Figure 5.2, 
i.e., (consp p) and the equality check for the car. Are these tests 
really necessary, given the class structure? 

2. * Notice that do-rule signals an error if an assumption-making rule 
has multiple triggers. Why is this a good idea? 

3. * Explain why the following two rules are not equivalent, and explain 
the advantages and disadvantages of each. 

Indirect Proof, Version 1: 

(a-rule ((show ?p)) 
(unless (or (fetch ?p) 

(eq ?p 'contradiction) 
(not (simple-proposition? ?p))) 

(when (seek-in-context '(not ,?p) 'contradiction) 
(rassert! ?p)))) 

Indirect Proof, Version 2: 

(a-rule ((show ?p) 
:test (and (not (fetch ?p)) 

(not (eq ?p 'contradiction)) 
(simple-proposition? ?p))) 

(when (seek-in-context '(not ,?p) 'contradiction) 
(rassert! ?p))) 
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4. * * Suppose we wanted to avoid the linear search through the 
rule and data stacks when matching. One way to do this is to make 
the facts and rules field of each dbclass into stacks. Implement 
this scheme, analyze its complexity, and determine experimentally 
whether it is more efficient than centralized stacks. 

5. ** A purist might argue that the use of any task-specific Lisp code 
is not appropriate in building problem solvers on top of a good 
PDIS system. Explore this claim by implementing an N-queens puz-
zle solver entirely within FTRE rules. That is, the FTRE database 
should be used for all side effects and intermediate results, and the 
amount of non-FTRE primitves used in the bodies of rules should be 
minimized. How does this system compare with the system of Sec-
tion 5.3.1? 

6. * Suppose someone wished to add a new kind of rule which would 
be executed only when no assertion in the database matched its trig-
ger pattern. What could such a rule be used for, and how hard would 
it be to implement? 

7. * Show a case where the heuristic for choosing the most efficient 
expression for computing the value of a newly bound variable in 
generate-match-body will fail. How could we guarantee that the 
most efficient choice is always made? Is it worth it? 

8. * rlet does not check to ensure that the variables it binds are 
actually FTRE variables. Is this a problem? 

9. * * The implementation of rules in FTRE requires problem-solver de-
signers to define not just what triggers a rule should have, but also 
what order they will be tested in. Implement a rule system which au-
tomatically reorders rule triggers to maximize efficiency, and explain 
the trade-offs involved in manual versus automatic ordering of trig-
ger conditions. 

10. Consider the use of *bound-vars* in build-rule. The match pro-
cedure doesn't need the value of every pattern variable bound so far, 
it really only requires variables mentioned in the trigger. So in some 
cases we are building procedures with unused arguments, and pass-
ing around more information than we need to. 
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a. * Can passing around this extra information ever lead to incor-
rect results? 

b. * * Modify the code so that match procedures expect and receive 
only the information they strictly need. 

c. * Is this optimization worthwhile? 

d. * Can a similar optimization be performed for the body proce-
dure? Why or why not? 

11. The current method for open-coding unification only supports asser-
tions consisting of symbols, conses, and integers. 

a. * * Extend generate-unify-tests to handle comparisons be-
tween floating-point numbers. 

b. * * Extend generate-unify-tests to allow user-defined types 
and identity tests. Your extension should allow someone else to 
define strings, arrays, or even structs, as constituents of patterns. 

c. * What danger(s) is there in extending the constituents of asser-
tions to be arbitrary datastructures? 

12. As mentioned in Section 5.1.3, other kinds of resource bounds could 
be imposed on FTRE. One such resource bound is limiting the total 
number of assumptions an FTRE can explore. 

a. * * Implement a limit on the total number of assumptions that 
can be introduced in an FTRE. 

b. * How does the bound on the total number of assumptions in-
teract with the existing bound on assumption depth? 

13. * * Implement iterative deepening (see Exercise 8 of Chapter 3) in 
FTRE, and evaluate its performance on solving KM* problems. 

14. * * The match procedures produced by FTRE are suboptimal, in the 
sense that many cars and cdrs they execute are redundant. A more 
clever scheme would be to use internal variables which are reset as 
the program walks through the structure. Write a new version of the 
rule code that does this. 

15. * * One problem with choosing to use named procedures as the im-
plementation of rules is that the function cell of symbols in Com-
mon Lisp has infinite extent. Thus if one throws away an FTRE, not 
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all of the memory it used is recovered because the match and body 
procedures remain defined. Build a version of FTRE that avoids this 
problem. 

16. * Consider the goal-detection rule defined in seek-in-context. 
What is the purpose of the test (= *context* ,*context*)? Con-
struct an example where removing this test leads to a problem. 

17. (Premises and goals) The control predicate show allows us to encode 
advice and strategy in rules, thus enabling more explicit control of 
reasoning. Other control predicates can be useful, too. Let us define 
premise as follows: 

premise((x)) is true just in case (x) is believed as an assumption of the 
problem. 

Thus instead of simply assuming P, we wouid assume premise (P) . 
Similarly, goal can be defined as: 

goal((x)) is true just in case (x) is the proposition whose proof is the goal 
of the problem. 

Thus instead of asserting show (P) in our problem statement to in-
dicate our goal, we would instead assert goal (13). As this problem 
illustrates, adding these control predicates can enhance our problem 
solver's performance. 

a. ** Implement the semantics of these new control predicates. 
For each predicate, write a single FTRE rule that does this. 

b. * * One advantage these predicates confer is the ability to auto-
matically tell whether or not you have succeeded in solving the 
user's problem. Write a procedure solved? which takes an FTRE 
and returns non-nil if the user's problem has been solved. 

18. (Tuning up the rule set) The fnd rules do a reasonable job on our test 
cases. However, there is room for considerable improvement. In this 
problem you will build an improved set of rules. 

a. 	* * Begin by making a new version of f nd-ex . lisp, called 
myfnd-ex.lsp, which extends fnd.lisp with the premise and 
goal control predicates you developed in solving Exercise 17. 
Test your rules on our standard examples, indicating (1) which 



149 	 Extending Pattern-Directed Inference Systems 

examples are solved and (2) how many rules are run and how 
many assertions are created for each example. 

b. * For those examples that don't work, figure out why. Describe 
your reasons in a brief paragraph or two. 

c. ** Change your rule set so that it solves all of the examples. 
(Hint: it doesn't take much to do this. An ounce of analysis is 
worth a pound of hacking.) As always, strive for elegance and 
generality in your solution. 

19. The choice of a stack organization for logical environments forces a 
control strategy of depth-first search. Sometimes other search strate-
gies are desirable, such as best-first search or beam search. 

a. * What parts of FTRE would have to be changed to implement a 
context tree? 

b. * ** Design and implement a version of FTRE that supports 
context trees. That is, given a particular context, (1) each a-rule 
that can trigger in it gives rise to a new subcontext and (2) the 
system chooses which "fringe" context to explore next by some 
user-provided criteria. 

c. * * Compare the performance of the tree-based FTRE with that 
of the stack-based FTRE on a suite of natural deduction prob-
lems. Which works more efficiently? 

20. KM* is a purely propositional system. 

a. * * * Extend KM* to handle full first-order predicate calculus by 
adding inference rules for quantifiers. Your extension should fol-
low the existing structure of KW; that is, each quantifier should 
have its own introduction and elimination rules. For instance, 
the universal quantifier for-all requires two rules, UNIVERSAL 
INTRODUCTION and UNIVERSAL ELIMINATION, and the existential quan-
tifier there-is requires EXISTENTIAL INTRODUCTION and EXISTENTIAL 
ELIMINATION. 

b. * * * Implement your extended KM* system, and test it on a 
variety of examples. 
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6 	Introduction to Truth Maintenance 
Systems 

In the previous chapters we explored two pattern-directed inference sys-
tems. We saw how context mechanisms play an important role in prob-
lem solvers and illustrated a stack-oriented context mechanism using 
FTRE. We studied how this stack-oriented context mechanism is used to 
solve the N-queens problem as well as to implement KM*. The stack-
oriented context mechanism allows the problem solver to introduce as-
sumptions, i.e., to add facts to the database which could later be re-
tracted when the context was popped. 

The ability to hypothetically add facts to the database which may 
later be retracted is fundamentally important in problem solving. The 
core reason for this is that most AI tasks cannot be solved in the sim-
ple antecedent-driven way that TRE uses. Sophisticated problem solvers 
are often faced with having to choose among mutually incompatible 
choices with no immediate reason to choose one over the other. To make 
progress, some choice must be made which may later have to be re-
tracted. The context mechanism of FTRE achieves some of the desired 
functionality, and schemes like it were used in many early AI problem 
solvers. Unfortunately, the context mechanisms also suffer from many 
shortcomings. Truth maintenance systems are a general problem-solving 
facility to help inference engines such as TRE and FTRE conveniently and 
efficiently manipulate assumptions. 

This chapter is a general introduction to truth maintenance systems 
and is divided into two major parts. First, we analyze the shortcomings 
faced by systems such as FTRE. Second, we provide a general introduc-
tion to TMSs. The reason for the general introduction is that there are 
several families of truth maintenance systems, each providing somewhat 
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different functionality. In this chapter we give the fundamentals for the 
three main ones, and subsequent chapters deal with each family individ-
ually. 

6.1 Why use a TMS? 

In this section we discuss five general shortcomings in conventional 
problem solvers which are addressed by a TMS. 

6.1.1 Identifying responsibility for conclusions 

A problem solver mustito identify responsibility for its conclusions by 
providing rational explanations of how its conclusions follow from the 
premises. Generally, just providing the answer is not enough. A medi-
cal diagnosis program that suggests cutting a patient's heart out would 
not be listened to unless it explained why. If, for instance, radical bypass 
surgery is necessary for a particular set of reasons, then the user can 
look at those reasons and see if they make sense. Similarly, if you are an 
engineer who has finished a new design for an airplane and your boss 
says only that the design will not work, not only will you be disappointed 
and distressed, but you will not know what to do next. If, however, your 
boss points out that no material will stand the projected stresses im-
posed by your design, then you have a way of going back and perhaps 
modifying your design so that it will work. By providing explanations, the 
problem solver enables the user (or itself) to figure out what to change 
when things go wrong. 

6.1.2 Recovering from inconsistencies 

In an ideal world all the data would be valid and every constraint im-
posed would be perfectly satisfied. Neither we nor our programs live in 
such a world. For example, the data we give our programs can be wrong. 
If a data entry person or machine mistypes the patient's temperature as 
986 degrees, then our diagnosis program should not call the fire depart-
ment. Constraints imposed by the real world can often be unsatisfiable. 
For instance, a venture capitalist funding a start-up company might insist 
that a new computer product run on batteries, fit in a shirt pocket and 
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work faster than a Cray: an unsatisfiable constraint given today's tech-
nology. If you have a way of generating an explanation about why it is 
impossible, then you might be able to make your backer see reason. 

6.1.3 Maintaining a cache of inferences 

As we have seen in preceding chapters, most AI problem solvers search. 
Since they search, they often go over parts of the search space again and 
again. If a problem solver cached its inferences, then it would not need 
to rederive conclusions that it had already derived earlier in the search. 
By not rederiving conclusions, the problem solver avoids throwing away 
useful results and avoids wasting effort rediscovering the same things 
over and over again. The stack-oriented context mechanism of FTRE is 
a classic example of the problem. For example, when an assumption is 
introduced and then later retracted, the effects of all rules executed since 
the assumption was introduced are completely discarded. If that same 
assumption is reintroduced later in the problem-solving process, all this 
work must be repeated. 

These problems are subtle, so an example is worth examining. Con-
sider the graph of potential choices shown in Figure 6.1 which depicts a 
"God's Eye" view of the entire space of alternatives. This is not what the 
problem solver sees, of course. We assume there are three sets of choices 
and that we must pick a choice from each set to form a total solution 
which is then checked for consistency by problem solver. Furthermore, 
each choice set is mutually exclusive. We can choose either A or B, then 
we must choose one of C or D, and then we must choose one of E or F. 
For instance, the choice set A or B might represent a strategy to be taken 
in the design, the choice set C or D might represent the materials out 
of which to build the object, and the choice set E or F might represent 
heuristics for sizing the parts in the design. Suppose that A and C are 
contradictory when taken together, and that B and E are contradictory 
when taken together. 

Given these constraints, the search space contains eight potential so-
lutions, only four of which are consistent. These are also shown in Fig-
ure 6.1. A common technique (used by FTRE, for example) for finding 
consistent solutions is chronological backtracking. Chronological back-
tracking, however, suffers from several problems. Let's assume that the 
combination of choices D and F causes a lot of work (involving, for in-
stance, running a finite element analysis program). 
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A 

E 

{A, C, E} 	{A,D,E} 	{B,C,E} 	{B, D, E) 

(A,C,F) 	IA, D,F) 	{B, C, Fl 	 B,D,F) 

Figure 6.1 The search space is characterized by a sequence of three choices 
—A or B, C or D, E or F. A and C cannot hold together, neither can B and E. 

Suppose search through the set of alternatives of Figure 6.1 proceeds 
depth first from left to right. When the search explores the solution 
{A, D, F} it will perform the expensive computation which depends on 
D and F. Later (see Figure 6.2), the search backtracks to {B, D, Fl and 
the same computation is redone. The problem is that when chronological 
backtracking leaves a context, all information in that context is lost. Even 
though the work that follows from D and F does not depend on the 
choice of A or B, chronological backtracking has no way of recording 
this. We need some way of caching the result, and, more importantly, 
some way of recognizing that the result of the expensive computation 
does not depend on the choice of A or B. 

Chronological backtracking also wastes effort by rediscovering contra-
dictions. Suppose (see Figure 6.3) that the search has reached {B, C, E} 
and noticed that it is inconsistent. Later the search tries {B, D, E} even 
though it is futile. It is important to notice that it is futile because we 
see that B together with E is inconsistent. However, pure chronological 
search can neither recognize this fact nor cache it. If it could, then a lot 
of wasted effort would be saved by never descending in the tree without 
first checking whether the new state would violate a previously encoun-
tered inconsistency. However, to do this the search needs to recognize 
what choices an inconsistency depends on and cache that information 
for later checking. 
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{A, D, F) 
	

(B, D, F) 

Figure 6.2 Chronological backtracking leads to wasted computation. Sup-
pose D and F taken together cause a lot of work (e.g., start up a finite element 
analysis program). All this work will be lost when the context is popped. 

C, E) 	{B,D,E) 

{B,C,F} 	{B, D, F} 

Figure 6.3 Chronological backtracking leads to rediscovering contradic-
tions. Trying B with E is always a waste of effort, since B and E taken together 
are contradictory. 
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Better tactic 

Figure 6.4 Guiding backtracking. Recall that A and C are contradictory. 

6.1.4 Guiding backtracking 

Historically, futile backtracking was the catalyst for the invention of 
truth maintenance systems. Suppose the search (see Figure 6.4) detected 
an inconsistency while exploring the solution {A, C, E}. This inconsis-
tency is caused by the fact that choices A and C are incompatible with 
each other. Chronological backtracking, as the name implies, backtracks 
to the most recent choice the search has made and explores the next al-
ternative, namely F. Exploring {A, C, F} is futile because it too contains 
the contradictory pair A and C. If somehow we could detect the choices 
an inconsistency depended on, then the backtracker could backtrack to 
the most recent choice contributing to the contradiction. This strategy, 
called dependency-directed backtracking, is made possible by truth main-
tenance systems. 

6.1.5 Default reasoning 

Many Al applications require the problem solver to make conclusions 
based on insufficient information. The generic solution is to assume x 
unless there is some evidence to the contrary. The classic example in 
AI is to assume that since Tweety is a bird, Tweety can fly. Tweety can, 
of course, unless Tweety is a penguin or is broiled, stir-fried, baked, a 
statue, dead, stuffed, or in any of a number of unfortunate conditions. 
Therefore to prove Tweety can fly requires the problem solver to show 
that Tweety is not a penguin, etc. This may be difficult or impossible 
to show and in most cases the problem solver should simply assume 
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Tweety can fly at the outset, but if any one of these conditions is discov-
ered, the problem solver must be able to retract the inference gracefully. 

Default reasoning occurs in a wide variety of applications aside from 
reasoning about mythical birds. For instance, we often make "closed-
world assumptions" to help constrain our choices. For instance, some-
one designing a computer might decide to use either NMOS or CMOS 
technologies to implement the design. There exist, in fact, a much larger 
variety of technologies, including ECL and so forth, but the designer may 
choose to not consider those at first just to make his search space more 
manageable. Similarly, someone might assume when debugging a car that 
the only possible faults are in the fuel pump or carburetor, even though 
there may be a leak in the engine block. After all, if the leak is in the en-
gine block there is little the person can do directly unless he or she is a 
mechanic with access to a lot of spare parts. 

6.2 What is a TMS? 

The motivations analyzed in the previous section guided invention of 
truth maintenance systems in the mid-1970s [1, 5]. Since then TMSs 
have become a common and very widely used piece of AI technology. 
For example, they are used in qualitative simulation, analog circuit de-
sign and analysis systems, temporal reasoning, diagnosis, ITS systems, 
knowledge representation languages, rule-based deduction systems, and 
constraint languages, as well as in many commercially available expert 
system shells such as KEE and ART. 

The fundamental architectural observation is that the problem solver 
can be decomposed into two parts: an inference engine and a TMS (see 
Figure 6.5). This natural partitioning of concerns allows the inference en-
gine to focus on drawing inferences within the task domain and the TMS 
to focus on beliefs, assumptions, and contexts (Section 6.3.6 lists the 
possible transactions). The result is a much simpler and more efficient 
problem solver. 

6.2.1 How do TMSs help? 

During problem solving, the inference engine and the TMS continuously 
interact in a well-defined protocol which is described in the following 
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Figure 6.5 Problem solver = inference engine + TMS 

sections and chapters. Every important inference made by the inference 
engine is communicated to the TMS as a justification (defined more pre-
cisely later). The justifications recorded by the TMS allow the problem 
solver to cope with five issues raised in Section 6.1. 

1. The problem solver generates explanations by tracing the justifica-
tions for a belief. 

2. To recover from inconsistencies, the problem solver traces backward 
through the justifications to identify the source of a bad conclusion. 

3. The justifications cache information about what doesn't work as well 
as what does work, thus providing a cache that helps control the 
search. 

4. The justifications pinpoint the assumptions underlying contradic-
tions, and therefore identify the optimal backtrack point. 

5. Since justifications can include explicit assumptions that, for in-
stance, nothing is abnormal about Tweety, the problem solver can 
use the TMS to manipulate assumptions and to do default reasoning. 

6.2.2 When are TMSs useful? 

TMSs make three kinds of contributions to problem solving: (1) they pro-
vide a general framework which makes it easier to build many kinds of 
problem solvers, (2) they enable additional functionality such as explana-
tion generation, and (3) they can improve the overall efficiency. Although 
a TMS provides an extremely useful problem-solving facility, it is not 
always appropriate to use one. There are many cases in which a TMS 
reduces the overall efficiency of the problem solver. Here are two such 
cases. 
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A fundamental assumption of a TMS is that consulting a set of cached 
inferences is more efficient than rerunning the inference rules that gen-
erated them in the first place. If, however, the inference rules are very 
inexpensive and the task does not require an exponential number of 
them, then a TMS is probably inappropriate. For example, connecting a 
TMS to a PROLOG interpreter is a bad idea for most applications. All the 
advantages of a TMS notwithstanding, on average it will substantially de-
grade PROLOG performance. Of course, one can find PROLOG programs 
that would perform better with a TMS, but such examples are rare. 

The second area in which TMSs can hurt arises because they enforce 
a very rigid form of rationality: a fact cannot be removed from a con-
text if it has a perfectly good justification for being there. TMSs only 
remove belief in facts that no longer have a good justification. There-
fore, to retract a fact, one must somehow defeat its justifications. This 
discipline makes it relatively difficult to implement systems written in 
an OPS5-like fashion which frequently and arbitrarily retract facts. Al-
though OPS5-like retraction can be implemented indirectly using a TMS, 
the result is relatively inefficient because TMSs keep all old inactive jus-
tifications around in case their antecedents become believed again. Thus 
the problem solver's database becomes filled with justifications and facts 
which have become irrelevant. 

-6.3 The basics of truth maintenance systems 

In this section we define many of the concepts and terminology required 
to understand all the different kinds of TMSs presented in later chapters. 

6.3.1 Establishing a common vocabulary between the inference 
engine and the TMS 

In order for the inference engine and the TMS to communicate, a com-
mon ground must be established. Every important problem-solver datum 
(which may include assertions, facts, inference rules, and procedures) 
must be assigned a TMS node. Thus, in the implementation, the data-
structure for a datum points to the associated TMS node, and the data-
structure for a node points to the associated problem solver datum. The 
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responsibility for establishing this connection rests with the inference 
engine. 

All communication between the inference engine and the TMS is in 
terms of these nodes. It is important to note that the TMS and the infer-
ence engine interpret the nodes quite differently. To the problem solver 
the nodes represent data from which it can draw inferences. For example, 
suppose node N0001 has as its datum the inference engine rule, 

N0001: 
(rule (Graduate-Student ?x) 

(assert (and (Underpaid ?x) (Overworked ?x)))) 

and node N0002 has as its datum the assertion, 

N0002: 
(Graduate-Student Robbie). 

The inference engine can now deduce (let's say it is the datum of node 
N0003), 

N0003: 
(and (Underpaid Robbie) (Overworked Robbie)). 

The TMS cannot directly make these deductions as it may not examine 
the datum of a node. However, if the inference engine informs the TMS 
that N0003 follows from the conjunction of N0001 and N0002, then it can. 
We see how in a moment. 

6.3.2 Node properties 

The different TMSs allow various kinds of nodes. The space of possible 
node types is best understood by considering three properties (note that 
no matter what properties a node has, it can always have justifications). 

■ A node is a premise if the inference engine has explicitly indicated 
that it holds universally. 

■ A node is a contradiction if the inference engine has indicated that it 
can never hold. Contradictions can never be changed. In most TMSs, 
when a contradiction is discovered, the inference engine is inter-
rupted. 

■ An assumption is a node which the problem solver has, for the mo- 
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ment, chosen to believe whether or not it has any supporting justifi-
cation. Assumption nodes are typically used to represent data which 
the inference engine prefers to believe but which it may want to re-
tract later. For example, "the federal budget is unbalanced" is an 
assumption that may change with time. 

Although at first blush these properties seem mutually exclusive, they 
need not be. As there are three possible properties, there are conceivably 
eight different types of nodes—some combinations are more useful than 
others. The typical node has none of the three properties—it will become 
believed only when it receives a valid justification. All TMS implementa-
tions allow one to select the properties of a node when it is first created, 
and most restrict subsequent changes. 

6.3.3 Justifications 

The deductions the inference engine makes are communicated to the 
TMS as constraints or conditions on the nodes. The simplest such con-
straint is the justification. For example, the preceding deduction of 

(and (Underpaid Robbie) (Overworked Robbie)) 

must be communicated to the TMS as a justification. A justification con-
sists of three parts: 

■ The consequent is the node of the inference engine datum which was 
inferred. 

■ The antecedents are the nodes of the data used as antecedents to the 
inference rule. 

■ The informant is supplied by the inference engine to explain the 
inference in more detail. The informant has no effect on TMS algo-
rithms, but the TMS must record it and supply it to the inference 
engine when requested. 

Justifications are typically written as 

((consequent) (informant) . (antecedents)) 

Thus, the preceding inference about Robbie might be represented as: 

(N0003 MODUS-PONENS N0002 N0001). 
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Figure 6.6 Dependency networks: Graphical notation. The node properties 
allow for eight distinct types of nodes, however, it is hard to notate all these 
possibilities. We adopt the convention that an assumption node which also 
is a premise or a contradiction, is notated as a premise or a contradiction. 
Nodes which are both premises and contradictions (admittedly rare) are rep-
resented by superimposing their icons. 

CONSEQUENCES 

Figure 6.7 Dependency network structure 

A set of nodes and justifications form a dependency network. Fig-
ure 6.6 outlines the graphical notation we use to represent dependency 
graphs. 

Figure 6.7 illustrates a fragment of a dependency network. The node IE 
DATUM has three distinct justifications and appears as an antecedent in 
four justifications. 
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6.3.4 Labels 

All the TMS implementations presented in this book associate a label 
with each node (most TMS implementations in the research literature use 
labels also). The TMS uses the label to store its representation of the 
current belief in this node. There is no hard and fast rule about what 
this label looks like—each TMS family represents labels differently. For 
example, in the simplest TMS (a JTMS) this label is either : IN or : OUT. 
A node is labeled : OUT unless one can construct an argument using the 
dependency network starting from premises and assumptions leading to 
belief in the node. 

6.3.5 Representing TMS data 

The TMS permanently stores every justification it is provided. Each TMS 
has a complex datastructure for representing nodes which allows it to 
represent the dependency network as well as the important node proper-
ties. For most TMS implementations we see the following properties: 

datum Supplied by the inference engine. 

label Represents current belief status of the node. 

justifications The set of justifications which could provide support for 
this node. 

consequences The set of justifications which use this node as an an-
tecedent. 

contradictory? If non-nil, this field indicates that belief in this node 
represents a contradiction. 

assumption? If non-nil, this field indicates that this node should be 
treated as an assumption whose belief can be explicitly enabled and 
retracted by the inference engine. 

premise? If non-nil, this field indicates that this node is a premise. 

Some TMSs do not explicitly represent all node properties, so these 
fields may be absent. Also, some TMSs (e.g., the LTMS) combine conse-
quences and justifications. 
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6.3.6 Basic TMS-inference engine transactions 

All TMSs support the following four basic actions (see Figure 6.5): 

1. Upon request, the TMS creates a node with the specified properties. 

2. The TMS accepts records of inference engine deductions (usually the 
justifications). 

3. The TMS maintains the correct labels for nodes and supplies them on 
request. 

4. When a contradiction is detected, the inference engine is signaled. 

5. The TMS accepts rules from the inference engine to be scheduled for 
execution when particular belief conditions are met. 

6.4 How justifications help 

One should note that the elementary justification structures just outlined 
are sufficient to address two of the issues raised in Section 6.1. First, the 
convention of recording justifications for deductions allows a problem 
solver incorporating a TMS to generate explanations for its conclusions 
(see Section 6.1.1). Second, building a dependency structure is enough to 
avoid the backtracking problems discussed in Section 6.1.4. The justifica-
tions are also important to achieve the other three goals, but we discuss 
those in the context of specific TMSs. 

6.4.1 Identifying responsibility for conclusions 

Suppose a problem solver constructed a dependency network for the 
facts associated with Socrates' death (Figure 6.8). 

By just tracing through the dependency structure the problem solver 
can construct the following explanation: "Socrates died because he was 
mortal and drank poison, and all mortals die when they drink poison. 
Socrates was mortal because he was a man and all men are mortal. 
Socrates drank poison because he held dissident beliefs, the government 
was conservative, and those holding dissident beliefs under conservative 
governments must drink poison." 
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Figure 6.8 Constructing explanations for conclusions 
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6.4.2 Guiding backtracking with a TMS 

Consider a simple backtracking problem solver which has introduced 
assumptions and drawn inferences as illustrated in Figure 6.9. The ver-
tical axis indicates the time at which assumptions and nodes become 
believed: First assumption A is introduced, then assumption C is intro-
duced, then assumption E is introduced, then node g is concluded, then 
node h is concluded, and then a contradiction is detected. Chronological 
backtracking would retract E, the most recent assumption. However, by 
consulting the dependency structure of Figure 6.9 the problem solver can 
recognize that the most recent assumption upon which the contradiction 
depends is C and therefore C should be retracted. This is an example of 
dependency-directed backtracking, mentioned earlier. 

A common argument raised against dependency-directed backtrack-
ing is that futile backtracking in chronological search can be avoided 
by reorganizing the search. In our previous example, for instance, the 
search program could have detected the contradiction before introducing 
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Figure 6.9 Guiding backtracking with a TMS 

E. Clearly such reorganizations should be done if at all possible. How-
ever, there are many cases where such reorganizations are not feasible. 
Even when they are feasible, it may not always be efficient to run every 
rule to completion: the addition of new data or new rules, for instance, 
may completely invalidate existing rules. In general, dependency-directed 
search provides a relatively efficient means for searching complex prob-
lem spaces whose structure is poorly understood. 

6.5 The propositional specification of a TMS 

The inferential import of all the TMSs presented in this book can be 
specified to a large degree using the propositional calculus. This section 
provides basic underpinnings for such specifications, and we elaborate 
on this basic model for each specific TMS in subsequent chapters. Every 
TMS node can be interpreted as a propositional symbol. Every justifica-
tion can be interpreted as a simple propositional definite clause. If nodes 

, xm  justify node n, then this is represented by the clause: 
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v • • • v -,xm v n, 

which is equivalent to the material implication: 

Xi A • • • A Xm  n. 

In addition, the inference engine has specified that some nodes are 
premises, assumptions, and contradictions. These specifications can be 
logically viewed as additional clauses. The premise n is specified by the 
unit clause n. The contradiction n can be (but isn't in all TMSs) specified 
by the negative clause 

Every TMS answers a variety of different queries about the current set 
of justifications, premises, and assumptions, but all can be formulated 
within (or within a version of) the propositional calculus. The most fun-
damental query is whether a node logically follows from the current TMS 
database state. For the simple TMSs where justifications are only defi-
nite clauses, it is relatively easy to design efficient algorithms. However, 
if justifications are extended to arbitrary clauses, it can be very expen-
sive to design correct algorithms. Therefore, as we shall see, many TMS 
implementations forgo logical completeness. 

6.6 Families of TMSs 

There are several different families of truth maintenance systems. Each 
type partitions problem-solving concerns somewhat differently, and 
hence supports different types of problem solver-inference engine in-
teractions. Within each family there remain a large number of design 
alternatives. As a result there are many unexplored combinations of op-
tions. 

Nevertheless it is possible to lay out the different families of TMSs 
along two dimensions (Figure 6.10). The vertial dimension concerns the 
type of constraint that the inference engine is permitted to express 
among the nodes. So far we have only seen the definite clause justifi-
cation, but we can see logically that many other types of constraints are 
possible. The three basic possibilities are: (1) Horn or definite clauses 
(e.g., justifications), (2) non-monotonic justifications, and (3) arbitrary 
clauses. The horizontal dimension is the kind of query the TMS is ex-
pected to answer efficiently. For example, the simple label TMSs are 
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Figure 6.10 Families of TMSs 

designed to efficiently answer the query of whether a node follows from 
the current TMS database state. 

The main families of TMS are as follows: 

■ Justification-based truth maintenance systems (abbreviated JTMS). 
These systems are the very simplest type of TMS upon which all 
others are based. A typical JTMS can only represent definite clauses 
supplied by the inference engine. 

• Logic-based truth maintenance systems (abbreviated LTMS). Unlike 
the JTMS, the LTMS allows negation to be expressed explicitly and 
therefore can represent any propositional calculus formula. Other-
wise, the JTMS and LTMS are very similar. 

• Assumption-based truth maintenance systems (abbreviated ATMS). 
The ATMS is like a JTMS but allows the problem solver to make 
inferences in multiple contexts at once. The typical ATMS can only 
represent Horn clauses supplied by the inference engine. 

• Non-monotonic justification-based truth maintenance systems (abbre-
viated NMJTMS). An NMJTMS is much like a JTMS except that it ac-
cepts non-monotonic justifications. These systems are surprisingly 
hard to use and therefore have limited utility. Historically they were 
the first systems actually called "truth maintenance systems," al-
though the capability was evident in some earlier systems [2, 5]. 
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• Clause management systems (abbreviated CMS) . A CMS is much like 
an ATMS but can represent any propositional calculus formula. 

In this book we focus on the JTMS, LTMS, and ATMS. For this intro-
ductory book, the complexity of the NMJTMS and CMS outweighs their 
utility. In choosing a TMS it should be noted that, in principle, every type 
of TMS is logically powerful enough to simulate the other kinds (see [3, 
4]). For example, a JTMS can be used to simulate an ATMS. This obser-
vation, although logically correct, is pointless in practical terms because 
each TMS is designed to answer a certain pattern of queries more directly 
and efficiently than others. 

The selection of which TMS is most appropriate to a task remains an 
art. We hope this book provides the reader some insights about which 
kind of TMS to choose. The first principle is that one should use the 
simplest TMS that naturally matches the task. The reason for this is that 
the more complex TMSs are likely to spend a great deal of computation 
on aspects irrelevant to the task. The list of TMSs above is organized 
roughly in order of complexity. 

We can also see two fundamental criteria directly in Figure 6.10. Often 
the task will specify what kinds of constraints the TMS must be able to 
represent. In most cases we've found that the justification (and hence the 
JTMS or ATMS) is adequate. Choosing the horizontal dimension is much 
more difficult. Two considerations which indicate that a complex-label 
TMS would be preferable are: (1) whether the task requires finding most 
or all solutions, and (2) whether the number of context changes is far 
greater than the number of queries about node labels. 

6.7 Exercises 

1. 	* Even multiplication can be viewed as inference. For example, a 
problem-solving task might require multiplying x and y to produce 
z. Describe how a TMS would be used to record this multiplication. 
Describe a task where using a TMS to record multiplications pro-
duces a 1010  speedup. On average, do you think treating multiplica-
tion as inference is a good idea? 
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2. 	* * The simplest kind of TMS only accepts justifications as inputs 
and does not use premises, contradictions, or assumptions. Write a 
simple TMS with these properties. When would such a TMS be useful? 
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7 	Justification-Based Truth 
Maintenance Systems 

In this chapter we discuss the JTMS family of TMSs and present one 
particular implementation of the JTMS. The "justification" in the name 
comes from the fact that the only logical constraint this type of TMS 
allows is the justification, i.e., a definite clause as defined in Section 6.5. 
The JTMS is the simplest and most commonly used family of TMSs. 

7.1 JTMS node properties 

Our JTMS architecture represents the three generic TMS node properties 
as follows: 

■ A node is a premise if the inference engine has provided it with a 
justification with no antecedents. Premises are therefore not distin-
guished from other nodes in the architecture. 

■ A node is a contradiction if the inference engine has explicitly desig-
nated it so. Believing a contradiction has no effect on the JTMS oper-
ations. It is the inference engine's job to ensure that contradictions 
are not believed. The JTMS will simply inform the inference engine 
when a contradictory node becomes believed. 

■ A node is an assumption if the inference engine has explicitly desig-
nated it so. An assumption is enabled if the inference engine has sig-
naled the TMS that it chooses to believe it. Otherwise the assumption 
is retracted and treated as any other node—i.e., it will be believed 
only if it has a valid justification. Note that a node which is both an 
assumption and a premise is retracted and believed. 
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It would be possible to make a single contradiction node which is then 
implicated in all contradictions. For simple systems, this strategy is fine. 
But for complicated systems, knowing where the contradiction occurred 
is of value. Introducing several contradictory nodes can be very useful for 
debugging and explanations. Suppose one is building a diagnosis system. 
It could invoke contradictions involving different kinds of knowledge 
and the contradiction handling may do different things according to the 
type of contradiction discovered. Having separate nodes for each kind of 
contradiction simplifies this decomposition. For example, there might be 
contradictions involving numerical relationships, relationships between 
symptoms and fault models, and qualitative descriptions. Furthermore, 
a common step in debugging a system that uses a TMS is to look at 
the justifications for a node, including contradictory nodes. If every such 
justification points to the same node, one must wade through far more 
information than if the contradictions were distinguished by their type. 

7.2 The propositional specification of a JTMS 

Before presenting JTMS examples and algorithms we must first be very 
clear as to what exactly the JTMS is computing. The basic JTMS speci-
fication can be given in terms of two sets: the set of justifications and 
the set of enabled assumptions. These sets evolve as problem solving 
progresses, and the JTMS algorithms must answer queries correctly with 
respect to the contents of these two sets at the moment the query is 
made. The set of justifications grows monotonically as we do not allow 
justifications to be removed. However, the set of enabled assumptions 
is always in flux. It is the fact that assumptions might be retracted that 
introduces most of the complexity in the JTMS algorithms. 

By formulating the JTMS within the propositional calculus we can be 
precise about what it is expected to compute. Every JTMS node is a 
propositional symbol. A subset A of those symbols is designated as 
enabled assumptions. Every justification can be interpreted as a simple 
propositional (definite) clause. Let be the set of such clauses. 

A fundamental task of the JTMS is to answer queries about whether a 
particular node holds given the current set of enabled assumptions and 
justifications. The JTMS replies that a node n is in exactly when node 
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n follows from the union of A and under the rules of propositional 
calculus. Otherwise the JTMS replies that n is out. 

Since the justifications are all definite clauses, the JTMS can be imple-
mented efficiently by simple forward propagation. Contradictions do not 
play a role in this logical specification of a JTMS. As far as the JTMS 
is concerned, a contradictory node is simply a node with the property 
that if it becomes in, the inference engine must be signaled (discussed 
later). It is the inference engine's job to retract assumptions so that these 
justifications no longer support the contradiction. A JTMS cannot repre-
sent the contradiction n as simply as -in because -in is a non-definite 
singleton clause. Extending JTMS to handle these would require a more 
complex propagation algorithm that propagated labels backward as well 
as forward through justifications. 

7.3 Well-founded support 

Not only must a JTMS determine which nodes are in and which are out, 
but it must also provide good explanations, or well-founded supports for 
why nodes are believed. A well-founded support for node n is a sequence 
of justifications J1, , Jk  which has the following properties: 

• Jk justifies node n. 

• All the antecedents of J, are justified earlier in the sequence or are 
enabled assumptions. 

• No node has more than one justification in the sequence. 

A node has a well-founded support exactly when it is propositionally 
derivable from the current JTMS state. 

As nodes can have multiple justifications, there might be an exponen-
tial number of well-founded explanations for any particular node. The 
JTMS is obligated to find only one of them. All JTMSs achieve this spec-
ification by identifying a single supporting justification for each node. 
The set of supporting justifications forms a directed acyclic graph. A 
well-founded explanation for any node can then be found by traversing 
backward from consequences to antecedents. 

The JTMS, and in fact all TMSs, operate incrementally. More precisely, 
every JTMS algorithm is designed to take maximum advantage of the 
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current database state: when presented with a new justification, assump-
tion, etc., the JTMS converts the previously correct data base to a new 
one. It never starts from scratch. This incrementality sometimes pro-
duces some odd effects which are important to know about because they 
might otherwise be viewed as bugs. The order in which the justifications 
are supplied to the JTMS has no effect on whether a node is in or out. 
However, as there are usually many possible well-founded explanations 
for the nodes, the order in which the justifications are introduced to 
the JTMS will affect which of those well-founded explanations the JTMS 
finds. Moreover, as these well-founded justifications are consulted in 
backtracking, the search might backtrack to a different state if the jus-
tifications were reordered. Of course, any correctly designed backtracker 
should take this into account. 

7.4 In and out versus true and false 

The JTMS is logically very weak as it only allows definite clauses. Conse-
quently, a JTMS can never deduce the negation of any node. A node being 
out can mean either that its negation is propositionally derivable from A 
and 9  or that neither it nor its negation is derivable. 

Many inference engines need to reason about the negations of data. 
This is achieved by creating two nodes for a datum: a node representing 
the datum and a node representing its negation. Since a node can be in or 
out, this gives four possible combinations for believing in the datum, as 
shown in Figure 7.1. Consider some datum P and its negation -T. By en-
coding these as two nodes the inference engine is essentially functioning 
with a four-valued logic: (1) P and -'P can both be in, allowing the infer-
ence engine to reason with contradictory data, (2) P is in and -'P is out, 
which can be interpreted as P being true, (3) P is out and -'P is in, which 
can be interpreted as P being false, (4) both P and 	are out, indicating 
that nothing is known about P. 

7.5 How justifications save inference engine work 

In Section 6.1.3 and Figure 6.2 we saw how a chronological search re-
peated expensive computations. The JTMS justification cache avoids this. 
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In 
	Out 

Contradiction -1 P 

P Don't know 

Figure 7.1 Representing a node and its negation 

Figure 7.2 illustrates three snapshots of JTMS dependency network frag-
ments. In network (a) the problem solver runs the finite element analysis 
program (FEA) to deduce g and records as this justification; in network 
(b) the problem solver has moved the search into some intermediate 
state where B holds but neither D nor F do (i.e., assumption B is en-
abled, and assumptions D and F are retracted); in network (c) the search 
has reached the state where B, D, and F hold. The problem solver need 
not recompute g at this point because it can now simply ask the JTMS 
whether g is now in and thus avoid the expensive recomputation. (Of 
course, the inference engine needs to know enough to ask. This issue is 
discussed later.) 

There are two ways to view what the justification cache is achieving 
here. Whenever the inference engine changes the JTMS state (by adding 
justifications and adding or retracting assumptions), the JTMS carefully 
analyzes the difference between the states and carries as much of the 
problem-solving work forward as is logically possible. Another way to 
view it is that under this problem-solving architecture, no inference en-
gine deduction (of which the JTMS is informed) will be performed more 
than once. 

To achieve the full benefit of a TMS requires a closer coordination be-
tween the inference engine and the JTMS than is explained in this chap-
ter. Consider the following issues in the preceding example of Figure 7.2. 
The FEA program computes a complex result; how could the problem 
solver check for g without knowing that it was g that the FEA program 
would produce? In a later chapter we discuss how to design a problem 
solver that avoids this and associated difficulties. 

In 

P 

Out 



in out 

(a) 

A 

(h) 

A 
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(c) 

A 

Figure 7.2 Maintaining a cache 

7.6 How justifications enable default reasoning 

According to the semantics of defaults, a default node should be in un-
less labeling it in would produce a contradiction. Although the JTMS 
itself is based on straightforward propositional logic, it can easily be 
used to implement defaults. Every assertion the inference engine wants 
to default should be marked as an enabled assumptionl  Thus all defaults 
are initially in. When a contradiction occurs, the inference engine should 
retract enough assumptions to remove all contradictions. At this point 
additional processing is required to ensure that the semantics of default 
are met. An attempt should be made to bring every default node back 
in. If no contradiction is introduced by bringing a default in, it should be 
enabled; otherwise it should be retracted. 

Consider the dependency networks illustrated in Figure 7.3. Suppose 
A, B, and C are defaults, and the inference engine adds the justification 
for a contradiction node as indicated in (a). Then the inference engine 
retracts A to remove the contradiction and subsequent problem solving 
introduces a new justification for a contradiction node based on B and 

out 
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Figure 7.3 Maintaining the semantics of default 

C, producing the dependency structure shown in (b). The dependency 
structure that results from retracting assumption B is shown in (c). At 
this point assumption A fails to obey the semantics of default because it 
can be brought in without introducing a contradiction, as shown in (d). 
The basic JTMS presented in the next sections includes a simple helping 
procedure to maintain defaults. However, this issue is discussed in far 
greater detail in subsequent chapters. 

7.7 The JTMS interface 

The preceding sections provide an elegant formulation of the JTMS, but 
when we get down the nuts and bolts we always find that a large number 
of auxiliary procedures and hooks of various kinds are needed. The infer-
ence engine needs a fairly rich interface allowing many types of queries. 
The following specifies the interface through which the JTMS and the in-
ference engine communicate. After analyzing this interface we will return 
to a conceptual analysis of the JTMS algorithms before delving into the 
Common Lisp code which implements this particular interface. 
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(create-jtms title &key (node-string 'default-node-string) 
(debugging nil) 
(checking-contradictions t) 
(contradiction-handler 'ask-user-handler) 
(enqueue-procedure nil)) 

Any real problem solver is likely to incorporate more than one TMS, and 
perhaps many instances of the same JTMS. Therefore the JTMS supplies 
this procedure to create a new JTMS. create-jtms returns a datastruc-
ture which contains the entire state of the JTMS. Two subsequent calls 
to create-jtms will return two different JTMSs which do not interact in 
any way. Hence, it is never necessary to initialize or clear the JTMS data-
base: Common Lisp garbage collects all the cached JTMS datastructures 
when the inference engine drops the pointers to them. The five keyword 
arguments are as follows: 

node-string The JTMS user should provide a procedure of one argu-
ment which, when supplied a node, returns a string describing the node. 
The JTMS supplies the default: 

(defun default-node-string (n) 
(format nil "-A" (tms-node-datum n))) 

debugging If non-nil, then the JTMS traces all basic JTMS operations. 

checking-contradictions If non-nil, then the JTMS signals the in-
ference engine (we see how later) when a contradiction becomes in. 

contradiction-handler This specifies the procedure the JTMS calls 
when it detects a contradiction. We discuss this in detail later. 

enqueue-procedure This is a procedure which is called when a node 
becomes in. This procedure should not do any JTMS operations itself 
because it may be called when the JTMS database is inconsistent. 
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(change-jtms jtms &key node-string 
debugging 
checking-contradictions 
contradiction-handler 
enqueue-procedure) 

This procedure allows the inference engine to change the initial settings 
provided in the original call to create-jtms. Don't be tempted to change 
these settings directly by simple setf s—more sophisticated JTMS imple-
mentations have to invoke more complex operations when some of these 
flags are changed. 

(tms-create-node jtms datum &key assumptionp contradictoryp) 

The inference engine creates a TMS node with this procedure call specify-
ing the initial properties of the node to be created. The inference engine 
must indicate to which JTMS the node is to be added. Premises are in-
dicated by providing the node with a justification with no antecedents 
using justify-node. A node can be in only one JTMS, and every node 
keeps track of the JTMS it belongs to. Hence, most subsequent JTMS 
procedures need not be supplied with the explicit JTMS argument. The 
inference engine can access and modify the node slots tms-node-datum, 
tms-node-in-rules, and tms-node-out-rules as any other defstruct 
slot. 

(enable-assumption node) 
(retract-assumption node) 

If a node is created with the assumption property, then the assumption 
is initially retracted. These two procedures allow the inference engine to 
enable and retract an assumption›W. 

(make-contradiction node) 

A node can be marked as contradictory at any time by calling this proce-
dure. 

(assume-node node) 

This gives the node the assumption property and enables it. 

(in-node? node) 
(out-node? node) 
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Checks whether a node is in or out (these return t or nil). 

(justify-node informant consequent antecedents) 

This justifies a node. 
To access the fields of a justification, the inference engine should 

use the procedures just-consequence, just-informant, and just-
antecedents. 

The next three procedures support the exploration of the dependency 
network. 

(supporting-justification-for-node node) 

This procedure returns one of three values, according to the belief 
status of the node. If the node is an enabled assumption it returns 
: ENABLED-ASSUMPTION. If the node is in, then it returns the justification 
currently providing support. Otherwise it returns nil. The well-founded 
explanation can be constructed by recursively calling support ing-
just if icat ion-f or-node on the antecedents of the justification re-
turned by this procedure. 

(assumptions-of-node node) 

This procedure returns the set of enabled assumptions underlying the 
well-founded support for a node. The most common reason for explor-
ing the well-founded explanation for a node is to identify the enabled 
assumptions which underlie it. This is very important for handling con-
tradictions, where the inference engine needs to find an assumption 
to retract in order to remove the current inconsistency. It is crucial to 
note that the JTMS only finds the set of assumptions underlying the 
current well-founded explanation for the node. There may be an expo-
nential number of such explanations. Therefore there may be exponen-
tially many sets of assumptions potentially underlying the node. Conse-
quently, a contradiction cannot always be removed by simply retracting 
one of its underlying assumptions—there might be another well-founded 
explanation for the node with a different set of underlying assumptions. 
To retract a contradiction requires that all of the sets of assumptions 
that can be used to derive it be retracted, which in turn requires an aux-
iliary search. (Retracting all the assumptions usually removes the contra-
dictions, but then the problem solver is back to its initial state.) 
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When the JTMS detects that the current database state contains con-
tradictions, it calls the inference engine-supplied contradiction-handling 
procedure with two arguments: the particular instance of the JTMS in-
volved and the current set of contradictory nodes. The JTMS checks for 
contradictions as the very last thing it does. Therefore, it is acceptable 
(and usual) for the contradiction handler to simply do a throw. Also, 
the contradiction handler can perform any JTMS operations it likes. (If 
the contradiction handler does nothing, the JTMS procedure originally 
invoked by the inference engine just returns, leaving contradictions be-
lieved in the database.) 

7.8 Simple example of JTMS usage 

The following simple sequence of top-level Common Lisp procedure calls 
produces the dependency structure illustrated in Figure 6.9. First we 
must create a fresh JTMS for our example (recall that we distinguish user 
input by prefixing the expressions with >): 

> (setq *jtms* (create-jtms "Simple Example")) 

Then we must create the initial three assumptions and enable them: 

• (setq assumption-a 
assumption-c 
assumption-e 

• (enable-assumption 
• (enable-assumption 
• (enable-assumption 

(tms-create-node *jtms* 
(tms-create-node *jtms* 
(tms-create-node *jtms* 
assumption-a) 
assumption-c) 
assumption-e) 

"C" 
"E" 

:ASSUMPTIONP 
:ASSUMPTIONP 
:ASSUMPTIONP 

t) 
t) 
t)) 

Then we introduce the node h and justify it: 

> (setq node-h (tms-create-node *jtms* "h")) 
> (justify-node "Rl" node-h (list assumption-c assumption-e)) 

Then we introduce node g, justify it, and then contradict it: 

• (setq node-g (tms-create-node *jtms* "g")) 
• (justify-node "R2" node-g (list assumption-a assumption-c)) 
• (setq contradiction 

(tms-create-node *jtms* 'CONTRA :CONTRADICTORYP t)) 
• (justify-node "R3" contradiction (list node-g)) 
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This last interaction introduces a contradiction and invokes the default 
contradiction handler supplied with the JTMS. As the contradiction de-
pends on A and C it asks which one of the assumptions we want to 
retract: 

Contradiction found: CONTRADICTION 
1 C 
2 A 
Call (TMS-ANSWER <number>) to retract assumption. 
Break: JTMS contradiction break 

Any real problem solver will incorporate a much more sophisticated con-
tradiction handler. This merely serves to illustrate that the JTMS has 
detected the contradiction and uncovered its underlying assumptions. 

7.9 The JTMS algorithms 

Here are three basic designs for a JTMS which meet the specifications of 
Section 7.2: 

■ The context approach. The JTMS maintains an explicit set of nodes 
currently believed with their supporting justifications. 

■ The lazy approach. The JTMS computes the belief status of a node 
when it is requested by the inference engine. 

■ The labeling approach. The JTMS augments the node datastructure 
with two fields indicating its belief status and supporting justifica-
tion. 

Most JTMS implementations take the last approach. An example of the 
context approach is the stack-oriented context mechanism of FTRE. It 
has the disadvantage of potentially having to manipulate large sets of 
nodes. The advantage of the labeling approach over the lazy approach 
is less clear. The labeling approach is based on the observation of the 
typical patterns of interactions with inference engines. Usually the ratio 
of queries to assumption retractions is extremely high. If this were not 
the case, the lazy approach would be better because it does not have 
to update the belief status of every node after every change. The node 
datastructure field allocated to the belief status is called the node's label. 



183 	 Justification-Based Truth Maintenance Systems 

(b) 

Figure 7.4 Dependency network just before and after enabling assump-
tion A 

Historically, the use of the terms in and out for node labels originates 
from context approaches where a node is said to be either in or out of 
the current context. 

7.9.1 Enabling an assumption 

Enabling an assumption is the simplest core JTMS operation. Note that 
assumptions which have become premises will not be enabled. First, the 
JTMS marks the assumption as enabled, removes its current supporting 
justification (if any), and marks it as supported by virtue of being an en-
abled assumption. Second, it checks whether the assumption was already 
in; if so, it does nothing more. Third, it looks to see whether any justifi-
cation in which it appears as an antecedent is satisfied, i.e., that all the 
antecedents of the justification are labeled in. If any such justification 
is satisfied, it labels the consequence in and makes the justification be 
the supporting justification for the consequence. If any node becomes la-
beled in by this procedure, its consequences are recursively checked. As 
this algorithm only changes node labels from out to in, and as there are 
a finite number of nodes, it must terminate. 

Suppose the inference engine has accumulated the dependency net-
work illustrated in Figure 7.4(a). 



184 	 Chapter 7 

When assumption A is enabled, node B is labeled in with the supporting 
justification 1. Node B appears in two justifications for C. The JTMS 
arbitrarily picks supporting justification 3 for node C. Notice that the 
justifications 2 and 4 are both satisfied but do not contribute to any well-
founded support. 

7.9.2 Adding a justification 

When the inference engine adds a justification, the following JTMS steps 
are performed. First, the JTMS adds the new justification to the depen-
dency network. Second, the JTMS checks whether the consequence of 
the justification is already labeled in. If so, the JTMS returns control to 
the inference engine. Otherwise, it checks whether the justification is 
satisfied. If so, then it labels the consequence in, and makes the new jus-
tification the supporting justification for the consequence. As does the 
assumption-enabling procedure, this continues recursively for any nodes 
which become in. 

7.9.3 Retracting an assumption 

Retracting an assumption is the most complex JTMS operation. Consider 
the dependency network illustrated in Figure 7.4. There is a strong temp-
tation to write the assumption retraction algorithm as follows: If the sup-
porting justification for a node ceases to be satisfied, then immediately 
look for an alternative satisfied justification. If one is found, then do not 
retract the node. If we apply this simple approach to Figure 7.4(b) when 
we retract node A, then node B will remain labeled in because the alterna-
tive justification C holds for it. This is incorrect because B is not logically 
derivable. Equivalently, belief in B is not well founded (in the dependency 
network, violations of well-foundedness show up as circularities). 

The correct algorithm for retracting an assumption without creating 
meaningless circularities proceeds in two phases. In the first phase all 
nodes whose well-founded explanation contains the retracted assump-
tion are labeled 'out. This is done by looking at all the supporting justifi-
cations in which the retracted assumption appears, labeling those nodes 
out, and continuing recursively. Only when this first phase is complete 
is every node that was labeled out in the first phase analyzed to see if 
an alternative support can be found for it. If an alternative support is 
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found, then its consequences are checked to see if they can be brought in 
as well, exactly as in the assumption enabling and justification-addition 
algorithms. 

7.10 JTMS code 

The code in jtms . lisp is a simple justification-based truth maintenance 
system. In reading the code you will notice a few additional hooks to 
allow systems like THE to interface with it. Otherwise the algorithms are 
precisely as presented so far. The end of the file jtms . lisp contains 
some auxiliary procedures to allow the JTMS to be used by itself. 

This JTMS makes certain assumptions about its processing environ-
ment. JTMS operations cannot be safely aborted, nor can one JTMS op-
eration be safely invoked before another is finished (except as specified 
in the interface), nor can multiple processes safely access the same JTMS 
simultaneously. A truly bulletproof JTMS would use unwind-protects 
and proper process locking primitives. But these are concerns beyond 
our scope. 

7.10.1 Overview 

In building a problem solver there is always the temptation to directly in-
voke internal TMS procedures not specified in the interface (Section 7.7). 
To an extent this is unavoidable, but you should be warned that: (1) the 
internal procedures may not do what you think they do, and (2) the JTMS 
implementor is only obligated to maintain the interface, not the internal 
procedures. So, for example, if we design an entirely new JTMS, say on 
the Connection Machine, then most of the internal procedures disappear. 

The program is divided into 7 parts: 

1. Definitions. The datastructures, and initialization procedures. 

2. Basic interface. Interfaces for programs that use the JTMS. 

3. Adding justifications. Computing the results of adding a new justifi-
cation or ground support. 

4. Retraction. Making sure all the consequences of a retracted assump-
tion are removed, and looking for alternative support for such nodes. 
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5. Contradiction-handling interface. For signaling contradictions to the 
inference engine. 

6. Well-founded support. Procedures for inquiring about the well-
founded support of nodes and their underlying assumptions. 

7. Inference engine stub. Some basic procedures which allow the JTMS 
to be used alone. Any serious problem solver will replace all these, or 
encapsulate them within more sophisticated procedures. 

7.10.2 Definitions 

To make it possible for multiple JTMS instances to be used within a sin-
gle problem solver, the JTMS algorithms do not use any global variables. 
Instead a single top-level datastructure jtms describes all the important 
variables of an instance of the JTMS. It contains the following fields: 

title Ignored by the JTMS but useful for debugging. 

node-counter Provides a "unique name" for nodes. This is a common 
trick for making defstructs that print compactly, yet are still distinguish-
able. 

just-counter Provides a "unique name" for justifications. Another ad-
vantage of this technique is that it provides a simple ordering predicate 
when needed. 

nodes List of all nodes created. Used only for debugging. Useful for 
printing out the state of the JTMS database. 

justs List of all justifications. Combined with the unique integer id, 
this list provides a handy way to access datastructures during debugging 
that otherwise might be difficult. 

debugging A debugging flag to trace the internals of JTMS operation. 

contradictions A list of nodes which have been declared contradic-
tory. When such a node becomes in, a contradiction will be signaled. 

assumptions A list of nodes which have been declared assumptions. 

checking-contradictions This flag defaults to t. It allows advanced 
programs to turn off contradiction checking temporarily. 

node-string An inference engine-supplied procedure which should re-
turn a descriptive string for a node. The JTMS supplies a default. 
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contradiction-handler An inference engine-supplied procedure 
which is called on two arguments: the set of contradictions currently in, 
and the current JTMS. The file jtms . lisp supplies a default contradic-
tion handler for stand-alone operation. Any real problem solver should 
supply a better one. 

enqueue-procedure An inference engine-supplied procedure which 
should be called if some node with in-rules becomes in. Its use is ex-
plained later in the THE interface. 

Two defstructs are introduced to implement TMS nodes and justifica-
tions. The fields of the tms-node defstruct have the following interpreta-
tion: 

index Integer serving as unique name for this node. 

datum Supplied by the inference engine. For simple demonstration sys-
tems one should put something printable in here. For THE-like system, a 
pointer to the assertion object goes here, as we will see later. 

label Represents current belief status of the node. : IN indicates the 
node is believed, and : OUT indicates that the node is not believed. Any 
other value indicates a bug. 

support This field is nil if the node is labeled :OUT. If the node is 
derived, then it contains the justification currently providing support. 
If the node is an enabled assumption, this field contains the symbol 
:ENABLED-ASSUMPTION. 

justifications The set of justifications that could provide support 
for this node. 

consequences The justifications that use this node as an antecedent. 

mark Holds a marker for the sweep algorithm used in finding the as-
sumptions underlying a node. 

contradictory? If non-nil, this field indicates that belief in this node 
represents a contradiction. These nodes are handled specially in the 
JTMS. 

assumption? If non-nil, this field indicates that this node should be 
treated as an assumption whose belief can be explicitly enabled and 
retracted by the inference engine. If the value is : DEFAULT, the auxil-
iary procedure enable-defaults maintains the semantics of default for 
such nodes. 

1 
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in-rules Rules which should be run when the node is believed. If this 
JTMS is being used without an external system, this field should be nil. 
The JTMS enqueue procedure is called on each element of this field if it 
is non-nil. This queue is then cleared. 

out-rules Like in-rules, but these rules are queued when the node 
is disbelieved. 

jtms The JTMS instance to which this node belongs. 

The just defstruct encodes justifications. The fields are: 

index Integer for unique name. 

informant An inference engine-supplied description of the justifica-
tion. This is usually only supplied for generating explanations; however, 
some problem solvers which explicitly reason about justifications can 
cache whatever information they want here. While this information is 
preserved within the JTMS, it is not used by any of the algorithms. 

consequence The node which this justification can support. 

antecedents The nodes which must be believed in order for this justi-
fication to provide support for its consequence. 

node-string, debugging-jtms, and tms-error are three very simple 
utilities for printing out explanations and unusual conditions, and are 
used throughout the JTMS code. The procedure default-node-string 
is the default procedure to construct a string describing a node. Usually 
the inference engine will override this default and supply a procedure 
that will make a printable version of whatever is found in the datum field 
of the node. 

The procedure create-jtms creates a new JTMS instance. It initializes 
all the necessary states of the JTMS. It permits a number of keyword 
arguments for initializing many of the fields of the JTMS datastructure. 
The procedure change-jtms allows the caller to change the externally 
settable fields of the JTMS. 

7.10.3 Basic JTMS interface procedures 

The procedures in-node? and out-node? are used to query the state of 
a node. The procedure tms-create-node creates a JTMS node. The caller 
must specify to which JTMS instance this node belongs. The procedure 
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takes keyword arguments to specify whether the node is a contradic-
tion or an assumption. If the node is an assumption, then it is initially 
retracted. The value of : ASSUMPTIONP can be the keyword : DEFAULT, 
which has no effect on the core JTMS algorithms (i.e., the node is treated 
as any other assumption). By using the auxiliary procedure default-
assumptions, the inference engine can force all such nodes to be treated 
as defaults. 

The procedure assume-node converts a non-assumption node to an 
assumption node and then enables it. 

The procedure make-contradiction converts a non-contradiction 
node to a contradiction node. It adds the node to the contradiction list 
for the JTMS, which is always checked at the conclusion of any operation 
that might cause new contradictions. As make-contradiction can be 
called on a node that may already have justifications, this may provoke a 
contradiction. 

The procedure justify-node adds a justification to a node. If the 
node is out but the justification is satisfied, it initiates the labeling algo-
rithm and finally checks whether any contradictions have come in. Notice 
that calling justify-node twice with the same arguments will result in 
the creation of distinct datastructures that represent the same justifica-
tion. No errors will result, but duplicate justifications decrease efficiency. 
While it is straightforward to look for an existing justification that would 
make a new one redundant, well-designed problem solvers will prevent 
this from happening anyway. Consequently, it is rare to find such tests 
in TMS implementations. 

The canonical sequence of internal events when belief in a new fact is 
established is: 

1. Make this particular node be believed (make-node-in). 

2. Compute what other nodes must be believed as a consequence of 
believing this node (propagate-inness). 

3. See if any contradictions result (check-for-contradictions). 

For justify-node these first two steps are accomplished in the proce-
dure install-support.rA justification of no antecedents is indicative of 
a premiseliTherefore, if the JTMS is provided a premise justification, this 
justification becomes the consequence's current support.LOnce a node is 
a premise it always remains a premisej  Thus one can always tell whether 
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a node is a premise by checking whether its support is a justification 
with no antecedents. If an assumption becomes a premise, then it can 
no longer be enabled. 

7.10.4 Adding justifications 

The code in this subsection figures out whether or not a justification can 
supply support, and computes the consequences of new support from 
whatever source. 

The procedure check-justification returns non-nil when the 
given justification can supply new support for its consequent node. This 
occurs exactly when the node is not already known and the justification 
is satisfied. 

The procedure justification-satisfied? checks whether a justifi-
cation is satisfied. A justification is satisfied when all of its antecedent 
nodes are : IN. 

The next few procedures figure out what other nodes are believed as a 
consequence of new beliefs. 

The procedure install-support makes a particular node :IN, and 
calls propagate-inness to determine the consequences. 

The procedure propagate-inness works by checking the justifica-
tions that use the newly believed node, checking each to see if they can 
lend new support. When they can, these new nodes are queued for sub-
sequent processing. Notice that check-justification will only return 
non-nil when a node is out, and this procedure can only make nodes 
: IN. 

The actual bookkeeping required for making a node believed is carried 
out by make-node-in. The label of the node is changed to : IN, the jus-
tification or : ENABLED-ASSUMPTION marker is installed as the support, 
and the enqueue procedure is called on anything in the in-rules field 
of the node. Notice that the enqueue procedure should not do any JTMS 
operations, since it is called in the middle of JTMS processing. In most 
problem solvers the enqueue procedure just queues the node for fu-
ture processing when the JTMS operation finishes. Importantly, the list 
of rules is cleared out once these rules have been queued. Since justifica-
tions serve as a cache for the results of running a rule, one rarely wants 
to run a rule twice. 
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7.10.5 Assumption manipulation 

Retraction is the inverse of supporting a node. The basic sequence of 
operations is similar: 

1. Make the particular node to be disbelieved (i.e., : OUT) (make-node-
out). 

2. Forget all nodes that depend on this particular node (propagat e-
outness). 

3. Attempt to find alternative support for nodes which have been re-
tracted (f ind-alt ernat ive- support). 

The process for clearing the status of a particular node (make-node-
out) is parallel to make-node-in. propagate-outness works by recur-
sively retracting all justifications which relied on the given node. The 
search starts with the justifications that mention the node being forgot-
ten as antecedents. Each justification in the queue is tested to see if it 
was the source of support for its own consequence. If it was, then that 
node in turn is labeled :OUT and each justification that uses it as an an-
tecedent is queued for examination. 

As each node is forgotten it is placed on the out-queue. The proce-
dure find-alternative-support attempts to find alternative support 
for everything on this queue. Each justification for a particular node (the 
contents of the node's justifications field) is tested to see if it can 
supply support. If so, install-support is used to provide that new sup-
port. Recall that this new support can propagate, and so some nodes on 
the out-queue may have received alternative support before being ex-
amined by find-alternative-support. That is why in-node? is used 
to filter queue entries. 

The procedure enable-assumption overrides whatever support the 
node currently has (if the node is a premise, enabling the assumption 
has no effect). The current supporting justification of the node becomes 
:ENABLED-ASSUMPTION. Otherwise, the procedure is very similar to that 
of just if y-node. 

7.10.6 Contradiction processing 

JTMS contradiction processing is affected by two fields of the JTMS datas-
tructure (contradiction-handler and checking-contradictions) 
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which are initially set by the procedure create-j tms and can later 
be changed by change-jtms. At the conclusion of every JTMS opera-
tion that can cause new contradictions, the JTMS invokes the procedure 
check-for-contradictions. If contradiction checking is not enabled, 
check-for-contradictions returns immediately. Otherwise, check-
for-contradictions finds all the contradictions currently in and calls 
the inference engine-supplied contradiction handler with this set. 

For some types of problem solvers it is necessary to temporarily dis-
able contradiction checking and change the way contradictions are han-
dled. Doing so is always dangerous, and so great care must be taken. 
To facilitate such operations the JTMS supplies three macros. The macro 
without-contradiction-check turns off contradiction checking com-
pletely within its body. Analogously, the macro with-contradiction-
check turns on contradiction checking within its body. The macro 
with-contradiction-handler temporarily changes the contradiction 
handler within its body. The style of these macros may be unfamil-
iar. First, new uninterned variable names are created to distinguish 
them from variables that might occur freely (such as in body). Second, 
when the body finishes execution, normally or abnormally, the unwind-
protect clause guarantees that the contradiction-handler procedure and 
contradiction-checking flag will be returned to their original state. 

The procedure default-assumptions is a simple auxiliary procedure 
which achieves the semantics of default. It should be called by the in-
ference engine (usually right after contradiction handling). It uses the 
macros just defined to bring in all defaults unless they introduce a con-
tradiction. 

7.10.7 Inquiring about well-founded support 

The two procedures supporting-justification-for-node and 
assumptions-of-node allow the inference engine to explore the well-
founded explanations for nodes. 

The procedure supporting-justification-for-node returns the 
supporting justification for a node if there is one. The procedure 
assumptions-of-node finds the enabled assumptions of the current 
well-founded explanation for the node. It operates by searching back-
ward through the antecedents of justifications until enabled assump- 
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tions are found. Consider the directed acyclic graph of justifications 
involved in supporting a particular conclusion. The root is the node being 
supported, and the leaves are the enabled assumptions and premises. A 
single node may be reached through more than one path. Thus a marker 
is used to record what parts of the graph have been visited already. This 
marker allows the search to avoid examining any part of the graph more 
than once.' 

The procedure enabled-assumptions returns a list of all the enabled 
assumptions. 

7.10.8 Procedures for stand-alone operation 

The remaining set of procedures in j tms . lisp allows the JTMS to be 
used in a stand-alone mode without any inference engine. Any serious 
inference engine will include much more sophisticated, task-specific ver-
sions of these procedures for debugging. 

The interrogatives are straightforward: why-node shows the status and 
source of support for a node, and why-nodes uses why-node to show 
the state of the entire JTMS database. why-nodes is useful for debugging 
small examples, but typically will not be used in more complex systems. 
why-node itself, however, is designed for use with external systems. 

The final procedures in jtms . lisp provide an extremely simple-
minded contradiction handler. The procedure ask-user-handler calls 
handle-one-contradiction to remove the first contradiction (remem-
ber that one assumption retraction may remove all contradictions) and 
then calls check-for-contradictions again. 

The procedure handle-one-contradiction finds the enabled as-
sumptions underlying the well-founded explanation for the contradic-
tion, prints them out, and allows the user to type at Common Lisp. If 
there are no enabled assumptions underlying the contradiction, an er-
ror is reported. Once the user has decided which assumption to retract, 
the procedure tms-answer returns control to the JTMS. Finally, the pro-
cedure explore-network is a higher-level interface to the preceding 
procedures for exploring the dependency network. 

1. Since list structures are unique, and the markers are checked by eq, no unmarking 
is required. 
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7.11 Exercises 

1. * One might argue that the final case in enable-assumption is a 
mistake, on the grounds that a node that already has a supporting 
justification is more solid than something that is merely assumed. 
What is wrong with this argument? 

2. * * If a node receives a justification with no antecedents, then that 
justification is made its supporting justification. Thus, it is easy to 
tell which nodes are premises. However, some nodes hold universally 
but are not premises (e.g., a node with a justification whose only an-
tecedents are premises). It can be very useful to propagate "premise-
hood" giving premise justifications to all nodes that hold universally. 
In search tasks this saves useless backtracks because there never will 
be assumptions supporting a universally held node. Modify the JTMS 
such that every node that holds universally receives a premise justi-
fication. What do we lose in this scheme? 

3. * * In analogy to the previous exercise we can also propagate "contra-
diction-hood." For example, if a contradiction has a justification all 
but one of whose nodes is universally held, then the remaining node 
can be marked as a contradiction as well. Modify the JTMS to prop-
agate contradictions. Notice that this feature is of marginal utility in 
our JTMS, as the presence of contradictions merely indicates that the 
inference engine should be signaled. 

4. * * The JTMS procedure assumptions-of-node returns the enabled 
assumptions underlying the current well-founded support of the 
node. However, there might be an alternative well-founded sup-
port which doesn't include all the assumptions returned by assump-
tions-of-node. 

a. Show a sequence of JTMS calls which demonstrates this phe-
nomenon. 

b. Write a procedure minimal-assumptions-of-node which re-
turns a subset of the assumptions returned by the original call to 
assumptions-of-node which still supports the node, but which 
contains no proper subset which supports the node. Hint: Try to 



195 	 Justification-Based Truth Maintenance Systems 

retract the assumptions returned by assumptions-of-node and 
see whether the node remains in. 

c. Provide an example where there is more than one such smallest 
subset. 

d. In what kinds of cases would it be useful for the inference engine 
to use minimal-assumptions-of-node instead assumptions-
of-node? 

5. ** When there are a large number of justifications, the cost of re-
peatedly checking whether a justification is satisfied becomes exces-
sive. Modify our JTMS to keep a count with each justification indicat-
ing the number of antecedent nodes which are in. When the count 
becomes zero, the consequent node is supported. Be careful to avoid 
circularities. 

6. * * Consider a backtracking search problem which is controlled by 
enabling and retracting assumptions. Our JTMS prevents useless 
inference engine work in contexts known to be inconsistent (Sec-
tion 6.1.3). However, an analogous problem arises within the JTMS 
itself—the contradiction may be discovered after substantial relabel-
ing work. Therefore it can be useful to expand the JTMS by explicitly 
recording every set of assumptions that is known to support a con-
tradiction (such a set is called a nogood in later chapters). Then, 
whenever any assumption is enabled, before doing any relabeling, 
the new assumption set is immediately checked to see if it contains 
any known nogood; and if so, the relabeling is aborted and a con-
tradiction is reported to the inference engine. Modify the JTMS to 
accomplish this. Explain why the implementation that just installs 
a contradictory justification for every contradicting set assumptions 
accomplishes very little. 

7. * * Design a JTMS algorithm which records with each justification 
one node that is preventing it from becoming a supporting justifi-
cation and with each node, the justifications it has blocked. Explain 
under what circumstances this implementation is more efficient. 

8. * * * Design a justification-based TMS which, instead of propagating 
in and out labels through the network, records a derivation count 
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with each justification which is the maximum number of justifica-
tions between it and an assumption or premise (infinity, if the justifi-
cation doesn't hold) and stores with each node the minimum deriva-
tion depth of the justifications that support it. Explain how you han-
dle retraction with circularities present. What other uses can you 
think of for this derivation depth count? 



8 	Putting the JTMS to Work 

We have seen that the justification-based truth maintenance system can 
provide valuable problem-solving services. But how should we organize 
our systems to best exploit this resource? This chapter examines the is-
sues involved in linking a TMS to an inference engine. We illustrate the 
general issues in the inference engine/TMS interface discussed in the 
previous chapter via JTRE, a version of the Tiny Rule Engine that incor-
porates the JTMS. Section 8.1 begins by outlining the issues involved in 
interfacing the FTRE inference engine to the JTMS. Section 8.2 describes 
the design of JTRE and how it addresses these issues. Section 8.3 goes 
over the code, showing how FTRE was changed to produce JTRE. The 
rest of the chapter illustrates how the JTMS enables us to build better 
problem solvers. Section 8.4 explores dependency-directed search, using 
the simple N-queens puzzle as an illustration. Section 8.5 shows how 
JTRE can be used to partially reconstruct SAINT, a classic Al program 
which first demonstrated that indefinite integration could be done via 
computer. SAINT was capable of solving most of the integration prob-
lems on a calculus final examination used at MIT. Our reconstruction will 
not be nearly so powerful. However, we include capabilities not found in 
Slagle's original program: Our version, JSAINT, is organized around the 
JTMS, which it uses to record both control and data dependencies. This 
allows JSAINT to explain its answers and operations. JSAINT provides a 
substantial example of problem-solver design. 
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8.1 Interfacing a JTMS to an inference engine: Issues 

In Chapter 6 we introduced a view of problem-solver architecture where a 
problem solver consists of a combination of a truth maintenance system 
and an inference engine. Typically a TMS is viewed as a module used by 
the inference engine, rather than the other way around. This perspective 
suggests asking what services the TMS provides and figuring out how the 
inference engine can properly use them. In Chapter 6 we saw that the five 
basic actions of a TMS are: 

1. Upon request, the TMS creates a node with the specified properties. 

2. The TMS accepts records of inference engine deductions (as justifica- 
tions). 

3. The TMS computes the correct labels for nodes and supplies them on 
request. 

4. When a contradiction is detected, the inference engine is signaled. 

In addition to these four basic actions, there is yet one more: 

5. The TMS accepts rules from the inference engine to be scheduled for 
execution when particular belief conditions are met. 

This is an appropriate division of labor because the TMS is responsible 
for managing beliefs (i.e., updating the labels of the nodes in the depen-
dency network). 

Each of these TMS actions imposes constraints on the inference engine. 
Understanding these constraints is the first step in understanding the 
design of JTRE. The first action, creating nodes on request, suggests: 

1. The inference engine must inform the TMS when a new node is 
needed, and ensure the appropriate connection is made between the 
new node and the assertion it corresponds to. 

2. The inference engine must be able to retrieve the TMS node associ-
ated with any assertion. 

3. The inference engine must provide an interface for marking asser-
tions as premises or assumptions, and for enabling and retracting 
assumptions. 
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The second TMS action suggests: 

4. The inference engine must provide facilities for representing justifi-
cations. 

The third TMS action suggests: 

5. The inference engine must provide facilities for inspecting node la-
bels. 

The fourth TMS action suggests: 

6. The inference engine must provide a method for handling contradic-
tions. 

The fifth TMS action suggests: 

7. The inference engine must provide facilities for including constraints 
on beliefs in the conditions for triggering rules. 

8. The inference engine must ensure that rules are executed only when 
both the belief constraints and the syntactic matching constraints are 
satisfied. 

Any inference engine that uses a TMS effectively must satisfy these 
eight constraints. There are a variety of designs that will work, depending 
on the particulars of the TMS and the inference engine. The next section 
explores one region of this design space by considering how to modify 
the FTRE inference engine of Chapter 5 by hooking up the JTMS of Chap-
ter 7 to create a new system, JTRE. 

8.2 The design of JTRE 

Adding a TMS to an inference engine requires substantial changes in 
the inference engine's structures and operations. We can divide these 
changes into five categories: 

1. Providing a mapping between inference engine structures and TMS 
structures (constraints 1 and 2). 

2. Facilities for changing the system's beliefs and expressing depen-
dency relationships (constraints 3 and 4). 
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3. Facilities for inspecting the system's beliefs (constraint 5). 

4. Facilities for contradiction handling (constraint 6). 

5. Methods for tying the execution of rules to belief states (constraints 
7 and 8). 

We examine each category in turn. 

8.2.1 Mapping assertions to TMS nodes 

In FTRE, an assertion is believed exactly when that assertion can be found 
in the database. The TMS now has the responsibility of representing be-
lief states and tracking changes in them. Consequently, the appearance 
of an assertion A in the database only indicates that A was mentioned 
sometime in a previous computation. To establish whether or not an 
assertion is believed requires examining the label of the TMS node as-
sociated with it. To be effective, TMS nodes must have indefinite tempo-
ral extent, since the dependency network they participate in provides a 
cache for inference engine operations. Consequently, assertions should 
also have indefinite extent. 

We must therefore distinguish the act of mentioning an assertion from 
the act of believing it. Mentioning an assertion causes it to be installed in 
the database and associated with a unique TMS node. Once mentioned, 
an assertion is never removed from the database. The inference engine's 
belief in that assertion may change, naturally. Finding the current belief 
status of an assertion requires querying the TMS node associated with it. 

In FTRE the internal form of an assertion was simply the corresponding 
Lisp expression. In JTRE we want to associate more properties with an 
assertion, such as its TMS node and whether or not it corresponds to 
an enabled assumption. Consequently, we introduce a datum struct to 
serve as the internal representation of assertions. The mapping between 
TMS nodes and assertions can easily be implemented by having each TMS 
node point to its corresponding datum, and each datum in turn points 
back to its TMS node. To make the connection between a datum and its 
Lisp form we (a) store the Lisp expression as a property of the datum and 
(b) provide a table which associates Lisp forms with their datum. This 
design provides us with the ability to move from any perspective on an 
assertion (datum, Lisp expression, TMS node) to any other. 
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One implication of this decision is that we can no longer use the con-
text mechanism of FTRE. The context mechanism operated by creating 
temporary databases in which assumptions could be made and conclu-
sions drawn, such that all results were thrown away when itifinished with 
that context. Since the TMS promotes efficiency by caching justifications, 
throwing away assertions would greatly reduce the value of a TMS. To 
reason by manipulating assumptions, we must use some mechanism that 
keeps track of what assumptions need to be made and "swaps" them in 
and out of the JTMS to figure out their consequences. A simple version is 
illustrated in Section 8.4. 

8.2.2 Queries concerning belief states 

In THE and FTRE we could find out whether or not an assertion was be-
lieved by seeing if it was contained in the database. Since we have made 
the TMS the arbiter of beliefs and given assertions indefinite temporal 
extent, we must now look to the TMS for belief information. The sim-
plest design is to provide procedures which, given an assertion, fetch the 
corresponding TMS node and check its label to return an answer. If an as-
sertion is believed, we can also use the TMS node to look up its source of 
support, and trace backward to the underlying assumptions. There are 
procedures to support each of these operations in the JTMS, so all we 
have to do in JTRE is provide procedures which translate from assertions 
to TMS nodes and call the underlying JTMS primitives. 

In addition to looking at information about current beliefs, problem 
solvers sometimes need to examine the structure of the dependency net-
work itself. For instance, in figuring out how a particular assertion could 
be argued for, inspecting the justifications that could support it pro-
vides valuable information about what other assertions might be useful 
to assume. The same principle can be used for these queries as well: the 
JTRE-level code translates the assertions into TMS nodes, which are then 
passed to the appropriate JTMS procedure. If necessary, the TMS nodes 
returned from calls to the JTMS can be translated back to assertions us-
ing the datum/tms-node mapping described above. 
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8.2.3 Premises and assumptions 

Recall that there are three ways to directly change the status of a TMS 
node: it can be made a premise, it can be assumed, or an assumed node 
may be retracted. Since the mapping between assertions and TMS nodes 
is one-to-one, we can apply the same distinctions to assertions. That is, 
we can speak of assertions being made premises, or being assumed, or 
being retracted, when those operations are performed on their corre-
sponding TMS nodes. 

8.2.4 Justifying assertions in terms of others 

Clearly JTRE must provide a means of installing justifications in the 
JTMS. As before, whatever procedures we define for this task must trans-
late the assertions they are given (i.e., the consequent and the list of 
antecedents) into TMS nodes and then call justify-node to do the TMS-
level work. 

Recall that justifications and premises are permanent additions to the 
TMS. Using the same interface procedure to do both jobs helps remind 
users of this fact. Furthermore, it simplifies the implementation, since 
the JTMS implements premises as nodes whose support is a justification 
without antecedents. 

8.2.5 Tying rule execution to belief states 

In FTRE, rules were executed when assertions matching their trigger pat-
tern(s) appeared in the database. (An assertion that matches a rule's 
trigger patterns is called an antecedent of an instance of that rule.) The 
distinction between mentioning an assertion and believing it gives us a 
new set of events which can be used as conditions for triggering rules. In 
JTRE there are three events that can happen to an assertion: 

1. The assertion appears in the database. This happens exactly once. 

2. The assertion becomes believed (i.e., its TMS node gets the label : IN). 

3. The assertion is retracted (i.e., its TMS node gets the label : OUT). 

JTRE provides the corresponding three belief conditions on rule triggers: 
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:INTERN The rule should be executed for each assertion matching 
(pattern), independent of its belief state. (So named because it is analo-
gous to the intern procedure of Common Lisp.) 

: IN (pattern) should be believed before the rule is executed. 

:OUT (pattern) should not be believed for the rule to be executed. 

There are circumstances in which each of these trigger conditions is use-
ful. The : INTERN condition will cause the rule to be executed as soon 
as a matching assertion is mentioned. This is useful for installing back-
ground constraints. For instance, if the assertions X = S and X = 10 are 
mentioned, many problem solvers immediately install a justification for 
a contradiction node, to ensure that inconsistent beliefs are detected 
quickly. The : IN condition corresponds to the antecedent being believed. 
This means we won't execute the rule on assertions that are mentioned 
but are currently out. This condition is useful if executing the rule could 
set into motion a substantial amount of work, or if it seems unlikely that 
the assertion will ever be believed. The : OUT condition is probably the 
least useful (and least used). One of the few uses of : OUT rules is to ini-
tiate attempts to justify particularly important kinds of facts when they 
are mentioned but not yet believed. 

Efficiently linking the triggering of rules in the inference engine to 
changes in the labels of TMS nodes is a crucial job of the TMS/inference 
engine interface. Conceptually there are two ways this can be accom-
plished. First, the queuing system in the inference engine could probe 
the TMS for each rule instantiation, and only execute the rule when the 
appropriate belief conditions are met. This has the disadvantage of plac-
ing the burden of monitoring on the inference engine. The second strat-
egy is to pass rule instantiations into the TMS and allow it to schedule 
their execution. We call rule instantiations which have been passed into 
the TMS consumers. This strategy is simpler because consumers can be 
stored with the TMS nodes corresponding to the rule antecedents. Thus 
the algorithms which incrementally update the TMS's belief state (i.e., 
make-node-in, make-node-out in our JTMS implementation) can queue 
consumers up as part of their normal operations. This consumer strategy 
is very common, and is what we shall use in JTRE. 

Most rules have more than one trigger. The interpretation of multiple 
triggers in FTRE was conjunctive, that is, all antecedents had to be be-
lieved before the rule would execute. There is a subtle distinction lurking 
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here, however. Do we demand that the conjuncts all be believed at some 
point in time, or must they all be believed at the same time before the 
rule is executed? The former definition is easier to implement, because it 
requires only tests on individual antecedents, but has the drawback that 
it might execute a rule on a combination of assertions that actually are 
not simultaneously believed. The latter definition more accurately cap-
tures the intuition of conjunctive triggers, but requires a slightly more 
sophisticated implementation. We choose the simpler specification for 
JTRE, and leave implementing the more sophisticated specification for 
Exercise 3. 

Now that we have specified the belief conditions that may be placed on 
triggers and what conjunctive triggers mean, we need to choose a syntax 
for expressing them. There are several alternatives we might use. For 
instance, we can simply add more information to each trigger. Instead 
of a trigger being a pattern, we might change the syntax of triggers to be: 

((condition) (pattern) (options)) 

where (pattern) is simply the trigger pattern, as before, (condition) is 
one of : INTERN, : IN, or : OUT, and (options) are the : VAR and : TEST 
keywords described in Chapter 5. Another alternative is to restrict the 
triggers to a single condition, and make the condition part of the syntax 
of the rule outside the triggers. Thus we might replace the syntax of FTRE 
rules by 

(rule (condition) (triggers) . (body)) 

where (condition) is the same as before, and (triggers) and (body) have 
the same definition as in FTRE. Each syntax has identical power, since a 
rule with multiple belief conditions can be expressed by nesting several 
rules in the "condition outside" syntax. The distinctions are more a mat-
ter of taste, so we use we use the "condition inside" syntax for JTRE and 
will use the "condition outside" syntax in Chapter 14. 

It is extremely important to notice that we cannot use : TEST in quite 
the same way as we did in FTRE. In FTRE a common use of : TEST was 
to skip executing rules whose conclusions were currently known, by us-
ing fetch as part of a : TEST option. This worked because the same fact 
could be asserted over and over again in different contexts. This is not 
the case when a truth mainenance system is used, so using : TEST in this 
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way is a terrible mistake. Remember that each rule is tested against each 
assertion exactly once. If the : TEST form rejects the match, that particu-
lar rule-assertion combination will never be tested again. This means that 
: TEST is safe only when the form is limited to examining the structure 
of the assertions themselves, using the pattern variables already bound 
in its lexical environment. It must not examine the state of the database 
in any other way. It must not use any global variables, and it must not 
examine the state of the TMS. Tests involving only structure will always 
return the same result because the structure of each assertion is fixed 
for all time. Deciding to reject a match based on some factor that can 
change over time is disastrous because there is no way to reconsider a 
rule-assertion combination when that external factor changes. 

The nastiness of the bugs that can occur when : TEST is abused is one 
reason that some creators of problem-solving languages carefully restrict 
what can be put into them. A common strategy in constraint logic pro-
gramming, for instance, is to define a sublanguage which is sufficiently 
restrictive to prevent such bugs. Such restrictions have other advantages, 
such as allowing the problem solver to be more easily implemented in a 
primitive host language (i.e., ART-IM's use of C as a substrate) or pro-
viding leverage for correctness proofs or automatic reordering of rule 
triggers for efficiency. However, we opt here for simplicity (but see Ex-
ercise 1). 

Now that we have pinned down the syntax of rules and the semantics 
of belief conditions on triggers, let us examine how they should be exe-
cuted. Recall that we have extended the semantics of trigger conditions 
so that we can specify conditions on the beliefs of their triggers that 
must be satisfied before they are executed. In the discussion that follows, 
we assume single-trigger rules, since we have defined the semantics of 
triggers so that each trigger can be considered independently. Recall that 
the sequence of operations that occurred in FTRE when a rule or asser-
tion is added was: 

1. A rule's matcher is executed on an assertion to see if the assertion 
fits the trigger. 

2. If the assertion doesn't fit, nothing happens. If the assertion fits, 
the rule's body procedure is queued along with the values of the 
variables it needs. 
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3. When the queue is serviced next, the rule is executed by applying the 
body procedure to the arguments queued with it. 

While this sequence of operations is not implemented by any single pro-
cedure, it correctly describes what the system is doing. 

This sequence of operations must be changed to take the belief condi-
tions of triggers into account. The first thing to notice is that if all rule 
triggers used the :INTERN condition, the same sequence of operations 
would be appropriate. So if we can modify this sequence to take the test-
ing of other trigger conditions into account we will have an appropriate 
design. Let us consider the trade-offs in modifying each of these steps in 
turn. 

We could modify the first step in the execution sequence by changing 
matchers to first test for the assertion's belief condition and to carry out 
the pattern-matching test only if the belief condition is appropriate. This 
isn't a very good idea. An assertion's pattern is permanent, but unless 
it is a premise or a contradiction, the system's belief in it need not be. 
Thus if we put the belief test first we would have to go back and retest 
assertions that failed to match whenever their belief state changed. It is 
better to filter based on the assertion's structure, because an assertion 
that does not currently match the trigger will never do so, and that rule-
assertion pair can be forever ignored. 

What about modifying the second step? That is, once the assertion has 
been determined to match and the variables bound by the match are 
computed, check to see if the assertion's TMS label matches the condi-
tion. If it does, then queue the rule for execution. Otherwise, stash the 
body-pattern variables pair on the in-rules or out-rules of the TMS 
node corresponding to the assertion. Then, if we set up the TMS's queu-
ing procedure correctly, when the node's label changes appropriately the 
rule would be queued for execution. This is a much better design. It 
still has one drawback: the label of the triggering assertion could change 
while the rule is waiting on the queue. Do we want to execute the rule 
anyway in that case? It could be argued in either direction, but we will 
presume that we want to delay execution in such cases until the trigger-
ing assertion again satisfies its belief condition. (The reason we prefer 
this choice is that many assertions can be believed once but are quickly 
found to be inconsistent. Building any justifications involving such as-
sertions as antecedents adds irrelevant but permanent structures to the 
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TMS.) Restricting execution to environments where the trigger's belief 
conditions are currently met requires that we arrange to test those con-
ditions again when the rule is executed. That, in turn, is equivalent to 
modifying the third step of our original sequence. Since modifying the 
third step of the original sequence suffices by itself to achieve our pur-
poses (as we will show below), we rule out modifying the second step. 

Since we have settled on modifying the third step, let us think about 
how to do it. Essentially, we can make the body procedure a bit smarter. 
If one of its arguments is the TMS node corresponding to the triggering 
assertion, we can write into the body procedure a test to ensure that this 
node satisfies the belief condition. If the condition is satisfied, the origi-
nal body is then executed. If it is not satisfied, then the body procedure 
and its current arguments can be stored in the in-rules or out-rules 
of the input TMS node as appropriate. Again, assuming we have set up 
the TMS's queuing procedure correctly, a change in belief state will cause 
the reconsideration of the assertion-rule pair. 

Let's step back and examine whether or not we are satisfied with our 
design for the rule system. Consider, for instance, the following rule: 

(rule ((:IN (Foo ?x) :VAR ?fl) 
(:IN (Bar ?y) :VAR ?f2)) 

(rassert! (Foo-Bar ?x ?y) 
(:RANDOM-COMBO ?fl ?f2))) 

Suppose we assume (Foo a) and then (Bar b). When (Foo a) is in-
stalled in the database, the outer rule will be triggered and a consumer 
will be installed on the node for (Foo a). Since that fact is believed, the 
rule will be executed, thus spawning a rule which looks for instances of 
(Bar ?y) . When (Bar b) is assumed, this newly spawned rule will be 
triggered. It in turn will justify (Foo-Bar a b) on the basis of these two 
facts. Notice that if we merely mention (Bar b) (by using referent, de-
fined in Section 8.3.2) the consumer will trigger, but instead of executing 
the original rule body it will requeue itself to wait for (Bar b) to be-
come in. If (Bar b) is ever believed, either as an assumption or because 
of some other justification, the consumer will execute the original rule 
body and our conclusion will be drawn. 

So far, so good. But is it? What happens if (Foo a) is retracted be-
tween the time (Bar b) is mentioned and believed? As written, the code 
will execute, installing the assertion corresponding to the conclusion in 
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the TMS. This conclusion will not be believed, of course, until both an-
tecedents are. But if we never believe (Foo a) again, then we have cre-
ated a useless node and justification. This is especially true if it happens 
that (Foo a) and (Bar b) are, due to the structure of the dependency 
network, contradictory. 

Our intuition in writing this rule was very likely that both triggers 
should be believed simultaneously before the rule is executed. That is 
not, however, what we settled on in our specification or our design. In-
stead we demanded only that each trigger's belief conditions must be 
satisfied in order to execute that rule's body. We knew abstractly that 
the sort of problem just raised could happen, but seeing a concrete ex-
ample of such a potential inefficiency might cause us to think twice. To 
keep things simple we stick with this design, because if all justifications 
are correctly written this implementation will never lead to incorrect be-
liefs. The only drawback with our current design is that the dependency 
network may, in the worst case, be festooned with useless nodes and 
justifications. Whether or not this drawback is serious depends on the 
particular problem solver. We have found that in most situations it does 
not matter, and our simple design suffices. Ensuring simultaneous satis-
faction of belief conditions is not much more complicated if that proves 
desirable (see Exercise 3). 

8.2.6 Handling contradictions 

JTRE requires two capabilities to process contradictions effectively. The 
first is a method of declaring particular nodes to be contradictory. In-
consistencies can then be recorded by justifications of contradiction 
nodes. The second capability is rebinding the TMS's contradiction han-
dler. Each task that makes assumptions carries with it the responsibility 
for processing contradictions, so rebinding the contradiction handler al-
lows JTRE to install the appropriate task-specific procedure. Fortunately, 
these capabilities are already provided by the JTMS implementation. We 
can wrap code that translates from assertions to TMS nodes and then 
calls the TMS procedure make-contradiction to declare an assertion to 
be contradictory. The inference engine can supply new handlers through 
the JTMS macro with-contradiction-handler, and contradiction 
checking can be turned off or on as desired using macros supplied 
with the TMS. 
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This completes the design of JTRE. We turn now to describing an im-
plementation of this design. 

8.3 Implementing JTRE 

Now that we have the design of JTRE firmly in mind, let us go over 
an implementation of it. We describe each file in turn, paralleling the 
structure of FTRE to highlight the differences between FTRE and JTRE 
due to the introduction of the TMS. 

8.3.1 The JTRE interface (jinter.lisp) 

The jtre struct differs in several respects from the f tre struct. First, 
all the fields for caching local rules and data are gone, since the stack-
oriented context mechanism of FTRE no longer makes sense with a JTMS. 
Similarly, the two queues have been re-merged into one, since assump-
tion making is not an activity typically done via pattern-directed rules 
in a JTMS-based system. The jtre struct also has several new fields not 
found in FTRE: 

jtms Holds the JTMS associated with this JTRE. 

datum-counter Provides a unique identifier for structs used to imple-
ment assertions. 

rule-counter Provides a unique identifier for structs used to imple-
ment rules. 

The purpose of the jtms field is obvious: a common operation involv-
ing a JTRE is mapping JTRE-level constructs to TMS-level constructs, so 
rapid access to the JTMS associated with a JTRE is important. The -
counter fields are used to provide integer identifiers for assertions and 
structs, as described in Section 4.3.3. We follow the convention of using 
a single global variable to refer to an instance of a JTRE. The following 
procedures create and manipulate JTREs: 

(create-jtre (title) &key (debugging)) Creates a new JTRE whose 
printing name is (title). When (debugging) is non-nil, information about 
internal operations will be printed. 
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(in-JTRE (jtre)) Resets the global variable *jtre* to the JTRE (jtre). 

(with-JTRE (jtre) &rest (forms)) Evaluates (forms) within (jtre), 
that is, in an environment where *jtre* is bound to (jtre). 

(change-jtre (jtre) &key (debugging)) Changes the amount of in-
ternal information printed out in (jtre)'s operations: If (debugging) is 
not nil, internal debugging information will be printed, and if nil, in-
ternal information is not printed. 

The interface procedures for running a JTRE are similar to those of 
FTRE. In particular, run, run-forms, and show are basically the same 
as their FTRE cousins, but with *jtre* instead of *ftre*. The only 
new wrinkles are the procedures uassert ! and uassume !, which sim-
plify interactive dialogs with a JTRE. They operate by first performing 
the appropriate activity and then executing all the rules queued by that 
activity. Often this manner of interaction is preferable to a driver loop 
like run. 

8.3.2 The JTRE database (jdata.lisp) 

The JTRE database follows the same implementation strategy as the FTRE 
database. The major differences are 

1. Each assertion is now implemented as a datum struct instead of its 
Lisp form. 

2. New interface procedures are added for installing justifications and 
manipulating assumptions. 

3. The set of interrogatives is expanded to take into account the TMS's 
role in tracking belief states. 

Let us start with the datum struct. It has the following fields: 

id Integer identifier, unique within the JTRE, for easy reference. 

jtre Pointer to the JTRE it belongs to. 

1 i sp-f orm The list structure comprising the form of the assertion. 

tms-node Pointer to the corresponding node in the THIS. 

dbclass Pointer to the database class it belongs to. 
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assumption? Indicates whether or not the assertion is an enabled as-
sumption. If non-nil, it is an enabled assumption, with the specific value 
being the informant. 

plist A property list for the datum. Handy in certain mark-sweep algo-
rithms and as a place for external systems to record information. 

The interface procedures can be divided into several parts. First are the 
procedures that introduce new entities into the database and the TMS: 

assert ! Makes permanent changes to the TMS. Its calling pattern ex-
presses a justification, i.e., 
(assert! (consequent) ( (informant) (antel) . . . (anten))) 
where (consequent) is the assertion being justified, (antel) . . . (anten) 
are the antecedents, and (informant) indicates the source. If the list of 
antecedents is nil or the second argument is simply an informant, the 
effect of assert! is to make (consequent) into a premise. 

rassert ! Like assert ! , but treats its arguments as expressions into 
which the values of pattern variables are to be substituted rather than as 
expressions to be evaluated. 

quiet-assert! Like assert!, but suppresses contradiction handling. 
Useful for asserting a set of constraints without interruption. 

assume! Converts an assertion into an enabled assumption, if it is not 
already one. Takes two arguments, (fact) which is the assertion to be 
assumed, and (reason), a symbol indicating why it is being assumed. 

already-assumed? Returns non-nil if its argument is already an en-
abled assumption. 

retract! Retracts an enabled assumption. The optional argument 
(just) is a reason for retraction. If the reason for retraction is not the 
same as the reason for making the assumption, the retraction does not 
Occur. 

rretract! Is to retract ! what rassert ! is to assert !. 

contradiction Marks the TMS node corresponding to the given asser-
tion as a contradiction. Any attempt to support this assertion will thus 
result in the invocation of contradiction processing. 

As with FTRE, all of these procedures have an optional argument of 
*jtre*, the default JTRE. This has the dual effect of allowing the user 
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to not refer to the JTRE if that variable is already bound in the operating 
environment, and also ensures that * jtre* is bound for any calls inter-
nal to these interface procedures. The same convention is used in other 
interface procedures without comment. 

The pattern seen in these procedures is characteristic of all inference 
engine/TMS interfaces. That is, the inference engine data is mapped into 
TMS nodes (via get-tms-node or its equivalent) and the corresponding 
TMS operations are then performed on these nodes. 

Notice that assume! keeps track of the informant for the assumption 
at the level of the inference engine, by the equality test on the (reason) 
argument. It is important for assume! to check whether or not an as-
sertion is already assumed to prevent programs from stepping on each 
other's toes. Consider a problem solver used as part of an engineering 
design system. One task is to estimate the parts cost of a particular de-
sign, which may involve making assumptions about what material the 
parts are made of if this is not already known. Typically, by the time cost 
estimations are made, many of the materials are already known due to 
other assumptions in the design process. The problem solver must keep 
track of which assumptions are made by each task, so that a task does 
not retract assumptions it was not responsible for. This same constraint 
is enforced in the implementation of retract! by carefully checking to 
see whether the assertion is an enabled assumption and whether it has 
the same source of support as was given as the reason for enabling it. 

The next set of interface procedures can be used to interrogate the 
database and the TMS: 

in? Returns non-nil exactly if the given assertion is in. 

out? Returns non-nil exactly if the given assertion is out. 

why? Describes the immediate support for an assertion. 

assumptions-of Produces a list of the assumptions underlying the be-
lief in an assertion. 

wfs Displays the well-founded support for belief in an assertion (see 
Chapter 7). 

show-justifications Displays the justifications in the TMS which 
can lead to belief in the given assertion. 

fetch Returns a list of the assertions matching a given pattern. 
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show-data Prints the contents of the database. 

Obviously show-data is useful only for small databases. Again, all of 
these procedures are implemented as per our design. That is, we first 
translate from Lisp forms to database items, then access the correspond-
ing TMS node to gather the appropriate information about beliefs, and 
finally translate the results back into assertions, if necessary. 

In addition to the procedures above, there is a second tier of interface 
procedures which are often useful in debugging. They presume more 
familiarity with the internals of the system (e.g., the distinction between 
datums and nodes). 

referent Returns the datum corresponding to the given Lisp expres-
sion, if it exists in the database. If the optional argument virtual? 
is non-nil, if a datum does not already appear in the database one is 
created. referent is useful for finding out if something has been men-
tioned at all, independently of its belief state. 

map-dbclass Executes the given procedure on each database class. 
Useful for performing some test over all assertions and rules. 

get-tins-node Returns the TMS node corresponding to the given fact, 
creating it if necessary. 

view-node The inverse of get-tins-node. 
show-datum Produces a user-interpretable string from the given da-
tum. 

get-datum Returns the datum whose identifier equals the given inte-
ger, if that datum exists, and nil otherwise. 

get-just Returns the justification whose identifier equals the given 
integer, if that datum exists, and nil otherwise. 

The (virtual?) flag in referent is useful because it is important to see 
whether or not an assertion has been mentioned at all, not just whether 
or not it is believed. (For instance, when debugging one may want to 
ask if a fact is not in the database without triggering any : INTERN rules 
which would be triggered if it is added.) Intuitively, an interrogative 
should not add structure to the database. We respect this intuition by 
using referent with (virtual?) set to nil in the interrogatives like in? 
and out?. 
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8.3.3 The JTRE rule system (jrules.lisp) 

Conceptually the rule system in JTRE has three major differences from 
the rule system in FTRE: 

1. Triggers must be parsed differently, to extract their belief condition 
( : IN, : OUT, and : INTERN) 

2. Body procedures must be built differently, to take the belief condi-
tions of the triggers into account. 

3. The TMS must be brought into the process of scheduling rules when 
the triggers include : IN or : OUT belief conditions. 

These three major changes result in many small changes in the imple-
mentation. Most of these small changes are fairly obvious consequences 
of a few key changes. Consequently, we focus on the key changes, and 
only sketch the small changes. 

Implementing the first major change requires changing the procedure 
parse-rule-trigger. Since we specified that the belief condition will be 
the first element of the trigger, this change is straightforward. The caller 
of parse-rule-trigger, the procedure build-rule, must of course be 
prepared to receive this information and must pass it to the appropriate 
subroutines for building the body and matcher procedures. 

The second major change requires more substantial modifications to 
build-rule. As before, the body procedure we build takes as input: 

■ The variables bound by the matches of triggers for all rules that the 
current rule is contained in. 

■ Any variables introduced by a : VAR option in the triggers of contain-
ing rules. 

There is now potentially one more argument: 

■ The TMS node corresponding to the triggering assertion, if the trig-
ger's belief condition is : IN or : OUT. 

Since it is the matcher which provides the other arguments to the rule, 
we change the procedure generate-match-procedure so that it re-
turns a third argument. The third argument indicates whether or not 
try-rule-on should add the TMS node for the matching assertion to 
the argument list it builds for body procedures. Once again we have 
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moved most of the interpretation and analysis of a rule into a compi-
lation process: At run time, try-rule-on just follows the instructions 
of the matcher, which has the right decision hard-wired into it. 

(The astute reader might see several alternative implementations both 
for this choice and for others. For instance, we might have included 
a field in the rule struct that has a flag indicating whether or not a 
TMS node should be included in the arguments of the body procedure, 
analogous to our use of the assumption? field in FTRE's rule struct. Each 
rule instance consists of a distinct struct, so adding a field increases 
storage costs proportionately to the number of rule instances built. In 
contrast, the matcher is shared between all instances of a particular rule, 
so adding the information to it provides no additional storage charge per 
rule instance. Consequently we prefer to incorporate this information in 
the matcher. It also has other useful implications, as explored in Exercise 
2.) 

How should we bring the TMS into the scheduling process? When de-
signing the rule system we decided that a rule's execution would be de-
ferred if the trigger's belief condition was not satisfied. The easiest way 
to do this is to wrap a cond around the original body (see generate-
body-procedure) which performs the appropriate test on the TMS node 
provided at run time. If the test succeeds, the original body is exe-
cuted on the spot. Otherwise the procedure and all its arguments are 
stored with the TMS node, which will requeue them when the appropriate 
changes in its belief state occur. 

8.3.4 Testing JTRE (jtest.lisp) 

Part of putting a new ship in working order is taking it on a shake-
down cruise, to make sure all the subsystems work and that everything 
operates smoothly together. The procedure shakedown-jtre serves an 
analogous purpose by running a set of standard examples and checking 
that their results at least crudely match with expectations. While it does 
not check every subsystem extensively, it is surprising just how sensi-
tive such shakedown can be. shakedown-jtre is very useful when mak-
ing sure that JTRE is running properly on a new system, or when you 
have made some change to its internals and you want to look for unan-
ticipated effects. 
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8.4 Example: Dependency-directed search 

The only good thing about repeating your mistakes is that you know when to 
cringe. 
—from an AIX fortune file 

In Chapter 5 we saw how the classic N-queens puzzle could be solved 
via chronological search. Chapter 6 pointed out the problems with 
chronological search, and outlined how truth maintenance systems could 
help. Recall that using a TMS can make search more efficient in two ways: 

1. When an inconsistency is discovered, the assumptions underlying 
it can be tracked down. This capability supports more intelligent 
backtracking schemes. 

2. Inconsistent combinations of assumptions (called nogoods) can be 
noted in the TMS so that they are never tried again. This capability 
allows a system to avoid making the same mistake twice. 

Search strategies that exploit these two TMS capabilities are known as 
dependency-directed search strategies. Here we show one implementation 
of a dependency-directed search strategy in the context of the N-queens 
puzzle. Since this puzzle was used in Chapter 5 to illustrate chronolog-
ical search, we can then analyze the performance of the FTRE and JTRE 
versions to get more insight into the trade-offs between these two fami-
lies of strategies. 

To facilitate the comparison, we keep the structure of the JTRE imple-
mentation as close as possible to the FTRE version. The principal design 
decisions in that system were: 

1. Represent the placement of a queen on a chessboard by assertions of 
the form (queen (column) (row)). 

2. Since there can be at most one queen per row, define the placement 
of a queen in each row as the collection of choice sets that spans the 
space of possible solutions. 

3. Search the collection of choice sets via chrological backtracking to 
generate all solutions. 

We need only to change the third design decision, by implementing a 
dependency-directed search strategy instead of chronlogical backtrack- 
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ing. Accordingly, most of the code in our new version of N-queens re-
mains the same. 

How should a dependency-directed search be organized? We might use 
chronological search as a starting point. Abstractly, chronological search 
was characterized in Chapter 5 as follows: 

(defun Chrono (choice-sets) 
(if (null choice-sets) (record-solution) 

(dolist (choice (first choice-sets)) 
(while-assuming choice 

(if (consistent?) 
(Chrono (rest choice-sets))))))) 

In the FTRE version of N-queens, the parts of this abstract procedure 
were implemented as follows: 

■ record-solution was implemented by fetching the set of queen 
assertions and caching them in a global variable. 

■ while-assuming was implemented by a call to try-in-context 
which assumed the particular choice. 

■ consistent? was implemented by looking for the output of PDIS 
rules which detected captures in the beginning of solve-queens, 
triggered in response to the assumed placement made by the call to 
try-in-context 

As a first approximation, dependency-directed search can be described 
abstractly as a variation of chronological search like this: 

(defun DDS (choice-sets) 
(if (null choice-sets) (record-solution) 

(dolist (choice (first choice-sets)) 
(unless (nogood? choice) 
(while-assuming choice 
(if (consistent?) 

(DDS (rest choice-sets)) 
(record-nogood choice))))))) 

The obvious changes are: 

■ nogood? checks to see if the choice is already known to be inconsis-
tent with the rest of the dependency network. If so, there is no point 
in assuming it. 
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■ record-nogood must use the information supplied by a contradic-
tion handler to create a warning that choice is inconsistent under 
the assumptions that led to the contradiction. These assumptions 
need not include all the assumptions made by previous stages of 
the search, and could include assumptions that were made indepen-
dently of the search. 

The mechanics are slightly more complex, however, since we must ar-
range for making and retracting assumptions rather than just throwing 
away an inconsistent database. 

To implement a dependency-directed search routine for N-queens, we 
can keep the same mechanism for contradiction detection (e.g., PDIS 
rules) and use the JTMS contradiction-handling mechanism to notify us 
immediately when a capture is detected. As with the FTRE version, the 
way we have organized the search means that the last assumption will 
always be implicated in any contradiction that is detected. This greatly 
simplifies matters. After making an assumption, all we must do is detect 
the difference between the database reaching quiescence naturally and 
having a contradiction occur. 

The astute reader might also notice that, since the last assumption is 
always implicated in a contradiction, this example does not demonstrate 
the full potential benefit of dependency-directed search. One of the pre-
sumed advantages, after all, was being able to backtrack farther, past 
irrelevant choices. It is always advantageous to organize problem solving 
so that mistakes are found as quickly as possible.' The more complex, 
and the less understood, a problem is, the less likely it is that such 
organizations are possible, and hence the more beneficial dependency-
directed search strategies are likely to be. The implementation of search 
routines to deal with multilevel backtracking are a bit more complex, and 
so we postpone discussion of them until Chapter 10. 

We now understand, at least in outline, how to exploit the TMS's con-
tradiction processing abilities to facilitate testing partial solutions for 
consistency. What about recording mistakes? Suppose we detect that a 
particular queen placement, say (queen 3 8), is inconsistent with our 

1. One engineer has remarked that a valuable property of modern CAD tools is that 
"they allow us to make more mistakes, more quickly." 
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previous choices (say (queen 1 1) and (queen 2 7)). The assumptions 
returned by the contradiction handler would be in this case 

((queen 2 7) (queen 3 8) ) 

Notice that (queen 1 1) was not implicated: although it was a choice 
made as part of the search, it did not participate in the current contra-
diction. We can record this mistake by creating a new justification whose 
antecedent is (queen 2 7), so that whenever we have chosen (queen 2 
7) some warning would automatically become in. Then we can modify 
our search algorithm so that if a warning is spotted before a choice is 
made, we simply skip it. Thus we never have to make the same mistake 
twice. 

An implementation of this design can be found in the file j queens 
.lisp. Most of the file is the same as the FTRE version (called fqueens 
.lisp). The differences center around two changes: 

■ Since JTRE does not contain FTRE's try-in-context, we implement 
a new version of try-in-context which uses a contradiction han-
dler to detect contradictions. 

■ solve-queens has been changed to create warnings when captures 
are detected and to use this information to avoid repeating mistakes. 

Let us examine these procedures in more detail. 
Comparing the two versions of try-in-context is illuminating be-

cause they are quite different. Recall that the FTRE version pushed and 
popped stacks of rules and assertions. This implementation strategy is 
not a viable option for JTRE because its assertions have indefinite tempo-
ral extent. Instead, we assume and retract assertions, carefully surround-
ing each JTMS transaction with forms that help ensure its integrity. 

try-in-context begins by binding the contradiction handler to a 
closure including try-contradiction-handler as its procedural base. 
This handler detects when a contradiction involves the current assump-
tion by encapsulating a marker (the value of try-marker) which is 
unique for each call to try-in-context. If the given assumption is al-
ready believed, thunk is evaluated without further ado. Otherwise, the 
assumption is enabled and the PDIS rules are executed (via run-rules) 
to figure out the consequences of this new assumption. The cat chs 
are required because each of these steps could trigger a contradiction 
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(do you see why?) that would result in try-contradiction-handler 
performing its throw. In each case, the return-from provides an an-
swer from try-in-context that indicates the assumptions underlying 
the problem. Once thunk has been evaluated, the cleanup clause of the 
unwind-protect is invoked to retract the current assumption, and try-
in- c ont ext returns. 

solve-queens-puzzle orchestrates the use of try-in-context. In 
particular, before a choice is made, it checks to see if the negation of 
the choice is believed within the current JTRE. The negation of the choice 
being in indicates that we already know, from earlier in the search, that 
making this assumption would lead to a contradiction. Therefore we sim-
ply skip over this particular possible choice. If we do not know that the 
assumption will be inconsistent, we use try-in-context to test it and 
continue the search. Notice that we trap the contradiction coming back 
from try-in-context, and use the underlying assumptions to justify 
the negation of the choice just assumed. This provides the nogood in-
formation needed by the earlier portion of solve-queens-puzzle. The 
pattern of detecting and installing nogoods used in this procedure is 
found in all dependency-directed search strategies, although it is often 
distributed across several distinct procedures. 

How does this dependency-directed backtracking version of N-queens 
compare with the chronological backtracking version of Chapter 5? 
Table 8.1 shows the data gathered using the test-queens procedure 
in j queens . lisp, while Table 8.2 shows the data for f queens . lisp (us-
ing FTRE) for the same problems. The data for the dependency-directed 
search version are plotted in Figure 8.1. Figures 8.2 and 8.3 compare 
FTRE's chronological search against JTRE's dependency-directed search. 
The lessons from computational experiments, like those from any other 
experiments, need to be extracted with care. In this case, the simple 
nature of the N-queens puzzle provides two advantages for chronolog-
ical search that do not generalize to most situations. First, we know 
due to the way we structured the search space that the last assump-
tion made is always the one to be retracted. Second, the amount of work 
involved in testing a combination of assumptions is quite small. Thus 
there is a smaller penalty for backing up in this puzzle than in most 
real-world problems. So this test is somewhat biased in favor of chrono-
logical search. And, as Figure 8.2 indicates, chronological search is ac-
tually faster from the perspective of measured run time. Is dependency- 
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Table 8.1 
Performance of JTRE on N-queens. Using an IBM RT Model 125 with 16MB of RAM, 
running Lucid Common Lisp. Time is user run time, in seconds. 

N # SoIn's # Asns Time 

4 2 53 1.27 
5 10 137 4.47 
6 4 332 12.33 
7 40 860 44.70 
8 92 2554 153.48 

Table 8.2 
Performance of FTRE on N-queens. Using an IBM RT Model 125 with 16MB of RAM, 
running Lucid Common Lisp. Time is user run time, in seconds. 

N # SoIn's # Asns Time 

4 2 60 0.55 
5 10 220 1.33 
6 4 894 5.13 
7 40 3,584 20.23 
8 92 15,720 95.13 

directed search a bad idea? Consider Figure 8.3, which compares these 
strategies with respect to the number of assumptions required. From 
this perspective there is a very clear advantage for dependency-directed 
search. In most real problems the overhead of testing assumptions is 
much larger, and often the problem space is not well enough understood 
to allow for optimal ordering of choice sets. In such cases dependency-
directed search should show a run-time advantage as well. The crossover 
will occur when the effort saved by not repeating the same mistakes over 
and over again outweighs the extra mechanism of the JTMS. 

There is no magic here—both search strategies are still exponential. 
Dependency-directed search only postpones the day of reckoning by in-
creasing the range of problems that can be solved with a fixed computa-
tional resource. 
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8.5 Example: Reconstructing SAINT 

Next we turn to a more substantial example. SAINT was one of the first 
AI programs. SAINT performed indefinite integration, and was able to 
solve most of the problems that appeared on an MIT calculus exam. As 
its author, Slagle, described it, "Let SAINT read in its card reader an IBM 
card containing (in a suitable notation) the symbolic integration problem 
f xex`dx. In less than a minute and a half, SAINT prints out the answer, 

. After working for less than a minute on the problem f e"2dx 
(which cannot be integrated in elementary form) SAINT prints out that it 
cannot solve it" (page 191, [8]). 

Here we partially reconstruct SAINT, using JTRE as a substrate. Obvi-
ously, our goal is not to imitate all aspects of the program. Card readers, 
after all, are rather hard to find these days. Instead, we replicate a sub-
set of SAINT's functionality and methods of operation to illustrate some 
principles for designing problem solvers. These principles include: 

1. Explicit representation of control knowledge: Representing "how" 
knowledge is often just as important as representing "what" knowl-
edge. We have already seen a simple form of control knowledge, the 
show operator, in our implementation of KM* in Chapters 4 and S. 
Here we describe a richer control vocabulary of problems, solutions, 
and relationships between them. This vocabulary allows us to record 
many control decisions in the database where they are thus inter-
pretable by PDIS rules, rather than hiding them in procedures. By 
using the TMS to link these control statements into the dependency 
network, we can achieve better control of the reasoning process. 

2. Control via suggestions: It is hard to avoid combinatorial explosions, 
or even infinite loops, in a purely antecedent reasoning system. One 
valuable technique for organizing problem solvers is to decompose 
the inference engine into two parts: 

• PDIS: The pattern-directed inference system, e.g., JTRE. It has the 
responsibility of maintaining the assertional database and draw-
ing "obvious" conclusions. An important class of obvious conclu-
sions are suggestions about how to solve particular subproblems. 

• Controller: The controller is responsible for guiding the problem-
solving process. It detects when the problem is solved and when 
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resource allocations have been exceeded. It selects what prob-
lem(s) are currently to be worked on, based on suggestions from 
the PDIS. 

This decomposition provides finer-grained control than any purely 
antecedent scheme, even given control assertions, can provide. 
Purely local rules have no hope of accurately detecting loops and 
combinatorial explosions. The controller provides a more global per-
spective that potentially can make more accurate decisions. 

3. Use of special-purpose higher-level languages: The conceptual gap 
between our intuitions about problem solving and JTRE is smaller 
than the gap between our problem-solving intuitions and Lisp, but 
it can still be substantial. One way to narrow that gap is to design 
domain-specific representation (or programming) languages that cap-
ture exactly the right distinctions needed to solve particular classes 
of problems. Ideally, for instance, a mathematician extending JSAINT 
would not have to know how to write JTRE rules to debug or extend 
its knowledge of integration. A little extra code is often all it takes to 
achieve substantial improvements in ease of use. 

4. Explanation generation: One motivation for using a TMS is to pro-
vide explanations. In JSAINT we show how the JTMS can be used to 
explore the rationale underlying a solution, including some of the 
control decisions which led to it. Since the reasons for failures are 
also recorded, we can also use the TMS to track down what JSAINT 
would need to know in order to solve a problem it failed on. 

8.5.1 How SAINT worked 

SAINT solved indefinite integration problems. For those whose calculus 
courses are but a distant memory (or a future plan, or something that 
is not to be), here is the essence of such problems. Given a mathemati-
cal expression one can do a variety of things—operations—to it. One of 
those operations is taking its derivative with respect to some variable. 
Finding an expression's derivative is interesting because it corresponds 
to the rate of change. For example, speed is the derivative of position: If 
you travel at 110 miles per hour for 20 minutes (without getting caught) 
you will have covered 33 miles. Integration is the inverse operation of tak-
ing a derivative. The calculation which netted us 33 miles of progress (or 
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a speeding ticket) is a simple example of definite integration. What made 
it definite rather than indefinite was that we knew for how long we were 
going. Indefinite integration finds an expression representing the inverse 
of the derivative that is independent of any specific interval. Solving in-
definite integrals is useful because the results can be used to easily solve 
a whole family of definite integration problems. (If you are not familiar 
with the mathematical notation for integration, this is the time to borrow 
a good calculus text and take a few minutes to brush up.) 

Roughly, SAINT worked like this: Given an integral to solve, SAINT first 
attempted to match the integral to one of a set of standard forms whose 
solutions are immediately known. Here is a simple standard form: 

1 
vdv —

2
- 
, 

Given the problem f xdx, this transformation rule tells us immediately 
that the answer is x2, by substituting x for v. 

When a problem did not match a standard form, SAINT began apply-
ing transformations to decompose it into easier pieces. Three examples 
include: 

cg(v)dv 	c f g(v)dv 

where c is constant in v, and 

Zgi (v)dv 	f gi (v)dv 

and finally, 

Let g (v) be the integrand. For each nonconstant nonlinear subexpression s(v) 
such that neither its main connective is minus nor is it a product with a com-
mon factor, and such that the number of nonconstant factors of the fraction 
s 'V)  (after cancellation) is less than the number of factors of g (v), try substi-
tuting u = s (v). Thus, in xex', substitute u = x 2. (Page 197, [8]) 

Unlike standard forms, which directly solve a problem, transforma-
tions define the solution of a problem in terms of new, presumably' 
simpler, problems. If more than one transformation is applicable, both 
might be pursued. SAINT organized subproblems into an AND/OR tree, 
with the AND branches being the subproblems needed to solve a given 
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Figure 8.4 An AND/OR tree 

problem and the OR branches being alternate methods to solve a given 
problem. Figure 8.4 illustrates. 

SAINT included two kinds of transformations, algorithm-like transfor-
mations and heuristic transformations. Slagle defined an algorithm-like 
transformation to be one "which, when applicable, is always or almost al-
ways appropriate." Heuristic transformations are those which are much 
less likely to work. The first two transformations above are algorithm-
like, and the third is heuristic. When deciding what to do, SAINT always 
preferred to try standard forms first, then algorithm-like transforma-
tions, and finally heuristic transformations. 

To keep our program simple, JSAINT implements only a small frac-
tion of SAINT's knowledge of integration. SAINT used 26 standard 
forms, 8 algorithm-like transformations, and 10 heuristic transforma-
tions. JSAINT includes only 20 operators. The exercises provide opportu-
nities for extending JSAINT's knowledge. 

8.5.2 The design of JSAINT 

In designing anything, it makes sense to start with "the big picture" to 
see what parts are needed and roughly how they fit together. Based on 
this global perspective, we can then design the pieces so that they fit to-
gether to instantiate our original picture. In designing problem solvers 
this typically means starting with the system's architecture. Thus we 
begin by outlining JSAINT's architecture, and proceed to describe the 
design of each component in more detail. The description of the imple-
mentation itself begins in Section 8.5.3. 
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8.5.2.1 The architecture of JSAINT 

Figure 8.5 shows the architecture of JSAINT. It has three main parts, each 
with the following responsibilities: 

1. 	Central controller: 

• Gathering suggestions from the Integration Library about how to 
proceed. 

• Choosing what subproblem(s) to work on. 

• Ensuring that resource limitations are not exceeded. 

2. AND/OR graph: 

• Maintains status of progress on problems and subproblems. 

• Detects when problems have been solved or when they cannot be 
solved. 

3. Integration Library: 

• Provides direct solutions to simple problems (e.g., SAINT's stan-
dard forms). 

• Makes suggestions for how to decompose complex problems 
(e.g., SAINT's transformations). 

Abstractly, the basic cycle of this architecture is: 

1. If the original problem has been solved or clearly cannot be solved, 
or if resource bounds have been reached, quit. 

2. Select best subproblem P to work on. 
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3. If P can be directly solved, do it. 

4. Otherwise, gather suggestions for how to solve P and extend the 
AND/OR graph accordingly. 

In SAINT, working on a subproblem consists of applying a standard 
form to solve it directly or applying a transformation to decompose it 
into simpler problems. The same will be true of JSAINT, except that the 
standard terminology for both kinds of knowledge is now operators, so 
we call them that for convenience. 

The basic JSAINT cycle is analogous to the discipline of show asser-
tions used in Chapters 4 and 5. Recall that an assertion (show (G)) 
was an expression of interest in proving the statement (G). In effect, the 
pattern-directed database broadcasts an appeal for other rules to pitch 
in. A crucial limitation of this scheme is that the connection between the 
act of recognizing an operation as potentially relevant and performing 
that operation is a bit too direct. Rules that respond to show assertions 
directly by doing something often lead to inefficiencies. For instance, 
close metering of our implementation of KM" indicates that it can waste 
time finding alternative proofs for a proposition which had already been 
demonstrated or which was no longer relevant. 

In JSAINT, the connection between proposing an action and carrying 
out that action is much less direct. The Integration Library makes sugges-
tions, but it is the controller that decides what to do about them. Dividing 
the process in this way adds some overhead, to be sure. However, overall 
efficiency improves because better control can be achieved than would 
otherwise be possible. 

To gain maximum advantage from JTRE, JSAINT uses its database as 
much as possible to store both domain and control information. For 
example, JSAINT's AND/OR graph is implemented as a set of assertions 
in the dependency network. The Integration Library is implemented as 
PDIS rules. This design choice, along with our reuse of the simplifier 
program of Chapter 3, allows the JSAINT code itself to be surprisingly 
compact. 

We begin by examining the control vocabulary JSAINT uses, and then 
describe the design of the AND/OR graph. Next we look at how operators 
work, and then we examine the central controller in more detail. Once 
the design is firmly understood, the fine points of the implementation 
are explored in Section 8.5.3. 
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8.5.2.2 A control vocabulary 

Some problem-solver designers treat representation almost as an af-
terthought. We believe this is a horrible mistake. Representation is al-
ways a central factor in any Al system. As problem-solver designers we 
must strive to develop representations that promote coherence and effi-
ciency. In JSAINT we have two representation problems. The first, how to 
represent mathematical expressions in Lisp, has already been solved for 
us by the convention of prefix notation. The second is how to represent 
control information. This is harder, and there is much less agreement 
about what the optimal conventions are. 

The first issue is how we should represent the idea of a problem itself. 
One obvious, but suboptimal, solution is not to talk about them. That is, 
suppose we represent the mathematical expression 

f(x + 5)dx 

as 

(integral (+ x 5) x) 

We could simply let this integral statement stand for both the math-
ematical expression and the problem of finding an equivalent expres-
sion without an occurrence of integral. This is inadequate because in a 
larger system, one could easily imagine knowing certain integral expres-
sions without having the slightest urge to act upon them. Therefore, just 
as we used show assertions in natural deduction to express interest in 
providing a proposition, we use integrate as a predicate to express in-
terest in finding the solution to the integral that is its argument. Thus, 
the problem above would be posed to JSAINT as 

(integrate (integral (+ x 5) x)) 

Another reason to use integrate explicitly is that a problem solver 
often faces more than one kind of problem. Suppose we were building 
JSAINT as the first component of a more general mathematical reason-
ing system. We might have another set of rules for solving systems of 
equations, for example, in which definite integrals must be solved as sub-
problems. In this case the form of the algebraic expression isn't enough 
to signify what needs to be done to an expression. 
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The ideas of goal and problem are closely linked. Often goals have 
the form "solve this problem," and so we could just as easily think of 
integrate expressions as goals. Similarly, we could treat "achieve this 
goal" as a problem to be solved. Consequently we sometimes use the 
two terms interchangeably here, even though in general they are not 
identical. 

The conceptual distinction between goals and problems raises an im-
portant issue: should our representation include predicates like prob-
lem, goal, and task? Our answer is no, unless the system actually needs 
these distinctions to operate. One can easily imagine tasks that would 
require these distinctions, and indeed, others. Suppose for instance that 
we had some very powerful problem-solving methods that were applica-
ble to several kinds of goals or problems. In that case, predicates like 
goal and problem would be necessary to help express when such meth-
ods are applicable. Or suppose we were developing a program to pose 
mathematical problems rather than solve them (e.g., one that postulates 
interesting conjectures for mathematics or develops quizzes to test a 
student's knowledge of what it just explained). If this level of general-
ity is needed, one might be better off having yet another element in the 
control vocabulary, say, solve, which indicates the goal of solving a par-
ticular problem (specified by an integrate or similar expression). We 
leave such possibilities for the reader to explore, since for JSAINT's sim-
ple control structure those particular predicates would be a frill. 

In JSAINT, the only kind of goal is to try a particular method. This will 
be expressed as: 

(try (integral-of-sum (integral (+ x 5) x))) 

where integral-of-sum is the name of one of JSAINT's transformations 
and the integral statement is what it is being applied to. 

Problems are sometimes solved and sometimes not. Sometimes we lose 
interest in a problem, perhaps because it is no longer relevant or because 
we have no more time to spend in on it. The problem solver needs a 
vocabulary for expressing the status of its subproblems and goals. The 
necessary vocabulary is surprisingly subtle. The most obvious distinction 
to draw is whether or not a problem has been solved. JSAINT uses the 
predicates solved and failed for this purpose. Given a problem P, 

(solved (P)) is believed exactly when P has been successfully solved. 
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(failed (P)) is believed exactly when P cannot be solved by JSAINT 
as constituted. 

Obviously (solved (p)) and (failed (p)) are mutually inconsistent. 
Typically in a mathematics problem, knowing that the problem has 

been solved isn't enough—one wants to know what the solution actually 
is.2  The problem solver needs a way to link the solution of a problem to 
the problem itself. We use the relation solution-of as follows: 

(solution-of (P) (A)) holds exactly when (A) is the result of solv-
ing problem (P). 

Sometimes the same goal or subproblem arises more than once. For 
example, in calculus problems it is common to find the same subexpres-
sion cropping up again and again when performing an indefinite integra-
tion. It is important to recognize such cases so that we don't waste time 
starting a new effort to solve a goal when there is already an attempt 
underway. Representing problems and goals as assertions makes recog-
nition trivial, since identical problems will be identical assertions. There 
is still the problem of recognizing that we have started to work on a goal 
already. The traditional term for setting to work on a subproblem or sub-
goal is to expand it [1], so we include the predicate expanded in JSAINT's 
vocabulary: 

(expanded (PG)) is true exactly when JSAINT has begun working on 
problem or goal (PG). 

An aside: Notice that our choice of representation for problems and 
goals forces us to diverge slightly from SAINT's organization: SAINT used 
an AND/OR tree, while JSAINT uses an AND/OR graph. If we wanted 
to implement an AND/OR tree via assertions we still could, by reifying 
problems and goals. Each problem or goal could be given a unique name 
(say, GOAL86) and described via assertions like these: 

(goal GOAL86) 

(GOAL86 form-of 

(try (risch-algorithm (integrate 
(integral (hairy-fun x) x))))) 

(GOAL86 difficulty 500) 

2. But sometimes it is, e.g., when trying to prove that a problem is decidable. 
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This convention makes recognition more difficult, of course. 
Let us return to the status of problems and goals. So far we have 

chosen representations for saying when a problem is solved and when 
we have started to work on something. Once JSAINT has started working 
on a problem, it also needs to know when to stop working on it. There 
are two reasons to stop working on a problem: 

1. The problem has been solved, or it has become clear that no solution 
is possible. 

2. The problem or goal doesn't matter anymore. 

The first case can be detected when either solved or failed is be-
lieved about a problem. Traditionally, a node in an AND/OR graph (or 
other search tree) which has been expanded but whose fate has not yet 
been resolved is said to be open. Once its fate is resolved it is said to be 
closed. For reasons that will become clear later, JSAINT only needs open: 

(open (P)) is believed exactly when problem (P) has been expanded 
but is not yet solved or known to be unsolvable. 

(open (G)) is believed exactly when goal (G) has been expanded but 
is not yet achieved or known to be unachievable. 

The second case, when a problem becomes moot, is more subtle. Sup-
pose JSAINT was working on a problem P because P was a subproblem 
raised by solving some larger problem P. If P is solved by some other 
method that does not require solving P, then P is moot and no further 
effort should be expended on it. JSAINT uses the predicate relevant to 
make this distinction: 

(relevant (PG)) holds exactly when goal or problem (PG) is still po-
tentially relevant to solving the original problem. 

The vocabulary for the status of problems and goals may seem a bit 
complex, but it is necessary to capture the distinctions JSAINT needs. 
Figure 8.6 illustrates how these statements capture the possible time 
histories of subproblems and goals. 

With the basic control vocabulary understood, we can proceed to con-
sider the design of the AND/OR graph. 
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Figure 8.6 The control vocabulary describes progress on problems and 
goals 

8.5.2.3 The design of the AND/OR graph 

The AND/OR graph represents the relationships between the various 
subproblems and goals explored during problem solving. Subproblems 
and goals arise for two reasons: 

1. Several operators might be suggested to solve a particular problem. 

2. Many operators work by decomposing a problem into subproblems 
which, if solved, can be combined to form a solution to the original 
problem. 

The appropriate relationship in the first case is disjunctive, since if any 
of the suggested operators works the problem is solved. The appropriate 
relationship in the second case is conjunctive, since typically all the sub-
problems need to be solved in order form the solution to the original 
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problem. (If this were not the case, the operator might best be broken up 
into several operators.) 

Given our suggestions architecture, the structure of an AND/OR graph 
consists of alternating layers of suggested operators (corresponding to 
or-nodes) and subproblems whose solutions are needed to apply an oper-
ator (corresponding to and-nodes). It is convenient to use the parent-
child metaphor to describe the immediate relationships between nodes. 
An and-node will always be a try goal and its children will always be 
integrate problems. An or-node will always be an integrate problem, 
and its children will always be try goals. 

In SAINT and other early problem solvers, AND/OR graphs were imple-
mented via special-purpose datastructures and procedures. In JSAINT we 
implement AND/OR graphs as collections of assertions, woven together 
via justifications in the problem solver's dependency network. The ad-
vantage of this tactic is that it allows us to make more of the problem 
solver's operation explicit, with less hidden inside primitive procedures. 
Specifically, we can define the semantics of our control vocabulary and 
the relationships within the AND/OR graphs via PDIS rules. The TMS thus 
takes over a substantial portion of the bookkeeping and provides the 
grist for explaining what happened during problem solving and why. 

To define the semantics of the control vocabulary, we start by consid-
ering the relationship of the success and failure of a node's children to 
the success and failure of its parent(s). This will pin down most of the 
relationships. We then explore the consequences in the other direction, 
to show how the predicate relevant works. 

Consider and-nodes first. Suppose (P1) . . . (Pn) are conjunctive sub-
problems of the goal of the and-node (Gp). Failure of any (Pi) means 
failure of (Gp). In other words, 

(failed (P1) ) 	(failed (Gp) ) 

(failed (Pn) ) 	(failed (Gp) ) 

This statement about the semantics of failure can be turned into a Horn 
clause appropriate for the JTMS by making (failed (Gp)) the conse-
quence of a justification which includes (failed (Pi)) as one of its 
antecedents. There should be at least one other antecedent as well to 
indicate that (Pi) is one of the children of (Gp). The exact form of this 
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statement will depend on the details of the representation we implement. 
Its purpose is to ensure that all of the structure of the AND/OR graph is 
explicit in the TMS, so that explanations can take it into account. 

At first glance the success of an and-node seems easy to express: it suc-
ceeds exactly if all of its children succeed. This is indeed the semantics 
used in JSAINT, but we would be remiss if we did not raise a potential 
problem with this definition. In general, it is possible that even if all 
the subproblems of an and-node are successfully solved, the particular 
solutions they yield may not permit themselves to be combined into a 
successful global solution. Consider designing an airplane, where there is 
a fixed upper bound on weight. Typically there is no purely local criteria 
which lets one say that a part is "light enough," since this decision must 
be based on considering the other parts constituting the aircraft. This 
problem cannot arise in JSAINT, given the limited amount of expressive 
power it gives the authors of operators (described below). 

DeMorgan's law leads one to expect that or-nodes will be the dual of 
and-nodes, and this is indeed the case. That is, if a single child of an or-
node succeeds then the or-node is solved, and if all the children of an 
or-node fail, then the or-node fails to be solved. This raises an interest-
ing design issue. Should JSAINT be organized so that the complete set 
of relevant suggestions is available by essentially an atomic operation, 
or should we allow new suggestions to be added incrementally? For in-
stance, since only one successful or-node is needed, it might be more 
efficient to generate them incrementally. At first glance this may seem 
like a control issue and not a vocabulary issue. But our choice on this 
issue has a substantial impact on the representation. As explained later, 
we organized JSAINT to presume that the set of suggestions it gathers 
when it first expands a goal is complete, and do not process solutions 
added later. This choice allows us to represent the parental relationships 
of or-nodes quite simply, by creating an assertion that explicitly lists the 
disjuncts: 

(or-subgoals (Gp) ((G1) . . . (Gn))) 

Furthermore, it means that once a node has failed, it remains failed 
forever. This would not be the case if new suggestions could be added 
incrementally (say, by a user adding an operator as the result of a JSAINT 
failing to solve its problem). Assertions that list a complete set of options 
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would still be highly desirable in a more general setting, but our control 
language must be enriched to handle such possibilities. For example, in 
Chapter 10 we show how explict closed-world assumptions can be used 
to achieve this kind of incrementality. But for JSAINT we stipulate that 
all suggestions are gathered up once when the goal is expanded, and that 
no suggestions appearing afterwards for that goal shall be entertained. 

Now that we understand how the status of a parent node is affected 
by its children, let us consider the converse: how should the parent's sta-
tus affect that of its children? If we restrict ourselves to AND/OR trees 
rather than AND/OR graphs, so that each node has a single parent, the 
constraints imposed by parenthood are quite strong. For example, if the 
parent succeeds or fails, we should stop working on any children not yet 
processed, since they are now irrelevant. The situation in JSAINT is a bit 
more complicated because a node can have multiple parents, and fur-
thermore the graph is generated incrementally, so we cannot guarantee 
that a node will not receive new parents later on.3  So in expressing the 
impact of the parent's status on the status of its children we must be 
careful to ensure that our method allows for reinstatement of nodes as 
relevant when appropriate. 

Recall that we used the predicate open to indicate that we have not 
yet solved or failed to solve (alternatively, achieved or failed to achieve) 
a goal or problem, and relevant to indicate that a goal or problem 
potentially had a role in solving the original problem. A child node (C) 
is relevant only if it has a open parent (P), because if all of its parents 
are closed, any work done on that node is moot. If for each parent (P) 
we install the Horn clause equivalent of 

(open (P)) 	(relevant (C)) 

then we have captured the relationship. This method is incremental in 
exactly the right way, since each parent can be added independently, 
and any open parent ensures the relevance of the child. (The root of the 
AND/OR graph will have to be automatically assumed to be relevant.) 

3. This unbiological situation demonstrates a limit of the parent-child metaphor. The 
inquiring reader might ponder whether or not the root of the graph can gain parents, 
and if so, under what circumstances. 
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With the conventions of the AND/OR graph understood, we can turn to 
the design of operators. 

8.5.2.4 Defining operators 

Now let us examine how operators should work. First we must consider 
the protocol that operators must adhere to in order to interact appro-
priately with the control vocabulary described above. Then we must con-
sider how they should be structured. 

We already described how the output of operators is expressed, so let 
us begin our examination of the operator protocol there. Recall that we 
defined (solution-of (P) (A)) to mean "the solution of problem (P) 
is the expression (A)." To ensure valid explanations, every solution-
of statement must be appropriately justified in terms of the solutions of 
subproblems (if any) and the operator used. If (Pp) is the problem the 
operator instance (Opinst) was successfully applied to, then we would 
expect to see in the JTMS a justification corresponding to the logical 
expression: 

(solution-of (P1) (A1)) 

A (solution-of (Pi) (A1 )) 

A (solution-of (Pn) (An )) 
A (operator-instance (Opinst)) 	(solution-of (Pp) (Ap)) 

The other three tasks the operator protocol must perform are: 

1. An operator must find out about problems it should look at, and see 
if it is applicable. 

2. An operator must be able to signal the controller that it is relevant to 
a particular problem (i.e., suggest itself as the solution). 

3. An operator must apply itself when the controller selects it. 

The first task is carried out by making operators look for expanded 
assertions, since such assertions are the first indication that a node is 
being worked on. The second task is carried out by making operators 
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create new assertions that represent suggestions. Suggestions have the 
form: 

(suggest-for (P) (Opinst)) 

where (P) is the problem that would be solved by the successful appli-
cation of operator instance (Opinst). The third task, of applying itself on 
demand, is accomplished by looking for an expanded statement for the 
goal of (try (OpInst)). 

One might suspect, given that JTRE is our substrate, that operators 
will be implemented by a collection of PDIS rules (and that would be 
correct), but it is important to understand the protocol independently of 
how operators are implemented. An example will help make it concrete. 
Suppose we had an operator integral-of-sum which decomposed the 
integral of the sum of two terms into the sum of the integrals of the 
terms. Then when the controller starts to work on the problem 

(integrate (integral (+ 1 (sqr x)) x)) 

it signals the operators via an assertion of the form 

(expanded (integrate (integral (+ 1 (sqr x)) x))) 

To indicate that it might be able to solve the problem, the integral-of-
sum operator uses an assertion of the form 

(suggest-for (integrate (integral (+ 1 (sqr x)) x)) 

(try (integral-of-sum (integral (+ 1 (sqr x)) x)))) 

When the central controller wishes to take up this suggestion it adds an 
assertion of the form 

(expanded (try (integral-of-sum (integral (+ 1 (sqr x)) x)))) 

to the database, which causes the operator instance to propose two new 
subproblems (e.g., integrating X2  and 1 seperately) which, if solved, will 
allow it to solve the original problem. 

With the operator's protocol now clear, let us examine their structure. 
The expression of integration laws in calculus textbooks only provides 
part of the story. For concreteness, here are two integration laws, ex-
pressed in standard mathematical notation: 
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cg(v)dv 	c f g(v)dv 

where c is constant in v, and 

Egz (v)dv — 	g,(v)dv 

Representing these operators in a form JSAINT can use requires adding 
additional information. First, we must encode the conditions under 
which the operator is applicable. This includes the left-hand side of the 
rule, plus any statements made about it, such as "where c is constant in 
v" above. Second, there must be some way to extract subproblems from 
the right-hand side of the rule (i.e., f g(v)dv) and specify how their com-
bination results in the solution to the original problem. Third, it is useful 
for explanation and debugging purposes to give names to the operators. 

An inevitable tension in designing problem solvers comes from the gap 
between the constructs in which one prefers to think and the primitives 
supplied by the language in which the system is to be implemented. A 
mathematician would be happy with the integration laws as described 
above, but these descriptions are too vague for JSAINT to use. The ob-
vious implementation of operators is to use a set of PDIS rules for each 
operator—one rule per step of the protocol above. But these implementa-
tion decisions must remain hidden as much as possible, since the mathe-
matical knowledge of integration is completely independent of the oper-
ator protocol, much less of its implementation. 

In the least abstracted implementation, we would force users to write 
explicit JTRE rules, or even Lisp code, to implement operators. In the 
most abstracted implementation, we would implement a parser (or actu-
ally, several parsers) to process mathematical statements in the notation 
that the particular user community was most comfortable with, extract 
extra conditions on applicability and subproblems automatically, and so 
forth. In JSAINT we choose a middle ground, selecting a set of conven-
tions that is very easy to implement yet still shields users from most of 
the internals of the system. In particular, we require the author of an 
operator to name it and to explicitly identify subproblems and applica-
bility conditions. Operators are defined by the form def Integration. 
Its syntax is: 

(clef integration (name) (pattern) (stuff)) 
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where (name) is a symbol naming the operator, (pattern) is the left-hand 
side of the operator, expressed in the usual Lisp notation for mathemat-
ical expressions, and (stuff) is a list of keywords and their arguments. 
The valid keywords are: 

: TEST Optional. Extra applicability conditions applied to the pattern. 
Any pattern variables appearing in (pattern) may be used. 

: SUBPROBLEMS Optional. The list of subproblems which must be solved 
before the operator can provide a result. Each subgoal is given a pattern 
variable as its name. 

: RESULT Required. The right-hand side of the rule. Any pattern vari-
ables used in (pattern) or the subgoals may be used here. 

Here is how the first integration operator mentioned previously would 
be implemented using these conventions: 

(defIntegration Move-Constant-outside 
(Integral (* ?const ?nonconst) ?var) 
:TEST (and (not (occurs-in? ?var ?const)) 

(occurs-in? ?var ?nonconst)) 
:SUBPROBLEMS ((?int (Integrate (Integral ?nonconst ?var)))) 
:result (* ?const ?int)) 

The basic idea is that to integrate an expression which is the product of 
a constant term and a term containing the variable of integration, one 
can simply take the product of the constant term and the integral of the 
non-constant term. Thus this operator would be applicable to 

(integral (integrate (* 5 y))) 

but not to 

(integral (integrate (* (sin x) x) x)) 

The mathematical user, then, is asked to learn several things. They 
still have to use a prefix syntax for mathematical expressions, and need 
to know when (and what) subgoals the system needs to have identified 
for it. However, they no longer have to know about the internal control 
vocabulary or the detailed syntax of JTRE, which is a blessing both for 
them and for the implementers who would otherwise be forced to explain 
it to them. 
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8.525 The design of JSAINT's controller 

The controller's job is to orchestrate the operation of the other parts. It 
must 

■ Initialize the AND/OR graph. 

■ Select what subproblem or goal to work on. 

■ Extend the AND/OR graph with suggestions and subproblems as ap-
propriate. 

■ Detect when the original problem is solved. 

■ Detect when resource bounds have been exceeded. 

JSAINT's controller is organized around an agenda, which holds the 
subproblems and goals that have not yet been expanded. Notice that this 
is very different from the queues in the TREs, where the intent is that 
every queued item eventually will be executed. Each agenda item includes 
an estimate of its difficulty, to allow JSAINT to select the least difficult 
task to try next. If the difficulty estimate is even roughly accurate, this 
organization increases the chances of finding a less expensive solution 
before an expensive one. 

Abstractly, the controller algorithm is: 

1. Check the original problem. 
1.1 if SOLVED, then halt and report success. 
1.2 if FAILED, then halt and report failure. 

2. If the agenda is empty, then halt and report failure. 

3. If the resource allocation has been exceeded, report failure. 

4. Select the simplest subproblem on the agenda and work on it. 

5. Return to step 1. 

The purpose of the first two steps should be obvious. Notice that the sta-
tus of the original problem is checked each time through the loop. This 
detects cases where a critical subgoal may have failed, making further ef-
fort pointless. The resource bound provides a safety valve, just like FTRE, 
by providing an arbitrary bound on how much work JSAINT is willing 
to put in on solving the problem it is given. In practice, several kinds 
of resource bounds can be useful. Implementation-dependent bounds in-
clude CPU time and memory used. Implementation-independent bounds 
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include upper bounds on the length of a derivation or the size and com-
plexity of subproblems considered. JSAINT uses the simple but effective 
strategy of placing an upper bound on the number of subproblems it ex-
plores. 

Step 4 raises most of the remaining issues. For instance, how should 
we estimate the difficulty of problems? Obviously the difficulty depends 
on the complexity of the expression being integrated—a polynomial with 
100 terms takes more work to solve than a polynomial with two terms. 
Depending on one's perspective, the difficulty also depends on the path 
(or paths) between the subproblem and the original problem. Consider-
ing that JSAINT allows a subproblem to have multiple parents, we choose 
to ignore properties of the derivation path and base our estimates of 
difficulty solely on the structural properties of the subproblem or goal 
itself.` 

What does processing a subproblem entail? The control statements as-
sociated with setting up a problem (P) act in part as signals used by 
the rules that implement operators. The process starts by asserting (ex-
panded (P)) and assuming (open (P)). Notice that we assert expanded 
because a problem can be expanded at most once during the course of 
problem solving, but we assume open because a solved (or failed) prob-
lem is no longer open, so we must be able to retract open statements. 

Once expanded and open are believed, JSAINT runs the JTRE queues 
to completion in order to find applicable operators and their results. As 
noted above, if we find a solution-of statement for (P), we are finished 
with it. (The bookkeeping for this can be handled by a pattern-directed 
rule, as with the rest of the protocol.) If no solution has been found then 
we have to look for suggestions. Recall that suggestions have the form: 

(suggest-for (P) (Opinst)) 

So by fetching suggest-of statements we have a set of operator in-
stances that are applicable. A try goal must be added to the agenda for 

4. Notice that we are also implicitly assuming something important about our prob-
lem-solving abilities: Our ability to solve a subproblem is independent of when we 
tackle it in the course of solving a larger problem. This would not be true for learn-
ing systems: see for example the literature on explanation-based learning [3] and the 
notion of Socratic completeness [2]). 
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each such instance. The set of suggestions themselves is recorded in the 
database by an or-subgoals assertion. Should there fail to be sugges-
tions, then we assert that (P) has failed, justifying this statement on the 
empty or-subgoals list. 

An aside: Notice that we would get the same answers if we simply 
asserted the failure of (P) as a premise in the circumstances just out-
lined. However, justifying it on the basis of the or-subgoals statement, 
which itself is a premise, provides an extra level of information about 
why the failure occurred. Intuitively, the reason for the failure is, "There 
was nothing which seemed relevant to solve the problem." For problem 
solvers that have several stores of knowledge to draw on, or have an 
associated learning or knowledge-acquisition system, such statements 
should be assumptions rather than premises, since there is the possibil-
ity that knowledge added later could provide new prospects for solving 
(P). 

One question that may be bothering the alert reader at this stage is 
what should happen to the (open (P)) assumption if we solve (P). We 
have been presuming it will be retracted, but how? Since solutions are 
detected locally and asynchronously by pattern-directed rules, we would 
like a similar, distributed solution. Two such solutions are: 

1. Add a rule that explicitly retracts a problem's open statement when 
it is either solved or failed. 

2. Install a nogood between open and solved and between open and 
failed, and ensure that the contradiction handler will retract the 
appropriate open statement in such conflicts. 

The second solution is the most general and is typically preferable, 
since it allows a problem to become open again if we find out that our 
solution was inappropriate or if we gain new knowledge that lets us 
succeed where we failed previously. Its only disadvantage is that it sets 
up additional justifications in the JTMS, which are of course permanent. 
Given the way we have set up our problem solver such justifications 
would be used at most once. In these special circumstances, explicit 
retraction is more efficient. Since we presume here that our information 
about solved and failed is unretractable, our implementation uses the 
simpler method. 
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(rule ((:IN (AND-SUBGOALS ?parent ?children) :VAR ?def)) 

(dolist (child ?children) 
(rlet ((?child (:EVAL child))) 

(rassert! (PARENT-OF ?child ?parent :AND) 

(:DEF-OF-AND ?def)) 
(rule ((:IN (failed ?child) :VAR ?delinquent)) 

(rassert! (failed ?parent) 
(:AND-FAILURE ?def ?delinquent))))) 

(assert! '(solved ,?parent) 
`(:AND-SUCCESS ,?def 
,@ (mapcar #'(lambda (child) 

`(SOLVED ,child)) 
?children)))) 

(rule ((:IN (OR-SUBGOALS ?parent ?children) :VAR ?def 

:TEST ?children)) 
(dolist (child ?children) 

(rlet ((?child (:EVAL child))) 
(rassert! (PARENT-OF ?child ?parent :OR) 

(:DEF-OF-OR ?def)) 
(rule ((:IN (SOLVED ?child) :VAR ?winner)) 

(rassert! (SOLVED ?parent) 

(:0R-SUCCESS ?winner ?def))))) 

(assert! '(FAILED ,?parent) 
`(:0R-FAILURE ,?def 

,@ (mapcar #'(lambda (child) 
`(FAILED ,child)) 

?children)))) 

Figure 8.7 PDIS rules for implementing AND/OR graph relationships 

8.5.3 The JSAINT implementation 

Now that we have seen how JSAINT is organized, it is time to explore 
how it is implemented. We will step through j srules . lisp first, then go 
through j saint . lisp, and end by examining j sops . lisp, a sample set 
of integration operators. 

8.5.3.1 The bookkeeping rules jsrules.lisp 

The rules in this file provide most of the enforcement of the semantics of 
the control vocabulary. The first two rules are reproduced in Figure 8.7. 
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The first rule implements the relationships between an and-node and its 
children, while the second rule implements the relationships between an 
or-node and its children. Notice that an equivalent form (the parent-
of assertion) is produced by both rules to provide a pattern for retrieval 
and for rules common to both types of node. The only other feature of 
note is the use of rlet to bind ?child inside these rules so that the 
rules spawned to detect success and failure will have the appropriate 
environment. 

Since there are very few rules, we describe each of the rest of them in 
turn. 

(rule ((:IN (PARENT-OF ?child ?parent ?type) :VAR ?lineage)) 
(rassert! (RELEVANT ?child) 

(:STILL-WORKING-ON (OPEN ?parent) ?lineage))) 

This rule defines relevant for a child in terms of open on its parent(s), 
as outlined in the design. (We recommend long informant names (e.g., 
: STILL-WORKING-ON) as a matter of style: they make tracking down bugs 
much easier.) 

(rule ((:IN (SOLUTION-OF ?problem ?answer) :VAR ?found)) 
(rassert! (SOLVED ?problem) (:FOUND-ANSWER ?found))) 

This rule notes that a problem is solved once its solution has been 
found. 

(rule ((:IN (OR-SUBGOALS (Integrate ?expr) NIL) :VAR ?no-ideas)) 
(rassert! (FAILED (Integrate ?expr)) (:NO-METHODS ?no-ideas))) 

This trigger can only occur when no suggestions have been made for 
the problem of integrating ?expr. (The controller is careful to avoid as-
serting or-subgoals if the problem has already been solved.) Since no 
suggestions means that none of the system's knowledge is appropriate, 
failure is the only recourse. 

(rule ((:IN (SOLVED ?problem))) ;; Can only happen once 
(retract! '(OPEN ,?problem) :EXPAND-AGENDA-ITEM t)) 

(rule ((:IN (FAILED ?problem))) 
(retract! '(OPEN ,?problem) :EXPAND-AGENDA-ITEM t)) 

These rules decomission work on ?problem, since retracting its open 
statement will render its children irrelevant. Using retraction inside PDIS 
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rules is generally unwise, and should only be done under special cir-
cumstances. Here it is safe only because we know what program made 
the assumptions (e.g., we know the informant is : EXPAND-AGENDA-ITEM) 
and we know that once retracted, an open statement will never be re-
assumed. 

8.5.3.2 The JSAINT main code 

As with the TREs, JSAINT uses a struct to define the collection of pa-
rameters associated with a copy of it instantiated for solving a particular 
problem. A JSAINT has its own JTRE and agenda, as well as the usual ti-
tle, debugging flags, statistics counters, and so forth. The rest of the first 
page simply implements the same conventions we have used in other 
programs for creating and referring to copies of a system. Notice that we 
presume that no contradictions ever occur, so we make the contradiction 
handler be a call to error. 

The second page describes the basic interface. solve-integral cre-
ates and runs a copy of JSAINT in order to solve a given integration 
problem. explain-result uses information cached in the JSAINT struct 
to explain what happened, using the JTMS routine explore-network as 
a subroutine. 

The third page implements the central controller outlined earlier. run-
j saint provides the main loop, while most of the inferential work 
is performed within process-subproblem. The test for an expanded 
statement prevents duplication of effort, while the creation of the or-
subgoals statement is in effect a higher-order inference: it makes an 
assertion about the global state of the database, something which cannot 
be done by any single PDIS rule. 

The next page contains the procedure queue-problem, which adds 
items to the agenda, and ancillary procedures which calculate a heuris-
tic estimate of complexity to order problems. JSAINT uses the sum of 
the maximum depth of the problem expression plus the number of sym-
bols in it as its estimate of difficulty, since larger problems typically 
require more work to decompose into directly solvable pieces. Given a 
problem, fetch-solution simply returns the answer by looking for an 
in solution-of assertion. 

The code for defining operators is next. This is the most difficult part 
of the system, since it must turn the reasonably civilized defIntegra-
tion statements into the appropriate pattern-directed inference rules. 
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(defIntegration Integral-of-Sum 
(Integral (+ ?tl ?t2) ?var) 
:SUBPROBLEMS ((?intl (Integrate (Integral ?tl ?var))) 

(?int2 (Integrate (Integral ?t2 ?var)))) 
:result (+ ?intl ?int2)) 

Figure 8.8 A sample integration operator. This operator expresses the idea 
that the sum of two terms can be integrated by taking the sum of the inte- 
grals for the two individual terms. 

Examining a simple operator will help focus our discussion. Figure 8.8 
states that the problem of integrating the sum of two terms can be solved 
by integrating each term individually and then adding their result to-
gether. What must we do to implement this operator? First, we must 
be able to recognize situations in which it is applicable. Second, when 
it is applicable, we either use it to compute a result directly or suggest 
it as something to try, depending on whether or not it requires addi-
tional problems to be solved first. Finally, if the required subproblems 
have been solved, the solution to the original problem must be asserted 
(if feasible, given the particular solutions found to the subproblems) 

We can implement this operator in JTRE by means of a pattern-directed 
rule, and write def Integration as a macro which writes such rules. The 
outermost trigger must establish the potential applicability of the rule. 
Then, if there are no subproblems, the : RESULT field should be installed 
as the solution to the triggered problem. If there are subproblems, then 
the suggestion of integral-of-sum must be made and another rule 
spawned to look for this suggestion being taken up. If that rule ever 
fires, the subproblems must be queued and yet another rule spawned 
to look for their solutions. Once these solutions are found, the solution 
to the original problem can then be asserted in terms of the solution 
to the subproblems. Figure 8.9 illustrates this structure for the operator 
defined in Figure 8.8, as computed by def integration. 

It is worth studying this expanded rule closely, since it reveals several 
important implementation principles for systems of this kind. First, we 
have taken steps to keep both the generated rule and its results read-
able by automatically introducing intermediate variables via rlet and by 
using keywordize to introduce recognizable informants. This both sim-
plifies def integration and makes the expansion of the rules easier to 
understand (and, if necessary, easier to debug and extend). Second, we 
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(rule ((:IN (expanded (integrate (integral (+ ?tl ?t2) ?var))) 

:VAR ?starter)) 
(rlet ((?integral (integral (+ ?t1 ?t2) ?var)) 

(?problem (integrate (integral (+ ?tl ?t2) ?var)))) 

(rlet ((?op-instance (integral-of-sum ?integral))) 
(rassert! (operator-instance ?op-instance) 

:OP-INSTANCE-DEFINITION) 
(rassert! (suggest-for ?problem ?op-instance) 

(:INTOPEXPANDER ?starter)) 
(rule ((:IN (expanded (try ?op-instance)) :VAR ?trying)) 

(rlet ((?goal0 (integrate (integral (:EVAL (simplify ?t1)) 
?var))) 

(?goall (integrate (integral (:EVAL (simplify ?t2)) 
?var)))) 

(queue-problem ?goal0 ?problem) 
(queue-problem ?goall ?problem) 
(rassert! (and-subgoals (try ?op-instance) 

(?goal0 ?goall)) 
(:INTEGRAL-OF-SUM-DEF ?trying)) 

(rule ((:IN (solution-of ?goal0 ?intl) :VAR ?result0) 
(:IN (solution-of ?goall ?int2) :VAR ?resultl)) 

(rlet ((?solution (:EVAL (simplify '(+ ,?intl ,?in2))))) 
(rassert! (solution-of ?problem ?solution) 

(:INTEGRAL-OF-SUM (operator-instance ?op-instance) 
?result0 ?resultl))))))))) 

Figure 8.9 How an integration operator is implemented. Here is the JTRE 
rule built by,  defintegration to implement the integration rule of Figure 8.8. 

have kept all control and data dependencies separate. All control state-
ments are justified in terms of expanded statements, while the only data 
justification (the solution-of conclusion) is justified strictly in terms 
of operator-instance and other solution-of statements. This sepa-
ration reflects the fact that, while it is important to record dependencies 
for both results and how they are obtained, the actual result in this case 
does not depend on the detailed sequence of control decisions made in 
deriving it. Both parts of the dependency network are useful for different 
purposes. When explaining the solution the data dependencies are the 
most important. When figuring out why JSAINT failed on a problem, the 
control justifications become more relevant. 

def integration itself uses several helpers to accomplish its mis-
sion. The principal helper is our old friend simplify (see Chapter 3), 
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which is used to massage both subproblems and solutions into more rea-
sonable forms. The procedure calculate-subproblem-list introduces 
the ?GOAL variables for referring to subproblems. simplifying-form-
of generates a call to simplify which is used at run time to simplify 
subgoals. And finally, calculate-solution-rule-parts uses the list 
of subgoals and result variables to create the triggers and antecedents 
for the rule that gathers the subproblem solutions and constructs the 
original problem solution from them. 

The end of the file includes some interrogatives and debugging facili-
ties. show-problem summarizes what is known about a particular prob-
lem or subproblem, while show-ao-graph provides a report describing 
the entire AND/OR graph. try-j saint provides a handy way to try new 
problems, and j f etch provides a simple method for making ad hoc 
queries about the results. A small suite of sample problems, all of which 
JSAINT can solve, is also included. 

8.5.3.3 The sample operator library jsops.lisp 

The integration operators provide a good starting point for building up 
a library of integration laws. It begins with some standard forms for 
degenerate cases, namely 

(defIntegration Integral-of-Constant ;; f k dx 	kx 
(Integral ?t ?var) 
:TEST (not (occurs-in? ?var ?t)) 
:result (* ?t ?var)) 

(defIntegration Integral-of-Self ;; f x dx 
	x- 2 

(Integral ?exp ?exp) 
:result (/ (expt ?exp 2) 2)) 

The simplest transformation is next, 

(defIntegration Move-Constant-outside 	f cf(x)dx 	c f iF(x)obc 
(Integral (* ?const ?nonconst) ?var) 
:TEST (and (not (occurs-in? ?var ?const)) 

(occurs-in? ?var ?nonconst)) 
:SUBPROBLEMS ((?int (Integrate (Integral ?nonconst ?var)))) 
:result (* ?const ?int)) 

which moves a constant outside the integration sign. 
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The rest of the file can be divided up according to the kind of opera-
tors it concerns. Figure 8.10 illustrates the operators that handle sums 
and polynomials. Notice that n-ary sums are handled in Integral-of - 
Nary-sum by decomposing them into the integral of the first, second, 
and rest. Operators involving exponentials, logarithms, and trigonomet-
ric functions are shown in Figure 8.11. 

(deflntegration Integral-of-Sum 
(Integral (+ ?tl ?t2) ?var) 
:SUBPROBLEMS ((?intl (Integrate (Integral ?tl ?var))) 

(?int2 (Integrate (Integral ?t2 ?var)))) 
:result (+ ?intl ?int2)) 

(deflntegration Integral-of-Nary-sum 
(Integral (+ ?tl ?t2 . ?trest) ?var) 
:SUBPROBLEMS ((?intl (Integrate (Integral ?tl ?var))) 

(?int2 (Integrate (Integral ?t2 ?var))) 
(?intr (Integrate (Integral (+ . ?trest) ?var)))) 

:TEST (not (null ?trest)) 
:result (+ ?intl ?int2 ?intr)) 

(deflntegration Integral-of-uminus 
(Integral (- ?term) ?var) 
:SUBPROBLEMS ((?int (Integrate (Integral ?term ?yar)))) 
:result (- ?int)) 

(deflntegration Integral-of-minus 
(Integral (- ?tl ?t2) ?var) 
:SUBPROBLEMS ((?intl (Integrate (Integral ?tl ?var))) 

(?int2 (Integrate (Integral ?t2 ?yar)))) 
:result (- ?intl ?int2)) 

(defIntegration Integral-of-SQR 
(Integral (sqr ?var) ?var) 
:result (/ (expt ?var 3) 3)) 

(defIntegration Integral-of-polyterm 
(Integral (expt ?var ?n) ?var) 
:TEST (not (same-constant? ?n -1)) 
:result (/ (expt ?var (+ 1 ?n)) (+ 1 ?n))) 

Figure 8.10 Operators involving summation and polynomials 
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(deflntegration Simple-e-integral 

(Integral (expt %e ?var) ?var) 

:result (expt %e ?var)) 

(deflntegration e-integral 

(Integral (expt %e (* ?a ?var)) ?var) 

:TEST (not (occurs-in? ?var ?a)) 

:result (/ (expt %e (* ?a ?var)) ?a)) 

(defIntegration non-e-power-integral 

(Integral (expt ?b (* ?a ?var)) ?var) 

:TEST (and (not (occurs-in? ?var ?a)) 

(not (occurs-in? ?var ?b))) 

:result (/ (expt ?b (* ?a ?var)) (* ?a (log ?b %e)))) 

(deflntegration Log-Integral 

(Integral (log ?var %e) ?var) 

:result (- (* ?var (log ?var %e)) ?var)) 

(deflntegration sin-integral 

(Integral (sin (* ?a ?var)) ?var) 

:TEST (not (occurs-in? ?var ?a)) 

:result (- (/ (cos (* ?a ?var)) ?a))) 

(defIntegration cos-integral 

(Integral (cos (* ?a ?var)) ?var) 

:TEST (not (occurs-in? ?var ?a)) 

:result (/ (sin (* ?a ?var)) ?a)) 

(defIntegration sin-sqr-integral 

(Integral (sqr (sin ?var)) ?var) 

:result (- (/ ?var 2) (/ (sin (* 2 ?var)) 4))) 

(deflntegration cos-sqr-integral 

(Integral (sqr (cos ?var)) ?var) 

:result (+ (/ ?var 2) (/ (sin (* 2 ?var)) 4))) 

Figure 8.11 Operators involving exponentials, logs, and trig 
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One limitation of our implementation language for operators can be 
seen by the substitution operators at the end of j sops . lisp, reproduced 
in Figure 8.12. These operators implement the following substitutions: 

SinToCosSqrSub sin(x) 	- \/1 — cos2 (x) 

CosToSinSqrSub cos(x) 	- \/1 — sin2 (x) 

SinSqrToTanCosSub sin(x) 	tan2 (x) x cos2 (x) 

(defIntegration SinToCosSqrSub 
(Integral ?exp ?var) 
:TEST (and (occurs-in? ?var ?exp) 

(occurs-in? '(sin ,?var) ?exp)) 
:SUBPROBLEMS 
((?Int (Integrate (Integral 

(:EVAL (subst '(sqrt (- 1 (expt (cos ,?var) 2))) 
`(sin ,?var) 
?exp :TEST 'equal)) ?var)))) 

:result ?Int) 

(defIntegration CosToSinSqrSub 
(Integral ?exp ?var) 
:TEST (and (occurs-in? ?var ?exp) 

(occurs-in? '(cos ,?var) ?exp)) 
:SUBPROBLEMS 
((?Int (Integrate (Integral 

(:EVAL (subst '(sqrt (- 1 (expt (sin ,?var) 2))) 
`(cos ,?var) 
?exp :TEST 'equal)) ?yarn)) 

:result ?Int) 

(defIntegration SinSqrToTanCosSub 
(Integral ?exp ?var) 
:TEST (and (occurs-in? ?var ?exp) 

(occurs-in? '(sin ,?var) ?exp)) 
:SUBPROBLEMS 
((?int (Integrate (Integral 

(:EVAL (subst '(* (sqr (tan ,?var)) 
(sqr (cos ,?var))) 

`(sin ,?var) 
?exp :TEST 'equal)))))) 

:result ?Int) 

Figure 8.12 JSAINT's language is clumsy for certain substitutions 
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These are what in SAINT would be heuristic transformations—on cer-
tain problems they are very useful, but on others they will propose sub-
problems that are more complex than what they started with. 

8.5.4 Exploring JSAINT's operation 

Running JSAINT on the suite of sample problems provides some in-
teresting insights into its operation. Figure 8.13 illustrates in detail 
what JSAINT produces for problem2 from the example suite. By using 
explain-result we can explore the argument for the answer as well as 
the answer itself. The ability to explore the reasons for a failure is illus-
trated in Figure 8.14, where the impasse can be traced to the system's 
lack of knowledge about hyperbolic functions. 

> (try-j saint problem2) 

(+ (* 5 X) (/ (SQR X) 2)) 

<Agenda JSAINT Test> 

> (explain-result) 

Solved the problem: 

(SOLUTION-OF (INTEGRATE (INTEGRAL (+ 5 X) X)) (+ (* 5 X) (/ (SQR X) 2))) 

is IN via INTEGRAL-OF-SUM on 

(SOLUTION-OF (INTEGRATE (INTEGRAL 5 X)) (* 5 X)) 

(SOLUTION-OF (INTEGRATE (INTEGRAL X X)) (/ (SQR X) 2)) 

>>>1 

(SOLUTION-OF (INTEGRATE (INTEGRAL 5 X)) (* 5 X)) 

is IN via INTEGRAL-OF-CONSTANT on 

(OPERATOR-INSTANCE (INTEGRAL-OF-CONSTANT (INTEGRAL 5 X))) 

>>>0 

(SOLUTION-OF (INTEGRATE (INTEGRAL (+ 5 X) X)) (+ (* 5 X) (/ (SQR X) 2))) 

is IN via INTEGRAL-OF-SUM on 

(SOLUTION-OF (INTEGRATE (INTEGRAL 5 X)) (* 5 X)) 

(SOLUTION-OF (INTEGRATE (INTEGRAL X X)) (/ (SQR X) 2)) 

>>>2 

(SOLUTION-OF (INTEGRATE (INTEGRAL X X)) (/ (SQR X) 2)) 

is IN via INTEGRAL-OF-SELF on 

(OPERATOR-INSTANCE (INTEGRAL-OF-SELF (INTEGRAL X X))) 

>>>q 

#<Node: (SOLUTION-OF (INTEGRATE (INTEGRAL X X)) (/ (SQR X) 2))> 

Figure 8.13 JSAINT solving an integral 
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> (try-jsaint '(integrate (integral (+ (* 3 x) (cosh x)) x))) 

:FAILED-EMPTY 

<Agenda JSAINT Test> 

> (explain-result) 

Ran out of things to do. 

(FAILED (INTEGRATE (INTEGRAL (+ (* 3 X) (COSH X)) X))) 

is IN via OR-FAILURE on 

(OR-SUBGOALS (INTEGRATE (INTEGRAL (+ (* 3 X) (COSH X)) X)) 

((TRY (INTEGRAL-OF-SUM (INTEGRAL (+ (* 3 X) (COSH X)) X))))) 

(FAILED (TRY (INTEGRAL-OF-SUM (INTEGRAL (+ (* 3 X) (COSH X)) X)))) 

>>>2 

(FAILED (TRY (INTEGRAL-OF-SUM (INTEGRAL (+ (* 3 X) (COSH X)) X)))) 

is IN via AND-FAILURE on 

(AND-SUBGOALS (TRY (INTEGRAL-OF-SUM (INTEGRAL (+ (* 3 X) (COSH X)) X))) 

((INTEGRATE (INTEGRAL (* 3 X) X)) 

(INTEGRATE (INTEGRAL (COSH X) X)))) 

(FAILED (INTEGRATE (INTEGRAL (COSH X) X))) 

>>>2 

(FAILED (INTEGRATE (INTEGRAL (COSH X) X))) 

is IN via NO-METHODS on 

(OR-SUBGOALS (INTEGRATE (INTEGRAL (COSH X) X)) NIL) 

>>>1 

(OR-SUBGOALS (INTEGRATE (INTEGRAL (COSH X) X)) NIL) 

is IN via OR-SUBGOALS on 

>>>q 

#<Node: (OR-SUBGOALS (INTEGRATE (INTEGRAL (COSH X) X)) NIL)> 

Figure 8.14 JSAINT failing to solve an integral 

Solving (sin2(x) - 1)dx provides a good example of how the con-
troller allows JSAINT to stop working as soon as it finds a solution. 
Figure 8.15 depicts the AND/OR graph for this problem. In addition 
to the solution shown, there is an alternative solution which first uses 
integral-of-sum to split the terms, integral-of-constant to handle 
the -1, and sin-sqr-integral to handle the sin2(x) term. (To verify 
this, try running this example with SinToCosSQRSub commented out.) 
Notice that the node for the instance of Integral-of-Sum is not even 
opened, so no work was wasted finding an alternate solution. 
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(2 X) fcos2(x)dx — X 	sin (4  
4 

Figure 8.15 JSAINT avoids finding redundant solutions. The solid lines in- 
dicate parent relationships, the dashed lines indicates how the solution of 
subgoals propagates back to become the solution of the original problem. 
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8.6 Summary 

In this chapter we have seen how a JTMS can be exploited in prob-
lem solving. The issues involved in the inference engine/TMS interface 
have been explored by building JTRE, a version of FTRE which uses the 
JTMS. In the N-queens example, we saw how dependency-directed search 
works, and that it could potentially increase efficiency considerably. In 
JSAINT, we saw how a problem solver could be built that both exhibits in-
teresting performance and provides (at least rudimentary) explanations 
of its results. 

The increased power we gained by using a TMS raises an interesting 
question: Could a more powerful TMS allow us to build even more pow-
erful problem solvers? The answer is yes, within certain boundaries. The 
exact nature and shape of these boundaries is still very much an area 
of active research at this writing. For example, in the next chapter we 
show how a logic-based TMS can make most propositional reasoning oc-
cur automatically and efficiently. But if one tries to make this new TMS 
powerful enough to be complete, we give the exponential a new toehold 
in our programs. The next five chapters provide some useful data points, 
both positive and negative, reflecting the field's current understanding of 
the matter. 

These systems also illustrate another central design principle. The in-
ference engine used by the problem solvers in this chapter were di-
vided into two parts: the pattern-directed inference system and a con-
trol scheme which made global decisions based on the state of the JTRE 
database. No single module should be expected to do everything. Divide-
and-conquer is as crucial a technique for designers of problem solvers as 
it is for the problem solvers themselves. 

8.7 Backpointers 

The technique of control via suggestions is an abstraction of common 
practice in many AI communities, including many builders of blackboard 
systems and production-rule systems [1, 5]. 

Much has been learned about indefinite integration since Slagle's pi-
oneering work. For example, there is an algorithm for indefinite integra-
tion (the Risch algorithm) which covers the analytic functions, and hence, 
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in principle, most search is unnecessary. However, the Risch algorithm 
produces results that are hard to simplify, and so most fielded symbolic 
algebra systems rely on search techniques descended from SAINT. The 
early history of automatic symbolic integration techniques is described 
in [7]. A good introduction to the state of the art in symbolic algebra is 
provided by [5]. 

8.8 Exercises 

	

1. 	One problem with : TEST is that it can give naive users a bit too much 
rope with which to hang themselves. In this problem we examine this 
issue more closely. 

a. * What two disasters can occur with the following rule? Illustrate 
with specific examples. 

(rule ((:IN (prime-number ?n) :VAR ?f0 
:TEST (fetch '(Using trap-door-code)))) 

(rassert! (suggest-code-key ?n) (:PRIMES-NEEDED-FOR-KEY ?f0))) 

b. * Select a subset of Common Lisp that provides a safe language 
for writing tests. That is, if every : TEST is written in this subset, 
the problems identified previously cannot occur. 

c. * * Extend junif y . lsp to enforce the use of your sublanguage 
in : TEST options. 

d. ** Evaluate your sublanguage by finding examples of tests which 
might be both plausible and useful, but cannot be expressed in 
your sublanguage. 

	

2. 	* * Consider again the rule struct. Since any rule is stored under 
some class, we do not really need to keep either the JTRE or the 
class backpointers. After all, given the rule and a JTRE struct, we 
could always search its classes to see if the rule was there. Similarly, 
the counter field is only for debugging purposes. Write a version of 
j rules . lsp that uses a single cons cell to store a rule, rather than a 
rule struct. How much harder would it be to debug this version? Is it 
worth it? How could you get the best of both worlds? 

	

3. 	* * Change j rules . lisp so that rules are only executed when all of 
the belief conditions of the triggers hold simultaneously. 
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4. 	* * Consider the following rule: 

(rule ((:IN (foo ?x) :VAR ?f 1) 
(:IN (bar ?x) :VAR ?f2)) 

(rassert! (mumble ?x) 
(:GRUMBLE ?fl ?f2))) 

If (F00 A) is asserted, eventually a rule struct is created to look for 
a matching occurrence of BAR. Notice that only one fact (i.e., (BAR 
A)) can ever successfully match against this rule struct. Ideally, once 
a successful match has occurred the rule struct should be removed, 
since any further attempts to match against it will be fruitless. Mod-
ify JTRE to detect such rules and remove them once they have been 
used. 

5. 	* * The version of TRY-IN-CONTEXT in j queens . lisp is not as gen-
eral as it should be. In particular, it can fail to perform properly when 
used in a problem solver that caches previous partial solutions as 
well as nogoods. Devise an example which illustrates this problem, 
and rewrite TRY-IN-CONTEXT so that it handles such cases success-
fully. 

6. Notice that the mathematical law 

un+1 

I 
un du — 	 

n + 1 

where n * -1, is implemented by two def integration operators, 
namely Int egral-of-SQR and Integral-of -Polyterm. A similar 
situation occurs with simple-e-integral and e-integral. 

a. * Explain what feature(s) of JSAINT make this necessary. 

b. * Propose two ways that JSAINT might be extended so that this 
mathematical fact could be represented via a single operator. 

7. 	* What is the logical status of control terms such as integrate? 
Is it best viewed as a standard predicate, a modal operator, or a 
connective? Discuss the trade-offs of each point of view. 

8. 	* * Implicit in our design of integration operators is the assumption 
that if we can solve the subgoals proposed by the method, then 
those results can always be combined to form the solution to the 
original problem. Are there operators for which this is not true? That 
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is, are there integration techniques whose applicability cannot be 
determined until after the subgoals are solved? If not, explain why 
not. If so, design an extension to def Integration that allows such 
techniques to be implemented. 

9. 	* * The resource bounds currently incorporated in JSAINT focus on 
internal measures. Add bounds on run time and storage utilization, 
to ensure that only a limited amount of computation is used on 
problems beyond the system's capabilities. 

10. There are several ways in which JSAINT's algorithms for estimating 
difficulty and for selecting what problem to work on next could be 
improved. 

a. * * Discuss the trade-offs in making JSAINT's difficulty estima-
tion algorithm depend on its connection(s) to the original prob-
lem. 

b. * * Some operators work better than others. Revise the JSAINT 
difficulty estimation algorithm to take the kind of problem 
and/or operator into account. 

c. * * One complaint raised against programs like JSAINT which 
base their activities on unstructured agendas is that their behav-
ior can appear incoherent. For example, if two subproblems P1 
and P2 locally appear equally hard, but P1 is the last subproblem 
out of 12 in one approach to solving the original integral, while 
P2 is the first subproblem of 48 to be tackled in a completely dif-
ferent approach, most people would choose to work on P1 rather 
than P2. Can you devise a scheme that will increase JSAINT's co-
herence? 

11. One facility SAINT had which JSAINT lacks is the ability to suggest 
more complex substitutions. For example, given the problem 

J 
ln(3x)dx 

a human mathematician might transform this into a simpler problem 
by using the substitution 

u = 3x; du = 3dx 

because it turns the original problem into 
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—
1 

f ln(u)du 
3 

which can be solved by first using a standard form and then sub-
stituting back to get rid of u. In this problem we examine what is 
needed to implement this u-substitution method. 

a. * * This method requires the ability to take derivatives. Write 
a set of rules using match . lisp to provide a simple symbolic 
differentiation system. 

b. * * The ability to make useful suggestions is critical to this 
method's success. What sources of knowledge should be tapped 
to make suggestions? 

c. * * * Implement a facility for defining substitution methods. 

12. Like SAINT, JSAINT does not perform integration by parts. The rule 
of integration by parts says 

J
udv uv 

J 
 vdu 

a. * What problems would we encounter in implementing this rule? 
(Hint: Consider .1 x ln(x)dx.) 

b. * * * Extend JSAINT to implement integration by parts. 

13. * * * While the rewrite rules in simplify. lisp are elegant, they are 
less than optimal computationally. Consider the rule 

((+ (7? pre) (* (? fl) (? thing)) (?? mid) (? thing) (?? post)) 
(+ (?? pre) (* (+ 1 (? f1)) (? thing)) (7? mid) (?? post))) 

which combines like terms (i.e., 3x + x 	4x). What this rule says in- 
tuitively is that if you have thing occurring by itself and you already 
have a term in the sum which is the product of thing and something 
else, you might as well merge the two thing terms. simplify gets 
this effect in a most inefficient way, which includes trying all possi-
ble bindings for (?? pred) even if the sum involves no products at 
all. 

A more efficient method might be to follow our intuitions more 
closely. That is, in looking over an expression one might scan for 
common subexpressions, and use their relative placement in the ex-
pression's structure to suggest both what simplification rules might 
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be relevant and what bindings they should have. Implement such a 
scheme and compare its performance to the current simplifier. 

14. * * * The kind of problem mentioned in the previous exercise in fact 
permeates many pattern-directed systems. For example, in the move-
constant-outside rule on page 241, we had the trigger condition 

(* ?const ?nonconst) 

which would match expressions like 

(* 5 (log x)) 

but not expressions like 

(* 5 Cp (expt x t)) 

or even 

(* (log x) 5) 

Write a higher-order language for patterns that allows one to state 
concisely ideas like "If the expression is a product which has a non-
trivial subset of constant terms, the integral is the result of taking 
the product of the constant terms with the integral of the product of 
the non-constant terms." Incorporate this language into JSAINT. 

15. * * * * Using the results of the previous exercises, extend JSAINT to 
be able to solve at least the same range of problems as SAINT. 

16. * * * * Using JSAINT as a starting point, reconstruct the LEX learning 
system developed by Mitchell, Utgoff, and Banerji [6]. 
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9 	Logic-Based Truth Maintenance 
Systems 

The justifications which the JTMS accepts as input are very limited in ex-
pressive power. Logically, JTMS justifications are simply definite clauses 
(i.e., formulas of the form x1  A • • • A xn  c where xt  and c are all 
TMS nodes). Many applications need to express more than just definite 
clauses. For example, they may need to say things like: if x is true, then 
y is false. Although, as we shall see, arbitrary clauses can be partially 
encoded in the JTMS by various encoding tricks, these encodings can be 
quite cumbersome. Logic-based truth maintenance systems (LTMSs) [5, 
6, 7, 8] were invented to overcome this limitation. The LTMS generalizes 
the JTMS to allow any propositional clause as input (see Figure 9.1). This 
enables the inference engine to express logical relationships involving 
the negations of nodes as well, and therefore to express every possible 
logical relationship among nodes. 

9.1 Why reasoning about negation is important 

It is instructive to look first at some of the problems resulting from 
the logical weakness of the JTMS. This will illustrate that developing a 
TMS which accepts any propositional clause would provide a significant 
problem-solving advantage. 



266 	 Chapter 9 

Inference 
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(JTMS) 
LTMS 

Figure 9.1 The change from JTMSs to LTMSs. The inference engine now 
supplies the TMS arbitrary clauses instead of definite clause justifications. 

9.1.1 Representing clauses approximately in the JTMS 

The JTMS can only represent definite clauses. Nevertheless, we can "ap-
proximately" encode arbitrary clauses as definite clauses via a set of en-
coding tricks. Consider the following: 

AvBvC. 

From this clause we should be able to derive A if B and C are false. 
Although the JTMS cannot directly represent "B is false," it can be ap-
proximated by creating another node T3 which is in when B is false. To 
prevent B from being both true and false simultaneously we have to sig-
nal a contradiction when both are in: 

BA 13 J_ 

If we encode C similarly, then the derivation we desire can be achieved 
by the justification: 

71 C A. 

In general, a JTMS can encode arbitrary clauses by constructing distinct 
nodes for negations, adding justifications contradicting every node with 
its negation, and adding justifications to encode all the ways the clause 
can be used to infer nodes and their negations. The entire set of justifi-
cations needed to encode A v B v C is: 

AAA= 1 
	

AABC 

73-  ACA 

c A c 
	

C Afet13 
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Figure 9.2 Encoding A v B v C for the JTMS 

Figure 9.2 shows the resultant dependency network consisting of six 
nodes and six justifications. Within the LTMS formulation, A v B v C is 
simply represented by three nodes and one propositional clause—a sig-
nificant savings in complexity and space over the JTMS formulation. 

It is important to note that all clauses, not just non-definite clauses, 
must be encoded in this way in the JTMS. For example, it does not suf-
fice to encode the material implication A — B as simply the justification 
A 	B. We must also add the contrapositive as a justification: B A. This 
second justification ensures that if B becomes false, A will become la-
beled false—the JTMS cannot make this inference without this second 
justification (except perhaps through contradiction handling). 

9.1.2 Importance of negation for guiding backtracking 

In Chapter 7 we saw that one of the major advantages of a TMS is that 
it aids backtracking by helping recognize previously encountered con-
tradictions. If the inference engine enables a set of assumptions that 
produces a contradiction, then the JTMS signals a contradiction before 
any more inference engine operations take place. In the JTMS architec-
ture, choosing which assumption(s) to retract given a contradiction is 
solely the responsibility of the inference engine's contradiction handler. 
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Unfortunately, there is nothing in this scheme to ensure that the same 
contradiction will not occur repeatedly so that the contradiction handler 
may have to make the same retraction decision over and over again. 

Consider a typical scenario resulting from the JTMS signaling the infer-
ence engine about a contradiction. The inference engine asks the JTMS 
for the set of assumptions underlying a well-founded explanation for 
the contradiction and then chooses one of those assumptions to retract. 
But what mechanism ensures that the very same contradiction with the 
same assumptions will not happen again? Suppose that JTMS assump-
tions A1, , An  underlie a contradiction. The JTMS, in effect, has inferred 
the formula: 

A • • • A An), 

which is equivalent to the clause (called a nogood), 

v • • • v -'An, 

but the JTMS cannot directly represent or use this. Suppose that A1, • • • , 
Am _ 1, Am+ 1, • • • , An hold. Then the JTMS cannot deduce —Am  directly 
without reinvoking contradiction handling or encoding the nogood using 
the encoding scheme of the previous section. 

If the search order through assumptions is fixed and A, is the last 
assumption, then it is only necessary to install a fraction of the cumber-
some encoding: 

A1  A • • • A An-i An, 

An  A An  

This technique was used in the N-queens example in Section 8.4 (in 
which the pairwise nogoods were obeyed by the search order and thus 
not explicitly represented in the TMS). Whether backtracking uses a fixed 
order or not, reasoning with negations has another advantage which im-
proves the performance of backtrack search. Suppose we are at a point 
in a search where we have discovered the nogoods, 

Q v -B, 

—Q v —A, 
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we just determined Q, and we have a future choice of {A, B, C}. Given Q, 
we should be able to immediately infer C, thus the backtracker no longer 
has to make a future choice at {A, B, C}. This could have been achieved 
with an JTMS by fully encoding the clause, A v B v C. In this and all the 
examples of this section, the JTMS could represent nogood clauses using 
the encoding of the previous section. However, search usually generates 
a large number of nogood clauses, and the overhead of the cumbersome 
encoding will quickly consume too many computational resources. 

9.1.3 LTMS intuitions 

Consider an analogy. We could represent floating-point numbers as 
strings of characters, and write code that ensures that these strings are 
manipulated to satisfy the laws of floating-point numbers. However, it is 
far more efficient to implement floating-point operations directly, since 
there are special properties that can be exploited in hardware that way. 
So it is with the LTMS versus the JTMS: one can obtain much of the logical 
power of the LTMS by using the JTMS with an appropriate encoding pro-
cedure, but this procedure is very clumsy and the dependency network it 
produces is inefficient. 

The shift from the JTMS to the LTMS is also a shift of point of view: 
from regarding the TMS as a simple device for recording the inference 
engine's computations, to seeing it as a device for carrying a substantial 
inferential burden itself. If the TMS is to be a central component of the 
inferential system, it pays to make it more and more powerful. The LTMS 
method of encoding clauses directly reduces the amount of work the 
inference engine must do in encoding formulas, and provides a more 
efficient implementation of the same logical structures. 

9.2 LTMS basics 

9.2.1 LTMS labels 

Most of the functionality of the LTMS is very similar to the JTMS. As in 
the the JTMS, every problem-solver datum is assigned a distinct node. 
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Unlike in the JTMS, a distinct node need not be created for negations 
of data. Since the LTMS accepts propositional clauses, we do not need 
to define a special syntax for LTMS inputs (in contrast to JTMS justifica-
tions). 

The JTMS permits only two labels: : IN and : OUT. Given a set of justifi-
cations 3 and set of enabled assumptions A, node x is labeled : IN if it 
logically follows from u A and : OUT otherwise. Labeling a node : OUT 
can either mean that its negation is derivable or that there isn't enough 
information to tell whether x or its negation is derivable. As negations of 
nodes are important in the LTMS, the label set is expanded. : IN becomes 
:TRUE and : OUT becomes : FALSE when the negation of the node is deriv-
able; the node becomes : UNKNOWN otherwise. We use C to represent the 
set of clauses supplied by the inference engine. 

• A node is labeled : TRUE if it is derivable from C and the enabled 
assumptions. 

• A node is labeled : FALSE if its negation is derivable from C and the 
enabled assumptions. 

■ A node is labeled : UNKNOWN otherwise. 

(In the case where the clauses combined with the enabled assumptions 
are logically inconsistent, namely when both a node and its negation 
are derivable, then a node's label is (almost) arbitrary. We discuss this 
situation later.) 

We saw that negation could be encoded in a JTMS by creating nodes to 
represent the negations. Using the encoding convention of the previous 
section, Figure 9.3 illustrates the mapping between the different labels: 
(1) P and P : IN cannot happen in the LTMS; (2) P :IN and P :OUT 
corresponds to P : TRUE; (3) P : OUT and P : IN corresponds to P : FALSE; 
and (4) P and P : OUT corresponds to P :UNKNOWN. 

At first it might seem that the only advantage left to the JTMS is that it 
allows reasoning in contradictory situations where both P and its nega-
tion P hold (i.e., when the pairwise contradiction is not installed). Even 
this advantage is illusory. This same effect can be accomplished in the 
LTMS in exactly the same way. Instead of treating P and -,13  as negations 
of each other, the inference engine can instruct the LTMS to construct 
distinct unrelated nodes for each of P and P.  
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:IN 
	 :OUT 

(IMPOSSIBLE) :FALSE 

:TRUE :UNKNOWN 

Figure 9.3 Mapping the JTMS labels for P and P to the LTMS label for P 

9.2.2 LTMS nodes 

A TMS distinguishes three node properties: a node can be a premise, a 
contradiction, or an assumption. These properties are treated in an LTMS 
as follows: 

■ The LTMS does not require an explicit premise property: a node is 
regarded as a premise if it is the only node in some inference engine-
supplied clause. 

■ The LTMS has no notion of a contradiction node. 

■ An assumption is a node whose belief may be later changed by an 
explicit inference engine operation. An assumption is enabled if the 
inference engine has signaled the LTMS that it chooses to label it 
: TRUE or : FALSE. A retracted assumption is treated as any other 
node. 

The fact that the LTMS does not require a notion of a contradiction 
node bears examination. In the JTMS, the fact that a node is a contradic-
tion has no direct bearing on JTMS labels. Marking the node as contradic-
tion merely informs the JTMS that when this node comes : IN, the JTMS 
should signal the inference engine, whose responsibility it is to retract 
assumptions (or do whatever is necessary) to make the contradiction 

:IN 

:0 LT 
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node : OUT. This complex sequence of interactions is often unnecessary 
with the LTMS. For example, consider the JTMS justification, 

A B 

If A and B are enabled assumptions, then this would invoke contradic-
tion handling, which would probably (depending on the inference engine) 
retract A or B. In the LTMS, the clausal equivalent is simply: 

v -43 V 

which is the same as 

v 

If assumption A is enabled to : TRUE, then the LTMS immediately labels B 
:FALSE. Thus, the LTMS is logically stronger and consequently can avoid 
some backtracking for inference engines that use this technique. 

Of course, contradiction handling is still required because the LTMS 
may discover that the current labeling violates some clause. This would 
happen in the previous example if A and B were both enabled assump- 
tions and then the clause 	v -'B were added. Contradiction handling is 
unavoidable because the inference engine must decide whether to retract 
A or B. This is discussed in more detail later. 

9.2.3 Logical specification for an LTMS 

We can specify the LTMS just has we have the JTMS (see Section 7.2). The 
LTMS nodes define a set of propositional symbols S. A subset of those 
symbols are marked as assumptions which can be enabled by initially 
setting them to : TRUE or : FALSE. We define .A to be a set of assumption 
literals. x E A if assumption x is initially labeled : TRUE and 	A 
if assumption x is initially labeled : FALSE. A clause is a disjunction of 
literals with no repeated or complementary literals. Let C be the set of 
clauses, defined over S, the inference engine has supplied. The reason for 
distinguishing A from C is that C is guaranteed to grow monotonically, 
while assumptions may be added and retracted from A at any time. 

The LTMS has three fundamental tasks: (1) to provide labels for nodes, 
(2) to detect contradictions, and (3) to provide explanations for the labels. 
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Consider the first task. Given a query about some symbol s, the LTMS 
answers as follows: If there exists a E c A u C such that E is satisfiable 
and s follows propositionally from E, then the LTMS answers : TRUE for 
s. If there exists a Ec A u C such that E is satisfiable and --is follows 
propositionally from E, then the LTMS answers : FALSE for s. Otherwise 
the label for s is :UNKNOWN. If A u C is satisfiable, then it is sufficient 
that E = A u C. However, we want the LTMS to provide useful answers 
to queries even when A u C is not satisfiable. In that case, the LTMS 
may arbitrarily provide either : TRUE or : FALSE, but it must provide the 
corresponding explanation as well. 

The second LTMS task is to detect contradictions. Whenever A u C is 
unsatisfiable, then the LTMS is expected to signal the inference engine to 
this effect. Note that the LTMS is still expected to provide labels and their 
explanations even if A u C is unsatisfiable. 

The third LTMS task is to provide explanations, even in circumstances 
where the A u C is not satisfiable. (Otherwise, for example, the inference 
engine has no way to track down which assumption to retract in response 
to a contradiction.) The explanation must at least be a logical proof using 
E for the label that the LTMS provided for the node. Generally its form 
depends on the precise rules used by the implementation, so we return 
to the details later. 

9.3 Boolean constraint propagation 

The logical specification of an LTMS can be implemented in a variety 
of ways. A particularly useful algorithm for implementing an LTMS is 
Boolean constraint propagation (BCP). While logically incomplete with 
respect to the propositional calculus, BCP is efficient and sound. We 
begin by describing the essence of BCP, and later we examine different 
ways to overcome its logical incompleteness. 

BCP labels every symbol : TRUE, : FALSE, or : UNKNOWN. BCP is provided 
with an initial labeling of assumptions A. All remaining symbols are ini-
tially labeled :UNKNOWN. The LTMS algorithm labels symbols (represented 
by nodes), not literals. However, to describe the algorithm it will be con-
venient to define the label of literal x to be the label of the symbol x and 
the label of literal --ix to be : FALSE, : TRUE, or : UNKNOWN, depending on 
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whether the label of x is : TRUE, : FALSE, or :UNKNOWN. Given a labeling, 
every clause C e C is either: 

1. Satisfied. Some literal of C is labeled : TRUE. For example, x being 
labeled :TRUE satisfies the clause x v y. 

2. Violated. Every literal of C is labeled :FALSE. Given the clause x v y, 
the labeling where both x and y are : FALSE violates the clause. 

3. Unit open. One literal is labeled : UNKNOWN, and the remainder are 
labeled : FALSE. This allows BCP to force the label of the : UNKNOWN 
literal to be : TRUE. Given the labeling where x is : TRUE and y is 
:UNKNOWN, the clause -ix v y is unit open. 

4. Non-unit open. More than one literal is labeled :UNKNOWN and the 
remainder are labeled : FALSE. 

The BCP algorithm is very straightforward. BCP maintains a pending 
stack S of clauses to examine. In addition, BCP maintains a set of vio-
lated clauses V which it uses in signaling the inference engine about the 
contradiction. BCP processes the clauses on the stack one at a time, rela-
beling : UNKNOWN nodes to be : TRUE or : FALSE if possible. The behavior 
of BCP depends on the condition the clause is in as follows: 

Algorithm 9.1 (BCP) 

1. Repeat until S is empty. 

2. Pop clause c off of S. 

3. If c is unit open, then compute the label of the : UNKNOWN literal 1 
which will satisfy c. Call SET(l). 

4. Otherwise, do nothing. 

Step 3 is the key step. For example, given the unit open clause -ix v y 
where x is labeled : TRUE, the label of y is forced to be : TRUE. 

Algorithm 9.2 (SET(l)) 

1. Set the label of the node of 1 to make the literal 1 : TRUE. 

2. Push every unit open clause which contains on to S. 

3. Push every violated clause which contains 	on to V. 

When the inference engine adds a clause, the following procedure is 
invoked: 
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Algorithm 9.3 (ADD(c)) 

1. Add c to C. 

2. If c is violated, then push c on to V and signal the inference engine 
that a contradiction has occurred. 

3. If c is unit open, then push c on to S. 

4. Call BCP. 

S. If V is not empty, then signal the inference engine that a contradic-
tion has occurred. 

Assumptions are enabled by: 

Algorithm 9.4 (ENABLE-ASSUMPTION(l)) 

1. Call SET(/) 

2. Call BCP 

3. If V is not empty, then signal the inference engine that a contradic-
tion has occurred. 

Consider the following sequence of LTMS inputs. The LTMS receives 
the following clause set via calls to ADD. None of these clauses provide 
any node labels. 

yvsvz, (1)  

v 	v r, (2)  

x v may, (3)  

r v —s, (4)  

r V Z, (5)  

Now consider the following sequence of events. 

1. ENABLE-ASSUMPTION(-ix). 

a. Set x's label to :FALSE. 

b. Clause (3) is now unit open, so S = {3}. 

c. Processing S, BCP determines that clause (3) forces y's label to 
be : FALSE. None of the clauses mentioning y are now unit open, 
so BCP halts. 
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2. ENABLE-ASSUMPTION(-r). 

a. Set r's label to : FALSE. 

b. Clauses (4) and (5) are now unit open, so S = {4, 5}. 

c. Processing S, BCP determines that clause (4) forces s's label to be 
:FALSE. Clause (1) is now unit open, so S = 11,51. 

d. Processing S, BCP determines that clause (1) forces z's label to be 
: TRUE. Now S = {5} 

e. Processing S, BCP determines that clause (5) is now satisfied so 
BCP halts. 

This process makes it very clear that BCP is a simple forward propagation 
engine. Our BCP is depth first, but we can easily make it breadth first by 
changing S from a stack to a queue. 

BCP on clauses is equivalent to the circuit value problem which is P-
complete (see also [3]). BCP's worst-case complexity is the number of 
literals in the clauses. One can see this intuitively because it examines 
every clause at most once for every literal it contains. 

9.3.1 Well-founded explanations 

The BCP-based LTMS can produce well-founded explanations (in analogy 
to JTMS well-founded explanations—see Section 7.3) for its conclusions. 
A well-founded explanation for a node c's label consists of a sequence of 
steps Si, , Sk each step consists of a 4-tuple written as: 

n (conclusion) (antecedents) (reason) 

■ n is an integer, so this step can be referred to in later steps. 

■ (conclusion) is a literal. A symbol (or its negation) can be in the 
conclusion of at most one step. 

■ (antecedents) is a (possibly empty) set of integers corresponding to 
steps earlier in the sequence. 

■ (reason) is either an inference engine-supplied clause or the word 
"Assumption." 

The conclusion of the final step Sk must correspond to the label of node 
c. 
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There are two kinds of steps, assumption steps and derivation steps. An 
assumption step takes the form: 

n (conclusion) (antecedents) (reason) 
n x 	{} 	 Assumption 

where x is a literal corresponding to an enabled assumption. 
A derivation step is of the form 

n (conclusion) (antecedents) (reason) 
11 x 	A 

where x is any literal, A is a set of antecedent steps, and x follows from 
clause C and the consequences of the steps mentioned in A. 

Consider the clauses: 

x v y, 

—y v z, 

v r. 

If x is assumed to be : FALSE, then a well-founded explanation for r is: 

n (conclusion) (antecedents) (reason) 
1 —ix {} Assumption 
2 y {1} x v y 
3 z {2} v z 
4 r {3} v r 

It is crucial to note that the notion of well-founded explanation is use-
ful even if the database is inconsistent. When the database is inconsis-
tent, the labels of nodes are arbitrary except that the LTMS must be able 
to provide well-founded explanations for the labels it chooses. The well-
founded explanation is very important, as it identifies the assumptions 
underlying a contradiction. 

As a node can appear in several clauses, there can be a large number of 
well-founded explanations for any particular node. The LTMS is obligated 
to find only one of them. The BCP-based LTMS achieves this by identify-
ing a single supporting implication for each node. This implication con-
sists of a single clause and the set of antecedent nodes that are sufficient 
to force the conclusion (i.e., a derivation step in a well-founded explana- 
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tion) using this clause. The set of implications forms a directed acyclic 
graph. A well-founded explanation for any node can then be found by 
traversing this digraph backward from consequences to antecedents. 

9.4 Encoding propositional formulas as clauses 

Although our BCP algorithm is restricted to clauses, any propositional 
formula can be converted into a logically equivalent set of clauses. Per-
mitting the inference engine to supply propositional formulas is so con-
venient that our LTMS implementation includes a facility to convert for-
mulas into clauses. We use the following conventions for expressing for-
mulas: 

■ A node is a formula. 

■ If x is a formula, then so is -ix (in our Common Lisp implementation, 
negation is indicated by : NOT). 

■ If x and y are formulas, then so is x y (in our Common Lisp 
implementation, implication is indicated by : IMPLIES). 

■ If x and y are formulas, then so is x -=- y (in our Common Lisp 
implementation, equivalence is indicated by : IFF). 

■ If x1, . , x„ are formulas, then so is x1  v • • • v Xn (in our Common 
Lisp implementation, disjunction is indicated by : OR). 

■ If x1, , xn  are formulas, then so is x1  A • • • A xn  (in our Common 
Lisp implementation, conjunction is indicated by : AND). 

■ If x1, ,x,„ are formulas, then so is the formula requiring exactly 
one of them to hold (in our Common Lisp implementation, such 
taxonomic formulas are indicated by : TAXONOMY). 

To convert a propositional formula into an equivalent set of clauses, 
we employ a technique widely used in theorem proving [1, 41. We convert 
the formula into conjunctive normal form and every resulting conjunct 
is then added to the database as a clause. The conversion is as follows: 
(x,y, and the x, are formulas): 

■ Eliminate equivalences by replacing all occurrences of x = y with 
(x = y) A (y = x). 
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• Eliminate implications by replacing all occurrences of x y with 
-ix V y. 

• Eliminate all taxonomic formulas on x1, , xk by replacing them 
with the conjunction of x1  v • • • v xk  and for all i j, 	x3). 

• Repeatedly use the rule 	x and DeMorgan's laws, 

-(xi  V • • • V Xk) 	—1X1 A • • A 

A • • • A Xk) --,  —,X1 V • " V —OCk, 

to bring negations just before nodes. 

• Repeatedly use distributivity, associativity, and commutativity to 
produce a conjunction of disjunctions. 

For example, consider the formula, 

(r A (S' 	t)) 	u. 

Removing implications we obtain: 

-i(r A ( —IS V t)) V u. 

Applying DeMorgan's law twice we obtain: 

(-'r v (—'-is A —it)) v u. 

Removing the double negation we obtain: 

(-r V (.5 A —It)) V u. 

By associativity (and using commutativity) we obtain: 

u V 	V (S A -it). 

By associativity and distributivity we obtain the conjunctive normal form: 

(u V 	v s) A (U V 	V —it). 

From the conjunctive normal form we obtain two clauses: 

u V — r VS, 

U V 	V —it. 



280 	 Chapter 9 

The ability to automatically encode arbitrary formulas provides the 
inference engine a convenient mechanism to add formulas which only 
hold under certain conditions. For example, if the above formula only 
holds if z holds, then the inference engine can supply the formula: 

Z 	[(r A (S 	t)) 

Also, if the inference engine wishes to refer to the label of an entire 
formula, then it can use 

z 	[(r A CS 	t)) 	u]. 

The formula now holds exactly when z holds. 

9.5 The logical properties of BCP 

Although BCP is an attractive algorithm, it does not fully meet the logical 
specifications laid out in Section 9.2.3. To effectively use a BCP-based 
LTMS we must analyze its logical properties in more detail. 

BCP is sound. The BCP never labels a node : TRUE or : FALSE when it 
shouldn't, nor does it signal a contradiction when there isn't one. 

Unfortunately, BCP is not logically complete. Given the fact that the set 
of tasks BCP can solve is P-complete, this should not be surprising. After 
all, propositional satisfiability is known to be NP-complete. We analyze 
two distinct manifestations of logical incompleteness because each has 
different consequences for problem solving. 

BCP is logically incomplete in that it sometimes fails to do so label a 
node : TRUE or : FALSE when it should. We call this literal incompleteness. 
Consider the following two clauses when all labels are : UNKNOWN: 

x V -iy,  

x v y. 

From these two clauses, x should be labeled : TRUE, but BCP fails to do 
so because x does not follow from either one of the two clauses alone. 

BCP is also logically incomplete in that it sometimes fails to detect 
contradictions. We call this refutation incompleteness. Consider the fol-
lowing four clauses when all labels are : UNKNOWN: 
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x v y, 

x v -y, 
- v -'y, 

- v y. 

There is no : TRUE/ : FALSE labeling which satisfies these four clauses, 
but BCP does not detect this and therefore fails to signal the inference 
engine about the contradiction. 

It might seem that, since BCP is so widely used, someone would have 
managed to precisely characterize those circumstances under which BCP 
is logically complete. Unfortunately, to date, no crisp characterization ex-
ists. BCP is equivalent to finding all unit clauses using unit resolution 
alone. Unfortunately, the theorem-proving literature does not tell us un-
der precisely what circumstances unit resolution is logically complete. 

If the clause set is Horn, then BCP is known to be refutation-complete 
and literal-complete for positive literals only. Hence, BCP is literal-com-
plete for the JTMS definite clauses. In practice, BCP is useful for non-Horn 
clause sets, but we do not know how to formally characterize those ad-
equately. (See Chapter 13 for further discussion of the logical properties 
of BCP.) 

93.1 When to use a BCP-based LTMS versus a JTMS 

A central motivation for using an LTMS over a JTMS is its expressive 
power. But how does the logically incomplete LTMS stack up against 
the JTMS? If the application only generates definite clauses and : TRUE 
initial labels, then the performance of the JTMS is identical to the BCP-
based LTMS. No node will ever be labeled : FALSE, because given a set 
of definite clauses it is never possible to infer the negation of a node. 
Therefore, the JTMS : IN corresponds to the LTMS : TRUE, and the JTMS 
: OUT corresponds to the LTMS :UNKNOWN. The computational complexity 
of the LTMS and JTMS is the same in this case. Therefore, there is no 
important reason to use a JTMS over an LTMS other than it being a bit 
simpler. 

What happens when we use the encoding of Section 9.1.1 to represent 
arbitrary clauses? Using this encoding, and interpreting labels as shown 
in Figure 9.3, the JTMS and the BCP-based LTMS produce the same result. 
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But in this case BCP is more efficient. The complexity of both BCP and our 
JTMS algorithm is the number of literal occurrences in the database (i.e., 
in C for BCP and for the JTMS). Since the encoding converts a single 
LTMS clause into multiple JTMS justifications, the same literal will occur 
more often in the equivalent justification structures I than in the original 
clauses C . Hence, the BCP-based LTMS is more efficient. 

9.6 Search 

In Chapter 13 we show how to augment BCP to be logically complete. 
Achieving full logical completeness is inherently extremely expensive. 
Most LTMS-based problem solvers rely solely on BCP and accommodate 
the resulting logical incompleteness in some other (non-TMS) way. One 
method to accommodate the logical incompleteness is to use search. 
However, before we address search, we will consider the situations under 
which logical incompleteness poses a problem. 

Just having some node labeled : UNKNOWN is not necessarily a symptom 
of BCP's logical incompleteness—the inference engine may not have sup-
plied enough information to logically determine the labels of all nodes. 
In general, BCP cannot distinguish between its own logical incomplete-
ness and simply having insufficient information. However, in some cases 
we can make some headway. If every clause in C is satisfied by the node 
labels, then no more nodes can be determined. We can be guaranteed 
that there are no contradictions and, in addition, that relabeling any 
:UNKNOWN node to be : TRUE or : FALSE will still satisfy all the clauses. 
Thus, search is called for only if some clauses remain (non-unit) open. 

The exact form of the search depends on the application and is imple-
mented by the inference engine. One simple strategy uses a fixed clause 
and node ordering and systematically attempts to relabel the first :UN-
KNOWN node of the first open clause. Then when a contradiction occurs, 
the nodes underlying the contradiction are examined to determine the 
appropriate backtrack point. 

Backtrack search can be excruciatingly expensive, and unless orga-
nized properly, the search may encounter the same contradiction repeat-
edly (see Section 9.1.2). Therefore it is often useful to explicitly cache the 
information discovered during backtracking. Unlike the JTMS, the LTMS 
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has sufficient expressive power to easily represent the results of con-
tradiction handling. When a contradiction is signaled, the contradiction 
handler should identify the enabled assumptions underlying the violated 
clause(s). Let A1, , An  be the literals corresponding to these assump-
tions. The contradiction indicates that 

Ai A • • • A An, 

cannot hold and therefore its negation, 

-, (Al  A • • • A An), 

must hold which is clause 

v • • • v 

Although BCP does not explicitly construct this clause, the search proce-
dure (part of the inference engine) can add it to the database. Notice that 
although assumptions were used in the construction of the nogood, the 
nogood depends on no underlying assumptions. The derivation of the 
nogood corresponds to employing reductio ad absurdum (RAA) in a nat-
ural deduction system—if, assuming the negation of the desired result 
produces a contradiction, we can derive the result. 

A clause that logically follows from a set of clauses C is called an impli-
cate of C. Adding implicates of C to itself can never cause any logical dif-
ficulties because everything that follows from C and its implicates must 
necessarily follow from C alone (see Chapter 13 for more discussion of 
this point). 

Adding the nogood clause to C helps avoid the recurrence of this 
contradiction and therefore saves subsequent backtracking. Consider 
a situation in which the search did not add this nogood and now 
A1, 	, 	Am+i, , An  holds. Presuming the database hasn't changed 
in the meantime to label Am  : TRUE/FALSE, the search would assume Am  
: TRUE which would provoke contradiction handling and backtracking to 
label Am  : FALSE. With the nogood clause present, the LTMS labels Am  
:FALSE without contradiction handling or backtracking. In general, if all 
nogoods are present in C, then it is easily shown (the argument is left as 
an exercise) that the search for a consistent labeling never backtracks. 

Consider a concrete example. Consider 4 clauses of some larger LTMS 
database: 
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- v b, 

- v d, 

-ic v e, 

v 	v -'e, 
where all nodes are assumptions and are initially labeled : UNKNOWN. Sup-
pose that the search labels a : TRUE. That is not enough for BCP to label c. 
However, labeling c : TRUE provokes a contradiction, forcing backtrack-
ing to label it : FALSE. The fact that labeling a and c : TRUE provokes a 
contradiction is recorded as the nogood clause, 

- v 

Because of the presence of this new clause, if a is later retracted and then 
labeled : TRUE again, then c will immediately be labeled : FALSE without 
invoking contradiction handling or backtracking. 

Thus, we see that adding implicates (e.g., nogoods) of C to itself 
both reduces backtracking and improves the logical completeness of the 
LTMS by enabling BCP to make more nodes known. If the nogood clause 
- v 	could have been inferred in some more direct way, then we 
would have been able to infer a label for c directly without backtrack-
ing. In the Chapter 13 we develop a general method for constructing 
implicates. 

This kind of search is useful for some applications. However, although 
BCP is linear, this search is exponential. The reason for this is that the 
backtracking can add an exponential number of many additional clauses 
for BCP to consider. Thus for many applications, the number of nogood 
clauses added to C is so great that it is counterproductive to record 
nogood clauses at all. Chapter 13 explores various examples which have 
an exponential number of nogoods. 

9.7 The LTMS interface 

Before analyzing the Common Lisp implementation of our LTMS in de-
tail, we present interface to our implementation. Here are the primary 
procedures and accessors that the inference engine should reference: 



add-clause 

add-formula 

add-nogood 

assumptions-of-clause 

assumptions-of-node 

change-ltms 

clause-informant 

compile-formula 

create-ltms 

enable-assumption 

false-node? 

find-node 

known-node? 

ltms-pending-contradictions 

retract-assumption 

satisfied-clause? 

support-for-node 

tms-create-node 

tms-node-datum 

tms-node-false-rules 

tms-node-true-rules 

true-node? 

unknown-node? 

violated-clause? 

with-assumptions 

with-contradiction-check 

with-contradiction-handler 

without-contradiction-check 
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(create-ltms title &key (title nil) 

(node-string 'default-node-string) 

(debugging nil) 

(checking-contradictions t) 
(contradiction-handler 'ask-user-handler) 
(enqueue-procedure nil) 

(complete nil) 
(delay-sat t)) 

create-ltms returns a datastructure which contains the entire state of 
the LTMS. The keyword arguments are similar to the those of a JTMS with 
some slight differences: 

contradiction-handler This specifies a procedure to call when the 
LTMS detects a contradiction. During problem solving there can be a 
stack of contradiction handlers. Upon encountering a contradiction, the 
LTMS will unwind the contradiction handler stack until a handler returns 
a non-nil result indicating it has handled the contradiction. The proce-
dure supplied to the original call to create-ltms will be the last contra-
diction handler tried. 
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enqueue-procedure This procedure is called when a node becomes 
labeled : TRUE or : FALSE. It should not do any LTMS operations. 

complete Discussed in Chapter 13. 

delay-sat Discussed in Chapter 13. 

(change-ltms ltms &key node-string 
debugging checking-contradictions 
contradiction-handler enqueue-procedure) 

This allows the inference engine to change the initial settings provided 
to create-ltms. Changing contradiction-handler has the effect of 
resetting the contradiction handler stack to a stack of depth one, con-
taining the supplied procedure. 

(tms-create-node ltms datum &key assumptionp) 

The inference engine creates a LTMS node with this procedure call spec-
ifying the datum for the node and whether it is an assumption or not. 
This is identical to the JTMS call (except that the LTMS does not have 
contradiction nodes). The LTMS node is used to represent both the pos-
itive and negative instances of a datum. Most problem solvers adopt the 
convention of using : NOT to refer to the negation of a node. For example, 
if the datum of some node is (MORTAL SOCRATES), then its negation is 
represented as ( :NOT (MORAL SOCRATES) ). But this detail is irrelevant 
to the LTMS. The inference engine must indicate to which LTMS the node 
is to be added. A node can be in only one LTMS, and every node keeps 
track of the LTMS it belongs to. Hence, most LTMS procedures need not 
be supplied with the explicit LTMS argument. 

(find-node ltms datum) 

This finds a node in the ltms whose datum is equal to datum. This is very 
convenient for implementing simple examples and debugging. 

(tms-node-true-rules node) 
(tms-node-false-rules node) 

The inference engine can push Common Lisp objects (usually problem-
solving rules) on the node slots tms-node-true-rules and tins-
node-false-rules. When a node becomes known, the LTMS calls the 
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enqueue-procedure of the LTMS on each of the objects on the appro-
priate rule list. 

(enable-assumption node label) 

(retract-assumption node) 

If a node is created with the assumption property, then the assumption 
is initially disabled These are procedures to enable and retract an as-
sumption. Notice that, unlike the equivalent JTMS procedure, the LTMS 
procedure to enable assumptions must indicate which label, : TRUE or 
:FALSE, to assign the node. This procedure will cause an error if the 
assumption is already known and has a label different than the one sup-
plied. 

As the LTMS permits more labels, it supplies a variety of procedures 
(all returning t or nil) to make various queries of the nodes: 

(unknown-node? node) 

Checks whether the node is labeled :UNKNOWN. 

(known-node? node) 

Checks whether the node is not labeled : UNKNOWN. 

(true-node? node) 

Checks whether the node is labeled :TRUE. 

(false-node? node) 

Checks whether the node is labeled : FALSE. 

(satisfied-clause? node) 

Checks whether the current node labels satisfy a clause. This is often 
used within search-based inference engines. 

(add-formula ltms formula &optional informant) 

This is the main procedure to add formulas to the LTMS. The formulas 
must be expressed using the conventions of Section 9.4 but be stated in 
conventional Common Lisp prefix notation. For example the formula, 

(r A (s 	t)) 	u, 
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in Common Lisp notation is: 

(:IMPLIES (:AND r (:IMPLIES s t)) u) 

Symbols in formulas can be represented in two different ways. Most com-
monly r, s, t, and u are all LTMS nodes. However, if a subexpression 
does not follow logical syntax and is not a node, then add-formula will 
find (and construct if necessary) a node whose datum is equal to the 
subexpression. This latter convention makes it very convenient to exper-
iment with simple examples. 

(add-clause true-nodes false-nodes &optional informant) 

This adds the clause with positive literals true-nodes and negative liter-
als false-nodes. The preferred procedure for adding formulas is add-
formula. add-clause is intended primarily for internal use. The caller 
should ensure that the clause is not a tautology and does not contain 
repeated literals. 

(compile-formula ltms formula &optional informant) 

One difficulty with add-formula is that the expansion of its argument 
to conjunctive normal form takes place at execution time. In many 
cases, the entire formula is already known at compile time. The macro 
compile-formula is given a formula and expands it into conjunctive 
normal form at compile time to improve run-time efficiency. Under most 
situations, calls to add-formula can be directly replaced with calls to 
compile-formula. For example, 

(compile-formula *ltms* 
`(:IMPLIES (:AND ,r (:IMPLIES ,s ,x)) u)), 

will compile the formula into its equivalent clauses assuming that r, s, 
t are bound to nodes at run time, and that u will be looked up at run 
time: 

(let ((#:u (find-node tms 'u))) 
(add-clause '(,#:u ,$) '(,r) nil) 
(add-clause ((,#:u) '(,x ,r) nil)) 

Our compile-formula is relatively simple and makes two important 
presuppositions. First, it assumes that the structure of the entire formula 
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is available at compile time. Second, it assumes that different Common 
Lisp variables always refer to different nodes. It does not check if these 
conditions actually hold, and if they do not, then either Common Lisp 
errors or incorrect node labels will result. For example, 

(compile-formula ltms '(:OR .,x) &optional informant) 

gets an error at compile time because our macro cannot analyze the value 
of x. On the other hand, 

(compile-formula ltms '(:OR ,x ,y) &optional informant) 

is perfectly analyzable. However, x and y will be presumed to refer to 
distinct nodes such that if at run time x and y refer to the same node, 
then the LTMS will fail to determine that this node is :TRUE. 

(supporting-clause-for-node node) 
(assumptions-of-node node) 
(assumptions-of-clause node) 

The LTMS records enough information to construct a well-founded ex-
planation for every node label. There are three basic procedures to 
explore this graph: supporting-clause-for-node and assumptions-
of-node and assumptions-of-clause. 

(support-for-node node) 

This procedure either returns a description of the formula which forced 
node's label, :ENABLED-ASSUMPTION, or nil. The description consists 
of two values. The first value is a list of the antecedent nodes that the 
formula used to force node's label. The second value is the informant. 
If the node's label was determined by a clause directly added via add-
clause, then informant is whatever the inference engine supplied in 
that call. If the formula was added by add-formula, then informant is 
a list of three values. If the first element is the symbol : IMPLIED-BY, 
then the second and third elements of the list are the arguments to the 
original call to add-formula: the original formula and its informant. 

(assumptions-of-node node) 

As with the JTMS, the most common reason for exploring the well-
founded explanation for a node is to identify the enabled assumptions 
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which underlie it. The procedure assumptions-of-node returns the set 
of enabled assumptions underlying the well-founded explanation for a 
node. 

(assumptions-of-clause clause) 

As there are no contradiction nodes in the LTMS the assumptions-
of-node procedure is of limited value for contradiction handling. In-
stead the LTMS provides this more complex procedure. assumptions-
of -clause only makes sense if every node in the clause is known (and 
hence the clause is either satisfied or violated), otherwise it reports an 
error. The result of assumptions-of-clause is a set of enabled assump-
tions constructed by finding the assumptions underlying each node of 
the clause whose label contradicts its sign in the clause. For example, if 
a node is labeled : TRUE, then its assumptions will be included only if it 
is one of the negative literals of the clause. The assumption set returned 
by assumptions-of-clause can be used for many purposes. 

If the clause is violated, then the result of assumptions-of-clause 
is the set of assumptions underlying the well-founded explanations for 
all of the nodes of the clause. (Here we rely again on the property that 
well-founded explanations make sense in the presence of logical incon-
sistency.) As contradiction handling is always invoked on an offending 
clause, assumptions-of-clause plays a major role in processing con-
tradictions. If the clause is satisfied by it forcing a particular node label, 
then the result of assumptions-of-clause is the set of enabled as-
sumptions underlying the well-founded explanation for the forced node. 
If the clause is satisfied, but the clause itself was never used to force 
a node's label, then the result of assumptions-of-clause has limited 
utility. 

When the LTMS detects that the current database is inconsistent, it 
calls the inference engine-supplied contradiction handler with two ar-
guments: the list of contradictions (as violated clauses) and the current 
LTMS. As contradiction handling is invoked as the last operation of any 
LTMS procedure that can provoke a contradiction, the contradiction han-
dler can throw out. However, when the contradiction handler throws out 
without removing the contradictions, the LTMS database will be logically 
inconsistent, although the internal LTMS datastructures will be reason-
able and the LTMS will still correctly label nodes according to the specifi- 
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cations of Section 9.2.3. If the contradiction handler returns a nil result, 
then the next contradiction handler up the stack is invoked. If every con-
tradiction handler returns a non-nil result, then the LTMS operation will 
leave the LTMS database logically inconsistent as just described. 

Three LTMS procedures play major roles within contradiction han-
dlers: assumptions-of-clause, violated-clause? and add-nogood. 
The procedure just discussed, assumptions-of-clause, returns the set 
of enabled assumptions underlying the well-founded explanations for all 
the nodes of the violated clause. 

(violated-clause? clause) 

This macro checks whether clause is still violated. This is important 
because as the contradiction handler processes multiple contradictions 
at a time, resolving earlier contradictions in the list may automati-
cally resolve others. There is little point in attempting to avoid a non-
contradiction. 

(add-nogood culprit sign assumptions) 

This provides a mechanism for the contradiction handler to record the 
contradiction (see Section 9.6). Typically the sequence of events for pro-
cessing a contradiction is: 

1. Check whether the contradiction is still a problem with violated-
clause?. 

2. Find all the enabled assumptions underlying the contradiction. 

3. Pick one assumption, the culprit, to retract via retract-assump-
tion. 

4. Record the contradiction by adding a clause consisting of the nega-
tions of all the assumptions. 

It is important not to put step 4 before step 3 because if the clause is 
added before this particular contradiction is removed, then adding the 
nogood clause would immediately cause another contradiction resulting 
in infinite recursion. Instead the contradiction must first be removed by 
retract-assumption. If step 4 did occur before step 3, then the proce-
dure add-nogood would only need to have one argument: assumptions. 
However, when it is called, one of the assumptions no longer has a la-
bel (i.e., culprit) because it was retracted to remove the contradiction 
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in the first place. Therefore, culprit is the one assumption in assump-
tions which is no longer known; its new label is provided by the ar-
gument sign. The argument culprit is logically unnecessary because 
add-nogood should easily be able to identify the one unknown assump-
tion. However, contradiction handling is a common source of bugs and 
therefore the extra checking is done. 

tms-node-datum is the datum of a node. Changing the contents of the 
datum will almost always lead to serious confusions. The inference en-
gine can also request the informant of a clause via clause-informant. 

The remaining interface procedures with-contradiction-check, 
without-contradiction-check, ltms-pending-contradictions, 
with-contradiction-handler, and with-assumptions are designed 
for sophisticated problem solvers, and their use is described later. 

9.8 A simple example of LTMS usage 

The following simple sequence of top-level Common Lisp procedure 
calls produces the BCP database and well-founded explanation of Sec-
tion 9.3.1. First we must create a fresh LTMS for our example (recall that 
we distinguish user input by prefixing the expressions with >): 

• (setq *ltms* (create-ltms "Simple Example")) 

Then we must create the four nodes (one of which is an assumption): 

> 
	

(setq x (tms-create-node *ltms* "x" :ASSUMPTIONP t) 
y (tms-create-node *ltms* "y") 
z (tms-create-node *ltms* "z") 
r (tms-create-node *ltms* "r")) 

Then we introduce the three clauses: 

> (add-formula *ltms* '(:OR ,x ,y)) 	v i e 

> (add-formula *ltms* '(:OR (:NOT ,y) ,z)) 
> (add-formula *ltms* '(:OR (:NOT ,z) M) 	i v. 

Enabling the assumption provokes BCP to label all the nodes: 

• (enable-assumption x :FALSE) 
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We can ask for a well-founded explanation for r and we obtain: 

(explain-node r) 

1 (:NOT x) 0 Assumption 

2 y (1) (:OR x y) 

3 z (2) (:OR 	(:NOT y z) 

4 r (3) (:OR 	(:NOT z r) 

9.9 The BCP algorithm 

The actual propagation phase of the clausal BCP has the same central 
concerns as the JTMS: enabling assumptions, retracting assumptions, 
and adding formulas. The algorithmic concerns for avoiding circularities 
and ensuring well-founded support are nearly identical to those we stud-
ied for a JTMS. 

The BCP algorithm we describe here is cleverer than the one we dis-
cussed in Section 9.3. It never needs to examine the original form of 
clauses. Instead it creates auxiliary datastructures so that BCP can be im-
plemented by just incrementing and decrementing counters. The node 
datastructure includes two lists: the clauses in which the nodes appear 
positively, and the clauses in which the nodes appear negatively. The 
clause datastructure includes a counter of the number of nodes in the 
clause which can potentially help violate it. Maintaining these counts is 
key to BCP. Remember that a clause will be violated if all of its literals 
become false. Consider the clause 

x v -ny. 

If all nodes are unknown, this clause has two potential violators: x la-
beled : FALSE and y labeled : TRUE. If the x becomes labeled : FALSE, 
then it cannot satisfy the clause and the count is reduced to one. If x 
becomes labeled : TRUE, then the clause is satisfied. A simple BCP might 
discard the clause at this point, but our more complex algorithm keeps 
on maintaining the counts because x's label might later be retracted; 
thus, the count remains two. 

The algorithm for enabling an assumption is very simple. 
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1. If the node receives the label : TRUE, then find all clauses in which it 
appears negatively and decrement their counts. Schedule any clause 
whose count drops below two for processing in step 3. 

2. If the node receives the label : FALSE, then find all clauses in which it 
appears positively and decrement their counts. Schedule any clause 
whose count drops below two for processing in step 3. 

3. Check each of the clauses whose count has been decremented. If the 
count becomes zero, then the clause has been violated and a contra-
diction should be indicated. If the clause has one potential violator, 
then the clause forces a node's label. Unless that node has already 
been set to : TRUE or : FALSE, set that node label and recursively ap-
ply this algorithm. If the clause is responsible for labeling a node, 
then the node is stored in the clause datastructure to aid possible 
future retractions. 

The algorithm for retracting an assumption is similar and obeys the 
same key constraint as the JTMS assumption retraction algorithm. That 
is, before alternative support for labels is looked for, all the conse-
quences of the retraction must be completed in the first phase: 

1. If the node was labeled : TRUE, then find all clauses in which it ap-
pears negatively and increment their counts. Schedule clauses whose 
count increases above one for processing in step 3. 

2. If the node was labeled :FALSE, then find all clauses in which it ap-
pears positively and increment their counts. Schedule clauses whose 
count increases above one for processing in step 3. 

3. Check each of the clauses whose count has been incremented. If the 
count has become greater than one (the usual case), then the node 
whose label may have been forced by this clause loses support. If a 
node has lost support, recursively apply this algorithm. 

The second phase attempts to find alternative support for any of the 
nodes that became labeled : UNKNOWN, in the first phase. For each node 
just marked : UNKNOWN examine all the clauses that mention it. If any 
clause's count is one, then set the node's label (unless some other clause 
has just relabeled it) and propagate this value just as in the case of the 
enabled assumption. 
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Adding a new clause is very straightforward. BCP simply computes 
the correct initial count for that clause. If it is zero, then it signals a 
contradiction. If it is one, then it sets that node's label and propagates 
that node's value just as in the case of an enabled assumption. 

9.10 The LTMS code 

The code in ltms . lisp is a simple logic-based truth maintenance sys-
tem. In reading the code you will notice a few additional hooks to al-
low systems like THE to interface with it. Otherwise the algorithms are 
precisely as presented so far. Chapter 13 presents a set of additional 
procedures to be added to ltms . lisp to ensure the LTMS is logically 
complete. In order to avoid redefining common procedures and datas-
tructures, ltms . lisp includes some hooks which are only explained in 
the later chapter. 

As with the JTMS, LTMS operations cannot be safely aborted, nor can 
one LTMS operation be safely invoked before another is finished (except 
as specified in the interface), nor can multiple processes safely access the 
same LTMS simultaneously. 

9.10.1 Overview 

The program is divided into eight parts: 

1. Definitions. The datastructures and initialization procedures. 

2. Basic inference engine interface. Interfaces for programs that use the 
LTMS. 

3. Adding formulas. Sets up the internal LTMS datastructures represent-
ing the input formulas. 

4. BCP. The guts of the Boolean constraint propagation algorithm. 

S. Retraction. Making sure all the consequences of a retracted assump-
tion are removed, and looking for alternative support for such nodes. 

6. Contradiction handling interface. For signaling contradictions to the 
inference engine. 
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7. Well-founded support. Procedures for inquiring about the well-
founded support of nodes and their underlying assumptions. 

8. Simple user interface. Some basic procedures that allow the LTMS to 
be used alone. Any serious problem solver will replace or encapsulate 
most of these with more sophisticated procedures. 

9.10.2 Definitions 

Like the JTMS code, we use an LTMS datastructure, thereby allowing 
for multiple LTMS instances within a single problem solver. The ltms 
datastructure contains the following fields: 

title Ignored by the LTMS but useful for debugging. 

node-counter Provides a unique name for nodes. 

clause-counter Provides a unique name for clauses. 

nodes A hash table of all the nodes created, keyed by their data. Two 
nodes are considered the same if their data are equal. Mainly used for 
simple examples, debugging, and printing out the state of the LTMS data-
base. 

clauses List of all clauses either directly supplied by the inference 
engine or inferred from the formulas it has supplied. Currently used only 
for debugging. 

debugging A debugging flag to trace the internals of LTMS operation. 

checking-contradiction This flag defaults to t. It allows advanced 
programs to turn off contradiction checking temporarily. 

node-string An inference engine-supplied procedure which should re-
turn a descriptive string for a node. The LTMS supplies a default. 

contradiction-handlers A stack of inference-engine supplied con-
tradiction handlers. See Section 9.7 for more details. The file ltms . lisp 
supplies two default contradiction handlers for stand-alone operation. 
Any real problem solver should supply a better one. 

pending-contradictions A list of violated clauses upon which con-
tradiction handling will be invoked at the conclusion of the current LTMS 
operation. 
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enqueue-procedure A user-supplied procedure which should be 
called if a node with true-rules is labeled : TRUE or a node with false-rules 
is labeled : FALSE. Rules are explained later. 

complete This flag indicates whether the LTMS ensures logical com-
pleteness. For the basic LTMS it is always nil. See Chapter 13. 

violated-clauses The BCP algorithms detect violated clauses while 
propagating labels through the database. At the point a violated clause is 
detected, the database state is inconsistent and no new LTMS operations 
should be commenced before it terminates. Therefore, BCP accumulates 
all the violated clauses here and checks them at the conclusion of any 
LTMS operation. 

queue See Chapter 13. 

conses See Chapter 13. 

delay-sat See Chapter 13. 

cons-size See Chapter 13. 

Two defstructs are introduced to implement LTMS nodes and justifica-
tions. The fields of the TMS-NODE defstruct have the following interpreta-
tion: 

index Integer serving as unique name for this node. 

datum The (positive) datum supplied by the inference engine. 

label Represents current belief status of the node. : TRUE indicates the 
node is true, : FALSE indicates that the node is false, and the node is 
labeled : UNKNOWN otherwise. 

support This field is nil if the node is unknown. If the node is an en-
abled assumption, this field contains the symbol : ENABLED-ASSUMPTION. 
Otherwise this field contains the clause which BCP used to force the 
node's label. 

true-clauses This and the next field are the generalization of the 
JTMS justifications and consequences. This field is a list of clauses in 
which this node occurs positively. 

false-clauses This field is a list of the clauses in which the node 
occurs negatively. 

mark Holds a marker for the sweep algorithm used in finding the as-
sumptions underlying a node. 
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assumption? If non-nil, this field indicates that this node should be 
treated as an assumption whose belief can be explicitly enabled and 
retracted by the inference engine. 

true-rules Rules that should be run when the node becomes labeled 
: TRUE. If this LTMS is being used without an external system, this field 
should be nil. The LTMS enqueue procedure is called on each element of 
this field if it is non-nil. The queue is then cleared. 

false-rules Like true-rules, but these rules are queued when the 
node is labeled : FALSE. 

ltms The LTMS instance to which this node belongs. 

true This contains a single Common Lisp cons cell whose car is the 
node itself and whose cdr is : TRUE. This is the way the LTMS represents 
the positive literal. Every instance of this literal must be represented by 
this cons cell. This ensures that two literals are the same exactly when 
they are Common Lisp eq. This makes certain operations more efficient 
and saves a little bit of memory. 

false The dual to the previous field. 

The clause defstruct encodes clauses. The fields are: 

index Integer for unique name. 

informant A description of the clause. If the clause was added by the 
procedure add-clause, then it is supplied by the inference engine. If the 
clause is a result of calling the procedure add-formula, then it consists 
of a three-element list of : IMPLIED-BY and the two original arguments 
to add-formula. While this information is preserved within the LTMS, it 
is not used by any of the algorithms. 

literals A description of the literals appearing in the clause. It con-
sists of a list of node-label pairs. For example, the clause, 

x v my, 

is represented as, 

( (x . :TRUE) (y . :FALSE)) 

pvs This counter is central to making BCP efficient. It is a count of the 
number of nodes which, if relabeled, might violate the clause (pvs comes 
from potential violators). Thus it counts the number of literals which are 
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either : UNKNOWN or : TRUE. BCP maintains these counters incrementally. 
Initially, pvs is the number of nodes in the clause. If pvs is reduced to 
one, then the clause forces the label of the single remaining node. If 
pvs is reduced to zero, then the clause is violated and a contradiction 
is signaled. 

length This contains the number of literals in the clause. This could 
be computed by just calling length on the literals slot. This is used 
primarily in Chapter 13. 

sat s This is a counter of the number of literals currently satisfying the 
clause. If this counter is greater than zero, then this clause is satisfied. 
This can be used by the inference engine to quickly test whether a clause 
is satisfied. It is also extensively used in Chapter 13. 

status See Chapter 13. 

The procedures node-string, debugging-ltms, ltms-error, and 
default-node-string are nearly identical to their JTMS counterparts. 
sat isf ied-clause? returns t if the clause is satisfied. walk-clauses is 
a macro which calls a procedure on every clause in the database. This is a 
distinct macro because the datastructure for ltms-clauses is different 
in Chapter 13. 

9.10.3 Basic inference engine interface 

The procedures create-ltms and change-ltms behave as do their JTMS 
counterparts. The procedures unknown-node?, known-node?, true-
node?, and false-node? simply query the label of the node. The pro-
cedure tms-create-node creates a node. 

The procedure enable-assumption sets an assumption node :TRUE 
or : FALSE. This procedure simply does some initial checking, and if any 
actual BCP work is needed, it calls top-set-truth. 

The procedure convert-to-assumption is an unadvertised proce-
dure to convert a non-assumption node into an assumption. Be warned 
that this must be used with great care. If a node is converted to an 
assumption after it has contributed to a contradiction, then it will be 
missing from any nogoods that that may have been constructed by the 
inference engine to record that contradiction. This may lead to unex-
pected logical incompleteness. 
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The procedure retract-assumption removes an assumption's label. 
It first calls propagate-unknownness to label it and all its consequences 
:UNKNOWN. propagate-unknownness returns a list of all the nodes which 
just became labeled :UNKNOWN. The procedure f ind-alt ernative-
support is called with this list and attempts to find alternative well-
founded support for all the nodes that were just labeled : UNKNOWN. 

9.10.4 Adding formulas to the LTMS 

The code in this section first converts any inference engine-supplied for-
mula into conjunctive normal form, then identifies the clauses of the 
formula, and finally, adds these clauses to the LTMS database. 

The procedure add-formula is the top-level procedure for adding for-
mulas. add-formula first converts the formula into conjunctive normal 
form using the procedure normalize. The set of clauses from the con-
junctive normal form of the formula is then added to the LTMS. 

The procedure simplify-clause removes duplicate literals and de-
tects tautologies (clauses that contain both a node and its negation). To 
achieve this, it calls sort-clause to order all the literals by increas-
ing tms-node-index. This ensures that duplicate and complementary 
literals will be adjacent. In Chapter 13 we will exploit the fact that sort-
clause also puts the clause literals into a canonical form. 

The procedure normalize converts an expression into conjunctive 
normal form exploiting the rules described in Section 9.4. In order to 
avoid including an extra ltms argument in all the recursive calls to 
convert a formula, it is bound to the dynamic variable *ltms*. The aux-
iliary procedure normalize-1 does all the work. Its second argument 
is t or nil, depending on whether the resulting formula is negated. 
With the inclusion of such an extra negate argument, DeMorgan's laws 
can be obeyed while the clauses representing the formula are built up, 
and no additional distinct rewrite rule is required. The auxiliary func-
tions normalize-tax, normalize-con j unct ion , normalize-if f, 
normalize-disjunction, and disjoin normalize the different syntac-
tic possibilities. Every one of these functions returns a CNF expression 
represented as a list of lists of literals. 

The code has to be careful in handling degenerate formulas. The dis-
junction of zero literals (i.e., ( : OR)) is false, while the conjunction of 
zero literals (i.e., ( :AND)) is true. The various normalizing procedures all 
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return expressions in CNF (with operators removed). Therefore, false is 
represented simply by (nil) (i.e., ( :AND ( : OR)) and true is represented 
by nil (i.e., ( : AND)). 

The procedure find-node uses a simple hash table to look up nodes 
by their datum. Notice that this presumes that if an implementation uses 
find-node (which it need not), then every node should have a unique 
datum. find-node can be called in three different contexts: (1) by the 
inference engine directly, (2) when add-formula finds an operand atom 
in a formula which is not a node, and (3) from compile-formula. 

The macro compile-formula is like add-formula except that it at-
tempts to expand its formula argument at compile time. It achieves 
this by first analyzing its formula argument via the procedures expand-
formula and partial. Then it creates an LTMS instance at compile time 
to facilitate the conversion process and translates the clauses from this 
temporary LTMS into calls to add-clause at run time. The procedure 
expand-formula partially evaluates the formula argument, constructing 
what the formula would look like at run time. When quote is found, par-
tial evaluation is no longer necessary to construct the run-time formula, 
although any atoms in the argument need cleaning up. This is achieved 
by partial. 

9.10.5 Adding clauses 

The procedure add-clause adds a clause to the LTMS. It is called with 
two lists of the positive and negative literals of the clause; it simply 
converts these to the standard LTMS representation for clauses and calls 
add-clause-internal. 

In the basic LTMS, the procedure add-clause-internal immediately 
calls bcp-add-clause as the : COMPLETE flag (see Chapter 13) is always 
nil. 

The procedure bcp-add-clause indexes the clause; it initializes the 
clause counts. At its conclusion it calls check-clause, which invokes 
BCP. In the CLTMS (see Chapter 13), bcp-add-clause is sometimes re-
quested to create the clause without indexing it. This is indicated by an 
optional fourth argument which is always t in the LTMS. 

The procedure add-nogood is a variant of add-clause that is useful 
during contradiction handling. It simply adds the clause corresponding 
to the current labels of the assumptions and the culprit. 
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9.10.6 Boolean constraint propagation 

The BCP algorithm uses the single dynamically bound special variable 
*clauses-to-check* to enumerate the clauses that BCP needs to check. 
This variable is bound only within internal LTMS operations, so there is 
no possibility of it conflicting with other LTMS instances. 

check-clauses is the top-level invocation of BCP. It repeatedly pops a 
pending clause and calls the procedure check-clause on it. 

The procedure check-clause first checks whether the clause is vio-
lated, and if so, schedules it for later contradiction handling. Otherwise, 
it checks whether the clause forces a node's label. Unless that node's 
label has been set by another clause, it calls set-truth to propagate 
the label. f ind-unknown-pair is called as an auxiliary procedure to find 
that node whose label might be forced. 

The procedure top-set-truth is a top-level way to call set-truth. 
After calling set-truth it calls check-clauses to propagate the 
changed label (if any) and then performs contradiction handling if 
needed. 

The procedure set-truth is the main workhorse of BCP. Whenever a 
node's label is set to : TRUE or : FALSE it immediately signals the infer-
ence engine. Notice that the inference engine is signaled in the middle 
of LTMS operations and hence the inference engine should not make any 
changes at all to the LTMS at this point. Neither should it do a throw. 
Then set-truth updates the counts of all clauses that mention the 
node. If the node becomes labeled : TRUE, then all the clauses in which 
it appears negatively should have their count decremented. Conversely, 
if the node becomes labeled : FALSE, then all the clauses in which it ap-
pears positively should have their count decremented. 

9.10.7 Retracting an assumption 

Retracting an LTMS assumption is very similar to retracting a JTMS as-
sumption. First, the node and all its consequences are marked : UNKNOWN. 
Only when this concludes may the algorithm attempt to establish alter-
native support for each node just marked :UNKNOWN. 

The procedure propagate-unknownness performs the first phase of 
retraction. For every node that becomes labeled : UNKNOWN, every clause 
it participates in is checked to see whether that clause forced the label 



303 	 Logic-Based Truth Maintenance Systems 

of some other node. If so, that other node is labeled :UNKNOWN as well. 
The auxiliary procedure clause-consequent takes a clause and returns 
the node (if any) whose label it has forced. We could include this node 
in the clause datastructure, but that would be just one more piece of 
datastructure BCP would have to update. 

The procedure find-alternative-support's main purpose is to at-
tempt to find alternative support for the nodes labeled : UNKNOWN by 
propagate-unknownness. 

9.10.8 Contradiction-handling interface 

At the conclusion of every LTMS operation that may add : TRUE/ : FALSE 
labels, the LTMS invokes the procedure check-for-contradictions. 
check-for-contradictions first checks whether any violated clauses 
detected during the LTMS operations are still violated. If so, it invokes 
contradiction-handler on the entire set of violated clauses. 

LTMS contradiction handling is affected by two fields of the LTMS 
datastructure: contradiction-checking and contradiction-
handlers. If contradiction-checking is nil, then the violated clauses 
are placed on the LTMS slot ltms-pending-contradict ions in case 
the inference engine might later want to examine the violated clauses. 
Otherwise contradiction-handler unwinds the contradiction-handler 
stack until one returns a non-nil result, which indicates that the contra-
dictions have been dealt with. Algorithmically, the contradiction handler 
can throw out, or return a non-nil result even if violated clauses remain. 
Although this is useful for some purposes, it can leave the database in a 
logical mess which the inference engine will have to clean up. 

For some types of problem-solving operations it is useful to tem-
porarily turn contradiction handling on and off. The macros without-
contradiction-check and with-contradiction-check, and the aux-
iliary procedure contradiction-check accomplish this. It is up to the 
inference engine to dequeue any violated clauses that may have accumu-
lated on ltms-pending-contradictions while contradiction checking 
is disabled. 

The macro with-contradiction-handler allows the inference en-
gine to temporarily and cleanly install a contradiction handler during 
some fragment of problem solving. 
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The macro with-assumptions allows the inference engine to tem-
porarily and cleanly enable some assumptions. 

9.10.9 Inquiring about well-founded support 

The procedures support-for-node, assumptions-of-node, and 
assumptions-of-clause allow the inference engine to explore well-
founded explanations for nodes. 

The procedure support-for-node returns the clause that forces the 
node if there is one, otherwise it returns :ENABLED-ASSUMPTION or 
nil. The inference engine can walk through the well-founded explana-
tion for a node by repeatedly calling support-for-node. The procedure 
assumptions-for-node returns the set of all enabled assumptions un-
derlying the current well-founded support for the node. (Note that there 
may be many—the LTMS only finds one.) It operates by walking through 
the acyclic graph representing the well-founded explanation for nodes. 

9.10.10 Simple user interface 

The remaining set of procedures in ltms . lisp allows the LTMS to be 
used in a stand-alone mode without any inference engine. Most real prob-
lem solvers will have their own versions of these procedures or call them 
as subprocedures from a more user-friendly front end. 

ask-user-handler, handle-one-contradiction, print-contra-
list and tms-answer are nearly identical to their JTMS counterparts. 
The procedure avoid-all is an alternative contradiction handler. If this 
is used as the final contradiction handler, it will remove all contradic-
tions (if it is possible to do so) by retracting assumptions and then in-
stalling nogoods to prevent them from reoccurring. One design strategy 
is to make this the contradiction handler of last resort and ask-user-
handler the handler of next-to-last resort such that if the user does not 
specify which assumption to retract, the LTMS will do so automatically. 

The procedures clause-antecedents, signed-node-string, and 
node-consequences are three auxiliary procedures used in the explana-
tion-generating code that follows. The procedure clause-antecedents 
returns a list of the nodes of a clause which are currently antecedent to 
that clause. signed-node-string returns a string describing that node, 
taking into account its current label. node-consequences returns a list 
of all clauses a node currently affects. 
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why-node and why-nodes behave much like their JTMS counterparts. 
The procedure explain-node prints a well-founded explanation for a 
node. It calls the recursive procedure explain-node-1 to actually con-
struct the explanation. The procedures pretty-print-clauses and 
pretty-print-clause print out clauses in a logical syntax. The pro-
cedure show-node-consequences prints out the current consequences 
of a node. The procedure node-show-clauses prints out all the clauses 
a node appears in. Finally, the procedure explore-network is a higher-
level interface to the preceding procedures for exploring the dependency 
network. 

9.11 Exercises 

1. * In the encoding of the clause A v B v C in Section 9.1.1 we did not 
add a justification A A B A C L. Why not? 

2. * In Section 9.6 we stated that if all nogoods were present, search 
would be backtrack-free. Provide an argument or proof. 

3. * Calculate how many clauses the following call to add-formula 
creates. Is this reasonable? 

(add-formula *ltms* 
'(:OR 
(:AND 

(:AND 

(:AND 
(:AND 
(:AND 

(:AND 

(= 
(= 

(= 
(= 

(= 

(= 

?a ok) 	(= ?b in) 
?a ok) 	(= ?b in) 
?a ok) 	(= ?b in) 
?a ok) 	(= ?b out) 
?a ok) 	(= ?b out) 
?a ok) 	(= ?b out) 

(= ?c low) 	(= ?d low) ) 
(= ?c normal) 	(= ?d normal) ) 
(= ?c high) 	(= ?d high) ) 
(= ?c low) 	(= ?d low) 	) 
(= ?c normal) 	(= ?d low) 	) 
(= ?c high) 	(= ?d low) 	) 

(:AND (= ?c none) 	(= ?d no ne) 
(:AND (= ?a stuck_open) (= ?c low) 	(= ?d low) ) 
(:AND (= ?a stuck_open) (= ?c normal) 	(= ?d normal) ) 
(:AND (= ?a stuck_open) 	(= ?c high) 	(= ?d high) ) 
(:AND (= ?a stuck_closed) (= ?c low) 	(= ?d low) 	) 
(:AND (= ?a stuck_closed) (= ?c normal) 	(= ?d low) 	) 
(:AND (= ?a stuck_closed) (= ?c high) 	(= ?d low) 	) 
)) 
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4. 	* * Consider the a : TAXONOMY formula on n nodes. How many con-
juncts does it have when expanded into conjunctive normal form? 

S. 	* Prove that if all the implicates are added to the LTMS database, BCP 
is logically complete. 

6. 	* * Modify our LTMS to allow the user to justify, enable, and retract 
clauses. 

7. Our LTMS implementation finds all violated clauses. In many cases it 
is sufficient to find only one, thereby improving the overall efficiency 
of the problem solver. 

a. * What problem would occur if our implementation stopped 
checking clauses when encountering the first violated clause? 

b. * * * Redesign our BCP implementation so that it works correctly 
and stops when encountering the first violated clause. Hint: This 
will require adding a new field to the LTMS defstruct. 

c. * * Our BCP implementation wastes a lot of storage consing to 
queue of clauses to check. Redesign the datastructures to avoid 
all such consing. 

8. 	* * * Our BCP operates by expanding formulas into conjunctive nor-
mal form. This can often generate a very large number of clauses. 
For example, consider your answer to Exercise 4. Build a BCP that 
does not expand formulas into clauses. Hint: Substitute : TRUE and 
: FALSE for known literals occurring in formulas and then simplify. 

9. 	* * It can often be useful to determine whether the label of a node 
is permanent or can be changed by future assumption retractions. 
Implement a version of the LTMS that keeps track of whether the 
label is fixed or variable and prefers the fixed label over a variable 
label. 

10. * * Some applications generate an extremely large number of clauses. 
It is possible to garbage-collect clauses if they become permanently 
satisfied, that is, if one of their literals is permanently true (i.e., 
its well-founded explanation has no enabled assumptions). Write an 
LTMS that constantly checks for such clauses and discards them. 
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11. * * Section 9.1.1 describes a way of encoding LTMS clauses for a 
JTMS. Write a LTMS that functions this way. 

12. * * * * Write a full LTMS that does not expand formulas into clauses. 
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10 	Putting an LTMS to Work 

As Chapter 9 demonstrated, the LTMS provides greater expressiveness 
than the JTMS. While in principle the encoding tricks of Section 9.1.1 
can be used to express arbitrary clauses in a JTMS, in practice using an 
LTMS can greatly simplify programs. Because the LTMS accepts arbitrary 
propositional formulas (by translating them to logically equivalent sets 
of clauses), developing computational renderings of axiomatic theories 
becomes much easier. 

The LTMS moves the dividing line of responsibility between the TMS 
and the inference engine. Consider the natural deduction system KM* 
implemented in Chapters 4 and S. In those systems KM* was imple-
mented entirely in the inference engine, which performed propositional 
reasoning via handcrafted pattern-directed inference rules. The burden 
of propositional reasoning is shifted from the inference engine to the 
TMS in an LTMS-based problem solver. The inference engine is still re-
sponsible for instantiating knowledge and global control (cf. JSAINT in 
Chapter 8), but now it can rely on the LTMS's Boolean constraint prop-
agation algorithm to draw a reasonable set of propositional inferences 
automatically and efficiently. To draw an analogy with logic, the LTMS 
performs the propositional reasoning while the inference engine per-
forms universal instantiation. This chapter shows how to incorporate the 
LTMS into a pattern-directed inference system, called LTRE (for Logic-
based Tiny Rule Engine). LTRE mostly follows the structure of JTRE, but 
includes changes designed to maximally exploit the LTMS. 

Earlier chapters explored a variety of important problem-solving tech-
niques including the use of control knowledge, context manipulation via 
stacks, and the suggestions architecture. These are powerful techniques, 
but additional advanced techniques are needed for many problems. 
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Realistic problems are often ill-structured, in the sense that the de-
pendencies between different aspects of the problem can be complicated 
and often not apparent in advance. In designing a complex artifact, for 
example, the decisions made about one subsystem often impact the deci-
sions made about another subsystem. Adding more slots to a computer 
design, for instance, may require resizing the power supply, which may 
require revising the cooling system, which may in turn affect where the 
expansion slots should be placed. Moreover, realistic tasks often involve 
incomplete knowledge. Examples include diagnosis, where a program 
might not have complete knowledge of the values of measurements or 
the possible failure modes of a artifact's components, or even a complete 
understanding of what components constitute the artifact (try fixing a 
car with electronic ignition sometime). This chapter describes advanced 
inference techniques which address these problems. Some of these tech-
niques can be implemented with simpler TMSs, but using an LTMS greatly 
simplifies their exposition as well as their operation. 

We begin by describing the design of LTRE, focusing on the changes 
in knowledge model motivated by using the LTMS and a more power-
ful discipline for contradiction handling. The implementation of LTRE 
is briefly outlined next. The rest of the chapter focuses on advanced in-
ference techniques. Section 10.3 shows how indirect proof can be imple-
mented elegantly to overcome the incompleteness of Boolean constraint 
propagation in a focused manner. Section 10.4 describes a mechanism 
for using closed-world assumptions to help overcome limitations imposed 
by incomplete knowledge. Finally, Section 10.5 illustrates the design and 
construction of a generic dependency-directed search facility suitable for 
problems with complex interdependencies. 

This chapter uses very simple examples to illustrate these reasoning 
techniques. In the next chapter we show how these techniques can be 
used to build a substantial problem solver—a qualitative reasoning sys-
tem. 

10.1 The design of LTRE 

We have already discussed the issues involved in interfacing a TMS with 
an inference engine in Chapter 8. Most of the design decisions for JTRE 
are still valid when using an LTMS (e.g., the extent of assertions, the de- 
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sign of the database and mappings between Lisp forms, assertions, and 
TMS nodes, etc.). Consequently, we focus on two issues here. The first 
is a change in how assertions are interpreted, and is motivated by the 
character of the LTMS. The second is a change in how contradiction han-
dling works, motivated by the consideration of more realistic problem 
domains. We examine each in turn. 

10.1.1 Consequences of a propositional knowledge model 

So far we have seen two models of belief in pattern-directed inference 
systems: 

■ TRE/FTRE: If the assertion F is found in the database, the system is 
said to believe F. If F is not found in the database, then the system 
cannot be said to believe F. 

■ JTRE: If the assertion F is found in the database and its correspond-
ing JTMS node has the label : IN, then the system is said to believe F. 
Otherwise, the system cannot be said to believe F. 

Neither model makes any assumptions about the form of F. Generally, 
assertions are viewed as propositions, in the usual sense of propositional 
logic. But nothing so far in our PDIS model has enforced this perspective. 
As Section 4.1 explained, assertions are typically list structures but in 
principle could be anything. For instance, the following could in these 
systems legitimately be assertions: 

■ 3 

■ (integral (sqr (sin x)) x) 

■ a bitmap 

The problem with using these entities as assertions is that it isn't clear 
what it means to believe in them. "Believing in 3" has a distinctly meta-
physical ring to it. Since bitmaps can be pictures of physical objects, it 
might seem easier to establish a consistent interpretation of them as as-
sertions. But it is not as easy as it looks. Suppose bitmap B is in. There 
are several ways to interpret this: 

1. B depicts the image currently captured by the camera attached to the 
problem solver containing the TMS. 
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2. B depicts a state of affairs that represents the problem solver's inter-
pretation of what is currently happening in the world around it. 

3. B depicts a state of affairs that the robot intends to bring about. 

4. B is a drawing that the problem solver has decided should be pre-
sented using its graphics facilities. 

Extending any of these intuitions into a full semantics is difficult. For 
instance, the consequences of two bitmaps being in is different for each 
interpretation. Almost always, problem-solver designers tend to eschew 
special-purpose semantics, relying on the well-developed (some might 
say well-worn) semantics provided by logic. That is, assertions in the 
database are always treated as logical propositions. Naturally this does 
not mean that bitmaps and other entities cannot appear as objects to 
be reasoned about (e.g. (integrate (integral (sqr (sin x)) x))). 
It is simply that, in keeping with the conventions of logic, objects are not 
themselves propositions.' 

By agreeing to keep to a strict propositional interpretation of asser-
tions we can gain additional efficiencies from the LTMS. First, with a JTMS 
we had to have both P and 	in the database. (Recall from Chapter 6 
that P is true exactly when P is IN and 	is OUT, and false when P is 
OUT and 	is IN.) Using an LTMS, to determine if P is true or false we 
need only look at the label for the corresponding TMS node. The asser- 
tion 	is redundant. 

What are the consequences of deciding not to store the negation of as- 
sertions? In a PDIS, an assertion P is referred to for one of four reasons: 

1. Inquiring as to the belief in P 

2. Making P (or -'P) a premise. 

3. Assuming P (or -'P). 

4. Asserting a constraint on P (or -P). 

Each of these still requires some way to refer to -.P. Following our earlier 
conventions, in LTRE the negation of a proposition P is referred to via 

1. Certain sophisticated readers may be reminded of reifying propositions as objects 
in order to keep higher-order reasoning strictly first-order. We are ignoring such re-
finements here. 
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( :NOT P). Excluding the assertion of constraints, propositions of the 
form ( :NOT P) will be interpreted by LTRE in the following ways: 

■ During queries, if the query concerns ( :NOT P) the answer returned 
will be the inverse of the label found for P. That is, 

:TRUE :FALSE 

:FALSE :TRUE 

:UNKNOWN — : UNKNOWN 

■ When asserting ( :NOT P) as a premise, P will be made a premise 
with the label : FALSE. 

■ When assuming ( :NOT P), P will be assumed with the label : FALSE. 

This same convention is often used in logic programming, where nega-
tion is viewed as "the sign of" a proposition. Unnegated propositions are 
positive literals, and negated propositions are negative literals. 

What about installing constraints? In JTRE the only constraints which 
could be added were Horn clauses, since that was all that the JTMS 
could accept. Chapter 9 showed that arbitrary propositional statements 
could be translated into sets of clauses (e.g., the algorithm used by add-
formula) which the LTMS could then reason with. Consequently, LTRE 
should allow the assertion of arbitrary propositional statements, in or-
der to gain the maximum benefit from the LTMS. There are two ways this 
might be accomplished: 

Multilevel expansion: Given a compound statement, install each propo-
sitional subexpression in the database as an explicit assertion. For each 
propositional subexpression, install clauses which implement just that 
subexpression, treating its arguments as atomic propositions. 

Direct translation: Given a compound statement, translate it into a set 
of clauses involving atomic propositions and install those clauses di-
rectly into the LTMS. 

To see the differences between these two strategies, consider the state-
ment 

(:IFF (:IMPLIES (:OR a b) (:NOT (:AND c d)) 

(:TAXONOMY e f g)) 
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Asserting this statement under either implementation strategy will result 
in the propositions a, b, c, d, e, f, and g appearing in the database, if 
they aren't there already. Under the multilevel expansion strategy, the 
following propositions also will be added to the database 

(:IFF (:IMPLIES.(:OR a b) (:NOT (:AND c d)) 

(:TAXONOMY e f g)) 

(:IMPLIES (:OR a b) (:NOT (:AND c d)) 

(:OR a b) 

(:AND c d) 

(:TAXONOMY e f g) 

The clauses added to the LTMS database under the multilevel expansion 
strategy include compound propositions such as ( : OR a b) and ( :NOT 
( : AND c d) ), whereas the clauses added under the direct translation 
strategy are all in terms of the atomic propositions (e.g., a, b, and so on). 
The attraction of the multilevel expansion strategy is that the structure 
of the explanations produced by the LTMS directly reflects the structure 
of the knowledge entered into the system. This can make explanations 
easier to understand. Suppose we ask why f is believed to be true. Un-
der the multilevel expansion strategy, inspecting the dependencies might 
show us that f is true because e and g are false and the three proposi-
tions are linked by a : TAXONOMY statement, which is true because the 
:IMPLIES is true, which in turn is true because both a and b are false. 
Under the direct translation strategy, the reason for f being true would 
be that a, b, e, and g are all false. The attraction of the direct transla-
tion strategy is efficiency. Clearly, fewer propositions will be needed to 
encode a particular piece of knowledge, and perhaps even fewer clauses. 

Which strategy is preferable? Let us look at efficiency first, by looking 
more closely at the example above. Under the direct translation strategy, 
seven TMS nodes are required, one for each atomic proposition. In the 
multilevel expansion strategy, an additional five nodes are needed, one 
for the original expression and four more for the subexpressions. What 
about clauses? Using the LTMS algorithms, it is easy to confirm that 
under multilevel expansion, 25 new clauses would be added to the TMS, 
while under direct translation 24 would be added. To summarize: 

Strategy 	 # Assertions # Clauses 

Multilevel expansion 12 	 25 

Direct translation 	7 	 24 
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The direct translation strategy comes out slightly better in terms of 
clauses required to encode our example proposition, and substantially 
better in terms of the number of assertions required. Building and index-
ing assertions and their corresponding TMS nodes takes more space and 
time than building clauses, so the tradeoff in assertions required is the 
critical one. Clearly, the efficiency advantage goes to direct translation. 

What about clarity of explanation? In the multilevel expansion strategy, 
some of the intermediate nodes in explanations are propositions which 
are recognizably something asserted by the user (e.g., ( : TAXONOMY e f 
g)), thus making it easier to track down the source of a bug. We can get 
the same effect in the direct translation scheme by adding an informant 
which encapsulates the original propositional constraint. In particular, 
recall that the LTMS procedure add-formula calculates a new informant 
based on the formula and informant it is given as inputs. This feature 
can be exploited by allowing assert ! to include an informant as well as 
a constraint. Thus the call 

(assert! '(:IMPLIES (human robbie) (mortal robbie)) :SAD-FACT) 

leads to the following clause being installed in the LTMS: 

((<#NODE: (HUMAN ROBBIE)> . :FALSE) 

(<#NODE: (MORTAL ROBBIE)> . :TRUE)) 

with the informant of this statement being 

(:IMPLIED-BY (:IMPLIES <#NODE: (HUMAN ROBBIE)> 

<#NODE: (MORTAL ROBBIE)>) 

:SAD-FACT) 

Thus by including informants in the explanation, an LTMS-based system 
using the direct translation strategy can achieve the same degree of clar-
ity as a system using multilevel expansion. 

We have built inference engines using both strategies, and our experi-
ence confirms what these examples suggest: that the direct translation 
strategy tends to work better in practice. Empirically, we have found the 
explanations given by direct translation schemes to be easier to use than 
than explanations given by multilevel expansion schemes. Explanations 
given by the latter tend to be boring, since they step through each in-
termediate connective. Consequently, LTRE uses the direct translation 
strategy. 
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10.1.2 Contradiction handling for flexible problem solving 

A primary function of truth maintenance systems is the detection and 
processing of contradictions. What should be done when a contradiction 
occurs depends on the nature of the computation. Suppose a problem 
solver is checking the consistency of a user's assumptions. It might do 
this by calculating the set of consequences entailed by those assump-
tions plus its other knowledge using Boolean constraint propagation. In 
this case a contradiction probably would be handled by offering up the 
offending assumptions for inspection and retraction. Suppose a problem 
solver is performing an indirect proof, and the contradiction detected 
includes the assumption to be denied. In this case the method has suc-
ceeded and the original hypothesis can be marked as proven, based on 
the other assumptions involved in the contradiction. Suppose a problem 
solver is performing a dependency-directed search. In this case a contra-
diction involving one of the search assumptions indicates that backtrack-
ing is required. The commonality underlying each of these examples is 
that the problem solver is engaged in an assumption-manipulating oper-
ation. Each type of assumption-manipulating operation requires a partic-
ular contradiction-handling strategy. 

Realistic problem solvers are often engaged in several assumption-
manipulating operations at once. In confirming a user's assumptions 
about a malfunction, for instance, a dependency-directed search might 
be undertaken to see if the assumptions can lead to a consistent ex-
planation of the observed symptoms. Conversely, an interactive design 
system might, in the midst of a dependency-directed search through a 
space of possible designs, ask its user for sample component values, 
which it must check for reasonableness before proceeding. As the state 
of the art progresses, the kinds of interactions between such operations 
will become even more complex: a fault-management system that collab-
orated with human operators in diagnosing malfunctions in, say, a space 
station, and helped design work-arounds to allow continued station op-
erations would require interleaving troubleshooting and design activities. 
Clearly no single contradiction-handling procedure will suffice. What we 
need is a method for orchestrating multiple contradiction handlers. 

The implementation of contradiction handlers in the JTMS, explained 
in Chapter 7, provided only a partial solution. Recall that a default con-
tradiction handler could be provided with a JTMS, and that a macro 
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with-contradiction-handler allowed a program to rebind this han-
dler temporarily during a computation. The utility of this mechanism was 
illustrated in Chapter 8 by the implementation of a simple dependency-
directed search algorithm for the N-queens puzzle. But, as noted in Sec-
tion 8.4, we had carefully arranged the search so that the last assumption 
was always what should be retracted. In general this cannot be done. 
To see this, imagine a problem solver based on JTRE was carrying out 
a dependency-directed search involving three choice sets: 

A1, A2, A3 

B1, B2, B3 

Cl, C2, C3 

Like n-queens, each phase of the search rebinds the JTRE's contradic-
tion handler to catch contradictions involving its assumptions (see Fig-
ure 10.1). Suppose the problem solver is exploring A2, B2, C2, and uncov-
ers a contradiction depending only upon A2, B2. The contradiction han-
dler for the C choice set cannot deal with this contradiction. The handler 
for the B choice set could, but it has been hidden by the rebinding of the 
contradiction handler during the search process. 

One can imagine case-specific patches, of course. However, as noted 
above, to build flexible problem solvers we should be able to interleave 
assumption-manipulating operations arbitrarily. This means introducing 
a protocol that allows locally defined contradiction handlers to be com-
bined appropriately. Let us first examine the design assumptions under-
lying the JTMS/JTRE implementation of contradiction handlers, in order 
to understand what must be changed and why. 

A single contradiction handler which can be rebound is adequate only 
under the following three restrictions: 

1. All assumption-manipulating operations must be identified, and an 
appropriate contradiction handler must be provided for each. 

2. Assumption-manipulating operations must proceed depth first. 

3. Relative closure: Every consequence that holds for the current set 
of assumptions and which might lead to a contradiction must be 
computed before making more assumptions. 

The relative closure restriction is clearly problematic. Strictly speaking it 
is impossible to satisfy, since (a) the set of consequences can be infinite, 
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(Al, A2, A3} 

Figure 10.1 Multi-level backup requires visible handlers 

and (b) in developing our reasoning algorithms we have eschewed com-
pleteness in favor of efficiency. But even restricted versions, i.e., those 
in which every consequence of the current assumptions is derivable via 
Boolean constraint propagation, are unrealistic. 

The purpose of assuming relative closure is the same as the require-
ment in FTRE (Section 5.1.3) that all rules that do not require assump-
tions be executed before any rules that do. Recall that the FTRE discipline 
was motivated by the use of a stack for making temporary additions to 
the database. It was important to ensure that conclusions were based on 
as few assumptions as possible—otherwise, they would be inappropri-
ately retracted when the stack was popped and never rederived in that 
manner within that context or any future subcontext of it. 

Here the problem was not losing derivations. The problem was that the 
appropriate handler for a contradiction may be shadowed. In the case 
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of the dependency-directed search above, one might argue that it is the 
search itself that should be better organized, as we did with N-queens. 
For many searches that may be possible. However, it is not possible 
for arbitrary combinations of assumption-manipulating operations. Con-
sider a JTRE-based problem solver whose job is to ask a user for a set of 
assumptions, check them for consistency (using contradiction handler H1 
to complain about mistakes), and then perform a dependency-directed 
search based on choice sets derived from those assumptions (using han-
dler H2 to backtrack as needed). Now suppose we give this program some 
assumptions, but interrupt its computation of their consequences. The 
initial assumptions may be contradictory, and worse yet, our collection 
of choice sets might be incomplete at this point. Now we let the pro-
gram proceed with the search, without letting it finish these updates. (If 
this malevolence seems unfair, imagine that this problem solver is imple-
mented in a distributed processing environment where tasks are carried 
out in parallel in order to maximize average throughput.) Starting the 
search means H2 now shadows H1. If the rules triggered by the initial 
assumptions are then allowed to run, any contradiction involving the ini-
tial assumptions will be seen by H2 but not by H1. There is absolutely no 
guarantee that H2 will do anything sensible in this case. And we cannot 
rewrite 112 to include H1 as a subcase, since that would violate modular-
ity and thereby restrict our ability to compose assumption-manipulating 
operations. 

Importantly, interruptions are not the only way to violate the relative 
closure assumption. Any situation where the order in which information 
is obtained cannot be fixed in advance can cause trouble. Consider a 
troubleshooter working on a computer network, for instance, who is 
trying to pin down what machine is clogging the network with excess 
packets. If she finds that the subnet in question has an extra machine 
that she didn't know about, then any processes of elimination underway 
may need substantial revision. Or consider a designer who on Tuesday 
settles on CMOS as the technology for a peripheral controller, but on 
Wednesday management changes the speed specifications so that only 
GaAs will do. In this situation, most of the choices defining the design 
space are now different. Or consider a researcher who finds out that 
a piece of plotting software is buggy, so that the conclusions drawn 
from the pilot data are incorrect and the follow-on experiments must be 
redesigned. Typically the world does not provide us with enough order; 
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we have to impose the order we need when we can, and be ready to 
respond when the world signals us that our choices won't work. 

The relative closure restriction can sometimes be lived with for sim-
ple problems, with careful planning. But for most problems it is too 
confining. Consequently, in LTRE we drop the relative closure assump-
tion. The other design assumptions remain the same, though. Clearly, 
every assumption-manipulating operation must still provide a handler 
which carries out the appropriate action when one of its assumptions 
is implicated in a contradiction. It may not be so clear that assumption-
manipulating operations must still proceed depth first. The reason is that 
context within the LTMS is global: we cannot explore two mutually incon-
sistent sets of assumptions in parallel without causing a contradiction. 
(Overcoming this limitation is one of the primary reasons for using an 
ATMS, as explored in later chapters.) This does not mean that all com-
putations within a particular assumption-manipulating operation must 
proceed depth first, naturally. 

The LTMS presented in Chapter 9 provided a simple stack mecha-
nism for contradiction handlers which overcomes the need for the rel-
ative closure restriction. As before, each assumption-manipulating oper-
ation must have an associated contradiction handler. The new handler is 
pushed onto the stack, but this does not block access to previous han-
dlers. When a contradiction (or set of contradictions) occurs, each han-
dler is executed in turn. A handler returns nil to indicate that it did not 
fully resolve the current set of contradictions. A non-nil result indicates 
that all contradictions are now cleared, and processing may proceed. (See 
the procedure contradiction-handler in ltms . lisp for details.) 

10.2 The implementation of LTRE 

LTRE consists of the following files: 

linter . lisp Datastructures and interface. 

ldata.lisp Database system. 

lrules . lisp Rule system. 

unify. lisp Unifier. Identical to FTRE version. 

funif y . lisp Open-coding unification. Identical to FTRE version. 
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indirect . lisp Indirect proof mechanism. Explained in Section 10.3. 
cwa . lisp Closed-world assumption mechanism. Explained in Section 
10.4. 
dds . lisp Dependency-directed search mechanism. Explained in Sec-
tion 10.5. 

We describe how linter.lisp, ldata.lisp, and lrules . lisp differ 
from their JTRE equivalents in this section. The design and implementa-
tion of the advanced inference mechanisms occurs in the later sections, 
as noted above. 

10.2.1 Summary of the LTRE interface (linter.lisp) 

Almost all of the changes in linter. lisp are renamings, using LTRE 
where JTRE appeared in j inter . lisp. The only additions are some de-
bugging utilities: 

show-by-informant Prints all clauses in the LTMS whose informant is 
associated with the symbol provided as input. Very handy for debugging 
complex systems. 
view-clause Given an LTMS clause, substitutes the Lisp forms corre-
sponding to its TMS nodes to produce a readable expression. Used by 
show-by-informant and other debugging utilities. 

10.2.2 Summary of the LTRE database (ldata.lisp) 

This file contains most of the substantial changes in LTRE. As Sec-
tion 10.1.1 described, LTRE translates logical constraints directly into 
clauses. To implement this design it must be able to figure out whether 
or not the functor of a proposition is a connective. The variable 
*connective-list* indicates what connectives are known to the LTMS 
(i.e., : NOT, : AND, : OR, : IMPLIES, : IFF, and : TAXONOMY). The proce-
dure simple-proposition? returns non-nil exactly when a proposi-
tion should be treated as a literal by the TMS. Since determining the 
sign of a proposition is a common operation, the procedure negated-
proposition? returns non-nil when a proposition is negative, and nil 
otherwise. 
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Except for the ability to take arbitrary propositional statements, the 
database interface is the same as JTRE. The strategy is the same: When 
given a proposition to assert or assume, translate it into a form the TMS 
can process and make the appropriate TMS call. In LTRE this job is han-
dled by the procedure build-tins-formula. build-tms-f ormula cre-
ates a new expression with TMS nodes substituted for all simple propo-
sitions. It creates assertions for simple propositions as needed (e.g., the 
call to referent, which plays the same role in LTRE as it did in JTRE). 

As with JTRE, assert ! causes permanent changes to the dependency 
network. Notice that it does not actually build a node corresponding to 
the input formula, unless that formula is a ground term. 

The definition of assume ! is similar to assert !, with one crucial dif-
ference. Since an assumption can be retracted, we must take care to en-
sure that any clauses we add to the LTMS can be decommissioned if the 
assumption is disabled. (Deleting clauses is still not an option, of course, 
because it would reduce the utility of the dependency network to serve 
as a cache.) To do this, assume ! builds an explicit node corresponding 
to the input formula and then asserts that this node implies the original 
formula. That is, given input formula F, it generates a TMS node NF  and 
asserts the constraint ( : IMPLIES NF  (F)) 
Thus all the usual clauses will be created for F, except they also will 
depend on NF. The clauses which implement F can be decommissioned 
by disabling the TMS node NF. Suppose for example we call assume! as 
follows: 

(assume! (:IMPLIES (human robbie) (mortal robbie)) :STILL-SAD) 

Three TMS nodes would be created, as well as the clause 

((#<NODE (:IMPLIES (HUMAN ROBBIE) (MORTAL ROBBIE))> 	:FALSE) 

(#<NODE (HUMAN ROBBIE)> . :FALSE) 

(#<NODE (MORTAL ROBBIE)> . :TRUE)) 

In addition to these changes, the procedure contradiction must 
change in meaning because, unlike the JTMS, there are no contradiction 
nodes in the LTMS. The LTRE procedure contradiction builds a clause 
indicating that the given nodes cannot have their current labelings. Also, 
the macro assuming is provided as a convenience for systems which 
must assume several facts at once. It basically provides an LTRE-level 
interface to the LTMS macro with-assumptions. 
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The rest of the changes are all minor: 

■ get -dbclass must now know about negated propositions, since a 
form whose car is : NOT must be interpreted as a signed statement 
rather than as the form of a fact itself. Similar changes are made in 
ref erentl and insert. 

■ The set of interrogatives has been changed to reflect the new set 
of possible labels. The procedures true?, false?, known?, and un-
known? test the belief in a proposition, while label-of returns the 
label itself. Notice that these procedures, too, must treat : NOT prop-
erly as a signed statement. 

■ The procedures why?, assumptions-of, consequences, and ex-
plore provide LTRE-level interfaces to the LTMS procedures why-
node, assumptions-of-node, show-node-consequences, and 
explore-network, respectively. 

■ The procedure fetch-global provides a new debugging feature. Re-
call that the THE database organization requires the leftmost symbol 
of a pattern to be known. That is, one cannot make queries of the 
form (?n1 <= ?n2) if ?n1 is free, since we must know the database 
class of the leftmost symbol to find out what subset of the database 
to look at. fetch-global gets around this problem by mapping over 
the entire database, using unify to perform the necessary match-
ing. The status argument provides filtering, ensuring that fetch-
global only returns facts with a particular label. 

10.2.3 Summary of the LTRE rule system (lrules.lisp) 

The changes to this file are straightforward: The trigger conditions for 
rules are now : TRUE, : FALSE, and : INTERN, to reflect the labels sup-
ported by TMS nodes. LTRE does not support : UNKNOWN as a trigger con-
dition, which would be the analog of : OUT rules, since they will not be 
needed by the systems we build on top of LTRE. 

Now let us turn to the new, more advanced features of LTRE. 

10.3 An indirect proof mechanism 

The incompleteness of Boolean constraint propagation generally is not 
a problem: empirically, the set of inferences it draws does a good job 
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at covering the "obvious" conclusions that should be made given a set 
of assumptions and clauses. There are plenty of exceptions, however. 
As Section 9.5 described, Boolean constraint propagation is both literal-
incomplete and refutation-incomplete. A common source of literal in-
completeness is disjunction. For instance, given 

(:OR P Q) 

(:IMPLIES P R) 

(:IMPLIES Q R) 

R must hold, but the LTMS does not derive this. One well-known strategy 
for overcoming such problems is indirect proof. In Chapter 5, indirect 
proof was implemented using a stack-based context mechanism. We can 
achieve the same effect in LTRE through its contradiction-handling mech-
anism. 

The essence of indirect proof is to assume the negation of the fact F 
to be shown and derive a contradiction. Once a contradiction has been 
derived, F can be justified based on the assumptions underlying the 
contradiction, minus the assumption 	The procedure try-indirect- 
proof in Figure 10.2 provides a simple implementation. (This procedure 
is from the file indirect . lisp in the listings.) 

try-indirect-proof works like this. The initial unless test filters 
out situations where the proposition to be shown (fact) is already 
known. Since its goal is to provoke a contradiction, it first pushes a 
contradiction handler on the stack for the current LTMS (via with-
contradiction-handler) which provides an appropriate response. 
That is, if the contradiction detected involves F, the assumption it made 
is retracted and a clause is created (via add-nogood) to record the rea- 
sons for believing F. To provoke the contradiction, 	is assumed (via 
the call to assuming) and any rules triggered by this action are executed. 
If a contradiction occurs the handler just described takes care of it. If no 
contradiction occurs, then F doesn't in fact follow. In that case, the as-
sumption is automatically retracted when assuming finishes, returning 
the database to its original state (modulo some rule firings). The upshot 
of the proof attempt is reported by the final call to known?. 

The operation of try-indirect-proof is illustrated in Figure 10.3. 
(Improving the quality of the explanation given is the subject of Exercise 
4.) 
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(defun try-indirect-proof (fact &optional (*LTRE* *LTRE*)) 

(unless (known? fact) 
(with-contradiction-handler (ltre-ltms *ltre*) 

#'(lambda (contradictions ltms &aux assumptions) 

(setq assumptions 
(assumptions-of-clause 
(car contradictions))) 

(let ((the-node ;; Is the assumption a culprit? 
(find (datum-tms-node (referent fact T)) 

assumptions))) 
(when the-node 

(let ((status (tms-node-label the-node))) 
(retract-assumption the-node) 
(add-nogood the-node status 

assumptions))))) 
;; Assume the negation 
(assuming '((:NOT ,fact)) *LTRE* 

(run-rules))) 
(known? fact))) 

Figure 10.2 An indirect proof mechanism for LTRE 

> (in-ltre (create-ltre "Indirect Proof Example")) 
<LIRE: Indirect Proof Example> 
> (assert! '(:OR p q) :disjunction) 
NIL 
> (assert! '(:IMPLIES p r) :p-case) 
NIL 
> (assert! '(:IMPLIES q r) :q-case) 
NIL 
> (known? 'r) 
NIL 
> (try-indirect-proof 'r) 

T 
> (why? 'r) 

R is TRUE via NOGOOD on 
#<NODE: R> 

Figure 10.3 The indirect proof mechanism in operation 
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10.4 Closed-world assumptions 

Problem solvers often must operate with incomplete information. Typ-
ically, AI programs are written under the presumption that all relevant 
information of some type is known. A scheduling algorithm might be 
written to assume that the resources it knows about are the only ones 
available. A troubleshooter might be written to assume that the compo-
nents it knows about in an artifact are the only ones it has. An intelligent 
tutoring system might be written to presume that it knows the important 
facts about a country's climate, so that if a student asks if a country has 
high rainfall and the system doesn't know or cannot infer that it does, 
it will tell the student that the rainfall isn't high. Such assumptions are 
called closed-world assumptions [1, 3, 6]. 

Often such closed-world assumptions are implicit in the structure of 
the program. Simple planners, for instance, often have wired into them 
the presumption that they know all the objects in the problem and that 
they are the only actor which can affect that world. More realistic prob-
lem solving requires making such closed-world assumptions explicit, so 
they may be reasoned about in the face of changing information and re-
quirements. A scheduler, for instance, might be able to request more 
resources if it cannot generate an acceptable course of action. A trou-
bleshooter might suspect that there is more to the malfunctioning sys-
tem than meets the eye if all known parts are exonerated. And a tutoring 
system may have to revise its maps and population charts to reflect po-
litical upheavals and demographic trends. 

From the standpoint of problem-solver design, there are several advan-
tages to making closed-world assumptions explicit. Explicit closed-world 
assumptions can participate in dependencies, thus indicating which con-
clusions rely on incomplete information. The problem solver can then 
figure out what needs to be rederived as new information is obtained or 
derived, or if old information turns out to be invalid. This section de-
scribes a simple but effective mechanism for closed-world assumptions. 
Section 10.4.1 describes the design and Section 10.4.2 describes its im-
plementation. 
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10.4.1 Defining set construals via closed-world assumptions 

Many important kinds of information can be expressed as sets.2  For ex-
ample, a scheduler might know the set of resources it has available, a 
troubleshooter might know the set of components which comprise the 
malfunctioning artifact and the set of failure modes for each type of com-
ponent, and a tutoring system might know the set of facts it has about 
a country's climate. A program's knowledge may be partial, of course. 
There might be resources the schedule doesn't know about, components 
the troubleshooter isn't aware of, and climatic data that is unavailable 
to the tutoring system. Furthermore, each of these sets can change over 
time: an intelligent tutoring system whose subject matter was Eastern Eu-
ropean political history, for instance, would have required almost daily 
updates to its knowledge base during the early 1990s. 

In each of the above cases, we can easily provide an intensional de-
scription of a set of knowledge relevant to the problem solver (e.g., "the 
set of components comprising the artifact"). To be useful, the problem 
solver's knowledge must concern the extension of these sets (e.g., the 
troubleshooter actually needs a list of the artifact's components, not just 
the knowledge that the set exists). Since the problem solver's knowledge 
can be incomplete and incorrect, we must introduce a way of describing 
the problem solver's current state of knowledge regarding the extension 
of a set. We define the construal of a set to be the hypothesis that the 
members of a set known to the problem solver are indeed the only mem-
bers of that set (i.e., that they comprise its extension). In other words, if 
the problem solver knew 

m1  E S 

m2  E S 

-13M3S.t.M3  E S, 

the hypothesis that S = {m1, m2} would be a construal of S. 

2. Readers with a particularly formal bent might think this tautological, because set 
theory provides an axiomatic basis for mathematics and hence in some sense every-
thing can be represented as sets. This is not what we mean. In this discussion, that 
perspective is about as valuable as using Turing machines for practical programming 
problems. 
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Construals must be updated when new information appears about 
what a set contains. Usually, but not always, this means abandoning the 
processing based on the old construal. Consider for example how one 
might build a hydrostatics troubleshooter. A simple diagnostic strategy 
is to create, for each component, a choice set consisting of its normal 
model and its failure models. Dependency-directed search over these 
choice sets, ruling out combinations whose predictions did not fit ob-
servations, would yield candidate explanations for a malfunction. Part 
of the knowledge base of a hydrostatics troubleshooter must then in-
clude failure models for components. Suppose that for valves it had two 
failure models, StuckOpen and StuckClosed. To create the choice sets 
necessary to execute the diagnostic algorithm just outlined, the system 
must first create a construal for the set of components in the plumb-
ing system (perhaps by assuming that the parts shown on its blueprint 
are the only ones) and then must create for each component a construal 
for its set of failure models. If a new part is discovered (i.e., a modifica-
tion made during construction, a common occurrence) or a new failure 
model is discovered (e.g., that valves can leak), the appropriate constru-
als must be retracted and the search reorganized. Furthermore, if the 
troubleshooter failed to find an explanation for the malfunction, it must 
be the case that either (a) the plumbing system has parts that were not 
taken into account or (b) the components of the system have models that 
were not taken into account. 

Construals rest on closed-world assumptions. That is, the justification 
for the conjecture S = {mi,m2} must rely on more than just the mem-
bership statements m l  ES and m2  E S. When construals are made an 
explicit statement, called the closed-world assumption for that set, is also 
made. This assumption must be retracted when the information about 
the extension of the set changes. We turn next to the design of the repre-
sentations and processes to carry this out. 

10.4.1.1 Gedanken example: The logic of drawing-room mysteries 

The design issues in creating reasoning mechanisms to support closed-
world assumptions are surprisingly subtle. Consequently, we use a more 
detailed hypothetical example to illustrate them. We call this a gedanken 
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example because, like gedanken experiments in physics, it would be in-
feasible to actually build such a problem solver given the field's current 
state of knowledge and resources. 

Suppose we are writing a problem solver that reads and understands 
drawing-room mystery novels. In such novels a murder is invariably the 
engine that drives the plot. The grisly details of an actual murder are 
suppressed, and the whole affair is treated as a puzzle. A premise of 
the genre is that the author will "play fair," and include enough clues 
in the story that the astute reader can solve the puzzle before the de-
tective reveals the solution. Obviously, building such a program is well 
beyond the state of the art in AI. It would involve huge advances in nat-
ural language understanding and common sense reasoning, for instance. 
But it provides an instructive example for thinking about closed-world 
assumptions and set construals. 

The classic formula for convicting a murderer is to show that he or 
she had motive, means, and opportunity, and that furthermore, no one 
else had all three. We can recast this structure in terms of sets and their 
construals as follows: 

■ Given a murder M, the set (whodunit M) is the list of suspects who 
had motive, means, and opportunity. 

■ The mystery is solved when I (whodunitM) I = 1. The murderer is the 
sole element of (whodunit M). 

■ To be in (whodunit M), a suspect must be in all three of the follow-
ing sets: 

(motivated M) The set of suspects motivated to perform the 
murder. 

(had-means M) The set of suspects who could have carried out 
the actions involved in the murder, if the circumstances were 
right. 

(had-chance M) The set of suspects who were in the right cir-
cumstances to carry out the murder. 

Our hypothetical problem solver's job, in reading a murder mystery, is 
to interpret the text as information about the constituents of these sets 
and thus solve the murder. When halfway through a particular mystery 
(say Murder32), our program might have the following construals: 



330 	 Chapter 10 

(Had - Chance Murder32) = {LadyDrinkwater} 

(Motivated Murder32) = {Butler LadyDrinkwater LordLayabout} 

(Had - Means Murder32) = {Butler LordLayabout} 

(Had - Chance Murder32) = {Butler LadyDrinkwater} 

Whatever their motives, we might have eliminated LadyDrinkwater 
from having the means to carry out the murder if the victim, DukeEarl, 
died of a bullet fired from a long distance and her preferred hunting 
technique involved shotguns. Similarly, we might have eliminated Lord-
Layabout from having the opportunity to commit the murder if he was 
seen at a fox hunt far away from HysteriaLodge, the site of the mur-
der, when it occurred. Although by a strict definition we have enough 
information to identify a murderer, let us assume the program is sophis-
ticated enough to know that in a well-written mystery these construals 
will change substantially as it reads further. 

10.4.1.2 Representing sets 

It is time to delve into the reasoning in more detail, so we need some 
conventions for describing sets in a computer-friendly form: 

( (Set) has-member (m)) is true exactly when (m) e (Set) . 

( (Set) members M) is true exactly when the problem solver believes 
(Set) = (M) . 

For instance, the following statements would be true given the construals 
above: 

((Had-Means Murder32) has-member Butler) 
((Had-Means Murder32) has-member LordLayabout) 
((Had-Means Murder32) members (Butler LordLayabout)) 

This particular implementation of the representation is chosen for two 
reasons. First, we assume there may be many sets, so indexing via mem-
bers and has-member would be inefficient. Second, this implementation 
simplifies fetching all the relevant information about a particular set. 

10.4.1.3 Closing sets 

Construals are created by closing a set. Conceptually, closing a set entails 



331 	 Putting an LTMS to Work 

1. Fetching what is known about what are members of the set. 

2. Creating a closed-world assumption (CWA for short) for that set and 
list of members. 

3. Justifying the construal based on the known members and the CWA. 

We examine each of these steps in turn. 
The first step, fetching what is known about what are members of the 

set, looks easy enough: Given a set (S), simply fetch all assertions of the 
form 

( (S) has-member ?el) 

and filter out those whose belief status is not : TRUE. Unfortunately this 
process is a little too simple. Suppose the assertions whose database 
class is (had-means Murder32) consists of 

Assertion 	 Belief 
((had-means Murder32) has-member Butler) 	 :TRUE 

((had-means Murder32) has-member LadyDrinkWater) 	:FALSE 

((had-means Murder32) has-member LordLayabout) 	:TRUE 

Our mechanical reader ruled out LadyDrinkWater because of an infer-
ence as to her sharpshooting skills. But characters in murder mysteries 
often lie. If the set (whodunit Murder32) becomes empty, the program 
must be able to use the TMS to find the assumptions to be reanalyzed 
with greater skepticism. Consequently, our justification for the construal 
of (had-means Murder32) should include the has-member statement 
involving LadyDrinkWater, since that is part of what we know about the 
extension of (had-means Murder32). 

More generally, the justification of a construal must include all has-
member statements known to be either true or false at the time the set 
is closed. The temporal distinction is important, because closing a set 
should (and in our implementation, will) make unknown has-member 
statements false. After all, anything not listed in the extension of a set 
must not be in that set, by definition. Ensuring that these justifications 
fully reflect the system's knowledge is very important. Failure to include 
information about negative has-member statements can result in entire 
subspaces being skipped in searches. In the example above, not includ-
ing our conjecture about LadyDrinkWater having the means to commit 
Murder32 might have led to exonerating her inappropriately. 
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The second step, creating the closed-world assumption, has several 
related requirements: 

■ Informative: The closed-world assumption must accurately summa-
rize the information that went into the construal. 

■ Defeasible: When information changes, the closed-world assumption 
must be retractable. 

■ Isolatable: Closed-world assumptions that are no longer relevant 
must not interfere with further processing. 

The form of the CWA statement must be unique for each distinct con-
strual. Otherwise it would be neither informative nor defeasible. For in-
stance, assertions of the form 

(CWA (S)) 

are useless, since this single assumption would not provide a means 
of selecting between alternate construals. The form of the CWA must 
include, in addition to the name of the set being closed, at least the list 
of items known to be members when it was closed. 

We noted above that negative has-members statements should be in-
cluded in the justifications for a construal. Should the CWA include a list 
of "known not to be members" as well? We have chosen not to include 
this information because it will always be available in the justifications 
that use the closed-world assumption. Including the negative informa-
tion would simplify gathering information, at the cost of creating distinct 
assertions for every combination of positive and negative information. 
Since construals are independent of the negative information (although 
their justifications are not!), leaving the negative information out of the 
CWA seems more appropriate. 

The format we use for CWA statements is 

((Set) CWA (KnownMembers)) 

where (KnownMembers) is a list of the known members of the set (Set) 
when it was closed. Given any LTRE database, we can construct the 
appropriate CWA statement by fetching the positive has-member state-
ments. 
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Defeasibility is easy to achieve by making the CWA statement be an 
enabled assumption. When the problem solver's beliefs change in such 
a way that the CWA becomes false, it can be retracted. 

Isolation is provided in two ways. First, we avoid installing any clauses 
that would allow the positive derivation of a closed-world assumption. 
Such derivations are always a mistake, given the non-monotonic nature 
of this reasoning. Consider the set (had-means Murder32). Suppose 
for instance we had constructed a clause which could support a closed-
world assumption being true based on the suspect list being Butler, 
LadyDrinkWater, and LordLayAbout. Suppose the author now stirs Du-
keEarl's American cousin, ChesterDrawers, into the plot. Any justifica-
tion that forced a positive derivation of a closed-world assumption based 
on the previous suspect list could still do so again, which could in turn 
cause an incomplete members statement to be believed. 

The second way isolation is provided is by limiting the temporal ex-
tent of closed-world assumptions. Prior to closing a set, we retract the 
previous closed-world assumption explicitly, rather than counting on the 
contradiction mechanism to do so automatically. Since the only clauses 
that mention previous closed-world assumptions include them as nega-
tive literals, they can only be derived as false. 

The final step, constructing the justification, is simplicity itself. We 
simply assert that the combination of known has-member statements, 
together with the closed-world assumption, implies a particular con-
strual of the set. Returning to our previous example, the justification 
would be 

(:IMPLIES 
(:AND ((had-means murder32) has-member Butler) 

(:NOT ((had-means murder32) has-member LadyDrinkWater)) 
((had-means murder32) has-member LordLayAbout) 
((had-means murder32) CWA (Butler LordLayAbout))) 

((had-means murder32) members (Butler LordLayAbout))) 

10.4.1.4 Orchestrating the use of closed-world assumptions 

Now that the representations for sets and the method for closing sets 
is understood, we can consider how construals should be updated when 
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the state of the database changes. To exploit the contradiction-handling 
mechanism outlined previously, we must: 

■ Ensure that relevant new information is detected as soon as possible. 

■ Install a contradiction handler for each set when it is closed. 

These goals are easy to achieve, given the infrastructure provided by 
LTRE. An LTRE rule can detect conflicting information about set constru-
als. There are two forms of conflict: (1) A has-member statement con-
flicts with every members that does not mention its element and (2) Any 
members statements representing non-identical construals conflict. The 
contradiction handling can be accomplished by pushing a handler that 
looks for a closed-world assumption about the set in the ground sup-
port underlying a contradiction. If such an assumption is found, it can 
be checked against the database for validity by fetching the has-member 
statements for that set. If invalid, the closed-world assumption can then 
be retracted, and processing proceeds accordingly. 

10.4.2 Implementing the set construal mechanism 

The set construal mechanism is implemented in two files. The first, 
setrule . lisp, contains an LTRE rule which enforces the semantics of 
has-member and members statements, as outlined above. Figure 10.4 il-
lustrates. The alphalessp testa prevents the installation of redundant 
construal uniqueness constraints. 

The bulk of the code is in the file cwa . lisp. The primary interface 
procedures are: 

set-members Given the name of a set, returns its current construal if 
any. The closed-world assumption underlying the construal is returned 
as a second value. 
close-set-if-needed Closes a set if it isn't already closed. 

close-set Closes a set. 
with-closed-set Takes two arguments, the name of a set and a list of 
forms. The forms are executed in a logical environment which includes 

3. alphalessp, a refugee from Maclisp, provides an ordering on any two arguments by 
translating them into strings and using string<. It is defined in ldata. lisp. 
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(rule ((:TRUE (set ?name) :VAR ?f1)) 
(rule ((:INTERN (?name members ?construall) :VAR ?f2)) 

(rule ((:INTERN (?name has-member ?new) :VAR ?f3 
:TEST (not (member ?new ?construall 

:TEST #'equal)))) 
(rassert! (:IMPLIES (:AND ?fl ?f2) (:NOT ?f3)) 

:NOT-IN-SET)) 
(rule ((:INTERN (?name MEMBERS ?construal2) :VAR ?f3 

:TEST (and (alphalessp ?construal1 ?construal2) 
(set-exclusive-or ?construall 

?construal2 
:TEST 'equal)))) 

(rassert! (:NOT (:AND ?fl ?f2 ?f3)) 
:CONSTRUAL-UNIQUENESS)))) 

Figure 10.4 Enforcing the semantics of set relationships 

the current environment plus the current construal of the set it was 
given. 

These procedures are shown in Figure 10.5. We focus only on the high-
lights of these programs, since they are fairly straightforward. 

The procedure close-set begins by gathering the current has-
member statements, using the procedure get-set-information, and 
uses that information to build the appropriate members and CWA as-
sertions. Next, any existing closed-world assumptions for that set are 
retracted by retract-cwas. Then the closed-world assumption is en-
abled (by the call to assume-cwa-if -needed) and the justification for 
the members statement is created in terms of the positive and negative 
has-member statements and the closed-world assumption (via justify-
cwa-if-needed). 

Notice that close-set and its utilities are written very defensively. 
For instance, retract-cwas iterates over every every CWA assertion for 
the given set, retracting every one that is an enabled assumption. But 
if our design has been followed rigorously, there can be at most one 
such assumption. It would therefore be more efficient to return once 
any assumption had been found. Similarly, in assume-cwa-if -needed, 
the false? test should only be needed if some closed-world assumption 
statement has been left in place. In our experience, bugs involving closed-
world assumptions can be extremely subtle, and defensive programming 
here is very important. 
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(defun set-members (set-name &optional (*LTRE* *LTRE*) 

&aux m-s) 
(dolist (mform (fetch '(,set-name MEMBERS ?elements))) 

(if (true? mform) (return (setq m-s mform)))) 

(cond (m-s (values (third m-s) (find-cwa-for-set m-s))) 
(t nil))) 

(defun close-set-if-needed (set-name 

&optional (*LTRE* *LTRE*)) 
(multiple-value-bind (construal cwa) 

(set-members set-name) 
(cond (cwa (values construal cwa nil)) 

(t (close-set set-name))))) 

(defun close-set (set-name &optional (*LTRE* *LTRE*)) 
(multiple-value-bind (known-members known-not) 
(get-set-information set-name) 

(let ((cwa-form (make-cwa-form set-name known-members)) 
(members-form 
'(,set-name MEMBERS ,known-members))) 

(retract-CWAs set-name) 
(assume-cwa-if-needed cwa-form) 
(justify-cwa-if-needed set-name known-members known-not 

cwa-form members-form) 

(values known-members cwa-form t)))) 

(defmacro With-Closed-Set (set-name &rest body) 

'(multiple-value-bind (members cwa) 
(close-set-if-needed ,set-name *LTRE*) 

(With-Contradiction-Handler (ltre-ltms *LTRE*) 
#'(lambda (clauses ltms) 

(set-cwa-handler clauses ltms ,set-name 
cwa ':LOST-CWA)) 

(let ((answer (catch cwa ,@ body))) 
(cond ((eq answer ':LOST-CWA) (values nil nil)) 

(t (values t members))))))) 

Figure 10.5 The set construal interface procedures 
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> (cwa-interactive-test) 

;;; Loading binary file Vu/bps/codentms/setrule.bbin" 

Parts are: (PUMP METER VALVE) 

>(assume! '((parts system) has-member sensor) :SAW-IT) 

<Datum 7> 

Parts are: (SENSOR PUMP METER VALVE) 

>(assume! '((parts system) has-member motor) :SAW-IT) 

<Datum 10> 

Parts are: (MOTOR SENSOR PUMP METER VALVE) 

>(assume! '((parts system) has-member heat-exchanger) :SAW-IT) 

<Datum 13> 

Parts are: (HEAT-EXCHANGER MOTOR SENSOR PUMP METER VALVE) 

>(retract! '((parts system) has-member motor) :SAW-IT) 

#<NODE: ((PARTS SYSTEM) HAS-MEMBER MOTOR)> 

Parts are: (HEAT-EXCHANGER SENSOR PUMP METER VALVE) 

>quit 

NIL 

Figure 10.6 The closed-world mechanism can track changing information 

The procedure justify-cwa-if -needed has one wrinkle necessitated 
by our choice of the direct translation strategy for turning logical con-
straints into clauses. The problem with turning constraints directly into 
clauses is that there is no record of constraints in the LTRE database. 
Consequently, unlike simple propositions, asserting the same constraint 
multiple times can lead to redundant information in the dependency net-
work. Our strategy to overcome this is to cache in the datum-plist of 
the assertion corresponding to the closed-world assumption a record of 
what justifications have been created already. This allows the system to 
avoid creating redundant clauses when reexploring a particular construal 
of a set. 

The end of cwa. lisp contains two debugging utilities. The first is 
interactive-cwa-test, which maintains a construal of (parts sys-
tem) through user-supplied additions and deletions. Figure 10.6 shows a 
sample interaction with that procedure. The second is cwa-shakedown, 
which automatically tests the set construal implementation for prob-
lems. 
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10.5 A dependency-directed search facility 

In Chapter 8 we saw how dependency-directed search could be used 
to greatly improve search efficiency in the N-queens puzzle. Here we 
apply the lessons learned in that program to create a general-purpose 
dependency-directed search facility. As with the rest of LTRE, we pre-
sume a stack-oriented model for global control. That is, our mechanism 
allows searches and other assumption-making activities to be nested in 
arbitrary combinations, but we will not be able to switch back and forth 
between two parallel searches, neither of which occurs in the context of 
the other. This restriction is a direct consequence of the stack discipline 
used for contradiction handlers and of the global nature of the LTMS de-
pendency network. 

Recall that in Chapter 8 we characterized dependency-directed search 
by the following abstract procedure: 

(defun DDS (choice-sets) 
(if (null choice-sets) (record-solution) 

(dolist (choice (first choice-sets)) 
(unless (nogood? choice) 
(while-assuming choice 
(if (consistent?) 

(DDS (rest choice-sets)) 
(record-nogood choice))))))) 

where 

record-solution did whatever was needed to store the solution just 
found, 

nogood? checked to see if a warning about the current choice was al-
ready in as a consequence of dependencies recorded earlier, 

while-assuming enabled the choice as an assumption, 

consistent? looked for contradictions, and 

record-nogood installed a warning about the current choice if it 
turned out to be contradictory. 

The abstract procedure dds can be used as a skeleton for an executable 
procedure, given the infrastructure provided by LTRE. The procedure 
dd-search, shown in Figure 10.7, is one such implementation. This pro- 
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(defun DD-Search (choice-sets end &aux answer marker choices) 

(when (null choice-sets) 

(debug-dds "-% 	DDS: Found solution.") 

(eval end) 
(return-from DD-Search nil)) 

(setq marker (list 'DDS (car choice-sets))) 
(setq choices (car choice-sets)) 

(dolist (choice choices) 
(debug-dds "-% 	DDS: Considering -A..." choice) 

(cond ((false? choice) ;skip if known loser 
(debug-dds "-% 	DDS: -A already known nogood." choice)) 

((true? choice) ;skip useless if known 

(debug-dds "-% 	DDS: -A true by implication." choice) 

(DD-Search (cdr choice-sets) end) 
(return nil)) 

(t (debug-dds "-% 	DDS: Assuming -A." choice) 
(with-Contradiction-Handler (ltre-ltms *ltre*) 

#'(lambda (clauses ltms &aux asns) 
(debug-dds 

DDS: Entering handler for -A with -A-A." 

choice clauses 
(mapcar #'violated-clause? clauses)) 

(dolist (cl clauses) 
(setq asns (assumptions-of-clause cl)) 
(debug-dds "-% 	DDS: Assumptions are: -A" 

(mapcar #'view-node asns)) 
(dolist (asn asns) 
(when (or (equal choice (view-node asn)) 

(and (listp choice) (eq (car choice) ':NOT) 
(equal (cadr choice) 

(view-node asn)))) 
(throw marker 
(cons :LOSERS (delete asn asns))))))) 

(setq answer (catch marker 
(Assuming (list choice) *ltre* 

(run-rules *ltre*) ;run tests incrementally 
(DD-Search (cdr choice-sets) end)))) 

(when (and (listp answer) 
(eq (car answer) ':LOSERS)) 

(debug-dds "-% 	DDS: -A inconsistent with -A." 
choice (mapcar #'view-node (cdr answer))) 

(assert! '(not (and ,choice 
,0 (mapcar #'view-node (cdr answer)))) 

':DD-SEARCH-NOGOOD))))))) 

Figure 10.7 Implementation of a dependency-directed search facility 
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(defun Test-DD-search (&optional (debugging? t)) 

(in-LTRE (create-ltre "DDS Test" :DEBUGGING debugging?)) 
(eval '(rule ((:TRUE A) (:TRUE C)) 

(rassert! (:NOT (:AND A C)) :DOMAIN-NOGOOD))) 
(eval '(rule ((:TRUE B) (:TRUE E)) 

(rassert! (:NOT (:AND B E)) :DOMAIN-NOGOOD))) 
(DD-Search '((A B) (C D) (E F)) 

'(show-DD-test-solution))) 

(defun show-DD-test-solution (&aux result) 
(dolist (var '(F E D C B A)) 
(when (true? var *ltre*) (push var result))) 

(format t "-% Consistent solution: ("A)." result)) 

> (test-dd-search nil) 

Consistent solution: ((A D E)). 
Consistent solution: ((A D F)). 
Consistent solution: ((B C F)). 
Consistent solution: ((B D F)). 

NIL 

Figure 10.8 A simple dependency-directed search example 

cedure is not much more complex than the abstract version. The sources 
of complexity are: 

■ The decomposition of while-assuming and consistent? is easy to 
understand, but does not accurately reflect the asynchronous nature 
of contradiction processing in the LTMS. These operations could be 
decomposed by turning off contradiction processing while making 
assumptions and then looking for contradictions afterwards as a dis-
tinct operation. We prefer to interleave them because it allows the 
system to backtrack as quickly as possible, which can increase effi-
ciency. 

■ There are two kinds of information gleaned from earlier parts of the 
search which are useful: Choices can be ruled out (i.e., be labeled 
:FALSE) or be forced as a consequence of earlier decisions (i.e., be la-
beled : TRUE). Exploiting the second is as important as the first, since 
in that case we know (because choice sets are mutually exclusive) that 
all remaining choices in the current choice set are irrelevant. 
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■ We have added reporting facilities, using a macro debug-dds, for 
printing extra information about the search on demand. 

Unlike the dependency-directed search procedure for N-queens, DD-
Search supports multilevel backup. Notice that the search through the 
choice sets is depth first, so that the contradiction handlers will ap-
pear on the LTMS's contradiction-handling stack with the most recent 
at the top of the stack. When a contradiction occurs, the search is un-
wound back to the last relevant assumption. Ergo dd-search imple-
ments chronological search within the set of relevant choices. 

Figure 10.8 shows DD-Search tested on a familiar example. More com-
plex examples of DD-Search in action are postponed until the next chap-
ter (and, of course, the exercises). 

10.6 Backpointers 

The try-indirect-proof procedure and example of Figure 10.2 is 
adapted from [4]. The stack-oriented contradiction handler and closed-
world assumption mechanism in this chapter are modern versions of 
similar mechanisms first used in the DEBACLE inference engine [2]. An 
interesting variation on this scheme is used in McAllester's ONTIC [5], 
which maintains a stack of binding assumptions that link logical vari-
ables to constants as part of a virtual copy mechanism. 

10.7 Exercises 

1. * Why won't the following rule work? 

(rule ((:TRUE (:NOT ?x))) (format t "-% -A is false.")) 

2. * * Add the logical connective : XOR (i.e., exclusive or) to LTRE. 

3. * * Sometimes one wonders why a particular fact is not yet believed. 
It would be very handy in such cases to be able to find out what 
other assumptions could be enabled to support a particular poten-
tial belief. Making such information available to programs would, for 
instance, allow LTMS clauses to be used for back-chaining and abduc-
tion. 
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a. * * Write a procedure NEEDS that, when given a fact and a truth 
value, returns a list of sets of facts which, if known, would result 
in the conclusion that the given fact had the desired truth value. 

b. * * Not all facts are created equal. Sometimes we can only sup-
ply certain kinds of facts. For example, we might ask a program 
to tell us what sets of observations we could make that would 
tell us whether or not a particular component was behaving nor-
mally in the context of a larger system. Extend NEEDS by adding 
an optional third argument, consisting of a list of patterns that 
comprise forms of facts that we are willing to assume. 

c. * * There can be many possible ways to support a desired belief. 
A common constraint in abduction is to pick a minimal cost ex-
planation. A simple model of costs for explanations is to assign a 
cost to each class of allowed assumption, and let the cost of the 
explanation be the sum of the costs of the assumptions made to 
support it. Write LABDUCE, which takes an unknown fact and an 
alist of allowable assumption forms and costs, and uses the LTMS 
database to construct a minimal-cost explanation. 

4. ** The try-indirect-proof procedure gives correct results, but 
they are not as informative as they might be (see Figure 10.3). Change 
try-indirect-proof to produce more informative answers, with-
out introducing any new TMS nodes or clauses. 

5. * A problem you may have noticed with the close-set procedure is 
that it violates the basic handler discipline, which calls for pushing 
a contradiction handler whenever an assumption (or set of related 
assumptions) is made. Invoking close-set indirectly via the With-
Closed-Set macro is an improvement, but a lingering CWA can still 
cause contradictions even after the body has terminated. Add one 
line to With-Closed-Set that will prevent this bug. 

6. * * * A more subtle problem with the closed-world assumption mech-
anism is that it fails to detect when "the dog doesn't bark"—that is, 
the current mechanism correctly detects when we have gained infor-
mation about the constituents of a set, but not when we have lost 
information about it. Suggest an additional discipline that an LTRE 
programmer could use to avoid this problem. 
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7. Used in moderation, puzzles can provide a good source of examples 
for understanding the search aspects of reasoning techniques. 

a. * Use DD-Search to write a procedure that solves the N-queens 
puzzle. 

b. * * Use DD-Search to write a cryptarithmetic puzzle solver. ' 

8. Examples of a more difficult class of puzzle are what some call "logic 
puzzles." These can be found on many newsstands, especially in 
airports and train stations. They fall somewhere between cryptarith-
metic problems and drawing-room murder mysteries in difficulty. 
Each puzzle contains a scenario, a set of clues, and a list of ques-
tions to be answered by reasoning using the clues. A scenario might 
involve three people who play in a jazz group, each having different 
phobias, with the goal being to find out who plays what instrument. 
The collection of clues might include statements like 

• The guitarist is afraid of heights. 

• The spouse of the drummer lives on the twenty-seventh floor. 

from which the reader should infer that the guitarist and drummer 
aren't married. Solving such puzzles involves extracting information 
from clues and reasoning by a process of elimination, much like 
our gedanken program for understanding drawing-room mysteries. 
Suppose we wanted to build a program that automatically solved 
such puzzles. 

a. * Explain why this problem is much simpler than understanding 
drawing-room murder mysteries. 

b. * Explain why this problem is far more difficult than cryptarith-
metic problems. 

c. * * Outline how the mechanisms of this chapter could be used 
in a puzzlec'solver for this class of problems. How would you 
decompose the problem, and what would the interface between 
the parts look like? 

d. * * Implement the parts of your design from the previous prob-
lem that rely only on techniques from this chapter. 

e. * * * * * Write a program that can take as input the natural-
language description of logic puzzles from magazines and solve 
them with reasonable success. 
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9. * * The LTMS only maintains a single derivation for any supported 
node. As we have seen, procedural methods for non-monotonic rea-
soning, such as the closed-world assumption mechanism for set con-
struals, do not guarantee that the LTMS derivations exploit the best 
available information. In fact, such guarantees don't hold for the 
purely monotonic case either, given the existence of alternate deriva-
tions. Suppose we set out to write a procedure RECLOSE which, given 
a contradiction, recomputes the construals of any sets that were 
closed by assumption in order to increase the amount of indepen-
dent information included in the set of support underlying the con-
tradiction. What problems are involved in writing such a procedure? 
How efficient can such a procedure be? How efficient can it be if it 
must guarantee that the amount of independent information used is 
maximized? 

10. In outlining our gedanken program for understanding murder mys-
teries, we ignored the problem of building and maintaining the over-
all list of suspects. An implicit assumption of most reasoning in 
detective novels is that all characters are suspects until cleared. Sup-
pose our system used the predicate Player to indicate that a person 
should be considered a character major enough to be thought of as a 
suspect. That is, 

(Player LadyDrinkwater) 

would be true while 

(Player TelevisionAnnouncer) 

would be false. 

a. * Write an LTRE rule that ensures that a character mentioned as 
a player will be included in the construal of WhoDunIt, ignoring 
anything else known about that character. 

b. * * Other mechanisms are needed to support this variety of de-
fault inference. To figure out what they are, analyze the kinds 
of transactions that can occur between LTRE and the rest of the 
story-understanding system. For instance, one important situa-
tion to consider is what must be done when a character is re-
moved from a construal due to information which may itself later 
be retracted (e.g., someone's testimony). Describe the kinds of 
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transactions that would be needed, and outline mechanisms suf-
ficient to handle them. 

c. * * Implement the mechanisms outlined in your previous answer, 
and test them on several examples. 

11. * * * Using your favorite technology (e.g., CLOS), turn the DD-Search 
program into a generator. The generator should support at least the 
following operations: 

reset Retracts all existing assumptions, makes ready to begin 
the search from the beginning. 

try-next Causes the generator to search for the next consistent 
solution, if any. 

winning? Returns non-nil only when the search is underway 
and the generator has settled on a consistent solution. 

choices Returns the current set of choices. 

12. Scheduling problems often involve complex constraints, and thus are 
good candidates for dependency-directed search. Typically the major 
problem is developing a language in which to express the constraints, 
with the search for a solution being relatively straightforward after 
that. 

a. * * * * Develop a set of relationships to express the scheduling 
constraints a typical professional might have when planning an 
average workday. These relationships should include demands 
for certain amounts of particular activities each day (or each 
week) as well as ways to specify appointments. An important 
class of relationships are preferences: One person may prefer 
their isolated work time to be in the morning with meetings ab-
sorbing the afternoon, while another might prefer the opposite. 

b. * * * Using this language, try generating a schedule using depen-
dency-directed search.4  

4. Warning: Typically one does not want to generate all consistent solutions to 
scheduling problems. Using a very simple scheduling program, Forbus once found out 
that there were 2,880 consistent ways to schedule appointments with eight graduate 
students in an afternoon, even with many constraints imposed by courses and other 
scheduled meetings. 



346 	 Chapter 10 

c. 	* * * * While generating truly optimal schedules can be extremely 
expensive, it is often possible to generate very good schedules 
with little work. Using preference information, develop a sched-
uler that starts with inconsistent schedules that maximize every-
one's preferences and performs local perturbations to achieve 
a consistent schedule. (Such an algorithm is analogous to simu-
lated annealing—how does the dependency system help?) 
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11 
	

Implementing Qualitative Process 
Theory 

This chapter shows how LTRE can be used to implement a subset of Qual-
itative Process (QP) theory 110]. The system we present here, TGIZMO1, 
uses common sense knowledge to figure out what might be causing 
changes observed in simple physical situations. TGIZMO is substantially 
more complex than the programs exhibited in previous chapters. We be-
lieve it is important to look at such larger-scale examples, because they 
better illustrate how the ideas we have presented can be combined to 
build powerful reasoning systems. 

We begin by describing the class of problems TGIZMO is designed to 
solve. Section 11.2 briefly summarizes QP theory, highlighting those 
aspects of its representations and reasoning needed to understand 
TGIZMO. Section 11.3 describes TGIZMO's design, analyzing the critical 
issues and trade-offs and providing a global perspective on the system. 
Section 11.4 goes through the implementation, pointing out how the var-
ious LTRE inference mechanisms interact in problem solving. TGIZMO's 
performance on some examples is illustrated in Section 11.5. 

11.1 A problem: Measurement interpretation 

There are many ways in which qualitative knowledge is used in reasoning 
about the physical world. One important way is interpreting measure- 

1. GIZMO was the first implementation of Qualitative Process theory. TGIZMO stands 
for "Tiny GIZMO." 
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	H 

Figure 11.1 A measurement interpretation example 

ments. Measurement interpretation is the task of translating readings 
from an artifact's gauges and instruments into a conceptual understand-
ing of what is occurring inside the artifact. This is a central task for 
operators of complex systems, such as power plants, since knowing what 
is happening inside an artifact is a prerequisite to controlling it or trou-
bleshooting it. 

Here we focus on an important subset of this problem. Real physi-
cal systems often have complicated dynamics, and measurement inter-
pretation typically involves integrating measurements taken over spans 
of time. There has been solid progress on this problem in qualitative 
physics [5, 13], but here we presume that all our measurements are taken 
in a very brief interval, during which the system's behavior can be char-
acterized by a single state of affairs. Furthermore, we restrict our input 
information to purely qualitative information about the parameters of 
the system. What does "purely qualitative" mean? Consider an example 
like the three-container situation in Figure 11.1. A purely qualitative mea-
surement would be the information that the water level in G is falling and 
the level in H is rising, but without any knowledge of how fast they are 
rising or falling. This restriction lets us ignore the difficulties involved in 
translating uncertain, numerical data to qualitative values.2  

Even with these restrictions, there is still some sophisticated reason-
ing to be performed. First, we must use knowledge of the kinds of things 
that can happen in the physical world to figure out the sorts of physi-
cal processes that might occur in this situation. We might rule out phase 
changes because we don't see any heat source to cause boiling, and we 
know that evaporation typically takes place very slowly, so that proba-
bly isn't causing visible changes in fluid levels. Liquid flows seem pos-
sible, because there are visible paths connecting the containers. So let 

2. See [51 for one good solution to this problem. 
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us presume that the only kind of physical process that can occur in this 
scenario is liquid flow. (Of course, if we receive new information about 
the scenario we may have to change these assumptions.) Once we have 
figured out what kinds of processes can occur, we have another com-
plicated task: figuring out what combination(s) of these processes could 
cause the given measurements. Suppose we detect that the level in G is 
falling while the level in H is rising. There are three possible interpreta-
tions for these measurements. It could be the case that the level in G is 
highest, and so water is flowing from G to both F and H. Or it could be 
the case that F has the most water in it, and there is a flow of water from 
F to G and from G to H, but the rate of flow between G and H is higher 
than the rate from F to G. Or, finally, the path between F and G might be 
blocked and the level in G is higher than the level in H, so there is only 
a flow from G to H and nothing is happening between F and G. Finally, 
if we need to distinguish between these interpretations, their observable 
consequences can be compared to make predictions. Here, measuring F 
would allow us to disambiguate the possibilities: F rising means the first 
possibility must hold, F falling implies the second, and F constant implies 
the third interpretation. 

So far our explanations have been informal, drawing on our shared, 
common sense knowledge of the physical world. Let us explore next how 
such knowledge can be made precise, and how the reasoning outlined 
above can be automated. 

11.2 A QP theory primer 

Qualitative Process theory (QP theory for short) provides a formalism for 
encoding knowledge about the physical world and some methods for rea-
soning with that knowledge. Here we give only a brief overview, sufficient 
to motivate and support a simple—and partial—implementation. We be-
gin by describing the ontological assumptions of the theory. Then we 
outline its qualitative mathematics in Section 11.2.2. The organization of 
domain theories is discussed in Section 11.2.3. Since representation with-
out reasoning might be interesting philosophy, but certainly not AI, the 
basic inferences sanctioned by QP theory are outlined in Section 11.2.4. 
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11.2.1 The ontological assumptions of QP theory 

Ontology is traditionally defined as the study of what kinds of things ex-
ist. Ontological commitments are crucial to representation, since knowl-
edge is typically organized around various kinds of "things." QP theory 
takes a very simple perspective: many kinds of things in the world are 
physical objects. Examples of objects include cups, pieces of water, boil-
ers, and so forth. Among the important properties of physical objects 
are continuous properties, like mass and temperature. Various kinds of 
relationships can hold between objects, such as contact and containment 
(e.g., a piece of water can be inside a cup). 

Another category of things in the world are physical processes. Exam-
ples of physical processes include liquid flow, boiling, and motion. Oc-
currences of physical processes are just as real, physically, as cups and 
pieces of water. In basic QP theory, physical processes are viewed as the 
sole agents of change in the continuous aspects of the physical world. 
That is, no change in physical properties can occur without the agency of 
a physical process directly or indirectly causing it, and something isn't 
a physical process unless it can potentially cause such changes. Thus a 
cup isn't a process (although it can participate in processes, such as heat 
flow). Similarly, the flow of water from a (stoppered) leak in the radia-
tor of my car is a physical process, even though it doesn't happen to be 
acting at this particular point in time. 

The ideas of objects and physical processes expressed so far should 
seem very close to common sense, and that is by design. Processes are 
in a sense "nature's agents," how things get done in the continuous part 
of the world. Notice that this is subtly different from the definition of 
process sometimes found in philosophical writings, where a process is 
simply a named pattern of activity in the physical world. In QP the-
ory, processes are mechanisms which cause such patterns of activity, 
rather than the patterns of activity themselves.,The reason for making 
this distinction is composability. Suppose we defined liquid flow as the 
occurrence of the amount of liquid in a source container shrinking and 
the amount of liquid in a destination container rising. This definition ig-
nores the possibility of interactions between processes. For instance, in 
the simple three-container measurement interpretation example, we saw 
that the effects of one process could be counterbalanced or even masked 
by those of another. Defining processes as the mechanisms of change, 
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rather than patterns of changes themselves, allow us to more cleanly rep-
resent such interactions. 

The assumption that physical processes are the only source of change 
in physical situations (called the sole mechanism assumption) provides 
several important advantages for representing and reasoning about 
physical domains. To explain a change, look for the process (or pro-
cesses) that are causing it. To troubleshoot, figure out what processes 
are occurring instead of those intended, and change conditions so that 
the desired ones occur. To learn, figure out how the changes observed in 
the domain can be encoded as processes that are applicable across all of 
the relevant phenomena, QP theory does not specify the exact contents 
of any domain theory—one can for instance encode Newtonian, Aris-
totelian, or impetus theories of motion in it—but sets strict limits on the 
form of such theories. These constraints on form simplify the discovery 
and use of the appropriate contents. Thus a central part of a domain the-
ory becomes its process vocabulary, the set of mechanisms which can be 
composed to generate any pattern of change that can occur. 

A central claim of QP theory is that this view of physical processes is 
a good portrayal of a substantial part of human common-sense knowl-
edge. This includes both the person on the street and those with profes-
sional knowledge, such as scientists and engineers. In many physical do-
mains, such as hydraulics, thermodynamics, and chemistry, this notion 
of physical process is directly useful in encoding and organizing domain 
theories. There are of course other ways of looking at the world, like 
component-based ontologies [6], developed for important special cases 
like electronics, but these are relatively recent in human culture. The no-
tion of physical process seems to be part of the conceptual stock-in-trade 
of every engineer, scientist, and person on the street. 

11.2.2 The mathematics of QP theory 

The qualitative aspect of QP theory comes from two things. The first is 
the explicit symbolic representation of entities such as physical objects. 
The second isi the use of qualitative mathematics to represent partial,  
knowledge about continuous properties and mathematical relationships:  j 
The necessity of qualitative mathematics should be obvious in the case 
of common-sense reasoning: people who have never in their life seen, 
much less solved, an equation manage to get around in the physical 
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world perfectly well. Consequently, the traditional formalisms of physics 
and mathematics cannot be necessary prerequisites to physical reason-
ing. It may be more surprising to find that qualitative knowledge is also 
indispensable to many kinds of expert, professional reasoning about the 
physical world. Conceptual design, for instance, consists of the stages in 
engineering design occurring before precise details have been specified, 
and hence before techniques like numerical simulation can be applied. 
Qualitative knowledge is used in such tasks to formulate what the impor-
tant questions are, so that they may be resolved with more specific infor-
mation as needed. In monitoring, control, and diagnosis, precise mathe-
matical models of failure modes and fault conditions often do not exist 
for systems of interest, requiring human operators and troubleshooters 
to operate with less detailed models. 

Continuous properties, such as temperature and pressure, are modeled 
by quantities. A quantity consists of an amount and a derivative, each of 
which are functions whose range is the real numbers (s). The semantics 
of quantities are simply those of continuous functions of time on the 
real numbers, whererthe amount of a quantity denotes its value at any 
specific time, and the derivative of a quantity denotes the value of its 
temporal derivative at that time. The function A maps a quantity to its 
amount, and D maps a quantity to its derivative. Thus it is legitimate to 
say: 

A [temperature (water)] > ZERO 

D [temperature (water)] < ZERO 

where ZERO is simply the real number 0. The sign and magnitude of 
a number, with their usual mathematical interpretation, are denoted 
by the functions s and m respectively. The sign of the derivative, de-
noted Ds, is particularly important because it represents the direction 
in which something is changing, and that is often about as much as 
one can observe (or can predict) about a situation. (In the case above, 
Ds [temperature (water)] = -1, that is, the water is cooling off.) It is 
also important because changes in numerical values can lead to changes 
in what physical processes are occurring: presumably if the water gets 
cold enough, it freezes. 

The example of freezing water highlights a crucial problem in quali-
tative reasoning: How should we represent numerical values? If we have 
some water in a cup in front of us, we may not know its exact tempera- 
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ture. But we do know that if we make it cold enough it will freeze, and 
that if we make it hot enough it will boil. These phenomena are impor-
tant enough that the temperatures at which they occur are given names 
in physics (i.e., the freezing point and boiling point). Knowing the re-
lationship between the temperature of a piece of water and these two 
points suffices to determine that piece's phase. This example suggests 
that ordinal relationships—that is, information about whether one nu-
merical value is greater than, less than, or equal to another—provide a 
useful foundation for qualitative reasoning. 

Ordinal relationships are surprisingly powerful. For instance, flows oc-
cur when pressures (or their equivalents) are unequal, and the comings 
and goings of pieces of stuff can be tracked by noting how much of them 
there is. Comparisons form the minimum amount of information needed 
to track changes: knowing that the temperature of a piece of water is 
currently below its boiling temperature but that its temperature is rising 
suffices to conclude that, unless things change, the water will eventually 
boi1.3  Certainly knowing that the temperature of water is 35 degrees C 
and rising by 4 degrees per second would allow us to make the same con-
clusion. With that much information we might even be able to estimate 
how long it would take for the water to start boiling. But often such in-
formation isn't available. In fact, figuring out that we might want to make 
such measurements requires knowing that the water might boil! 

Qualitatively, we know that if the temperature of the heat source is 
less than the boiling temperature, then the heat flow will stop before 
boiling can start. If we don't know the relative temperatures involved, 
the qualitative reasoning produces ambiguous results. This is not a bad 
thing: ambiguity of the right kind is crucial in formulating interesting 
questions about a system. In this example, the ambiguous result informs 
us that if we really need to know what will happen (say, we are cooking) 
then we have to make the appropriate measurements. This is an example 
of using qualitative physics to propose possible outcomes and using 

3. This is an example of the relevance principle of qualitative physics: A representation 
must be capable of making relevant distinctions. Simple representations of value like 
TEPID, WARM, HOT, VERY-HOT, etc. tend not to have this property. Does water boil when it 
is hot, very hot, or very very hot? Only if we pin these labels down by defining them 
in terms of a physically meaningful comparison (e.g., the boiling point) can we make 
more interesting predictions. 
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other kinds of information to decide between them. (It also illustrates 
another important design criterion of qualitative representations: they 
must allow graceful integration of more detailed information.) 

In QP theory the value of a number is defined by its quantity space, a 
collection of ordinal information relating it to other significant parame-
ters. For instance, the quantity space for the temperature of a piece of 
water typically includes its relationship to its freezing point and boil-
ing point. The other parameters to which the number is compared are 
called its limit points, since they delimit either the occurrence of physi-
cal properties or the existence of an object (more on that momentarily). 
Limit points need not be constant: for example, the boiling point of a 
body of water varies according to the substances dissolved in it and its 
pressure. The set of limit points for a number is determined automati-
cally, by analyzing the physical processes the quantity is involved with 
and the other comparisons needed by the basic inferences (more on this 
in Section 11.2.4). As illustrated with the cooking example above, quan-
tity spaces need not impose a total ordering on the numbers they relate: 
the ordering can be partial, to accurately reflect states of partial knowl-
edge. 

Sometimes it is convenient to give names to specific values of limit 
points, for example to track how a limit point changes over time. Such 
named values are called landmark values [22]. Limit points and land-
marks are not the same: landmarks can be thought of as the points on 
a graph denoting the progress of a quantity through time, while limit 
points mark important boundary conditions on such progress. For any 
particular quantity there are only a finite number of limit points, but a 
potentially infinite number of landmark values. Consider for example a 
spring-block oscillator that is subject to friction. To figure out the force 
applied by the spring to the block, one limit point (the rest length of the 
spring) suffices. On the other hand, if we are analyzing the rate at which 
the oscillator is slowing down, we may need to describe the maximum 
position of the block on each particular oscillation with a distinct land-
mark value. Here we will be concerned only with limit points (but see 
Exercise 12). 

From the standpoint of qualitative mathematics, an object can be 
thought of as a bundle of quantities. This perspective alone is insuffi-
cient to capture many of our important intuitions about the physical 
world. An important fact about physical objects is that they have finite 
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temporal extent. That is, they can be created and destroyed. Coffee cups 
get filled with cappuccino, leading to a distinct physical entity whose 
existence is ended via consumption. Lakes can arise from blockages in 
rivers, and dry up when rainfall diminishes for several years. It does not 
make sense to talk about the temperature and pressure of a lake when all 
that is before you is a dry hole in the ground. ConsequentlyLQP theory 
makes the existence of physical properties contingent on the existence 
of the physical object itself, and ordinal relationships involving a nonex-
istent individual are not definedz  The expression of this in logical terms 
is described in Section 11.4.8. 

In physics, equations provide the formalism for precisely describ-
ing detailed relationships between continuous parameters. Equations in 
physics are chosen to be as precise as possible, given what is known and 
the constraints on the modeling task. Very precise measurements and 
calculations are the norm, with accuracy of fit and ability to generate 
precise predictions as the principal evaluation criteria. After all, human 
scientists and engineers already have their common sense to generate 
rough predictions—the goal of their formalism is to go beyond their in-
tuitions. On the other hand, the goal of qualitative physics is to formally 
capture their intuitions. That is, qualitative physics explores the repre-
sentations required to operate under a different set of assumptions: Very 
little information, with simplicity of computation being more important 
than detailed answers. Thus the mathematics used in qualitative physics 
tends to be simpler. In QP theory, qualitative proportionalities provide 
the major building block for equations. "C2.1  is qualitatively proportional 
to Q2" means that there is some function which (1) determines Q1, (2) 
depends at least on Q2, and (3) is increasing• monotonic in its depen-
dence on Q2. (The idea of "inversely qualitatively proportional" is defined 
similarly, with the implicit function being decreasing monotonic.) For ex-
ample, we might say: 

(qprop (acceleration Block) (applied-force Block)) 
(qprop- (acceleration Block) (mass Block)) 

which is a qualitative rendering of Newton's second law, F = m x a. What 
do these statements tell us? Suppose the mass is constant. Then if the 
applied force is increased, the acceleration will also increase, and if the 
applied force is decreased, then the acceleration will also decreasel In 
general, a qualitative proportionality tells us how changes in one parame- 
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ter can cause changes in another, all else being equal. What we lose is the 
ability to figure out what happens if both the mass and the applied force 
are changing at once (as might happen if we are pushing against a car 
rolling downhill which is leaking brake fluid). The qualitative proportion-
alities above are just as valid for F = m5  x a3  as for the correct form of 
Newton's second law. (Notice they would not be correct for F = ms x a2, 
since decreasing negative accelerations would lead to increased F, thus 
violating the monotonic relationship.) 

QP theory allows more information to be specified about functions 
implied by qualitative proportionalities; for instance, we can pin down 
values at a finite number of points by correspondences, i.e., 

(Correspondence ((acceleration Block) ZERO) 
((applied-force Block) ZERO)) 

which says that when the applied force is zero the acceleration is zero as 
well. (An important consequence of this statement and the sign of the 
qualitative proportionality between the two quantities is that the sign 
of the acceleration will always be the same as the sign of the applied 
force.) One can also name the function determining a quantity, which 
has the effect of allowing inequality information to be propagated across 
distinct individuals. However, for our purposes we will only use simple 
qualitative proportionalities (but see Exercise 16). 

Qualitative proportionalities suffice to express ordinary equations, but 
to represent dynamics requires expressing differential equations, where 
constraints are placed on the derivative(s) of a quantity rather than on 
the quantity itself. In QP theory the notion of direct influence provides 
this representation. The relations I+ and I- are defined as follows: 

i 
ddt

Q  
I + (Qi Q2) •#. 	- 

ddti 
	

• • + Q2  + • • • 
Q 

I - (Qi Q2) .4t• 	- 	Q2  + * 

To express the direct effects of a heat flow hf 1 between a stove and a 
kettle, for instance, one might say 

(I+ (heat Kettle) (flow-rate hfl)) 
(I- (heat stove) (flow-rate hfl)) 
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There are two things to notice here. First, as with qualitative propor-
tionalities, a single direct influence statement does not by itself deter-
mine how the parameter it constrains will change. Its effect on the pa-
rameter must be combined with all the other influences on that parame-
ter to ascertain their net effect. For instance, if the stove is on there may 
also be some process such as combustion which is replenishing its inter-
nal energy (also known informally as heat). The operation of combining 
these effects is called influence resolution, and is one of the basic infer-
ences sanctioned by QP theory. It will be described in detail shortly. From 
the standpoint of representation design, the importance of allowing par-
tial information is that it supports cornposability, a desirable feature in 
any modeling language. Second, notice that we have specified more in-
formation about the relationship imposed by direct influences than by 
qualitative proportionalities. Direct influences combine via addition. If 
we know the relative magnitudes of the various effects (which, again, 
demonstrates the utility of the quantity space representation!) then we 
can often figure out how the influenced parameter will actually change. 
But given a set of qualitative proportionalities, we cannot tell what the 
result of conflicting inputs will be unless we know more about the un-
derlying function they partially specify.4  

The combination of qualitative proportionalities and direct influences 
as described so far gives us a language that is sufficiently powerful to ex-
press, albeit with less precision, any system of ordinary differential equa-
tions whose independent parameter is times A qualitative equation is an 
abstraction of an entire family of quantitative equations. But there is a 
second, equally important, role these primitives play: they also express 
the causality which holds between the parameters. Thus the expression 
of Newton's second law: 

(qprop (acceleration Block) (applied-force Block)) 
(qprop- (acceleration Block) (mass Block)) 

4. This was a deliberate design choice in QP theory, trading off the need to handle 
common cases easily against the need to represent nonlinear equations. 
5. In mathematics, ordinary differential equations are those where the only derivative 
terms are with respect to a single parameter. Partial differential equations are those 
which include derivatives taken with respect to several parameters. 
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Figure 11.2 An example of the causal account of QP theory. Arrows in-
dicate causal relationships. Qualitative proportionalities represent algebraic 
relationships, while direct influences represent integral connections. 

tells us that a change in applied force causes a change in acceleration, 
rather than the other way around. Similarly, the direct influences 

(I+ (heat Kettle) (flow-rate hfl)) 

(I-  (heat stove) (flow-rate hfl)) 

tell us that the flow rate of the heat flow causes a change in the internal 
energies of the objects it happens between, rather than the other way 
around. 

Here is the causal account provided by QP models. Physical processes 
are the root of all changes, acting to affect some parameters directly via 
their direct influences. These direct effects are propagated via qualitative 
proportionalities, thus providing for indirect effects (for this reason qual-
itative proportionalities are often called indirect influences. Figure 11.2 
illustrates. 

To keep its causal accounts coherent, QP theory places certain restric-
tions on models. First, direct influences can only be imposed by physi-
cal processes. This helps enforce the sole mechanism assumption intro-
duced earlier. Second, consider the graph whose nodes are the quantities 
that exist during some interval and whose directed edges are the qualita- 
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Live proportionalities that hold during that interval. QP theory stipulates 
that this graph must be free of cycles. For example, there can be no in-
terval of time in which 

(qprop (heat foo) (flow-rate hfl)) 
(qprop (temperature foo) (heat foo)) 

(qprop-  (flow-rate hfl) (temperature foo)) 

all hold. There are two interrelated reasons why such combinations are 
disallowed. First, their solutions would give rise to changes without pro-
cesses, thus violating the sole mechanism assumption. Second, comput-
ing a causal story for such sets of equations can be tricky. Mathemati-
cally, they correspond to simultaneous equations, and additional infor-
mation is required to impose a causal ordering (see [6, 21]). Unless this 
additional information is chosen correctly, unintuitive causal arguments 
can be generated (i.e., "a rise in internal energy causes mass to increase, 
since temperature remains constant" [10]). Finally, QP theory stipulates 
that no quantity can be both directly influenced and indirectly influenced 
at the same time. This restriction, along with the other two, enforces the 
simple causal story described above. 

The restrictions imposed by QP theory's causal interpretation are not 
without cost: they limit the expressive power of QP theory's qualitative 
mathematics. Instead of representing any system of ordinary differential 
equations whose independent parameter is time, we can only express 
such systems when they are free of simultaneities. This restriction is less 
onerous than it might at first seem. It is analogous to the state space 
formulation widely used in engineering modeling, where systems are 
decomposed into a set of state variables and dependent variables. In QP 
theory, directly influenced parameters play the role of state variables and 
indirectly influenced parameters play the role of dependent variables. 
This analogy also points out how QP theory deals with feedback. In a 
state space model, any loops in the graph of equations must have some 
delay element, usually expressed as a derivative or integration operator. 
Analogously, in a QP model any loop of influences must include at least 
one direct influence (by stipulations above), and that satisfies the state 
space definition of delay element. In essence, the direct influences "break 
the loop," using the physical processes to ground the causal account of 
the model. 
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The implication of QP theory's causal account for representing physical 
phenomena is that we must identify some physical process to be respon-
sible for each direct influence. While perhaps annoying at first to some-
one used to jotting down third-order differential equations, this design 
choice makes the modeler be explicit in choices of ontology, and thus 
helps enforce the tight integration of mathematics with formal physical 
models. 

Systems of influences are a useful representation, but they are only 
part of the story: Much of the leverage of qualitative physics comes from 
providing representations that allow simplifying assumptions and other 
modeling ideas to be formalized. We examine this aspect next. 

11.2.3 Organizing domain theories 

In any problem, there are some aspects that remain fixed. For instance, 
if we are thinking about what happens if we put a kettle of water onto 
a lit stove, we may have doubts about the lifespan of the water (and the 
kettle if we don't move quickly at some point), but we treat the stove 
as remaining a stove, even though it will someday be rust. Predicates 
and relations that remain fixed throughout an analysis can, for present 
purposes, be considered as input, and not treated further.6  But some 
properties, like the existence or nonexistence of water or steam in the 
kettle, are of central concern!To define time-varying relationships, QP 
theory uses the notion of individual view, or just 

A view is defined by four fields. The individuals field specifies what 
kinds of things the view holds betweeni The semantics of the individuals 
field is that of universal instantiation. That is, for each set of terms that 
satisfy the constraints of the individuals field, there is a corresponding 
instance of that view. (The view is active (i.e., the relationship it expresses 
is true of its arguments) exactly when the statements in the preconditions 
and quantity conditions fields associated with the view hold:  These two 
fields thus specify (along with the constraints in the individuals field) the 

6. Of course, any good physical modeling language will include means of defining such 
predicates in terms of others, in addition to the constructs of QP theory, but QP theory 
per se makes no stipulation as to how one chooses to do this. 
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(defview (Contained-Stuff (C-S ?sub ?st ?can)) 
:INDIVIDUALS ((?can (container ?can) 

(substance ?sub) 
(phase ?st))) 

:QUANTITY-CONDITIONS ((> (A ((amount-of ?sub ?st) ?can)) 
:RELATIONS ((only-during (exists (C-S ?sub ?st ?can))) 

(contained-stuff (C-S ?sub ?st ?can)) 
(quantity (TBoil (C-S ?sub ?st ?can))) 
(> (A (TBoil (C-S ?sub ?st ?can))) ZERO))) 

Figure 11.3 A definition of contained stuff 

ZERO)) 

necessary and sufficient conditions for the relationship to hold. Quantity 
conditions are either descriptions of ordinal relationships or whether or 
not other views (and/or processes) are active, while preconditions con-
tain every other kind of statement iThe fourth (and final) field of a view 
is its relations, which expresses the direct consequences of the view be-
ing active The contents of the relations field can be any statement of the 
modeling language, such as qualitative proportionalities or inequalities. 
Even non-QP consequences are allowed, such as descriptions of appear-
ances. The only kind of statement not allowed are direct influences: those 
are reserved for physical processes. 

An example will make the idea of a view clearer. Figure 11.3 defines 
the basic notion of contained stuff. A contained stuff is whatever pieces 
of material happen to exist in a particular container consisting of a par-
ticular substance in a particular phase. Intuitively, this corresponds to 
the notion of "the water in the kettle" being a distinct, identifiable ob-
ject, even though we can add water to it or remove water from it. The 
Contained-Stuff view, according the individuals field of this definition, 
exists for each combination of container, substance, and phase. Whether 
or not this view is active is a separate issue, determined by its precon-
ditions and quantity conditions. Since there are no preconditions, the 
quantity condition alone defines the necessary and sufficient condition 
for this view to be active: that is, that there be some amount of stuff of 
the given substance in the given phase inside the container in question. 

When the Contained-Stuff view is active, we believe that a contained 
stuff (denoted by the function C-S) exists, as indicated by the predicate 
Exists. The Only-During signals that this consequence is biconditional: 
that is, when the view is false, this consequence must also be false. Nor- 
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mally, statements in the relations field have the semantics of implication, 
i.e., are "unidirectional." Finally, the contained stuff has a continuous 
property, TBoil, which is always positive. 

The definition of view differentiates between three aspects of a re-
lationship: when it should be thought of as being applicable (the in-
dividuals field), when it actually holds (the preconditions and quan-
tity conditions fields), and what are its direct consequences (the rela-
tions field). Preconditions and quantity conditions are differentiated be-
cause changes in quantity conditions are always predictable within the 
QP aspect of a model, while no such guarantee is made for preconditions. 
Logically, such descriptions are equivalent to first-order predicate calcu-
lus axioms (see [10] for a translation). The extra conceptual distinctions, 
as reflected by the additional syntax, are motivated by two purposes. 
First, a theory about how to represent a class of domains must, to have 
power, restrict the class of things that can be said. A theory which says, 
"The right way to represent the physical world is to write predicate cal-
culus axioms" isn't much of a theory. It does not help us distinguish, 
of all the ways we might write axioms, which of them will correspond 
to satisfactory theories of the physical world. The second purpose is 
computational. The conceptual distinctions imposed by the theory have 
computational implications (e.g., distinguishing a subset of conditions as 
sufficient grounds for instantiation). Encoding these distinctions explic-
itly in our representation greatly facilitates developing good reasoning 
algorithms. 

Physical processes are the keystone of QP theory. Fortunately, in terms 
of syntax, they are (as hinted above) very close to views. The syntax for 
physical processes is exactly that of individual views, with one addition. 
The influences field contains the set of direct influence statements 
that represent the direct effects of of a kind of process on quanti-
ties. To be a process, something must have at least one direct influ-
ence. And, as stated earlier, nothing but processes can have direct 
influences. Figure 11.4 shows an example, a simple definition of heat 
flow. 

Let us go over the heat-flow definition. Heat flow, according to this 
definition, can potentially occur between any two objects (?src and 
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(defprocess (heat-flow ?src ?path ?dst) 
:INDIVIDUALS ((?src (Quantity (heat ?src))) 

(?path (Heat-Connection ?path ?src ?dst)) 
(?dst (Quantity (heat ?dst)))) 

:PRECONDITIONS ((Heat-Aligned ?path)) 
:QUANTITY-CONDITIONS ((> (A (temperature ?src)) 

(A (temperature ?dst)))) 
:RELATIONS ((Quantity (flow-rate ?self)) 

(> (A (flow-rate ?self)) zero) 
(Qprop (flow-rate ?self) (temperature ?src)) 

(Qprop-  (flow-rate ?self) (temperature ?dst))) 
:INFLUENCES ((I- (heat ?src) (flow-rate ?self)) 

(I+ (heat ?dst) (flow-rate ?self)))) 

Figure 11.4 A physical process 

?dst) which have the quantity heat and are connected via a heat path 
(?path). The precondition for heat flow represents the requirement that 
the path must be able to conduct heat.' The quantity condition expresses 
the fact that a temperature difference must exist to drive the process. 
When a heat flow is occurring, one can speak of it having a flow rate 
(i.e., the introduction of the quantity flow-rate) which is positive and 
depends on both of the temperatures. The increasing monotonic depen-
dence on the temperature of the source and the decreasing monotonic 
dependence on the temperature of the destination is a partial encoding 
of the fact that the flow rate depends on the difference in temperatures 
between the source and destination.8  

Recall that in our ontology physical processes are things, just as real, 
in a physical sense, as cups and cars. More exactly, each instantiation 

7. In engineering, especially marine engineering, when the physical connectivity of a 
fluid path is such that flow could occur, that path is said to be aligned. The predicate 
Heat-Aligned is an extension of this idea for modeling changes in connectivity. 
8. In full QP implementations one can simply state 

(Q= (flow-rate ?self) (- (temperature ?src) (temperature ?dst))) 
This statement has the effect of the qualitative proportionalities shown here, but 
also establishes a correspondence between the parameters, which provides a com-
plete qualitative description of subtraction. The qualitative implications of sums, prod-
ucts, and quotients can be defined similarly, as readers who complete Exercise 16 will 
discover. 
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of a process definition gives rise to an individual, whose existence re-
quires the existence of the objects mentioned in its individuals specifica-
tion. The encoding of this constraint in propositional logic is described 
later. 

The ability to explicitly state when a description is applicable gives us 
considerable leverage in representing and reasoning about modeling as-
sumptions. Suppose, for instance, that we include extra statements in the 
individuals specification that describe the modeling assumptions un-
der which that class of view or process makes sense. For instance, we 
might want a specialization of heat flow that explicitly models the ther-
mal conductance of the path. We might go back and change the definition 
of heat flow introduced earlier, but that has the disadvantage of forc-
ing us to think about the thermal conductance of the path even when 
we don't need or want to. Instead, we can introduce a new definition to 
the domain theory which adds information about this new aspect of heat 
flow: 

(defview (Heat-Flow-Thermal-Conductance ?hf) 
:INDIVIDUALS ((?hf (process-instance (heat-flow ?src ?path ?dst)) 

(Consider (Thermal-Conductance ?path)))) 
:QUANTITY-CONDITIONS ((Active ?hf)) 
:RELATIONS ((Qprop+ (flow-rate ?hf) (thermal-conductance ?path)))) 

This description exploits the compositionality in our qualitative math-
ematics to add new constraints to functional relationships. This is one 
example of a general modeling methodology called compositional mod-
eling. The interested reader should see [7] for details, and Exercise 18 
below. 

11.2.4 Basic inferences in QP theory 

Now we have the basics of QP theory's representations in hand. This 
section outlines in functional terms how such descriptions are put to 
work in the performance of various tasks. The basic inferences outlined 
here directly provide many useful kinds of conclusions. More complex 
tasks can be addressed by weaving these inferences together into larger 
structures. 
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These basic inferences build on each other, so we describe them in a 
typical sequence that might be used for analysis and simulation. 

11.2.4.1 Finding view and process instances 

Building a model is a central task in reasoning about the physical world. 
Given some situation to analyze, we must figure out what constructs 
from our theory of that domain are applicable to our current situation. In 
QP theory, the simplest version of this task is figuring out, for a fixed set 
of modeling assumptions, what views and processes from a domain the-
ory can be instantiated in the current situation and instantiating them. 
This is the first basic inference of QP theory. 

For simple situations and domain theories, instantiating every poten-
tially applicable description suffices for model building. More realistic 
situations require additional reasoning, but some form of this operation 
is still a necessary step in these more complex inferential processes. For 
instance, the next level of complexity is formulating a set of modeling 
assumptions given the situation, task, and domain theory. Even more 
complex is debugging and extending the domain theory itself. There have 
been some progress on model composition and some exploratory forays 
into acquisition and learning of domain theories, but currently these are 
hot areas of research, and so we leave out further discussion of them 
here. 

11.2.4.2 Determining activity 

The initial step of model building can be thought of as establishing the 
groundwork for a task. Inferring from the given information what must 
be happening in the situation is the next step. That is, given information 
about what processes and views exist, figure out which of their precondi-
tions and quantity copditions hold, and thus establish what collection of 
processes are active.) The collection of physical processes active at any 
given time is the situation's process structur Intuitively, the process 
structure is the answer to the question "what's happening right now?" 
in the system. 
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The basic version of this operation is inferring as much as possible 
about the process structure from a given set of facts. More complex ver-
sions of this operation blend into measurement interpretation and diag-
nosis, depending on one's perspective.9  The simple version of measure-
ment interpretation we implement below is an example of one solution 
to this more general task. 

11.2.4.3 Influence resolution 

Given a process structure, we know the direct influences on the situa-
tion. These direct effects must be combined to determine their actual im-
pact. For instance, if we have water pouring into an operating boiler, the 
amount of the water in the boiler will be either increasing, decreasing, or 
constant depending on the relationship between the rate at which water 
is being pumped in and the rate at which steam is being produced from 
the water. The indirect effects of these changes must then be propagated 
through the indirect influences (i.e., the qualitative proportionalities) to 
ascertain how the other, dependent parameters will behave. For instance, 
the change in the amount of water in the boiler will lead to a correspond-
ing change in its level. Thus, given the process structure, we have enough 
information to figure out (at least up to some ambiguity) the signs of 
derivatives for all the continuous parameters in the situation. Further-
more, the set of influences in a situation provides a crucial part of its 
causal structure. In fact, the influences provide a causal ordering (in the 
sense of 1211) for the parameters in the situation. The directly influenced 
parameters "ground" the changes in the action of physical processes, 
thus breaking feedback loops and allowing a consistent account of causal 
relationships between the parameters. Creating the causal account link-
ing the parameters and computing their Ds's is the operation of influence 
resolution. 

Influence resolution can be divided into three cases, according to the 
kind of influence a quantity Qi  is subject to. First, Qi may not have any 

9. Collins [4] has observed that although we like to call machines broken, it is really 
our model of them which has become inaccurate. After all, the machine is still accu-
rately following the laws of nature. 
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influences on it at all. In that case, by the sole mechanism assumption, 
Ds [ Qi  ] = 0. Second, Qi might be directly influenced. Here we must 
divide the effects on it according to sign. If the signs of all the direct 
influences on Qi are the same, then that will be the value of Ds [ Qi ]. 
If there are opposing direct influences, then the outcome is ambiguous 
and we must either gather more information or branch, according to our 
purposes. Suppose for example we find that an object has two heat flows 
affecting it, one where heat flows in and the other where heat flows out. 
If we knew the relative rates for these flows we could figure out their net 
effect, since direct influences combine via addition. (Conversely, if we put 
a thermometer on the object and discover that its temperature is rising, 
we are justified in concluding that its net change in internal energy is in-
creasing, and thus that the flow of heat in is greater than the flow of heat 
out.) Depending on our task, we might choose to gather more data, or try 
to infer their relative magnitudes from other information (such as rela-
tive temperature differences and differences in thermal conductance), or 
simply reason about both alternatives. 

The third case is resolving indirect influences. (Remember that we stip-
ulated that no quantity could be both directly and indirectly influenced in 
order to keep the causal structure intact, and hence other cases cannot 
arise.) If a quantity Qi  has only one indirect influence, then Ds [ Qi ] 
will simply be the Ds value of the quantity which is constraining it, mod-
ulated by the sign of the qualitative proportionality. That is, if 

(Qprop+ Qi Q2) 

holds, then if Ds [ Q2 ] = 1 then Ds [ Qi ] = 1 also. But if 

(QProla-  Qi Q2) 

holds, then if Ds [ Q2 ] = 1 then Ds [ Qi ] = —1. 

What about conflicting indirect influences? Like direct influences, we 
must gather the Ds values for the quantities constraining Qi, and sort 
them according to their net effect by taking the sign of the functional 
dependence into account. However, unlike direct influences, relative 
magnitude information does not suffice to resolve conflicting indirect 
influences. The reason is that knowing the partial functional dependen-
cies between the parameters does not constrain the underlying function 
enough to fix how they combine. The underlying function might be a 
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sum, but it might also be a product, or a complex trigonometric or expo-
nential expression. Our choices are thus similar to the case of unresolv-
able direct influences: we may choose to explore different assumptions 
about the net result, we may choose to make observations to pin down 
the outcome, or we may look for more detailed specifications of the func-
tion determining Qi. What choice is appropriate depends on the task. 

11.2.4.4 Limit analysis 

One kind of change in the physical world is the smooth evolution of con-
tinous parameters. Another is the abrupt change in qualitative structure 
of the behavior itself: a ball colliding with a wall, or water in a kettle be-
ginning to boil. Detecting the possibility of such changes and reasoning 
about their effects is the operation of limit analysis. Limit analysis is im-
portant in a variety of tasks. For instance, qualitative changes in behavior 
often coincide with changes in what set of equations is appropriate to 
use in modeling a system's behavior. Building a quantitative mathemati-
cal model of a phenomenon or a numerical simulation program thus re-
quires identifying such transitions and handling them appropriately[l 7, 
18]. Figuring out the medium- and long-term effects of an action also 
requires the ability to detect such qualitative changes. For instance, a 
moment's thought is sufficient to convince us that a plan that includes 
putting a kettle full of water on a stove, turning the stove on full-tilt, 
and then returning in six months, is likely to have some undesirable side 
effects. 

The ability to determine potential changes in the qualitative structure 
of behavior is made possible by the quantity space representation for 
numerical values. Suppose we have heat flowing from object P to object 
Q. Since heat is flowing, we know that the temperature of P is currently 
above that of Q. If we know further that the temperature of P is decreas-
ing and the temperature of Q is increasing, we know that ultimately, if 
nothing intervenes (e.g., someone doesn't move them apart) eventually 
their temperatures will become equal. And at that point the heat flow will 
stop. In essence, limit analysis "closes the loop" by completing the set of 
inferences needed to predict temporally evolving behavior. The quantity 
spaces determine the process structure, and the process structure then 
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determines the Ds values for the situation's quantities, which in turn de-
termine possible changes in the quantity spaces. 

Limit analysis is a basic operation in prediction, both for figuring out 
what kinds of things might happen next and for constructing longer-
range predictions. To represent behaviors over time, QP theory uses 
Hayes's notion of histories [19]. Histories consist of four-dimen-
sional pieces of space/time, bristling with properties. They are spatially 
bounded but temporally extended, unlike the situation calculus which is 
temporally bounded but spatially unbounded. Histories are divided up 
into episodes, according to some criteria. One simple criterion is to di-
vide up a behavior into intervals over which the qualitative structure of 
the behavior is identical.1° Thus possible histories may be generated by 
performing limit analysis repeatedly. (This is roughly what programs like 
QSIM [22] do.) 

An interesting observation about histories is that the same pattern of 
qualitative behavior can occur over and over again. If we consider an un-
damped oscillator, for instance, it is clear that a particular pattern of 
behavior can occur an infinite number of times. Often it is useful to di-
rectly generate and reason with these general patterns of possible behav-
iors and relationships between them, without worrying about a specific 
history they appear in. Such patterns of behavior are called qualitative 
states. The collection of all possible qualitative states and the possible 
transitions between them is called an envisionment. Envisionments can 
be generated by repeated limit analysis on some initial situation (or set 
of initial situations). While they can be large, envisionments are always 
finite, because any system that consists of a finite number of physical 
and conceptual entities has only a finite number of distinct qualitative 
states. The relationship between histories and qualitative states is more 
formally defined in [14]. 

Because of space limitations, we will not implement limit analysis in 
TGIZMO, nor use it to build history generators or envisioners. The inter-
ested reader should see [10, 12, 15, 22] and Exercises 10-12. 

10. The spatial extent of the occurrence of a physical process is simply the union of 
the extents of the individuals involved in it. This spatial boundedness can be used to 
predict limits on interactions between parts of complex systems; see [19, 10]. 
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11.3 The design of TGIZMO 

Although we have LTRE as our starting point, TGIZMO is still substan-
tially more complex than our previous example systems. Consequently, 
we carefully explore the design trade-offs involved first, before consider-
ing the algorithms in detail. Given our focus on measurement interpreta-
tion, the major design issues are: 

• How should we represent changes over time? 

• What should the modeling language we implement look like? 

• How should the instantiation of modeling language constructs be 
controlled? 

• How should inequality reasoning be performed efficiently? 

• How should the search for interpretations be organized? 

We consider each in turn. 

11.3.1 Temporal representations 

We have restricted TGIZMO's scope to interpreting measurements taken 
during a single period of time. This restriction allows us to make a design 
choice that radically simplifies the program. That is, we can leave time 
implicit in our descriptions, since we never need to make statements 
involving two distinct times. 

If we were to extend TGIZMO there are several reasonable choices, 
including modal operators (see [1, 23]) or Hayes's notion of slices (see 
[10, 20]). For some tasks, implicit temporal notations can still be used 
for efficient dynamical reasoning (see [15]). 

11.3.2 Design of the modeling language 

QP theory provides a basic ontology and vocabulary for representing 
physical domain theories. But it does not completely determine how 
these ideas must be cast into a specific modeling language (or languages). 
For simplicity we leave out of TGIZMO most of the qualitative mathemat-
ics of QP theory, focusing only on direct and indirect influences. Corre- 
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spondences, descriptions of explicit functions, and other primitives will 
not be implemented (but see Exercise 16). 

The interaction between quantities and existence means we must also 
be able to tell which arguments of a quantity correspond to individuals 
with potentially finite temporal extent as opposed to domain-specific 
constants which are presumed to always exist. An example of the former 
is "the water in the kettle," and an example of the latter is the term 
liquid which denotes the liquid phase itself. If the kettle is emptied, the 
conceptual entity "the water in the kettle" no longer exists, and hence it 
makes no sense to talk about how much of it there is or how hot it is. So 
given a term which denotes a quantity, the implementation must be able 
to recognize which of its constituents are individuals with potentially 
finite temporal extent, so that it may install the correct implications. 

How can we distingish individuals in references to quantities? Quanti-
ties are referred to by functions, such as 

(heat (stuff)) 
(distance (pointl) (point2)) 
(pressure (fluid) (Reference)) 
(amount-of-in (substance) (phase) (container)) 

Some of these arguments are, under any reasonably intuitive interpre-
tation of these functions, clearly going to be individuals. (fluid) and 
(container), for example, could be individuals with finite temporal ex-
tent. An example of (fluid) is the Mississippi River, and a styrofoam cof-
fee cup is an example of (container). Similarly, some of these arguments 
clearly should be logical constants, whose existence is outside of time. 
For example, (substance) could be the token water representing the sub-
stance water, and awl (phase) could be the token gas representing the 
gaseous phase of matter. (Thus (amount-of-in water gas boiler) 
refers to "the amount of steam in the boiler.") The logical status of other 
arguments is less clear. For example, (Reference) might be a constant 
like : ABSOLUTE when measuring certain pressures, but also could be the 
pressure of another fluid when describing relative pressures. 

Most QP-based modeling languages force the modeler to declare which 
arguments refer to individuals and which do not. In TGIZMO we opt for 
simplicity, and stipulate that all functions denoting quantities take ex-
actly one argument, and that argument is an individual. Functions which 
normally would take more arguments can be represented in two ways. 



372 	 Chapter 11 

The first is to simply drop the extra arguments. For example, reference 
points are often left implicit in defining temperatures and pressures, 
hence we could denote the pressure of a fluid by the term 

(pressure (fluid)) 

In cases where the other arguments cannot be dropped, we use an old 
representation trick introduced by Curry, a logician. Given the old pred-
icate and extra arguments, we define a new unary predicate which in-
cludes the extra arguments as part of itself. Thus the amount-of-in 
term used above can be written as follows: 

((amount-of-in (substance) (phase)) (container)) 

The compound predicate (amount-of-in (substance) (phase)) takes 
one argument, (container), which is of course an individual. This trick is 
called currying. Currying will only work in TGIZNIO when the extra argu-
ments are constants, not when they are individuals, since the compound 
predicate is not decomposed and analyzed. Such distinctions will simply 
be beyond this particular modeling language. 

Another place where modeling languages vary is in the conditions for 
instantiating constructs. In our earlier examples using defprocess and 
def view, for instance, we implicitly assumed the following syntax for 
each item in the individuals field: 

((variable) . (patterns)) 

where (patterns) is a list of patterns which contains at least one occur-
rence of (variable). This choice makes for a very simple implementation 
of instantiation: we simply transform the contents of the : INDIVIDU-
ALS field into patterns for an LTRE rule, whose consequences are created 
from the contents of the other fields. Again, this is simpler than other 
QP-based modeling languages, which introduce more syntax to simplify 
the domain modeler's work (see Exercise 17). 

In addition to del view and defprocess, there are three additional 
constructs that are useful to have even in a stripped-down modeling 
language. The first is a means of defining the direct consequences of new 
predicates. We use defPredicate for this purpose: 

(defPredicate (form) . (Consequences)) 
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where (form) is a pattern corresponding to the predicate being defined 
and (Consequences) are the direct implications of statements of that 
kind. (Such descriptions are implications and not biconditionals, and 
thus are not really definitions in the sense of "necessary and sufficient." 
More accurately, we should say that (form) is constrained by a defPred-
icate statement, since the number of models is reduced as the set of 
axioms involving a term grows.) defEntity is defined similarly, except 
that the predicate is constrained to be unary, and its argument is pre-
sumed to be an object that exists whenever this predication holds. The 
final kind of modeling primitive should provide a method for express-
ing the occasional pattern-directed rule that doesn't quite fit the other 
primitives. We use defrule for this, with the following syntax: 

(def rule (name) (triggers) . (consequences)) 

where (triggers) will be intern triggers for a rule whose body will as-
sert the conjunction of (consequences), justified by the conjunction of 
(triggers) using (name) as the informant. 

11.3.3 Instantiation issues 

In this implementation we take the simplest possible approach to figur-
ing out which constructs of the domain theory to apply to a given sce-
nario. That is, we instantiate everything possible. Instances of processes 
(and views) are created for every combination of individuals that match 
the individuals specification. This is legitimate but of course can be sub-
optimal in many circumstances. Here are three such conditions: 

1. Only a subset of the situation is relevant. If you have already figured 
out that the problem with your car lies in the ignition system, then 
effort spent building models of the fuel and exhaust systems would 
be wasted. 

2. Only a subset of the domain theory is relevant. Typically one knows 
far more about a domain than is relevant for the task at hand. In 
principle quantum mechanics is applicable to understanding a car's 
fuel system, but in practice it is irrelevant. 

3. The domain theory can introduce arbitrarily many individuals. There 
are legal QP domain theories which simply cannot be instantiated 



374 	 Chapter 11 

antecedently because even with a finite set of initial individuals in a 
scenario they imply the existence of an infinite number of additional 
individuals [16]. 

None of these conditions hold for our range of problems, since we will 
keep our scenarios and domain theories small and simple. As hinted 
earlier, this means we can implement the process of finding instances 
of views and processes by the usual pattern-matching process in LTRE 
rules. The way in which individuals are specified thus determines what 
the triggers of these rules will be. What should the body of these rules 
be? There are two issues involved: (1) how do we represent particular 
instances and (2) what form do the desired consequences take? 

To refer to a specific instance, we use the pattern provided as part of 
the defprocess (and def view) statements. For instance, the pattern for 
heat flow was: 

(heat-flow ?src ?path ?dst) 

so any instance of heat flow can be referred to by instantiating this pat-
tern. (We already made implicit use of this convention when illustrating 
how model fragments could be composed in modeling phenomena at dif-
ferent levels of detail with the thermal conductance example.) Again this 
is not the only possible choice, but it has the virtue of simplicity. 

What about the direct consequences of a process (or view) instance? We 
can divide these into two parts: constraints on when the instance exists 
and is active, and what must hold as a consequence of it being active. 
Since the latter is easier we tackle it first. Essentially, what we want is 
for the statements in the Relations field (and Influences field, if a 
process) to hold whenever the instance is active. If we let R1,.... Rn  be 
the statements in these fields, then the axiom schemata, 

(Active ?I) = A Rt 
1=1 

crisply represents the desired semantics. As we shall see, this logic can 
be quite directly translated into LTMS terms with only a few modifica-
tions (such as arranging for ONLY-DURING and some error checking). 

A similar arrangement is used to encode the semantics of the existence 
and activity of processes and views. Consider the following sets for a 
process (or view) instance P: 
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• • • , in = the set of individuals for an instance 

/1, 	= the set of constraints from the individuals field 

A1, 	, Ao  = the union of the preconditions and quantity conditions 

Then the following statements, expressed as axiom schemata, suffice 
to enforce the desired semantics: 

1. The logical possibility of the instance depends on the conditions in 
the individuals field. 

A Ij  (ProcessInstance P) 
j=i 

2. The process has physical existence only when all of the individuals it 
depends upon exist. 

A (Exists i j ) (Exists P) 
j=i 

3. The process (or view) is active exactly when it exists and when pre-
conditions and quantity conditions hold. 

[(Exists P) (A°  Aj)] (Active P) 
j=i 

4. An active process must physically exist. 

(Active P) (Exists P) 

(This rules out "ghosts.") 

Section 11.4.2 shows how these axiom schemata are implemented. 

11.3.4 Inequality reasoning 

The central role played by the quantity space representations in QP the-
ory means that inequality reasoning must be made as efficient as possi-
ble. There are many ways to implement such reasoning. Unfortunately, 
the easy methods tend to be hopelessly inefficient. For example, the ob-
servation that such inferences are transitive suggests using LTRE rules 
like the following: 
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(rule ((:TRUE (> ?N1 ?N2) :VAR 7>1)) 
(rule ((:TRUE (> ?N2 ?N3) :VAR ?>2)) 

(rassert! (:implies (:and ?>1 7>2) 
(> ?N1 ?N3)) 

:transitivity)) 
(rule ((:TRUE (= ?N2 ?N3) :VAR ?=1)) 

(rassert! (:implies (:and ?>1 ?=1) 
(> ?N1 ?N3)) 

:transitivity))) 

with similar rules covering the combination of <'s and ='s. Such rules 
certainly find all the transitivity consequences of a set of ordinal rela-
tionships. The problem is that most of the results they calculate are 
irrelevant. Suppose we had a sequence of numbers 	 such 
that N1  > N2, N1  > N2, and so on. Adding the Ni+i th number, where 
N, > Ni+1, results in i — 1 new > statements. If none of these results are 
ever needed, why compute them? Furthermore, we should avoid storing 
both Na  < Nb and Nb > Na, since they are redundant. 

By considering what we need out of an inequality system, we can de-
sign a far more efficient reasoner. Any model for a specific scenario built 
from a QP domain theory will mention some (presumably finite) num-
ber of ordinal comparisons. It is only these relationships that TGIZMO 
cares about. Computing anything else is a waste of time. In some forms 
of reasoning, computing and storing intermediate results is critical for 
efficiency, but inequality reasoning is not one of those cases. 

There are two key observations motivating the design of TGIZMO's in-
equality system. The first is that for any scenario model there will be a 
set of comparisons mentioned in the assertions and rules, and only these 
comparisons are relevant. This set can grow over the course of reason-
ing, as new conceptual entities are discovered and as new distinctions 
become needed (e.g., two rates need to be compared because they are 
conflicting direct influences). Once mentioned, a comparison is always of 
interest. The labels of comparison statements may change over time, but 
the set of those which are relevant never decreases in size. 

The second observation is that if we view the set of mentioned com-
parisons as a graph, where the nodes are the numbers being compared 
and the edges are the set of ordinal statements that may hold between 
a pair of nodes, all transitivity inference occurs in this graph's cycles. 
Consider again the N1,...,N1  example, assuming that initially only the 
comparisons between each successive pair were mentioned. In that case 



377 	 Implementing Qualitative Process Theory 

no cycles exist, and there is no reason to draw any additional conclu-
sions. Now suppose we want to know the relationship between Nl  and 
Ni. That relationship can be deduced from the i — 1 others only if certain 
conditions are right (more on this momentarily). Computing intermediate 
results would provide nothing, since all the potentially relevant informa-
tion is contained in the newly formed cycle already. Therefore analyzing 
cycles in the graph of ordinal relations suffices for transitivity reasoning. 

These observations suggest a good design: 

• Use an incremental algorithm to find cycles in the graph of ordinal 
comparisons as each is mentioned. 

• Cache these cycles in a separate datastructure. 

• Whenever the belief state of an ordinal relationship changes, check 
the cycles it is part of to see if any new conclusions can be derived. 

We also have to select a representation for ordinal relationships. The 
simplest representation would be to use the standard relationships >, 
<, and =. But we can do better than this. Consider the relationship 
i.e., "less than or equal to." Using this single relationship we can encode 
others as follows: 

Q<PE-Q13 A -,PQ 

Q=P -=QPAPQ 

Q 

As we shall see, using internally as the only ordinal relationship greatly 
simplifies transitivity processing. Convenience should not be sacrificed 
to simplicity, of course, so we must allow modelers to freely use the 
standard ordinal relationships. Automatically translating these results is 
straightforward with pattern-directed rules. These rules, and the details 
of the transitivity processing, are detailed in Section 11.4.5. 

11.3.5 Organizing the measurement interpretation search 

We start by considering what a valid interpretation is. QP theory gives 
us a precise answer: An interpretation is a set of processes and assump-
tions about their combined effects that predicts the observed data. Thus 
we must search the space of process structures, looking for those whose 
influences can be resolved to explain the observations. (This assumes 
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that observations concern Ds values. Observations can also include other 
predicates, such as ordinal relationships or predicates found in precondi-
tions. The process structure at a given time must be consistent with such 
observations, but explaining them requires a sojourn into the history of 
the system.) 

The fact that for Ds values the interpretation actually implies the ob-
servations suggests viewing this problem as a special case of abduction. 
This in turn suggests that we might consider putting an additional con-
straint on our search, namely that we want the best interpretation, for 
some definition of best. There are tasks for which this is indeed the 
best approach. Suppose for example that some action must be chosen 
immediately, without the benefit of other information. Then, any a pri-
ori information about likelihoods of processes and direness of conse-
quences should be used to define a preference metric for interpretations, 
and our search should be organized to provide the optimal interpre-
tation (or good approximations thereof) under these criteria. However, 
there are arguments against this strategy. Suppose for instance that the 
best interpretation counsels doing nothing but the second-best interpre-
tation indicates that a disaster is brewing which requires immediate ac-
tion. If the action recommended by the second-best interpretation does 
not adversely affect the operation of the system, it should probably be 
taken just in case. So even when no additional data is forthcoming, it 
can be useful to consider multiple interpretations. And, more generally, 
gathering information about a physical system is an interactive, itera-
tive process, where the ambiguities in one's understanding of the system 
indicate what kinds of new information should be sought. In such cir-
cumstances, comparing the implications of distinct interpretations for 
measurements yet unmade provides a valuable diagnostic tool. 

Since the problems we are dealing with are small, and any information 
about probabilities or utilities of states provided would be an arbitrary 
invention, we organize our search to find all valid interpretations of the 
given observations. Since we have already stipulated that all process and 
view instances will be constructed antecedently, the problem can be cast 
as generate-and-test, where we use dependency-directed search to gener-
ate legal process structures, and use influence resolution to ascertain if 
they provide a valid interpretation. 

Let us consider the search space in more detail. The most straightfor-
ward way to organize the search for legal process structures is to use 
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{ (Active P) , ( :NOT (Active P)) 	for all process and view in- 
stances P as the choice sets. This indeed is better than, say, using the 
preconditions and quantity conditions, since there can be many distinct 
combinations of them which all have the effect of making some instance 
inactive. To see if a legal process structure corresponds to a valid inter-
pretation, we must check it against the observations. One way to do this 
is simply to make the observations into LTRE assumptions underlying 
the search. That way a process structure that blatantly violates the ob-
servations (i.e., requiring flow through a path whose valve is shut) will 
simply never be generated. Not all violations are easy to detect, however. 
Explaining observed changes in parameters (i.e., Ds values) requires per-
forming influence resolution. Other kinds of observations can constrain 
Ds values as well. For example, if while cooking on a camping trip we see 
bubbles in the water in a kettle, that means the water is boiling, which in 
turn means there is heat flowing to the water, which means that the level 
in the fuel reservoir in our portable stove is falling. Consequently, it is 
typically worth completely resolving influences to ensure the validity of 
an interpretation. 

11.4 The implementation of TGIZMO 

Now that we have the overall plan of the implementation in mind, let us 
turn to the details. 

11.4.1 Global organization and LTRE interface (defs.lisp) 

As usual, we use a struct to centralize the information concerning a 
particular copy of TGIZMO. It includes the following fields: 

title String for printing. 

measurements Set of measurements to be explained. 

scenario Name of file defining the current scenario 

ltre The LTRE used by this TGIZMO 

debugging A list of symbols indicating what kind of debugging infor-
mation should be printed. 

quantities The list of quantities found for the given scenario. 
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comparisons The set of ordinal comparisons mentioned in the sce-
nario model. 

comp-cycles The cycles of comparisons used to derive transitivity in-
formation. 

influence-order The causal ordering derived for the set of influences 

update-ineqs? When non-nil, indicates that a new label has been 
found for an ordinal relationship and transitivity processing should be 
invoked. 

nstates Counter for giving states a unique identifier. 

states List of states found during a search. 

Those which are not obvious are explained in detail later. 
The procedures for creating a copy of TGIZMO should by now be quite 

familiar. The default contradiction handler (IR-CWA-Contradiction-
Handler) automatically retracts invalid closed-world assumptions from 
influence resolution, if any. An important change is in the debugging sys-
tem. In smaller systems it sufficed to turn on debugging for the whole 
system. TGIZMO is complicated enough that it makes sense to provide 
finer control over how much information, and about what subsystem, 
gets printed. Consequently, the debugging field of a TGIZMO holds a list 
of flags. A debugging statement is only executed if the appropriate flag 
is set. Thus debugging-tgizmo now takes an extra flag argument. Fur-
thermore, sometimes there are interesting computations that should be 
performed as part of debugging, so we include the ability to add such 
code with the new macro when-debugging. 

The state struct provides a medium for taking "snapshots" of the 
LTRE database, so that different states of a search can be cached and 
later compared. Each field contains expressions of particular types whose 
labels were known at the time. In particular, 

individuals Statements about individuals. 

view-structure Set of active view instances. 

process-structure Set of active process instances. 

comparisons Set of ordinal relationships other than Ds values. 

Ds-values Comparisons of derivatives with zero. 
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Thus we can compare what different states predict for specific Ds values, 
for example, without changing any assumptions. (We could reconstruct 
the state of a search in some sense by "reloading" the LTRE database with 
assumptions corresponding to the statements in a state struct. There are 
several interesting issues here—see Exercise 9b). 

Since many TGIZMO operations are defined in terms of LTRE opera-
tions, we also provide a set of procedures that simplifies such interac-
tions. The mnemonic we use is to prefix the name of an LTRE operation 
with "tg-" to indicate that it is taken with respect to the LTRE of the 
current TGIZMO. (Notice that we also provide the usual hooks to rebind 
*tgizmo* as needed.) These procedures are tg-f etch, tg-true?, tg-
false?, tg-false-forms? (like tg-false?, but over a list of forms), 
and tg-run-rules. 

As is often the case in artificial intelligence, explicit representations 
of even simple situations can require a large number of propositions. 
To make our database easier to understand, the rest of the file con-
tains procedures that take common kinds of facts and produce printable 
forms that look more like what one sees in technical papers. These proce-
dures (number-string, Ds-string, Ds-value-string, ineq-string) 
are self-explanatory. 

11.4.2 Implementing the modeling language (mlang.lisp) 

The main job of these procedures is translating theories expressed in a 
form congenial to domain modelers into something executable by LTRE. 
For def rule this is trivial, since all we have to do is wrap the condition 
( : INTERN) around the list of triggers and create an rassert! form which 
embodies the logic of the rule. defPredicate and defEntity are only 
a little more complicated. We allow the variable ?self to be used freely 
within these statements, so we must make its binding available via rlet. 
The consequences require a bit more processing, though. This job is done 
by translate-relations, which is explained shortly. 

Since processes and views are syntactically very similar, the internal 
structure of defview and defprocess are also quite similar. parse-
vp does the requisite syntaxing, and make-vp-rule creates a rule that 
detects instances of that view or process and installs the appropriate 
consequences. parse-vp does some basic syntax tests to check for com- 
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mon errors made by domain modelers. For example, there must always 
be an individuals field, and there must be at least some preconditions 
or quantity conditions (otherwise, a defPredicate or defEntity state-
ment would probably be more appropriate). parse-vp also ensures that 
processes have direct influences and views don't, and makes sure that no 
field contains free variables. 

make-vp-rule uses the individuals specification to create a set of 
triggers for a pattern-directed rule for detecting instances of that process 
or view. Aside from some debugging information (i.e., printing notices 
about instances found when the current TGIZMO is operating with the 
appropriate debugging flags turned on), the bulk of the body of this rule 
implements the axiom schemata described earlier. The only new wrinkle 
is, again, translate-relations. Let us turn to it next. 

A good modeling language hides irrelevant details from the model 
builder. Obviously, implementation details should be abstracted away 
as much as possible. In addition, if there are common patterns of us-
age, the language should allow these patterns to be stated concisely. By 
constructing rule triggers automatically from other information, we have 
insulated the modeler from many LTRE details. translate-relations 
does the same job for the consequences of the descriptions in our mod-
eling language. For example, we mentioned earlier that the semantics of 
only-during were those of a biconditional. That is, the statement 

(Only-During (Exists (C-S ?sub ?st ?can)) 

in the relations field of the Contained-Stuff view really meant 

(:IFF (:AND (container ?can) 
(substance ?sub) 
(phase ?st) 
(> (A ((amount-of ?sub ?st) ?can)) ZERO)) 

(Exists (C-S ?sub ?st ?can))) 

By providing Only-During we simplify our modeler's job, since the an-
tecedents are "obvious" from the logical environment of the defview 
description. There are several other, similar translations of consequences 
needed as well. For instance, it is important to distinguish influence 
statements according to their source in making closed-world assump-
tions. Thus when translating influence statements we add the source—
the view, process, predicate, or entity definition—as a third argument to 
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the relationship. Finally, quantities local to a process or view are consid-
ered to exist only when the view is active, so we must install a bicondi-
tional for them as well. 

translate-relations takes a set of consequences, a defining con-
text, the antecedents for that context, and an informant, and produces 
a list of executable statements to be used in the body of a rule. It oper-
ates by performing a case analysis on each consequent. It accumulates 
two kinds of results: the simple cases which are to be justified on the 
basis of the antecedents (stored in explicit) and the executable state-
ments comprising the translation of the more complicated cases (stored 
in implicit). translate-relation, which performs the case analysis, 
thus returns two kinds of values. (In the simple modeling language de-
fined here, translate-relations only returns one kind or the other. 
More complex modeling languages often use both kinds of consequences 
in implementing single statements.) 

Figure 11.5 shows how these procedures transform the definition of 
heat flow from Figure 11.4 into an LTRE rule. 

11.4.3 Searching for patterns of activity (psys.lisp) 

The procedures in this file orchestrate the creation of a scenario model 
and create the choice sets for view and process structures needed for the 
measurement interpretation search. 

The construction of a scenario model is handled by load-scenario. 
We assume that the domain theory has already been loaded into the cur-
rent TGIZMO, and that the argument file sfile is a sequence of assert ! 
or assume! statements describing the structural description for the sce-
nario to be analyzed. Loading the file into the current TGIZMO and run-
ning the pattern-directed rules it triggers causes the construction of the 
scenario model, thanks to our organization of the implementation of the 
modeling language. Since new comparisons are likely to be mentioned as 
relevant and the scenario may specify ordinal information, the inequality 
system is invoked (via the call to use-transitivity) to draw whatever 
new inferences can be made using transitivity. 

Recall that the measurement interpretation search is defined in terms 
of the view and process structures of the situation. TGIZMO must first 
gather all view and process instances and then create the necessary 
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The rule below shows how the heat flow process definition of Figure 11.4 ex-
pands into an LTRE rule that instantiates the logic of the QP description. 

(RULE 

((:INTERN (QUANTITY (HEAT ?SRC))) 

(:INTERN (HEAT-CONNECTION ?PATH ?SRC ?DST)) 

(:INTERN (QUANTITY (HEAT ?DST)))) 

(RLET ((?SELF (HEAT-FLOW ?SRC ?PATH ?DST))) 

(DEBUGGING-TGIZMO :MODELING 	Found -A: -A." "process" ?SELF) 

(RASSERT! (:IMPLIES (:AND (QUANTITY (HEAT ?SRC)) 

(HEAT-CONNECTION ?PATH ?SRC ?DST) 

(QUANTITY (HEAT ?DST))) 

(PROCESS-INSTANCE 

(HEAT-FLOW ?SRC ?PATH ?DST))) 

:CDI-IMPLIED) 

(RASSERT! (:IMPLIES (:AND (EXISTS ?SRC) (EXISTS ?PATH) 

(EXISTS ?DST)) 

(EXISTS (HEAT-FLOW ?SRC ?PATH ?DST))) 

:PROCESS-EXISTENCE) 

(RASSERT! (:IMPLIES (ACTIVE (HEAT-FLOW ?SRC ?PATH ?DST)) 

(EXISTS (HEAT-FLOW ?SRC ?PATH ?DST))) 
:NO-GHOSTS) 

(RASSERT! (:IFF (ACTIVE (HEAT-FLOW ?SRC ?PATH ?DST)) 

(:AND (HEAT-ALIGNED ?PATH) 

(> (A (TEMPERATURE ?SRC)) 

(A (TEMPERATURE ?DST))))) 

:CDI-ACTIVE-CONSTRAINT) 

(RASSERT! (:IMPLIES (ACTIVE ?SELF) 

(:AND (> (A (FLOW-RATE ?SELF)) ZERO))) 
:HEAT-FLOW) 

(RASSERT! (:IFF (ACTIVE ?SELF) 

(QPROP- (FLOW-RATE ?SELF) (TEMPERATURE ?DST) 

?SELF)) 
:HEAT-FLOW) 

(RASSERT! (:IFF (ACTIVE ?SELF) 

(QPROP (FLOW-RATE ?SELF) (TEMPERATURE ?SRC) 

?SELF)) 
:HEAT-FLOW) 

(RASSERT! (:IFF (ACTIVE ?SELF) 

:HEAT-FLOW) 

(RASSERT! (:IFF (ACTIVE ?SELF) (I+  (HEAT ?DST) (FLOW-RATE ?SELF) 

?SELF)) 

(QUANTITY (FLOW-RATE ?SELF))) 

:HEAT-FLOW) 

(RASSERT! (:IFF (ACTIVE ?SELF) (I- (HEAT ?SRC) (FLOW-RATE ?SELF) 

?SELF) 
:HEAT-FLOW)))) 

Figure 11.5 How physical processes are implemented 



385 	 Implementing Qualitative Process Theory 

choice sets. The procedure gather-vsps does the first job by fetch-
ing all things that can be active, which by definition can only be true 
of a view or process instance. The second job is carried out by psys-
choice-sets, which constructs choice sets that can be used by the LTRE 
dependency-directed search facility (DD-Search, defined in Section 10.5). 

The procedure search-PSVS generates all consistent view and process 
structures. In doing so it executes the procedure it is given (thunk) in ev-
ery logical environment corresponding to a consistent view and process 
structure. Notice that search-PSVS is instrumented to print each consis-
tent state when the debugging flag : PSVS-DDS is part of the debugging 
list for its TGIZMO. (The procedure it uses, show-psys, is defined at the 
end of the file.) Notice also that search-PSVS calls retract-IR-CWAs, 
in case influence resolution was performed as part of the execution of 
thunk. This should not be necessary, but is carried out as a bit of bullet-
proofing. Even though IR-CWA-Contradiction-Handler is always part 
of a TGIZMO's set of contradiction handlers, retracting these assump-
tions avoids unnecessary contradiction handling. 

11.4.4 Implementing influence resolution (resolve.lisp) 

Resolving influences is the trickiest part of this implementation. It re-
quires making appropriate closed-world assumptions, ascribing causal-
ity, and squeezing as many inferences as possible out of minimal in-
formation. Influence resolution presumes that the view and process 
structures have been completely determined. The procedure resolve-
influences is the entry point. The basic steps, and subroutines which 
implement them, are: 

1. Find the current construal of the set of influences on each quantity 
by fetching the influences currently believed to be active and assum-
ing these are the only ones (the bulk of setup-IR). 

2. Use the influences to impose a causal ordering on the quantities 
(find-influence-ordering, which is called from setup-IR and 
whose results are cached in tgizmo-influence-order). 

3. Attempt to resolve each quantity (resolve-influences-on). Record 
any ambiguous outcomes, and return this list as the result (un-
knowns). 
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This basic outline captures most of resolve-influences, but a few 
things still require explanation. The unless test on Resolved statements 
exploits the LTMS cache; if the particular pattern of influences on a quan-
tity has been seen before, the results of this computation would already 
be available, and so executing resolve-influences-on would be need-
less work (and could create redundant justifications). Another important 
feature of this algorithm is the use of the causal ordering to establish 
an order of computation. We could, after all, simply use dependency-
directed search to hypothesize consistent Ds's for all quantities and use 
the influence information to prune inconsistent possibilities. The prob-
lem with this pure constraint-satisfaction approach is that it fails to 
exploit what are typically strong constraints between parameters. The 
causal ordering provides a framework for constraint propagation, so that 
the Ds of a quantity can often be deduced simply from the influences on 
it. 

The main job of setup-ir is to create construals for the sets of in-
fluences on each quantity. It does this by first calling tg-run-rules to 
execute any pending pattern-directed rules, thus ensuring that all "obvi-
ous" conclusions have been drawn. Then it uses LTRE's closed-world set 
mechanism to create construals for the sets DIs and Its for each quan-
tity. The set DIs are the direct influences on a quantity and the set Its 
are the indirect influences on a quantity. Again the queue is emptied to 
take care of any obvious consequences, including perhaps the discovery 
of contradictions. Finally, find-influence-ordering is called to com-
pute the causal ordering for the current logical environment." 

Closed-world assumptions can lead to contradictions, and so IR-CWA-
contradiction-handler is provided to detect and retract such prob-
lems. The procedure retract-IR-CWAs is also provided to "clear the 
decks" after an analysis, thus reducing the need for contradiction han- 

11. In most QP domain theories written to date, the set of causal orderings for a 
situation are unidirected: i.e., if a quantity Q1  is causally prior to quantity Q2 in one 
situation, then it is never the case that Q2 is causally prior to Qi in another situation. 
When this condition holds, a single global causal ordering can be computed for the 
whole situation using the set of all mentioned influence statements, and the causal 
ordering for a specific situation will always be a subset of this global causal ordering. 
However, there is no stipulation that domain theories must be unidirected, and so no 
implementation of QP theory should presume this. 
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dling. In general this is a good idea: contradiction handling is a crucial 
facility and adds substantial logical power to a system. However, since 
contradiction handling is inherently asynchronous, it can lead to subtle 
timing problems in algorithms. Therefore it is good engineering practice 
to not rely on it when simpler means will do. 

find-influence-ordering constructs the causal ordering by a sim-
ple propagation algorithm. An initial ordering is provided by assigning 
a rank of zero to directly influenced parameters and a rank of -1 to 
indirectly influenced parameters. The procedure update-influence-
table-orderings loops through the set of parameters, increasing the 
rank of a quantity to be the highest rank of its constrainers, plus one. 
Since a directly influenced parameter has no constrainers its rank re-
mains zero, and the rank of any indirectly influenced parameter must 
converge because the set of qualitative proportionalities is loop-free. 

resolve-influences-on dispatches to different procedures accord-
ing to the kind of influence(s) a quantity is subject to. As noted in 
Section 11.2.4.3, direct and indirect influences operate under different 
constraints, so they are handled by different procedures (resolve-dis-
on and resolve-its-on, respectively). Pattern-directed rules handle 
the uninfluenced case and enforce the exclusion of mixed influence 
types (see Section 11.4.8). The procedures direct-influences-on and 
indirect-influences-on fetch the influences on a quantity by grab-
bing the contents of the sets DIs and IIs. 

resolve-dis-on begins by sorting the rate parameters according to 
their sign. Figuring out the sign contribution of an influence requires 
modifying the sign of the constrainer by the sign of the influence state-
ment itself, to ascertain the actual direction of effect. That is, a positive 
flow rate and an I+ statement leads to a positive effect, while a posi-
tive flow rate and an I- statement leads to a negative effect. Notice that 
we store in each set both the name of the number and the antecedents 
corresponding to the sign determined for it. Storing the antecedents 
greatly simplifies computing justifications for the results. If a sign isn't 
known, no particular determination can be made, and so resolve-dis-
on immediately returns, providing : UNKNOWNS as the reason for failure 
and the list of parameters whose signs were not established. Otherwise, 
analyze-dis-on is used to squeeze conclusions from the rate infor-
mation. analyze-dis-on performs a case analysis on this information, 
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deducing a Ds value when possible but also ruling out impossible val-
ues. For example, if all the rates are equal to zero, clearly the quantity is 
not changing. The fourth and fifth clauses of the cond handle the cases 
of only positive or only negative rates, where the result must be either 
positive or negative, respectively. The second and third clauses use the 
disjunctive information in and to exclude whatever case isn't cov- 
ered (i.e., positive for and negative for 	Once again, the unless test 
prevents the installation of redundant justifications if the program has 
already figured out this subproblem. 

The rest of analyze-dis-on handles the case where a quantity is 
influenced in both directions. It begins by looking for opposing direct 
influences which may be canceled, since direct influences combine by ad-
dition. It starts by looking for identical rate parameters (i.e., the calls 
to cancel-via-identity) and then looks for opposing parameters of 
equal magnitude (i.e., the calls to (cancel-via-=). If any cancellations 
are made, analyze-dis-on is called recursively to see if the simpler 
problem has an unambiguous solution. Otherwise, the fact that the direct 
influences are ambiguous is duly noted, by calling justify-ir-ambig. 
Since the justification procedures are shared by the direct and indirect 
influence code, we postpone their description until after delving into in-
direct influences. 

The structure of resolve-Its-on is analogous to that of resolve-
DIs-on, but simpler. The sorting by signs of constrainers is identical to 
the sorting by signs of rate parameters, as is the necessity for abandon-
ing the attempt if some constrainer's sign is unknown. And the unam-
biguous and disjunctive cases in analyze-its-on have the same logic 
as their counterparts for direct influences. The major difference is in the 
final case in analyze-its-on, corresponding to a clear ambiguity. Since 
we do not know how qualitative proportionalities combine, we cannot 
invoke cancellation or any other strategy which rests on more knowl-
edge. Our only choice is to note the ambiguity, which is done by a call 
to justify-ir-ambig. 

The 	procedures just if y-ir-ambig, justify-ir-result and 
exclude-ir-result install the conclusions reached by the routines 
above. They share a common structure of antecedents, processed by 
the procedure ir-antecedents. Recall that the list antes starts out as 
the list of influence statements and is incremented with any information 
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added by cancellation in the case of direct influences. The rest of the 
sets consist of the sign information for the "inputs" to that quantity, so 
the statements defining the ordinal information cached during the ini-
tial sorting by signs can be extracted. The procedure just if y-ir-ambig 
signals that no sign could be computed by justifying an Unresolved 
statement for the given quantity. just if y-ir-result justifies both the 
Ds and the statement Resolved, to indicate that influence resolution 
succeeded in figuring out a Ds value. exclude-ir-result produces a 
clause that forbids a specific Ds value. 

Ambiguity in qualitative representations can be handled in several 
ways. If the ambiguity is irrelevant, nothing needs to be done. If more 
precise information is available, such as the exact nature of the func-
tion partially specified by a set of qualitative proportionalities, then the 
ambiguity can be resolved. For our present purposes, the most useful 
strategy is simply to branch—that is, to generate alternate states based 
on different possible Ds values. The procedure resolve-completely 
provides this option, by creating choice sets for the unknown Ds val-
ues returned by resolve-influences (using make-Ds-choice-sets) 
and performing a dependency-directed search. As with search-psys, 
resolve-completely is given a procedure which is then executed for 
each consistent solution to the influences. 

The last two procedures in the file are interrogatives for reporting 
and debugging purposes. show-IR-CWAs displays the influences on each 
quantity, and show-ds-values shows the signs of derivatives for each 
quantity. 

11.4.5 Implementing inequality reasoning (ineqs.lisp) 

As outlined in Section 11.3.4, the inequality system operates by a mixture 
of bottom-up local processing and central control. LTRE rules are used to 

■ Detect the addition of new comparisons. 

■ Install clauses that implement the basic semantics of comparisons. 

■ Signal the system that beliefs in comparisons have changed, and so 
checking for transitive inferences is worthwhile. 

On the other hand, transitivity inferences are made via special-purpose 
procedures. These procedures are invoked explicitly by other TGIZMO 
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procedures, thereby taking advantage of the global structure of the com-
putation. The code in ineqs . lisp is the heart of the inequality reasoner, 
providing the procedures which the LTRE rules use to do their work, the 
transitivity inference procedures, and support code. 

The file begins with support code and interfaces to the inequality 
subsystem used by other parts of TGIZMO. The procedure num-order 
provides a canonical ordering on numbers, so that we can quickly fig-
ure out how a comparison is cached when necessary. The procedures 
individual-of and quantity-of extract the individual owning a quan-
tity and the quantity itself from terms denoting numbers or quantities. 

The procedure install-comparison-constraints-if-needed is 
called whenever an ordinal statement is mentioned (i.e., interned in the 
LTRE database, independently of its belief state). It uses the canonical 
ordering defined by num-order to construct a key to see if a compar-
ison between the two numbers has been mentioned previously. If so, 
nothing needs to be done. Otherwise, some basic consequences of com-
parisons are asserted by install-comparison-constraints and any 
cycles involving the new comparison and previously mentioned ones are 
found by f ind-comparison-cycles-f or. If such cycles exist, this fact 
is recorded in the current TGIZMO structure to ensure that transitiv-
ity processing is eventually invoked. The reason for deferring transi-
tivity reasoning is efficiency. install-comparison-constraints is 
typically called by LTRE rules which are triggered by comparisons 
being mentioned. Presumably there are other rules queued for exe-
cution as well. These rules may install yet more comparisons, so it will 
be more efficient to check the comparison cycles once, after the queue is 
emptied. 

install-comparison-constraints has two jobs. First, it enforces 
the law that two numbers cannot have a valid comparison unless the 
quantities they are part of exist. If part of a model included a compar-
ison between (A (pressure F) ) and (A (pressure G) ), the link be-
tween the comparison and existence would be enforced by adding the 
constraint 

(:IFF (:OR (:NOT (quantity (pressure F))) 

(:NOT (quantity (pressure G)))) 

(:AND (:NOT ((A (pressure F)) <= (A (pressure G)))) 

(:NOT ((A (pressure G)) <= (A (pressure F)))) 
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to the TGIZMO's LTRE database. The procedure uses if statements to 
compute the appropriate first argument to the : IFF in the assert! to 
cover the possibility of constants, like ZERO, being one of the numbers in 
the comparison. Constants are always presumed to exist. ZERO is in fact 
the only constant, so the error checking provided in the unless is a bit 
paranoid. But only a bit—one would be surprised what authors of domain 
theories can unintentionally do. The other job of install-comparison-
constraints is to add consumers to the LTMS nodes for the compari-
son, to ensure that new information about an inequality results in tran-
sitivity processing. The procedure update-ineqs-as-needed provides 
this service by setting the inequality flag for the current TGIZMO when-
ever its node gets a label, and requeuing itself for future service. 

The use of <= as our sole internal ordinal relationship obliges us to 
provide some procedures to insulate the rest of the system from this 
choice. By encapsulating the translation from other ordinal relationships 
to <= in one place we thus simplify the whole system. The predicates 
greater-than?, less-than?, and equal-to? return non-nil if the cor-
responding relationship holds between their arguments. The procedure 
rel-value computes a keyword symbolizing the relationship between 
two numbers, whatever it happens to be. rel-value-clause computes 
a clause for whatever keyword it is given, to help build clauses involving 
ordinal relationships. The procedure comparison? provides an interface 
to the inequality system that does the necessary work to ensure that the 
comparison between the given numbers is added to the system if neces-
sary, and then calls rel-value to provide information about the ordinal 
relationship. 

The next suite of procedures provides assistance for asserting ordinal 
relationships. greater-than!, less-than!, and equal-to! label the 
<= statements necessary to assume the desired relationship. The pro-
cedures lt-forms, eq-forms, gt-forms, lte-forms, and gte-forms 
create clauses for the appropriate relationship. 

The rest of the file is concerned with reasoning via transitivity. The 
entry point for updating given new information is the procedure use-
trans it ivity. use-transitivity essentially calls check-comp-cycle 
repeatedly until no new ordinal relationships are computed. The conven-
tion is that whenever new ordinal information is found (either by transi-
tivity or from external sources), the flag tigzmo-update-ineqs? is set. 
(This flag is not a global variable, of course, but a field of the TGIZMO 
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struct, so that different copies of the system can be in use at once.) The 
procedure check-comp-cycle is used to look at each cycle of compar-
isons to see if more information can be derived from it. We return to 
check-comp-cycle after first considering how cycles get created. 

As noted above, f ind-comparison-cycles-f or is invoked whenever 
a comparison between two numbers N1  and N2 is mentioned (i.e., in-
terned in the LTRE database) for the first time. The new comparison in 
effect adds an edge to the graph of comparisons, and this procedure 
finds all cycles containing this new edge. It operates by a breadth-first ex-
ploration of the comparison graph, starting from all other comparisons 
involving N1. (f ind-c ompar s on-s et provides this service, filtering the 
results of a fetch to find the appropriate inequalities and extracting the 
other number.) Cycles not ending in N2 are ignored, since they will have 
been found by previous invocations of this procedure. Each element on 
the queue is a list of numbers, to simplify cycle detection, but for further 
processing it is more convenient to represent cycles by a list of pairs of 
numbers. This format conversion is carried out by make-comp-cycle. 

The extraction of new comparison information from cycles is carried 
out by check-comp-cycle. Its operation can be viewed by analogy with 
BCP on clauses. A clause has a labeling, given by the labels of the literals 
that participate in it. Some partial labelings allow new conclusions to be 
drawn. Some labelings are inconsistent. And so it is with comparison cy-
cles. Since the set of ordinal relationships is larger than the set of labels 
for literals, one might expect the constraints on labels to be slightly more 
complicated, and indeed they are. There are three main cases: 

1. More than one comparison in the cycle is unknown. Nothing can be 
inferred from this case. 

2. Something is known about all comparisons in the cycle. Requires fur-
ther analysis, since there may be violations of transitivity or oppor-
tunities to further constrain a comparison. 

3. Exactly one comparison in the cycle is unknown. Requires further 
analysis, since a relationship for the unknown comparison may be 
derivable. 

check-comp-cycle begins by sorting the comparisons of the cycle into 
six sets, each corresponding to a possible labeling of the relationship 
between a pair of numbers, in order to make this case analysis. The first 
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Figure 11.6 Inconsistent cases involving hard inequalities 

determination is made on the basis of the set of unknowns (unks). The 
analyses of the second and third cases rest on the contents of the other 
sets. 

When there are no unknowns, we may have a violation or the possibil-
ity of refining a comparison. Let us call the relationships and soft 
comparisons, since they contain a degree of ambiguity, and >, =, and 
< hard comparisons. If all comparisons in a cycle are hard, then the 
only condition we must look for is inconsistency, since no ambiguity re-
mains to be resolved. Such cycles are inconsistent if their net impact is to 
claim that a number is larger or smaller than itself. That is, either (1) one 
edge must be labeled > and every other edge labeled either > or =, or 
(2) one edge must be labeled < and every other edge labeled either < or 
=. Any other case involving all hard comparisons is consistent, since the 
existence of opposite ordinal relationships in the cycle provides a consis-
tent model. Figure 11.6 illustrates. When one of the contradictory cases 
is found, the LTRE procedure contradiction is called with the list of 
nodes provided by the support procedure f ind-cycle-support. (f ind-
cycle-support computes the antecedents for a cycle by including the 
quantity statements justifying the existence of the numbers involved in 
the comparisons and accumulating the <= statements involving the pairs 
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Figure 11.7 Inconsistent cases involving soft inequalities 

of numbers in the cycle.) In the code, this case is noted using the infor-
mant : NET-INEQ-CYCLE. 

The cases involving completely labeled cycles containing a mixture of 
hard and soft comparisons are a bit more complicated, because we may 
be able to "harden" the cycle if the conditions are right. The inconsis-
tent cases for the pure hard case can be generalized by noting that if 
there are no comparisons in a particular direction (i.e., no 	and no 
<'s, or no ?_.'s and no >'s) and at least one hard comparison in the op-
posite direction (i.e., one > or one <, respectively) then we must have 
a contradiction, because no matter how the soft comparisons are hard-
ened, they would end up corresponding to one of the contradictory cases 
for purely hard comparisons defined above. (In the code, these cases are 
indicated with the informant : NET->-CYCLE and : NET-<-CYCLE.) This 
observation also reveals where our opportunity for hardening compar-
isons comes from: if we have a cycle of all 5 or all comparisons, the 
only possible consistent labeling for the individual comparisons is =. 
(These cases are noted in the code by the informant :HARDENING->= and 
:HARDENING->=. Also, see Figure 11.7.) 

The final case, where there is exactly one unknown comparison, is most 
like the case of one unknown label in Boolean constraint propagation. 
Let us first consider what can be concluded when hard comparisons are 
present. When a cycle already has at least one comparison labeled > 
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Figure 11.8 Inferences are possible with one unknown comparison 

and one labeled <, nothing new can be concluded because the cycle will 
be consistent for any labeling of the unknown relationship. If there are 
<'s and no >'s or 	then the last comparison must be > to avoid 
inconsistency. Similarly, if there are >'s and no <'s or 	then the 
last comparison must be <. Furthermore, if there are only ='s, then the 
only possibility for the last comparison is =. If no hard comparisons 
are present, similar but weaker conclusions can be drawn about the soft 
inequalities. That is, if there are 	but no 	then the last relationship 
must be 	It will turn out to be > if any of the 	"harden" into <, 
but will become = if they all become =. The same is true for labeling 
with 	but no 	As before, find-cycle-support and rel-value- 
clause are used in building the appropriate LTMS clause. Figure 11.8 
illustrates. 

The end of the file contains some debugging utilities. The procedure 
show-ineqs prints the current belief state for every comparison in the 
given TGIZMO, and show-comp-cycles displays the cycles relating these 
comparisons. 

11.4.6 Caching solutions (states.lisp) 

When a consistent state has been generated, the labels of the statements 
in the LTRE database reflect the propositions of that state. Typically 
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there is more than one state consistent with a set of measurements. 
Consequently, TGIZMO requires the ability to make a "snapshot" of the 
database which records the essential information about the state. These 
recorded states can be compared with regard to their predictions and 
plausibility as needed. The procedure snapshot provides this ability. 
It builds a state struct filled with the essential information about the 
current state, as represented in the LTRE database. For our purposes 
it is sufficient to store the existence statements, the view and process 
structures, and the set of beliefs about comparisons. Notice that the set 
of comparisons is divided into Ds values and other kinds of inequalities, 
since the former sometimes correspond to observable changes. 

The rest of the file is concerned with manipulating state structures. 
The procedure get-state retrieves a state from a given TGIZMO based 
on its number. The procedure show-state provides a more easily read-
able description of a state. report-states produces an ASCII file for the 
states associated with a given TGIZMO. 

The procedure make-state-index is another useful tool for under-
standing the relationship between interpretations. It builds a set of 
nested alists, discriminating according to the different fields of states. 
It can also be used for retrieving states. summarize-state-index pro-
duces a readable summary of an index, providing a good overview of a 
set of states. 

The rest of the file contains procedures for carrying out more de-
tailed comparisons of states. For example, one might run two TGIZ-
MOs on a particular problem with different assumptions or domain 
theories and want to compare their results. same-state? returns non-
nil if the states given as arguments differ in some way, and find-
corresponding-states produces an alist of equivalent states, given 
two TGIZMOs. Sometimes an interpretation includes several states with 
identical (or nearly so) process structures, so that highlighting the dif-
ferences in their Ds values becomes important to understanding them. 
Given a list of states, summarize-Ds-differences reports on what Ds 
values they have in common and highlights their differences. 

11.4.7 The core measurement interpretation algorithm (mi.lisp) 

One sign that a design has worked out well is that the code concerned 
with global issues and control turns out to be very simple. The TGIZMO 
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measurement interpretation algorithm is simplicity itself, as Figure 11.9 
shows. The procedure find-states computes all qualitative states con-
sistent with the assumptions in force within the TGIZMO provided. It 
uses search-psys to calculate the set of consistent view and process 
structures. For each such combination, resolve-completely generates 
the set of complete states by finding what changes in parameters can be 
caused by the active processes. Each complete state is recorded in the 
tgizmo-states field using snapshot. 

(defvar *laws-file* "/u/bps/code/tgizmo/laws.lisp") 
(defvar *domain-file* "/u/bps/code/tgizmo/tnst.lisp") 

(defun mi (scenario measurements 
&key (debugging nil) 
(debugging-dds nil) 

(title nil) 
(domain *domain-file*)) 

(with-tgizmo 
(setq *tgizmo* 
(create-tgizmo 
(if title title (format nil "MI of "A" scenario)) 
:DEBUGGING debugging :SCENARIO scenario 
:MEASUREMENTS measurements)) 

(with-LTRE (tgizmo-ltre *tgizmo*) 
(load *set-rule-file*) 
(setq *debug-dds* debugging-dds) 
(load *laws-file*) 
(load domain) 
(load-scenario scenario) 
(dolist (d measurements) 

(assume! d ':MEASURED)) 
(find-states *tgizmo*)) 

(values *tgizmo* (length (tgizmo-states *tgizmo*))))) 

(defun find-states (&optional (*tgizmo* *tgizmo*)) 
(setf (tgizmo-nstates *tgizmo*) 0) 
(setf (tgizmo-states *tgizmo*) nil) 
(Search-PSVS '(Resolve-Completely 

'(push (snapshot (incf (tgizmo-nstates *tgizmo*))) 
(tgizmo-states *tgizmo*))))) 

Figure 11.9 The TGIZMO measurement interpretation procedure 
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To gain additional insight into the system, or to evaluate changes in 
models or in the system itself, it is often useful to provide additional 
hooks into the interpretation process. The procedure debug-find-
states does this by executing a user-specified thunk for each consistent 
state. 

11.4.8 Implementing other laws of QP theory (laws.lisp) 

This file contains pattern-directed rules which encode the constraints 
of QP theory that do not appear elsewhere. Essentially, these rules pro-
vide either (1) clauses which are always appropriate whenever particular 
terms are mentioned in the database or (2) local constraints appropriate 
to particular belief states. 

The first set of rules (Figure 11.10) installs the basic constraints of 
quantities. The first rule installs the basic constraint that having a con-
tinuous property means that the underlying object exists, notes that the 
quantity has sets of direct and indirect influences (whose construals are 
computed as part of influence resolution), and records the quantity in 
the current TGIZMO. The next five rules translate ordinal statements in 
the standard Lisp prefix form into the internal form used by the inequal-
ity system, and calls install-comparison-constraints-if-needed 
to carry out transitivity processing. 

The next set of rules (Figure 11.11) provides the information needed to 
compute the view and process structures. Knowing whether or not a view 
or process is active determines whether or not it is a member of the view 
or process structure. These has-member statements could then used by 
the closed-world assumption mechanism to compute the construals of 
the sets VS and PS (see Exercise 18). 

Basic constraints on influences are instantiated by the next set of rules 
(Figure 11.12). The first rule asserts several basic facts. While laws con-
cerning individual influences suffice to infer that something is directly 
(or indirectly) influenced, only knowing that the set of influences is 
empty allows one to infer that a quantity is not directly (or indirectly) 
influenced. It enforces the constraint that no quantity can be both di-
rectly and indirectly influenced at the same time. And finally, it installs 
the constraint that an uninfluenced quantity cannot be changing. The 
next four rules install the direct consequences of influence statements. 
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(rule ((:INTERN (Quantity (?qtype ?individual)) :VAR ?cidec1)) 
;; Greatly restricted 
(rassert! (:IMPLIES ?qdecl (Exists ?individual)) 

:QUANTITY-EXISTENCE) 
(rassert! (set (DIs (?qtype ?individual))) :DIS-DEF) 
(rassert! (set (IIs (?qtype ?individual))) :IIS-DEF) 
(push (list ?qtype ?individual) (tgizmo-quantities *tgizmo*))) 

;;; In the next five rules, 
;;; 	?nl, ?n2 = (<A or D> (?qtype ?individual)) I <constant> 

(rule ((:INTERN (> ?nl ?n2) :VAR ?gt)) 
(install-comparison-constraints-if-needed ?nl ?n2) 
(rassert! (:IFF ?gt (:AND (?n2 <= ?n1) 

(:NOT 	<= ?n2)))) 
:>-DEF)) 

(rule ((:INTERN (< ?nl ?n2) :VAR ?lt)) 
(install-comparison-constraints-if-needed ?nl ?n2) 
(rassert! (:IFF ?lt (:AND (?n1 <= ?n2) 

(:NOT (?n2 <= ?n1)))) 
:<-DEF)) 

(rule ((:INTERN (= ?n1 ?n2) :VAR ?eq)) 
(install-comparison-constraints-if-needed ?n1 ?n2) 
(rassert! (:IFF ?eq (:AND (?n1 <= ?n2) 

(?n2 <= ?n1))) 
:=-DEF)) 

(rule ((:INTERN (>= ?nl ?n2) :VAR ?gte)) 
(install-comparison-constraints-if-needed ?nl ?n2) 
(rassert! (:IFF ?gte (?n2 <= ?n1)) :>=-DEF)) 

(rule ((:INTERN (<= ?nl ?n2) :VAR ?lte)) 
(install-comparison-constraints-if-needed ?nl ?n2) 
(rassert! (:IFF ?lte (?n1 <= ?n2)) :<=-DEF)) 

Figure 11.10 Basic rules concerning comparisons 
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(rule ((:TRUE (Active ?p) :VAR ?aform)) 
;; If active, it's in there. 
(rule ((:TRUE (Process-instance ?p) :VAR ?pform)) 

(rassert! (:IMPLIES (:AND ?pform ?aform) 
(PS has-member ?p)) 

:PS-MEMBER)) 
(rule ((:TRUE (View-instance ?p) :VAR ?pform)) 

(rassert! (:IMPLIES (:AND ?pform ?aform) 
(VS has-member ?p)) 

:VS-MEMBER))) 

(rule ((:FALSE (Active ?p) :VAR ?aform)) 
;; If inactive, it's known to not be in there. 
(rule ((:TRUE (Process-instance ?p) :VAR ?pform)) 

(rassert! (:IMPLIES (:AND ?pform (:NOT ?aform)) 
(:NOT (PS has-member ?p))) 

:NOT-PS-MEMBER)) 
(rule ((:TRUE (View-instance ?p) :VAR ?pform)) 

(rassert! (:IMPLIES (:AND ?pform (:NOT ?aform)) 
(:NOT (VS has-member ?p))) 

:NOT-VS-MEMBER))) 

Figure 11.11 Rules supplying constraints on views and processes 

That is, each influence statement contributes a member to the direct or 
indirect influences on a quantity. 

11.4.9 Debugging utilities (debug.lisp) 

This file contains some debugging utilities. The procedure new sets up a 
TGIZMO with the given scenario file, using the simple test domain theory 
described in Section 11.4.10. The calls to in-tgizmo and in-ltre ensure 
that the global variables *tgizmo* and *ltre* are bound to the newly 
created system. The first load statement provides the antecedent rules 
for enforcing QP theory constraints described previously, and the second 
load statement provides the default domain theory for testing. Loading 
the scenario completes the process. The procedures test-exl, test-
ex2, test-ex3, and test-ex3-2 use new to provide some simple exam-
ples of state generation. The procedure tgizmo-shakedown runs a set of 
standard examples and checks that their overall results match the cor-
rect answers. Like our other shakedown procedures, tgizmo-shakedown 
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(rule ((:INTERN (Quantity ?q) :VAR Nform)) 
(rassert! (:IFF (:OR (:NOT ?qform) ((DIs ?q) members nil)) 

(:NOT (Directly-Influenced ?q))) 

:DIS-DEFINITION) 
(rassert! (:IFF (:OR (:NOT ?qform) ((IIs ?q) members nil)) 

(:NOT (Indirectly-Influenced ?q))) 

:IIS-DEFINITION) 
(rassert! (:NOT (:AND ?qform 

(Directly-Influenced ?q) 

(Indirectly-Influenced ?q))) 
:OP-CONSISTENCY-LAW) 

(rassert! (:IMPLIES (:AND ?qform 
(:NOT (Directly-Influenced ?q)) 
(:NOT (Indirectly-Influenced ?q))) 

(= (D ?q) ZERO)) 
:UNINFLUENCED-DEFINITION)) 

(rule ((:TRUE (I+ ?influenced ?influencer ?source) :VAR ?Is)) 
(rassert! (:IMPLIES ?Is (Directly-Influenced ?influenced)) 

:DIS-DEFINITION) 
(rassert! (:IFF ?Is ((DIs ?influenced) has-member ?Is)) 

:DIS-DEFINITION)) 

(rule ((:TRUE (I- ?influenced ?influencer ?source) :VAR ?Is)) 
(rassert! (:IMPLIES ?Is (Directly-Influenced ?influenced)) 

:DIS-DEFINITION) 
(rassert! (:IFF ?Is ((DIs ?influenced) has-member ?Is)) 

:DIS-DEFINITION)) 

(rule ((:TRUE (Qprop ?influenced ?influencer ?source) :VAR ?Is)) 
(rassert! (:IMPLIES ?Is (Indirectly-Influenced ?influenced)) 

:IIS-DEFINITION) 
(rassert! (:IFF ?Is ((IIs ?influenced) has-member ?Is)) 

:IIS-DEFINITION)) 

(rule ((:TRUE (Qprop- ?influenced ?influencer ?source) :VAR ?Is)) 
(rassert! (:IMPLIES ?Is (Indirectly-Influenced ?influenced)) 

:IIS-DEFINITION) 
(rassert! (:IFF ?Is ((IIs ?influenced) has-member ?Is)) 

:IIS-DEFINITION)) 

Figure 11.12 Implementing basic constraints on influences 
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(defentity (Container ?can) 

(quantity (pressure ?can))) ;; at bottom 

(defentity (fluid-path ?path)) 
(defentity (heat-path ?path)) 

(defentity (Physob ?phob) 
(quantity (heat ?phob)) 
(quantity (temperature ?phob)) 
(> (A (heat ?phob)) ZERO) 
(> (A (temperature ?phob)) ZERO) 

(qprop (temperature ?phob) (heat ?phob))) 

(defentity (Temperature-Source ?phob) 
(quantity (heat ?phob)) 
(quantity (temperature ?phob)) 
(> (A (heat ?phob)) ZERO) 
(> (A (temperature ?phob)) ZERO)) 

Figure 11.13 Some basic types of entities 

can be very useful in finding out whether a port of TGIZMO to a new en-
vironment is working correctly and assessing the impacts of changes to 
the system. 

11.4.10 A sample domain theory (tnst.lisp) 

This file describes tiny naive steam theory, a simple theory of fluids and 
heat. It is very naive, but provides a good illustration of how interesting 
conclusions can often be drawn from weak initial information. It begins 
by defining some basic objects, then defines some flow processes, and 
finally defines a simple theory of boiling. Let us consider each in turn. 

Recall that def entity is used to introduce new classes of objects. 
Figure 11.13 shows how we define containers, paths, physobs, and tem-
perature sources as basic kinds of objects. A container has a pressure, 
taken to be the pressure measured at the lowest point inside it. Here we 
take fluid paths and heat paths to be objects about which nothing partic-
ularly interesting is said, save that they connect objects to each other in 
ways that enable particular kinds of flows. A physob is a generic physi-
cal object. It has the thermal properties heat and temperature, both of 
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(defrule Contained-Stuff-Existence 
((Container ?can)(Phase ?st)(Substance ?sub)) 
;; Assume that every kind of substance can exist in 
;; in every phase inside every container. 
(quantity ((amount-of ?sub ?st) ?can)) 
(>= (A ((amount-of ?sub ?st) ?can)) ZERO)) 

(defview (Contained-Stuff (C-S ?sub ?st ?can)) 
:INDIVIDUALS ((?can (container ?can) 

(substance ?sub) 
(phase ?st))) 

:QUANTITY-CONDITIONS ((> (A ((amount-of ?sub ?st) ?can)) ZERO)) 
:RELATIONS ((Only-During (Exists (C-S ?sub ?st ?can))) 

(Contained-stuff (C-S ?sub ?st ?can)) 
(quantity (TBoil (C-S ?sub ?st ?can))) 

(> (A (TBoil (C-S ?sub ?st ?can))) ZERO))) 

Figure 11.14 Defining contained stuffs 

which are presumed to be greater than zero. Temperature is considered 
to be qualitatively proportional to the heat of the physob. A temperature 
source also has heat and temperature, but no functional relationship is 
presumed between them. Since no processes directly influence tempera-
ture, and temperature in the heat source is unconstrained by qualitative 
proportionalities, this means the temperature of a heat source will be 
constant no matter how much heat is added to or withdrawn from it. 

Contained stuffs are a more complicated kind of object (see Figure 
11.14). A contained stuff consists of all the substance in a particular 
phase inside a given container. Thus "the coffee in my cup" and "the 
water in the riverbed" and "the steam in the kettle" are all individuals of 
this type. The rule contained-stuff-existence asserts that for every 
combination of phase and substance and container, there is a quantity 
denoting the amount of that substance in that phase inside that con-
tainer, and furthermore that amount can never be negative. (In a more 
sophisticated theory one might filter more, for instance noting that a 
copper cup won't hold concentrated acid for very long.) 

The existence of a contained stuff is predicated on the amount of it 
there is: if one drinks all the coffee in a cup it is gone, and if the riverbed 
has no water we say the river has disappeared. This fact is captured by 
the view contained-stuf,  f , which uses the function C-S to denote a 
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(defentity (Contained-Stuff (C-S ?sub liquid ?can)) 
(Contained-Liquid (C-S ?sub liquid ?can))) 

(defentity (Contained-Liquid (C-S ?sub liquid ?can)) 
(physob (C-S ?sub liquid ?can)) 
(quantity (level (C-S ?sub liquid ?can))) 
(qprop (level (C-S ?sub liquid ?can)) 

((Amount-of ?sub liquid) ?can)) 
(qprop (pressure ?can) (level (C-S ?sub liquid ?can)))) 

(defentity (Contained-Stuff (C-S ?sub gas ?can)) 
(Contained-gas (C-S ?sub gas ?can))) 

(defentity (Contained-Gas (C-S ?sub gas ?can)) 
(physob (C-S ?sub gas ?can)) 
(qprop (pressure ?can) 

(temperature (C-S ?sub gas ?can))) 
(qprop (pressure ?can) 

((amount-of ?sub gas) ?can))) 

Figure 11.15 Representing some differences between liquids and gases 

contained stuff. When the amount of a substance in a particular phase 
inside a container is greater than zero, we then say that the appropri-
ate contained stuff exists. The only-during statement asserts, more 
strongly, that the stuff exists if and only if the conditions of this view are 
met. Contained stuffs are also presumed to have a boiling point (tboil), 
which is presumed to be greater than zero. 

The differences between liquids and gases are captured by the de-
fentity statements defining the predicates contained-liquid and 
contained-gas (see Figure 11.15). Both are physobs. A liquid has the 
additional parameter level, which is qualitatively proportional to the 
amount of stuff, and in turn helps determine the pressure of its con-
tainer. A gas has no additional quantities, but contributes to the pressure 
inside the container differently than liquids. Specifically, the pressure of 
the can will tend to rise and fall as the amount of the gas and its temper-
ature are increased and decreased, respectively. (Notice that if we have 
both a gas and a liquid in the same container, they jointly determine the 
container's pressure.) The two def entity statements for Contained-
Stuff with constant arguments basically connect a particular contained 
stuff with its appropriate type. 
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(defprocess (heat-flow ?src ?path ?dst) 

:INDIVIDUALS ((?src (Quantity (heat ?src))) 
(?path (Heat-Connection ?path ?src ?dst)) 

(?dst (Quantity (heat ?dst)))) 

:PRECONDITIONS ((Heat-Aligned ?path)) 
:QUANTITY-CONDITIONS ((> (A (temperature ?src)) 

(A (temperature ?dst)))) 

:RELATIONS ((Quantity (flow-rate ?self)) 
(> (A (flow-rate ?self)) zero) 
(Qprop (flow-rate ?self) (temperature ?src)) 
(Qprop- (flow-rate ?self) (temperature ?dst))) 

:INFLUENCES ((I- (heat ?src) (flow-rate ?self)) 
(I+ (heat ?dst) (flow-rate ?self)))) 

(defprocess (fluid-flow (C-S ?sub ?st ?src) ?path ?dst) 
:INDIVIDUALS ((?src (container ?src) 

(substance ?sub) (phase ?st)) 
(?path (fluid-Connection ?path ?src ?dst)) 
(?dst (container ?dst))) 

:PRECONDITIONS ((Aligned ?path)) 
:QUANTITY-CONDITIONS ((> (A ((amount-of ?sub ?st) ?src)) ZERO) 

(> (A (pressure ?src)) (A (pressure ?dst)))) 
:RELATIONS ((Quantity (flow-rate ?self)) 

(> (A (flow-rate ?self)) zero) 
(Qprop (flow-rate ?self) (pressure ?src)) 

(Qprop-  (flow-rate ?self) (pressure ?dst))) 
:INFLUENCES ((I- ((amount-of ?sub ?st) ?src) (flow-rate ?self)) 

(I+ ((amount-of ?sub ?st) ?dst) (flow-rate ?self)))) 

Figure 11.16 Simple flow processes 

This theory has two flow processes, heat-flow and fluid-flow (see 
Figure 11.16). Heat flow is simpler, in that the source (?src) and des-
tination (?dst) only have to have the quantity heat and be connected 
by a heat path (?path). When an instance of heat flow is active, there 
is a quantity of type flow-rate associated with the process, which is 
positive and is increasing monotonic in its dependence on the source 
temperature and decreasing monotonic in its dependence on the destina-
tion temperature. This is a qualitative encoding of the fact that the flow 
rate is proportional to the temperature difference driving the flow; see 
Exercise 16 for a more detailed qualitative rendering. Finally, the direct 
influences act to decrease the heat in the source and increase the heat 
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(defprocess (boiling (C-S ?sub liquid ?can) 
(heat-flow ?ht-src ?hpath 

(C-S ?sub liquid ?can))) 
:INDIVIDUALS ((?sub (substance ?sub)) 

(?can (container ?can) 
(Contained-Liquid (C-S ?sub liquid ?can))) 

(?hpath (heat-path ?hpath)) 
(?ht-src (heat-connection ?hpath ?ht-src 

(C-S ?sub liquid ?can)))) 
:QUANTITY-CONDITIONS ((> (A ((amount-of ?sub liquid) ?can)) zero) 

(Active (heat-flow ?ht-src ?hpath 
(C-S ?sub liquid ?can))) 

(>= (A (temperature (C-S ?sub liquid ?can))) 
(A (tboil (C-S ?sub liquid ?can))))) 

:RELATIONS ((quantity (generation-rate ?self)) 
(:IMPLIES (Exists (C-S ?sub gas ?can)) 

(= (A (temperature (C-S ?sub gas ?can))) 
(A (temperature (C-S ?sub liquid ?can))))) 

(> (A (generation-rate ?self)) zero)) 
:INFLUENCES ((I+ ((amount-of ?sub gas) ?can) 

(generation-rate ?self)) 
(I- ((amount-of ?sub liquid) ?can) 

(generation-rate ?self)) 
(I-  (heat (C-S ?sub liquid ?can)) 

(flow-rate (heat-flow ?ht-src ?hpath 
(C-S ?sub liquid ?can)))))) 

Figure 11.17 A simple representation of boiling 

in the destination, by the amount of the flow rate. fluid-flow is very 
similar. 

The only phase change included in this theory is boiling (see Fig-
ure 11.17), which happens for a contained liquid that has a heat path. It 
occurs when there is water in the container whose temperature is not less 
than the boiling point of the contained stuff and is being heated. There is 
a non-zero generation rate, and when there is steam in the container, it is 
at the same temperature as the water it came from. The direct influences 
on amounts are fairly obvious: the identical flow rates conserve matter, 
just as in the case of heat flow identical rates conserve energy. The flow 
rate of the heat flow is subtracted from the temperature of the water, 
to model the fact that the heat coming into the water is being used to 
change its phase rather than its temperature. 



407 	 Implementing Qualitative Process Theory 

There are many flaws in this simple domain theory. We have not in-
corporated detailed container geometry, nor path conductances, nor the 
possible interactions between different substances. However, this simple 
theory suffices to exercise our system. 

11.5 Examples 

Let us examine the results of running TGIZMO on several examples. 

11.5.1 Two containers 

This simple example is useful for becoming familiar with the basics 
of TGIZMO and domain theories. The file exl.lisp describes two con-
tainers, connected by a fluid path. The only declared phase is liquid, 
hence gases are not considered.'2  The procedure test-exi in the file 
debug. lisp was used to generate all states for this scenario using the 
domain theory in tnst . lisp, making no additional assumptions about 
measurements. Notice that the scenario file does not itself directly spec-
ify the existence of physical processes, or even all the individuals implied 
by these circumstances. Inferring the existence of such individuals is one 
of TGIZMO's tasks. 

Figure 11.18 summarizes the states computed for this scenario by us-
ing the state index computed from the results of find-states. Two 
views were created, corresponding to the possibility of contained liquid 
in each container. Two fluid-flow processes were created, thus modeling 
the possibility of flow in each direction across the path. There are eight 
states in all. The first cluster of three states corresponds to both F and 
G containing liquid, as indicated by both contained-stuff views being 
active. Depending on the relationship between the pressures in the con-
tainers (and whether or not the path is aligned, see Exercise a), either 
there will be a flow from F to G, a flow from G to H, or no flow at all. 
The cases where there is just water in F or just water in G are symmetric: 

12. More general ways to modulate what aspects of a domain theory are used in 
modeling a specific situation can be found in [2, 7]. 
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;;;; State index for Example 1, no constraints 

;;;; Dumped 10/29/91, by KDF 

(EXISTS P1) 

(EXISTS G) 

(EXISTS (C-S WATER LIQUID G)) 

(EXISTS F) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(EXISTS (C-S WATER LIQUID F)) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

1 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(EXISTS P1) 

(EXISTS 0) 

(EXISTS (C-S WATER LIQUID G)) 

(EXISTS F) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(NOT (EXISTS (C-S WATER LIQUID F))) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G))) 

(NOT (ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F)))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1.  GM 

1 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(EXISTS P1) 

(EXISTS G) 

(NOT (EXISTS (C-S WATER LIQUID G))) 

(EXISTS F) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(EXISTS (C-S WATER LIQUID F)) 
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(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 
(NOT (ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G)))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F))) 
(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

1 states. 
(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 
(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(EXISTS P1) 
(EXISTS G) 
(NOT (EXISTS (C-S WATER LIQUID G))) 
(EXISTS F) 
(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 
(NOT (EXISTS (C-S WATER LIQUID F))) 
(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

(NOT (ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G)))) 
(NOT (ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F)))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 
(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

Figure 11.18 Summary of states found for Two Containers example 

each has two states, one corresponding to the possibility of water flow-
ing from the container that has it into the container that doesn't, and 
the other state corresponding to no flow. The last state represents the 
possibility of both containers being empty, in which nothing at all can 
happen. 

Let us look at a more complex example next, to see how the measure-
ment interpretation operates. 

11.5.2 Three containers 

Consider again the scenario illustrated in Figure 11.1, now formally mod-
eled in the scenario file ex3. lisp. What can we infer about the situation 
if we observe the level of water in G to be falling? Running the proce-
dure MI on this problem yields nine states, as illustrated in Figure 11.19. 
Viewed in terms of process structures, these states can be divided into 
five equivalence classes (see Figure 11.20). This summarization is useful 
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(mi *ex3* *ex3-measurements* :DEBUGGING *default-debugging* :TITLE "Ex3 test") 

;;; Loading source file "/u/bps/code/tgizmo/laws.lisp" 

;;; Loading source file "/u/bps/code/tgizmo/tnst.lisp" 

;;; Loading source file "/u/bps/code/tgizmo/ex3.1isp" 

<TGizmo Ex3 test> 

9 

> (summarize-state-index (make-state-index *tgizmo*)) 

(EXISTS P2) 

(EXISTS P1) 

(EXISTS H) 

(EXISTS (C-S WATER LIQUID H)) 

(EXISTS G) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID H) P2 G)) 

(EXISTS (C-S WATER LIQUID G)) 

(EXISTS F) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(EXISTS (C-S WATER LIQUID F)) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID H))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G)) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

3 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

3 states. 
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Figure 11.20 Possible interpretations for level in G dropping. Here is a 
graphical interpretation of the results in Figure 11.19. 
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(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G))) 

1 states. 

NIL 

Figure 11.19 What can be happening when G is dropping? 

because the process structure tends to be sufficient to determine what 
corrective action is needed, if any. 

Suppose we need to pin down what is happening in the system more 
precisely. If we think about the possibilities shown in Figure 11.20, they 
differ in what they predict for the levels of F and H. If we measure F and 
find it decreasing, only one process structure is possible. There are three 
states corresponding to this process structure, because in our domain 
theory we have only very weak constraints on how the flow rate of fluid 
flow depends on the pressures in the source and destination. The results 
are illustrated in Figure 11.21. 
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(time (mi *ex3* *ex3-extra-measurements* :DEBUGGING nil :TITLE "Ex3 test 	More 

data")) 

;;; Loading source file "/u/bps/code/tgizmo/laws.lisp" 

;;; Loading source file "/u/bps/code/tgizmo/tnst.lisp" 

;;; Loading source file "/u/bps/code/tgizmo/ex3.1isp" 

<TGizmo Ex3 test -- More data> 

3 

> (summarize-state-index (make-state-index)) 

(EXISTS P2) 

(EXISTS P1) 

(EXISTS H) 

(EXISTS (C-S WATER LIQUID H)) 

(EXISTS G) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID H) P2 G)) 

(EXISTS (C-S WATER LIQUID G)) 

(EXISTS F) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P1 F)) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(EXISTS (C-S WATER LIQUID F)) 

(EXISTS (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID H))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID G))) 

(ACTIVE (CONTAINED-STUFF (C-S WATER LIQUID F))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID H) P2 G))) 

(NOT (ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P1 F))) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID G) P2 H)) 

(ACTIVE (FLUID-FLOW (C-S WATER LIQUID F) P1 G)) 

3 states. 

NIL 

> (summarize-Ds-differences (tgizmo-states *tgizmo*)) 

Common Ds values: 

Ds[PRESSURE(H)]=1 

Ds[(AMOUNT-OF WATER LIQUID)(H)]=1 

Ds[TBOIL((C-S WATER LIQUID H))]=0 

Ds[HEAT((C-S WATER LIQUID H))]=0 

Ds[TEMPERATURE((C-S WATER LIQUID H))]=0 

Ds[LEVEL((C-S WATER LIQUID H))]=1 

Ds[PRESSURE(G)]=-1 

Ds[(AMOUNT-OF WATER LIQUID)(G)]=-1 
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Ds[TBOIL((C-S WATER LIQUID G))]=0 
Ds[HEAT((C-S WATER LIQUID G))]=0 
Ds[TEMPERATURE((C-S WATER LIQUID G))]=0 

Ds[LEVEL((C-S WATER LIQUID G))]=-1 

Ds[PRESSURE(F)]=-1 
Ds[FLOW-RATE((FLUID-FLOW (C-S WATER LIQUID G) P2 H))]=-1 

Ds[(AMOUNT-OF WATER LIQUID)(F)]=-1 
Ds[TBOIL((C-S WATER LIQUID F))]=0 
Ds[HEAT((C-S WATER LIQUID F))]=0 
Ds[TEMPERATURE((C-S WATER LIQUID F))]=0 
Ds[LEVEL((C-S WATER LIQUID F))]=-1 
For <State 3>: 

Ds[FLOW-RATE((FLUID-FLOW (C-S WATER LIQUID F) P1 G))]=-1 
For <State 2>: 

Ds[FLOW-RATE((FLUID-FLOW (C-S WATER LIQUID F) P1 G))]=0 

For <State 1>: 
Ds[FLOW-RATEUFLUID-FLOW (C-S WATER LIQUID F) P1 G))]=1 

Figure 11.21 Interpretations for the case of G and F dropping 

11.5.3 Analysis of the implementation 

While TGIZMO lacks many features required of a full implementation of 
QP theory, it illustrates how many of the ideas described in this book can 
be combined to build powerful reasoning systems. It is large enough that 
some common features of "industrial-strength" reasoning systems begin 
to emerge, so it is worth remarking on them. 

The first observation is that while attempts to formalize non-monoton-
ic reasoning in logical terms are proceeding steadily but slowly, that does 
not mean that one cannot perform quite sophisticated non-monotonic 
reasoning in practice. For example, a thorny problem for logical formu-
lations of change is the qualification problem, that is, stating kinds of 
things can affect a situation. The stance taken in QP theory is that such 
problems are best addressed at the level of theories that exploit prop-
erties of classes of domains. By defining processes as the sources of 
change, and using explicit closed-world assumptions to indicate what as-
pects of the world are being considered, we have the information needed 
both to sanction inferences and to figure out what to retract if those 
inferences turn out to be incorrect. The simple set-based closed-world 
assumption mechanism introduced in Chapter 10, when used correctly, 
produces exactly the results one would expect. 
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The second observation concerns an inevitable trade-off in building 
pattern-directed inference systems: How much work should be done by 
rules versus some other mechanism(s)? While rules as a procedure model 
have the advantages of explicitness and modularity, we have already seen 
that the necessity of making some decisions on global criteria means 
they cannot by themselves be sufficient. Here, the use of closed-world 
assumptions forced us to put certain operations in Lisp code. The deci-
sion to close a set is a global decision that cannot be made by any local 
antecedent rule. This is not to say that one cannot do better than Lisp 
code: one might for example describe meta-rules that trigger on global 
features of the database and specify what actions to perform based on 
global criteria. But figuring out the right vocabulary of global features, 
and the appropriate control strategy for such rules, is still very much an 
open problem. 

The third observation concerns the other role for special-purpose pro-
grams in reasoning systems: efficiency. In TGIZMO we put responsibility 
for several aspects of qualitative reasoning, which could easily have been 
implemented via pattern-directed rules, into Lisp code. The unambigu-
ous cases of influence resolution, for instance, can easily be specified 
as pattern-directed rules once the appropriate closed-world assumptions 
have been made. But since the laws of influence resolution are both fixed 
and central to the operation of the system, we decided to make them as 
fast as possible. This is the natural migration path when building sys-
tems to operate on problems that live near the edge of one's computing 
technology. Prototype using pattern-directed rules, by all means. But if 
performance becomes a problem, start examining what core operations 
can be moved into "hard-wired" procedures. 

The final observation concerns building habitable systems. While inter-
faces are natural time-sinks, providing some basic facilities is always a 
good idea. For instance, expecting users to write Lisp code to describe a 
domain theory would be completely inappropriate. After all, the whole 
point of identifying a particular kind of reasoning and supporting it 
through a modeling language is to raise the level of abstraction closer to 
human intuitions. As systems grow larger, specialized display routines 
and debugging tools become indispensable. The file states . lisp, for 
instance, consists mostly of procedures that display information about 
states and produce reports. Such routines aren't very intellectually inter-
esting. But then again, neither are low-level device drivers, even though 
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they are essential to a computer's operations. As one moves from sim-
ple, knowledge-poor prototype systems to systems that know more, such 
utilities become even more essential. TGIZMO gets about as complicated 
to debug as one would like without having a powerful graphical user in-
terface. 

11.6 Backpointers 

The algorithms in TGIZMO are mostly simplified and modernized ver-
sions of those found in GIZMO [9], the first implementation of QP theory, 
which also used a logic-based TMS as a substrate. The major exception 
is the idea of reasoning with soft inequalities, which is based on unpub-
lished work by John Collins and Dennis DeCoste on IQE, an incremental 
qualitative simulator for QP theory. 

A good starting point to learn more about qualitative physics is [24], 
which provides a broad overview, and [8, 1], which provide samples of 
recent research. 

11.7 Exercises 

1. * In Figure 11.16 the quantity conditions for fluid flow were given as 

((> (A ((amount-of ?sub ?st) ?src)) ZERO) 
(> (A (pressure ?src)) (A (pressure ?dst)))) 

Is the first conjunct necessary? Why or why not? 

2. * What would happen when TGIZMO tried to instantiate the follow-
ing description: 

(defprocess (Zorch-it ?foo) 
:INDIVIDUALS ((?foo (physob ?foo))) 
:QUANTITY-CONDITIONS ((< (A (strength ?foo)) 

(A (strength ?bar)))) 
:RELATIONS ((Quantity (grump ?self)) 

(Qprop (grump ?self) (strength ?bar))) 
:INFLUENCES ((I+ (strength ?foo) (grump ?self)))) 
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3. * Why does resolve-influences check for a Resolved statement 
rather than just looking to see if the Ds value for that quantity is 
known? 

4. * Recall that the intimate relationship between an object and its 
continuous properties means that no ordinal relationship involving 
a number N1 and any other number can hold when the object Ni 
belongs to does not exist. That is, for all N2, 

-1[N1 N21 A -[N2 ~N1}  

Why doesn't check-comp-cycle look for this case explicitly? 

5. 	* In Figure 11.18, there is only one state for the circumstance where 
neither flow is active. Yet there are two reasons that the flow might 
not occur: (1) the pressures might be equal, or (2) the path might 
be blocked, modeled by (aligned path) being false. Why, then, is 
there only one state? 

6. This problem concerns the implementation of the notion of magni-
tude (that is, the logical function m) in TGIZMO. 

a. 	* In what circumstances would m be useful? 

b, * Which TGIZMO procedures and rules would have to be modi-
fied to fully implement m? 

c. * * Extend the qualitative mathematics in TGIZMO to allow the 
use of m. 

7. 	* * Profile the performance of TGIZMO on several examples and fig-
ure out which subsystem(s) are using the most resources. Make three 
suggestions for speeding up the most critical subsystem(s). 

8. Suppose we have some way of marking particular parameters whose 
Ds values can be measured. 

a. * * Write a procedure predictions that figures out what addi-
tional measurements would discriminate between multiple inter-
pretations suggested by existing measurements. 

b. * * If we run the measurement interpretation algorithm without 
any measurements to explain, it will generate the entire set of 
possible states for the scenario. Use this fact to write a system 
which, given a scenario and domain theory, compiles a discrimi- 
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nation tree that can provide the same results as the MI algorithm 
for any data, but without doing any qualitative reasoning on-line. 

9. Ideally, the information stored in a state struct is sufficient to re-
construct the contents and labels of the LTRE database from which it 
was formed. 

a. * Is the information stored by snapshot really sufficient to al-
low the reconstruction of the original LTRE database? If not, 
specify what is missing and what other information should be 
stored to allow the reconstruction. 

b. ** Write a procedure reconsider, which takes a state and a 
TGIZMO (and perhaps some other information, if needed) and 
reproduces the given state in that TGIZMO. 

10. * ** Extend TGIZMO to perform limit analysis. 

11. ** * Use TGIZMO augmented with limit analysis to implement an 
envisioner. 

12. * * * Use TGIZMO augmented with limit analysis to implement a 
history generator. 

13. It is inevitable that interpretation of a situation always depends on 
the domain theory and what is known about the scenario. 

a. * What should the MI algorithm produce if we provide as inputs 
the domain theory tnst and the scenario ex2, and stipulate that 
the level of water in the can is dropping? Does it produce the 
answer you expect? 

b. * * * Extend the tnst domain theory to include evaporation 
and condensation. What sorts of results does the MI algorithm 
produce now for the scenarios exl, ex2, and ex3? 

14. Often other kinds of knowledge are available to reduce the number 
of possible interpretations for a set of measurements. 

a. * List three kinds of information that might reduce the number 
of interpretations of a set of measurements. 

b. * ** Extend TGIZMO to incorporate at least one of the kinds of 
knowledge from your answer for part (a). Test your extension on 
a variety of examples. 
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15. This exercise explores trade-offs in the organization of the search in 
the measurement interpretation algorithm. 

a. * Suppose we organized our measurement interpretation search 
around whether or not the union of all preconditions and quan-
tity conditions were true or false, rather than basing it on what 
processes and views are active. How would this affect (1) the 
number of interpretations produced, (2) the amount of informa-
tion in each interpretation, and (3) the efficiency of the reason-
ing? 

b. * * Suppose we don't want any more detail in our interpretations 
than the process structure. In that case, the current MI algorithm 
does more work than necessary. Rewrite it so that it does as little 
computation as possible to establish that a process structure 
provides a valid interpretation for a set of measurements. 

c. * * * For really large problems (e.g., troubleshooting an automo-
bile engine or a process plant) even computing the entire process 
structure involves too much irrelevant work. Develop a backward 
chaining version of the MI algorithm that instantiates only the 
potentially relevant aspects of a domain theory in a scenario, and 
searches this more restricted space. 

16. The modeling language used in TGIZMO supports only a subset 
of the qualitative mathematics defined in QP theory. This problem 
extends the modeling language in several directions, to allow more 
detailed qualitative models to be expressed. 

a. 	* * One useful primitive is Correspondence, which propagates 
ordinal information across qualitative proportionalities. For ex-
ample, we might say: 

(Correspondence ((Level (C-S ?sub ?ph ?can)) (Bottom ?can)) 
((Amount-of-in ?sub ?ph ?can) zero)) 

which says that the level of water in a can is equal to the bottom 
(height) of the can when the amount of water in the can is equal 
to zero. If we know 

(qprop (Level (C-S ?sub ?ph ?can)) (amount-of-in ?sub ?ph ?can)) 

then the correspondence allows us to conclude that when the 
amount of water is greater than zero the level will be above the 
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bottom of the can. Write an LTRE rule which implements Cor-
respondence. Your rule must allow quantities to have multiple 
indirect influences, and must take the signs of the qualitative 
proportionalities into account. 

b. * * A basic property of functions is that they are single-valued. 
For instance, we know that if we have two identical drinking 
glasses, and put more water in one than the other, then the level 
in the glass with more water will be higher than the level in the 
other. To draw conclusions like this requires surprisingly little: 
we only need to know that the functions are the same, not pre-
cisely what they are. The primitive Function-Spec provides this 
service. For instance, 

(defentity (Contained-Liquid ?cl) 
(Function-Spec P-L-Function 

(Qprop (Pressure ?cl) (Level ?cl)))) 

indicates that the same function (P-L-Function) determines 
pressure as a function of level for all containers. (QP theory 
also defines other primitives for specifying functional dependen-
cies involving things other than quantities, but we ignore this 
possibility here.) Essentially, Function-Spec provides a way to 
propagate ordinal information across objects. Write an LTRE rule 
that enforces the semantics of Function-Spec. (Hint: Your solu-
tion to implementing Correspondence will be very useful.) 

c. * * Symbolic algebra can be computationally complicated, and 
hence tends to be avoided in most qualitative simulation algo-
rithms. This does not mean that allowing more complex math-
ematical connectives is undesirable, however, even for simple 
qualitative models. For instance, we would really prefer to define 
the flow rate of heat flow as: 

(= (flow-rate ?self) (- (temperature ?src) 
(temperature ?dst))) 

since for positive temperatures this forces the flow rate to be 
positive when the heat flow process is active. Write an LTRE rule 
that transforms = statements constraining a quantity by binary 
sums and products into the appropriate qualitative proportional-
ities and correspondences. 
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d. * * Products and ratios are also important in building domain 
theories. For instance, 

(= (temperature ?stuff) (/ (heat ?stuff) 
(amount-of ?stuff))) 

is a more accurate definition of temperature, and 

(= (flow-rate ?self) (* (thermal-conductance ?path) 
(- (temperature ?src) 

(temperature ?dst)))) 

is a more accurate definition of how the thermal conductance 
of a path affects rates of heat flow. Implement products and 
quotients in terms of qualitative proportionalities and correspon-
dences. 

e. * * * Ideally we would like to do as much expanding of rule infor-
mation as possible when a rule is compiled. Applying this princi-
ple to domain theories suggests that instead of implementing the 
mathematical primitives in the previous subproblems as LTRE 
rules, we should instead move them into translate-relations, 
and figure out the "right" set of clauses to be instantiated at com-
pile time. Extend translate-relations to perform these tasks. 

17. A friendly modeling language should provide syntactic support for 
common patterns of usage. While the format of the individuals field 
in TGIZMO's modeling language is simple to implement, it could be 
easier to use. For instance, the pattern 

(?sub (substance ?sub)) 

indicates that ?sub is of type substance. Since this pattern is com-
mon, it can simplify a modeler's job if we allow the introduction of a 
keyword : TYPE, so that 

(?sub :TYPE substance) 

means the same thing. The ability to add additional statements after 
the initial specification can be recaptured by adding the keyword 
: CONDITIONS, i.e., 

(?gas :TYPE Contained-Gas 
:CONDITIONS (Consider (Gas :system))) 
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Another handy feature is the ability to perform procedural tests 
on the arguments bound so far, to filter out clearly unproductive 
possibilities. So, for example, before installing a view representing 
the existence of a reaction force, we might check to see if the force 
we are looking at is already a reaction to some external force, since in 
that case installing yet another reaction force will lead to an infinite 
regress. We could add a keyword : TEST for this, just as we added 
procedural tests to our TREs: 

(?force :TYPE force :TEST (not (reaction-force? ?force))) 

Finally, it is sometimes useful to allow abbreviations to be introduced 
for compound terms, like 

(?dst-cl :BIND (C-S ?sub ?st ?dst)) 

which says that in the rest of the process (or view) description, the 
variable ?dst-cl (probably the "contained liquid in the destination") 
is shorthand for (C-S ?sub ?st ?dst), where ?sub, ?st, and ?dst 
are variables bound by earlier entries in the individuals field. 

a. * * Extend mlang. lisp to allow :TYPE, :CONDITIONS, :TEST, 
and : BIND specifications in individuals fields. 

b. * Some would argue on aesthetic grounds that we should also 
include a keyword : ASSUMPTIONS to indicate what subset of the 
individuals field consists of modeling assumptions. Present 
arguments for and against the inclusion of : ASSUMPTIONS. 

c. ** An unfortunate consequence of our decision to use the sim-
plest possible mapping between statements in the individuals 
field and LTRE rules is that someone writing a domain model 
must know more than they should about TGIZMO's internals to 
optimize their theories. For instance, a very natural way to write 
the individuals for heat flow is 

:INDIVIDUALS ((?src (Quantity (heat ?src))) 
(?dst (Quantity (heat ?dst)))) 
(?path (Heat-Connection ?path ?src ?dst)) 

since the source and destination are typically the primary focus 
of our analysis (unless we are thermal engineers). But the most 
efficient way to write this description is 
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:INDIVIDUALS ((?path (Heat-Connection ?path ?src ?dst)) 
(?src (Quantity (heat ?src))) 
(?dst (Quantity (heat ?dst)))) 

since the first way looks at every pair of objects with heat, while 
the second exploits the fact that (at least in this domain theory) 
every heat path connects exactly two objects and thus once we 
know the path we know the source and destination, and if there 
is no path the whole issue of heat flow is moot anyway. Change 
mlang. lisp to automatically optimize the pattern-matching car-
ried out in individuals specifications. What additional knowl-
edge of the predicates do you need in order to get the most im-
provement, and how might you simplify the specification of such 
knowledge for domain modelers? 

18. A useful technique in building domain theories is to add additional 
antecedents in the individuals field that describe the assumptions 
under which a particular fragment of that theory makes sense. We 
used this in modeling thermal conductance: 

(defview (Heat-Flow-Thermal-Conductance ?hf) 
:INDIVIDUALS ((?hf (process-instance (heat-flow ?src ?path ?dst)) 

(Consider (Thermal-Conductance ?path)))) 
:QUANTITY-CONDITIONS ((Active ?hf)) 
:RELATIONS ((Qprop+ (flow-rate ?hf) (thermal-conductance ?path)))) 

That is, this view will only be applicable when 

(Consider (Thermal-Conductance ?path)) 

holds. This technique can be used to encode multiple, and even con-
tradictory, perspectives about a phenomenon in the same domain 
theory. Then, by changing the modeling assumptions, we can select 
which aspects of a domain theory to apply for a given analysis. This 
is useful because typically only a subset of one's knowledge is rele-
vant to any particular task. 

a. ** Add notions of fluid conductance and path conductance to 
the Tiny Naive Steam theory, scoped with the appropriate model-
ing assumptions. 
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b. * * Modify the evaporation and phase change processes you de-
veloped for Exercise b to include explicit simplifying assump-
tions. 

c. * * Write a procedure considerations which, given a fact, pro-
duces the list of Consider assumptions it rests upon. 

d. * * * Use the results of the previous parts of this exercise and 
your work from Exercise a to build a more efficient measure-
ment interpretation system that first determines whether a very 
restricted set of the domain theory can account for what is seen, 
and widens the search to include more phenomena only when the 
most obvious candidates cannot by themselves explain what is 
happening. 
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12 	Assumption-Based Truth 
Maintenance Systems 

Many problem-solving tasks require the inference engine to rapidly 
switch among contexts or to work in multiple contexts at once. Two 
such tasks are qualitative reasoning and diagnosis. An inference engine 
can change the current JTMS or LTMS context by enabling and retracting 
assumptions. However, each assumption change reinvokes the TMS rela-
beling algorithms. Thus, if the rate of such assumption changes is high 
compared to the number of queries about whether a node is in or out, 
then most of the time is spent relabeling nodes that will never be exam-
ined by the inference engine. An assumption-based truth maintenance 
system (ATMS) [1] is very much like a JTMS, except that it avoids such 
relabeling. 

At the level of the TMS interface, the ATMS has no procedures for en-
abling or retracting assumptions because its design does not depend on 
these concepts. Instead, ATMS interface procedures require an additional 
argument: the set of assumptions with respect to which the query is to 
be answered. For example, the ATMS procedure in-node? takes this ad-
ditional argument. This procedure returns t only if the node would be 
in if we took a JTMS with the same set of justifications and enabled the 
assumptions of this second argument. ATMS context switches are free 
because they simply require choosing a different second argument. In ad-
dition, an inference engine can now work in multiple contexts at once. 

The ATMS achieves its functionality by precomputing a complex label 
for each TMS node. Instead of labeling a node : IN or : OUT, the ATMS 
labels every node with the consistent sets of assumptions under which 
the node is in. The ATMS answers queries by checking this complex 
label. In making the choice of whether to use a JTMS or an ATMS it is 
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important to keep this distinction in mind. In a JTMS one incurs the cost 
of context switching when the actual context switches are made. In the 
ATMS one incurs the cost up front. Therefore, if there are relatively few 
context switches, the JTMS will be more efficient, and if there are many 
context switches, the ATMS will be. (Of course, there are other reasons 
for choosing between the ATMS and the JTMS, which we discuss in this 
chapter). 

As we saw with the JTMSs and LTMSs, each type of truth maintenance 
system engenders a unique style of problem-solving architecture. Com-
pared to the transition from JTMSs to LTMSs, the transition to ATMSs 
requires a more radical shift in problem-solver design. In an ATMS-based 
problem solver, the implementor must break free of the "single current 
context" mentality and design the inference engine to operate in all con-
texts at once. This is often not an easy transition. In a subsequent chapter 
we examine, in detail, a diagnostic application that exploits this property 
of the ATMS. In performing differential diagnosis, a diagnostician must 
identify potential differences between different diagnostic hypotheses in 
order to decide what measurement to do next. Each diagnostic hypothe-
sis is represented by a distinct context. 

12.1 ATMS basics 

12.1.1 ATMS nodes and justifications 

ATMS nodes and justifications are nearly identical to their JTMS coun-
terparts. Our ATMS architecture represents the three generic TMS node 
properties as follows: 

■ A node is a premise if the inference engine has provided it with a 
justification with no antecedents. Premises are therefore not distin-
guished from other nodes in the architecture. 

■ A node is a contradiction if the inference engine has indicated that 
it can never hold. Recall that in the JTMS, if a contradiction node 
becomes believed, the inference engine is signaled (presumably to 
retract some assumption to remove the contradiction). The ATMS, 
which has no notion of current context that might be inconsistent, 
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treats contradictions somewhat differently. The ATMS does not sig-
nal the inference engine when it detects a contradiction. Instead, the 
ATMS ensures that no node will be considered to follow from a set 
of assumptions (i.e., by the operation in-node?) if a contradiction 
node also follows from that set of assumptions. Unlike with the JTMS 
and LTMS, contradiction handling is not necessary. The more con-
tradictions the better, because they reduce the number of sets of 
assumptions the ATMS might have to consider. 

■ A node is an assumption if the inference engine wishes to use it in the 
second argument to in-node?. The ATMS will then build the appro-
priate datastructures to make it easy to test whether a node follows 
from an arbitrary set of assumptions. In the JTMS or LTMS, mak-
ing all nodes assumptions incurs little overhead. However, marking 
a node as an assumption tells the ATMS that the node can appear 
in the second argument of inquiries, and consequently label size can 
grow exponentially in the number of possible assumptions. Thus it is 
incumbent on the inference engine to introduce as few assumptions 
as possible. 

ATMS justifications have the identical syntax as JTMS justifications: 
a justification consists of a consequent which follows from antecedents 
accompanied by an informant describing the deduction (which the ATMS 
never looks at). 

12.1.2 The intuitions behind ATMS labels 

Unlike the JTMS and LTMS, an ATMS label is a complex datastructure. 
The label is longer a single atom such as : IN or : OUT, because those only 
make sense with respect to some current context. Intuitively, the ATMS 
label consists of a parsimonious description of the consistent contexts 
in which the node holds. Consider the JTMS dependency network, illus-
trated in Figure 12.1. In this network assumptions A, B, D, and E are 
enabled, and node h is : IN. If we retracted assumptions A and E, node h 
would still hold (see Figure 12.2). 

Repeating this process, we would discover that h holds under the fol-
lowing sets of enabled assumptions: 
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Assumption 

Figure 12.1 h follows from {A,B,D, El 

{A, D} 

{A, B, D} 

{A, D, E} 

{A,B,D,E}  

{B, D} 

{B, D, 	. 

We define an environment to be a set of assumptions. A node holds in 
an environment if, when all the assumptions of the environment are en-
abled in a JTMS, the node is labeled : IN. Thus, in the previous example, 
node h holds in 6 environments. A nogood is an environment in which 
some contradiction holds. A consistent environment is one which is not 
nogood. A context of an environment is the set of nodes that hold in the 
environment. 

One way to answer queries about whether a node holds in some envi-
ronment is to record in the label all the consistent environments in which 
a node holds. Unfortunately, this can be extremely inefficient. For exam-
ple, if a node holds universally, its label might contain 2n environments 
where n is the number of assumptions. However, two important obser- 
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Figure 12.2 h follows from {B,D} 

vations turn this idea into a usable one. First, we exploit monotonicity: if 
a node follows from an environment, then it follows from any superset 
of the environment, and hence it is unnecessary to represent the super-
sets in the label. Hence the label for node h is { {A, D}IB, DI I, which we 
notate as: 

(h, {{A,D} {B,13}}). 

Figure 12.3 indicates all the labels for the dependency network we have 
been considering. Second, there is no point in including nogoods in la-
bels, as such contexts are of no interest. Consider the example of Fig-
ure 12.4 where z's label is: 

(z,{{S,T}}). 

Although the environment {R, S} seems to support node z, it is not 
included in the label because it is nogood. 

There are two important labels which play a major role. The first is the 
empty label, for example: 

(d, {}). 

A label is empty if either the dependency network contains no pathway 
from the assumptions to the node, or if all potential label environments 
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{ I A }} 

Figure 12.3 Labels 

are nogood. Thus, an empty label indicates that the node holds in no 
consistent environment. The fact that the label is empty does not mean 
that its negation holds in every environment. Nor does it mean that d is 
a contradiction (although the labels of all contradictions are necessarily 
empty because nogoods do not appear in node labels). 

The second important label contains only the empty environment, for 
example: 

(P,{{}}). 

All premises have a label consisting of the empty environment. The 
empty environment in the label indicates that the node holds in every 
environment, as every environment is a superset of the empty one. Note 
that non-premise nodes can hold in empty environments if they ulti-
mately depend only on premises. 

In the JTMS and the LTMS, the main purpose of contradiction handlers 
is to remove inconsistencies to ensure that the derivations of the TMS 
make sense. As the ATMS simply removes inconsistent environments 
from node labels, contradiction handling is not necessary for this pur-
pose. However, contradiction handling also plays a less obvious role—it 
serves to signal the inference engine that a set of choices it has made are 
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	C-0 

inconsistent. This latter role is still important for the ATMS. Therefore, 
the ATMS implementation has the ability to attach rules to environments, 
such that when that environment becomes inconsistent an inference en-
gine procedure is invoked. This gives the ATMS-based inference engine 
very fine control because it can specify precisely which of the myriad of 
possible environments it cares about. 

12.1.3 Logical specification for an ATMS 

The set of ATMS nodes defines a set of propositional symbols S. A subset 
of those symbols are marked as assumptions: A c S. As with the JTMS, 
every ATMS justification is directly encoded as a definite clause. For ev-
ery contradiction node n, we add a unit clause 

to indicate that n does not hold. Let C be the set of clauses obtained. We 
presume C is consistent. An environment E is a subset of the assump-
tions, E c A. 
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A node n is said to hold in environment E if n can be propositionally 
derived from the union of E with C. A nogood N is an environment 
consisting purely of assumption literals such that the empty clause can 
be propositionally derived from N u C. A nogood is minimal if it contains 
no other as a subset. 

The ATMS is incremental, receiving a constant stream of additional 
nodes, additional assumptions, additional justifications, and various 
queries concerning the environments in which nodes hold. To facilitate 
answering these queries the ATMS maintains for each node n a set of 
environments {El, . Ek} (called the label) having the four properties: 

1. [Soundness.] n holds in each E,. 

2. [Consistency.] ± cannot be derived from any E, (given C). 

3. [Completeness.] Every consistent environment E in which n holds is 
a superset of some Ei. 

4. [Minimality.] No E, is a proper subset of any other. 

Given this label datastructure, the ATMS can efficiently answer the query 
whether n holds in a consistent environment E by checking whether E 
is a superset of some E,. To easily enforce the consistency property, the 
ATMS also maintains a database of unsubsumed nogoods. 

12.2 ATMS algorithms 

Like all TMS algorithms, the ATMS algorithm is incremental, taking a cor-
rect set of node labels and computing the incremental changes caused by 
adding a justification. The algorithm operates by making labels locally 
correct and propagating label changes until labels become globally cor-
rect. Note that assumptions are created with labels containing the single 
environment containing themselves, and all other nodes are created with 
empty labels. 

The ATMS label update algorithm operates by repetitively ensuring 
that each node's label is locally correct. The locally correct label for node 
n could be computed as follows: Let Lik be the label of the ith node of 
the kth justification for some node n. 

1. Compute a tentative label 
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e: ( A, 131 
	

(C) 
	

f: (A) 
	

{ D } 

A,B 	(A,B,D) 	(A,C) (C,D)  

nogood 

    

subsumes 

Figure 12.5 Given e A f = g, compute g's label 

L' = {U ei I ei E Lik} • 

2. Remove from L' all nogoods and environments subsumed by others 
in L'. 

Consider a simple example. Suppose we knew 

(e, {{A,B} {C}}), 

(f, {{A} {D}I), 

nogood{C, D}, 

and we just created a new node g with a single justification, 

enfg. 

Computing the new label for g is illustrated in Figure 12.5. L11 
{{A,B} {C}},L21  = {{A} {D}}, so step 1 computes, 

L' = {{A,B}{A,B,D}{A,C}{C,D}}. 

Step 2 removes the nogood {C, DI and the subsumed {A, B, D}. The cor-
rect label for g is: 

(g, {{A,B}{A,C}I). 

The following is a simple algorithm which propagates label changes 
throughout the dependency network. 
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1. To update node n, compute its new label L' as just described. 
2. 	If the label has not changed, then return. 

3. If n is a contradiction node: 

a. Mark all the environments of L' nogood. 

b. Remove all new nogoods from every node label. 

4. If n is not a contradiction node, then recursively update all the con-
sequences of n. 

This algorithm is guaranteed to terminate with correct labels. 
Although this algorithm is easy to understand, it is inefficient, as it 

repeatedly recomputes node labels in step 1. A more efficient version of 
this algorithm only propagates incremental changes to node labels. The 
following algorithm is used in the ATMS code we present later as well as 
in most actual ATMS implementations. 

When a new justification J is supplied, the ATMS calls PROPAGATE 
(J, 4), {0}). The two other arguments are present because PROPAGATE 
can be invoked recursively. The arguments to procedure PROPAGATE 
are a justification, an optional antecedent node a (absence is indicated 
by 4)), and I a set of environments just added to the label of a. The 
intuition behind the algorithm is that it assumes that node labels are 
correct before the introduction of the new justification and therefore 
only propagates the incremental changes caused by a new justification. 

Algorithm 12.1 (PROPAGATE( (xi A • • • A Xk = n), a, I)) 

1. [Compute the incremental label update.] L = WEAVE(a, I, Ix1,..., 
xk l ). If L is empty, return. 

2. [Update label and recur.] UPDATE(L, n). 

UPDATE adds a set of new potential label environments L to node n. 

Algorithm 12.2 (UPDATE(L, n)) 

1. [Detect nogoods.] If n = ±, then call NOGOOD(E) on each environ-
ment E E L and return. 

2. [Update n's label, ensuring minimality.] 

a. Delete every environment from L which is a superset of some 
label environment of n. 
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b. Delete every environment from the label of n which is a superset 
of some element of L. 

c. Add every remaining environment of L to the label of n. 

3. For every justification J in which n is mentioned as an antecedent: 

a. [Propagate the incremental change to n's label to its conse-
quences.] Invoke PROPAGATE(J, n,L). 

b. [Remove subsumed and inconsistent environments from L.] Re-
move from L all environments no longer in n's label. 

c. [Early termination.] If L = }, return. 

WEAVE does the basic work sketched in steps 1 and 2 at the beginning 
of this section. It attempts to save work by only computing the incremen-
tal update produced when adding environments I to node a for a single 
justification with antecedents X. 

Algorithm 12.3 (WEAVE(a, /, X)) 

1. [Iterate over antecedent nodes.] Repeat the following steps for each 
h 	a in X and then return I. 

2. [Incrementally construct the incremental label.] Let I' be the set of all 
environments formed by computing the union of an environment of 
I and an environment of h's label. 

3. [Ensure that I' is minimal and contains no known inconsistency.] Re-
move from I' all duplicates and nogoods, as well as any environment 
subsumed by any other. Set I to I'. 

NOGOOD is called whenever an environment E is newly discovered 
to be nogood by the propagation algorithm. It then removes all nogood 
environments from all labels. 

Algorithm 12.4 (NOGOOD(E)) 

1. Mark E as nogood. 

2. Remove E and any superset from every node label. 

This label propagation algorithm is easily shown to terminate, and 
through careful choice of datastructures, can be made very efficient. 
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12.3 Constructing solutions 

The exact definition of a solution is task-specific and is determined by 
the inference engine. However, in practice, when using a single-context 
TMS, a solution to a problem-solving task is usually just a contradiction-
free context for which no inference engine rules can be executed. We 
can read off the solution by examining what nodes hold in the current 
context. Of course, this kind of answer is meaningless for an ATMS. In 
this section we examine two techniques for identifying solutions. 

12.3.1 Using a goal symbol 

Many problem-solving tasks are reducible to the following simple model: 
There are a set of choice sets (characterized in terms of assumptions), 
and any solution must pick one choice from each set. Through a judi-
cious addition of nodes and justifications, we can read off the solutions 
to the task from the label of one goal node. This is easily demonstrated 
through an example. 

Consider a task which has 7 assumptions: A, B, C, D, E, F, G; where 
every solution must pick one of {A, B}, {E,F}, and {C,D,G} respectively. 
All the additional nodes and justifications that make up the dependency 
network can be ignored. For each choice set we create a node A,. A 
justification is added from each assumption to the nodes representing 
the choice set(s) it is in. Finally, we create a node GOAL which has the 
single justification with all the Al  as antecedents. Figure 12.6 represents 
the resulting dependency network. 

The label for the node GOAL will contain all the solutions to the 
problem-solving task. Suppose we ignore all the task-specific justifica-
tions. In that case, the label for GOAL consists of all twelve combinations 
of choices: {A,E,C},{A,E,D},.... As problem solving proceeds, more no-
goods are discovered, and these eliminate many of the environments in 
GOAL's label. For example, the nogood {A, El eliminates three environ-
ments from GOAL's label: {A, E, C}, {A,E,D}, and {A,E,G}, correspond-
ing to three solutions that have become ruled out. 

Although using labels to represent solutions is elegant, it leads to ef-
ficiency problems on larger tasks. Therefore, numerous techniques have 
been developed in the ATMS literature to improve efficiency when using 
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Figure 12.6 Constructing solutions by labeling GOAL 

this technique. If the GOAL node and its justifications are created ini-
tially, then its label will be exponential in the size of the choice sets. This 
can be avoided by creating GOAL and its nodes after many or most no-
goods have been discovered. This solution also deals with the difficulty 
that the choice sets defining the task may not be known at the outset of 
problem solving. Unfortunately, this approach raises a chicken-and-egg 
problem: to know whether problem solving is complete requires con-
structing the solutions, but constructing the solutions requires knowing 
that problem solving is complete. This issue is addressed by creating a 
sequence of GOAL nodes, each depending on the previous GOAL node 
and the new choice set. The labels of the intermediate GOAL nodes rep-
resent solutions at intermediate stages of problem solving. 

12.3.2 Constructing solutions directly 

The approach to constructing solutions outlined in the previous section 
has two major drawbacks. The first is that it relies on a general label 
updating algorithm, while the justification structure is very stylized. The 
second is that during problem solving many intermediate goals might be 
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constructed and discarded, leaving large labels which are never looked 
at again but occupy a significant portion of available memory. Therefore, 
most ATMS implementations include a specialized solution construction 
procedure, called interpretations, which is given a set of choice sets 
and returns a set of environments representing the solutions. The result 
returned by this procedure is identical to the label of the GOAL node, 
except that it is achieved more efficiently and without the permanent 
introduction of new nodes and justifications. 

12.3.3 Defaults 

One of goals of TMSs is to support default reasoning (see Section 6.1.5). 
Although the ATMS itself is monotonic, it can support default reason-
ing. Defaults are widespread in AI applications, and many ATMS applica-
tions use them extensively. To implement defaults in an ATMS, one uses 
assumptions to represent points at which default inferences are intro-
duced. 

Consider the following example of default reasoning. Suppose we've 
heard a rumor of some person Nixon who is both a Quaker and a Re-
publican, and we know that Quakers typically are pacifists, and that Re-
publicans typically are not. We can frame this problem by creating three 
assumptions to represent the three defaults in this example: that Nixon 
exists, that a Quaker is a pacifist, and that a Republican is not a pacifist. 
Figure 12.7 illustrates a dependency network that encodes this. 

A solution to a default reasoning task must be defined entirely differ-
ently. A solution is defined to be a consistent set of assumptions to which 
no other assumption can be added without introducing an inconsistency. 
Such solutions are sometimes referred to as extensions or maximally con-
sistent environments. The dependency network of Figure 12.7 leads to 
one nogood: 

{ Person-Nixon, Normal-Quaker, Normal-Republican } . 

Therefore, there are three solutions: 

{Person-Nixon, Normal-Quaker} , 

{Person-Nixon, Normal-Republican} , 

{Normal-Quaker, Normal-Republican} . 



Normal 
Republican 
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Figure 12.7 Who and what is Nixon? 

Intuitively, these solutions correspond to the three possibilities: either 
Nixon is not a normal Quaker, or he is not a normal Republican, or he is 
not a real person. Notice that the semantics of default do not sanction 
the possibility that Nixon is neither a real person nor a normal Republi-
can, because we can consistently add the assumption that he is a normal 
republican or a real person. The solution that he is a real person, and is 
both a normal Quaker and a normal Republican leads to an impossible 
inconsistency. 

To simultaneously support both the default and the choice set para-
digms for defining solutions, the ATMS interpretations procedure is 
supplied two arguments: the set of choice sets, and all the assumptions 
that are to be treated as defaults. This procedure returns solutions which 
have the property that they pick one choice from each choice set and 
that no default assumption can be added to them without introducing an 
inconsistency. 

A construction analogous to that of Figure 12.6 is not possible for de-
faults. However, the basic ATMS can be extended to reason with defaults 
directly (see [2]). 
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12.4 The ATMS interface 

The ATMS interface is remarkably simple. 

change-atms 
create-atms 
env-rules 
explain-node 
get-solutions 
in-antecedent? 
in-node? 

interpretations 
just-antecedents 
just-consequence 
just-informant 
justify-node 
node-consistent-with? 
out-node? 

remove-node 
supporting-antecedent? 
tms-create-node 
tms-node-datum 
tms-node-rules 
true-node? 

 

   

(create-atms title &key (node-string 'default-node-string) 
(debugging nil) 
(enqueue-procedure nil)) 

create-atms returns a datastructure that contains the entire state of an 
ATN1S. Notice that there is no concept of contradiction handling. 

An existing ATMS can be changed by change-atms, which takes the 
same keyword arguments as create-atms. 

(true-node? node) 

Returns t if the node holds universally, i.e., has a label consisting of the 
empty environment. 

(in-node? node &optional env) 

Returns t if the node holds in the consistent environment env. If env is 
not supplied, then in-node? returns t if the node holds in any environ-
ment. 

(out-node? node env) 

Returns t if the node does not hold in environment env. 

(node-consistent-with? node env) 

This returns t if there exists some consistent environment which is a 
superset of env in which the node holds. This effect could be achieved 
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by creating two dummy nodes and a justification, but as this is such a 
common inference engine query, it is implemented more efficiently. 

(tms-create-node atms datum &key assumptionp contradictoryp) 

This is identical to the JTMS. A node can either have the assumption or 
contradictory property. 

The inference engine can push Common Lisp objects (usually problem-
solving rules) on the node slots tms-node-rules. When a new environ-
ment is subsequently added to the node's label, the ATMS calls enqueue-
procedure of the ATMS on each of the objects on the rule list. Likewise 
the inference engine can push rules onto env-rules. Such rules are in-
voked when the environment becomes nogood. 

(in-antecedent? antecedents) 

This procedure is designed for more sophisticated inference engines that 
want to check whether the conjunction of a set of nodes has a non-empty 
label. This procedure can be used to check whether a given justification 
contributes to the label of some node. 

(supporting-antecedent? nodes env) 

This procedure is designed for more sophisticated inference engines. It 
checks whether the conjunction of the given set of nodes holds in the 
given environment. 

(remove-node node) 

This procedure is to be used with great care. It removes a node from the 
ATMS. However, this procedure will only work correctly if the given node 
does not itself appear in other justifications. 

(justify-node informant consequent antecedents) 

This is also identical to the JTMS. 

(interpretations atms choice-sets &optional defaults) 

choice-sets is a set of sets of assumptions. The ATMS returns a set of 
consistent environments in which at least one assumption from each set 
of choice-sets holds. This is the fundamental procedure for interpre-
tation construction. defaults consists of a set of assumptions that will 
be interpreted as defaults for interpretation construction. 
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The contents of the tms-node-datum slot of a node is determined 
by the inference engine. To queue rules on nodes, the inference engine 
should place them on the tms-node-rules slot. The inference engine 
is also permitted to access the slots of a justification: just-informant, 
just-antecedent, and just-consequence. 

(explain-node node env) 

This returns an explanation for why node holds in environment env. env 
may be nogood. The explanation returned is a list of justifications or 
(ASSUME (assumption))). 

Notice that the usual TMS procedures of retract-assumption and 
enable-assumption are irrelevant for an ATMS. 

12.5 Simple example of ATMS usage 

We illustrate the use of the ATMS on the example of Figure 6.9, which 
was analyzed by a JTMS in Section 7.9. First we must create a fresh ATMS 
for our example: 

> (setq *atms* (create-atms "Simple Example")) 

Then we must create the initial three assumptions. Note that unlike the 
JTMS we do not need to enable these assumptions. 

• (setq assumption-a (tms-create-node *atms* "A" :ASSUMPTIONP t) 
assumption-c (tms-create-node *atms* "C" :ASSUMPTIONP t) 
assumption-e (tms-create-node *atms* "E" :ASSUMPTIONP t)) 

Then we introduce the node h and justify it: 

• (setq node-h (tms-create-node *atms* "h")) 

> (justify-node "Rl" node-h (list assumption-c assumption-e)) 

We can look at the label of node node-h: 

• (why-node node-h) 

<h,{{C, E}}> 
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Then we introduce node g, justify it, and then contradict it: 

• (setq node-g (tms-create-node *atms* "g")) 
• (justify-node "R2" node-g (list assumption-a assumption-c)) 
• (setq contradiction (tms-create-node *atms* 'CONTRADICTION 

:CONTRADICTORYP t)) 
• (justify-node "R3" contradiction (list node-g)) 

In a JTMS this last justification introduces a contradiction which invokes 
contradiction handling to retract one of A or C. However, here the ATMS 
simply records the new nogood {A, C} and removes it and its supersets 
from node labels. We can ask for the interpretations, assuming that all 
assumptions are defaults: 

• (mapc 'print-env (interpretations *atms* nil 
(atms-assumptions *atms*))) 

The result is the two maximal interpretations: 

E-8: A, E 
E-5: C, E 

12.5.1 The ATMS code 

The code in atms . lisp is a simple assumption-based truth maintenance 
system. It is based on the algorithms presented earlier in this chapter. 
As with the previous JTMS and LTMS implementations, ATMS operations 
cannot be safely aborted, nor can one ATMS operation be safely invoked 
before another is finished, nor can multiple processes safely access the 
same ATMS simultaneously. 

12.5.2 Overview 

The program is divided into nine parts: 

1. Definitions. The datastructures and initialization procedures. 

2. Common utilities. Common macros and utility procedures used 
throughout the ATMS. 

3. Basic interface. Interfaces for programs that use the ATMS. 
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4. Label updating. The core ATMS label update algorithm. 

5. Creating and extending environments. Procedures to do simple ma-
nipulations on environments. 

6. Environment tables. Algorithms for manipulating tables of environ-
ments. 

7. Processing nogoods. Manipulation and recording of nogood environ-
ments. 

8. Interpretation construction. Techniques for constructing interpreta-
tions. 

9. Printing. Some simple procedures to allow the user to make queries 
of the ATMS database. 

12.5.3 Definitions 

Like the rest of our implementations, we use a single global ATMS datas-
tructure instead of global variables, thereby allowing for multiple ATMS 
instances within a single problem solver. The atms datastructure con-
tains the following fields: 

title Ignored by the ATMS but useful for debugging. 

node-counter Provides a unique name for nodes. Also is used to order 
the assumptions of an environment. 

just-counter Provides a unique name for justifications. 

env-counter Provides a unique name for environments. 

nodes List of all nodes created. Used only for debugging. 

justs List of all justifications supplied by the inference engine. Used 
only for debugging. 

contradict ions A list of all nodes which have been marked contradic-
tory. Used only for debugging. 

assumptions A list of all nodes which have been marked assumptions. 

debugging A debugging flag to trace the internals of ATMS operations. 

nogood-table An environment table containing all the unsubsumed 
nogoods. 

contra-node An internal node created by the ATMS to encode contra-
dictions. 
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env-table A table containing all the consistent environments that 
have ever been mentioned. 

empty-env The empty environment consisting of no assumptions is 
commonly used. 

node-string An inference engine-supplied procedure which should re-
turn a descriptive string for a node. The ATMS supplies a default. 

enqueue-procedure This is a procedure that is called when a node 
becomes labeled : IN. This procedure should not do any ATMS operations 
itself, because it is called when the ATMS database is inconsistent. 

The tms-node datastructure describes an ATMS node: 

index Integer serving as unique name for this node. 

datum Supplied by the inference engine. For simple demonstration sys-
tems, one should put something printable in here. For THE-like system, a 
pointer to the assertion object goes here, as we will see later. 

label A list of environments representing the set of minimal sets of 
assumptions that support belief in the node. 

justs The set of justifications which could provide support for this 
node. 

consequences The justifications which use this node as an antecedent. 

nogood? If non-nil, this field indicates that belief in this node repre-
sents a contradiction. Note that any contradictory node will always have 
an empty label. 

assumption? If non-nil, this field indicates that this node should be 
treated as an assumption. The initial label of an assumption node is the 
singleton environment mentioning itself. 

rules Rules which should be run when the node's label receives an 
environment. The ATMS enqueue-procedure is called on each element 
of this field if it is non-nil. The queue is then cleared. 

atms The ATMS instance to which this node belongs. 

The ATMS justification just is identical to the JTMSs justification: 

index Integer for unique name. 

informant An inference engine-supplied description of the justifica-
tion. 
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consequence The node which this justification can support. 

antecedents The nodes that must be believed in order for this justifi-
cation to provide support for its consequence. 

The env datastructure represents ATMS environments: 

index Integer for unique name. 

count Number of assumptions in this environment. 

assumptions The assumptions of the environment in sorted order. 

nodes The nodes which have the environment in their labels. 

nogood? This flag is non-nil when the environment is nogood. Note 
that if the environment is contradictory, it necessarily has no nodes. 

rules Rules which are run when this environment becomes nogood. 

Note that the fields index, count, and assumptions cannot change once 
the environment has been created. 

12.5.4 Simple utilities 

This section includes a set of utility procedures used throughout the 
ATMS implementation. node-string, debugging, and default-node-
string play the same role as in the JTMS and LTMS implementation. 

Often it is important to keep lists sorted. The procedure ordered-
insert takes a list already in order and a new item to be added onto 
list and returns the new list (which shares structure with the input, 
but the original list is not side-effected). The argument test is the 
procedure which that orders list items. In this code, test is either the 
procedure assumption-order or env-order. The macro ordered-push 
provides a version of ordered-insert which stores the new list back to 
the variable. 

12.5.5 Basic inference engine interface 

The procedures create-atms and change-atms behave as their JTMS 
and LTMS counterparts. true-node?, in-node?, out-node?, and node-
consistent-with? are 4 simple procedures to inquire about a node's 
label. true-node? returns t if the node holds in the empty environment 
(i.e., holds universally). in-node? returns t if the node holds in the en- 
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vironment supplied. These functions are usually intended to be supplied 
a consistent environment, but return useful results if supplied a nogood 
environment. For example, in-node? returns t if the node holds in some 
consistent environment which is a subset of the supplied environment. 
out-node? returns t if the node does not hold in the consistent environ-
ment supplied. node-consistent-with? holds if the node could hold in 
some consistent superset of the environment supplied. This is computed 
by checking if the union of some label environment with the supplied 
environment is consistent. 

tms-create-node is exactly like its JTMS counterpart. Notice that it 
ensures that the initial label of an assumption is a singleton environment 
containing itself. assume-node changes a node from a non-assumption 
to an assumption. make-contradiction changes a node from a non-
contradictory node to a contradiction. justify-node is exactly like its 
JTMS counterpart. The procedure propagate does all the label updating 
work. contradict ion records the contradiction by simply justifying the 
known contradictory node with the nodes supplied. 

12.5.6 Label updating 

The guts of the label update algorithm are performed by the procedures 
of this section and the next. The procedures propagate, weave, and 
update perform exactly as outlined in Section 12.2. update-label is 
an auxiliary procedure to update. The procedure update includes ad-
ditional functionality to maintain ATMS datastructures. It ensures that 
the nodes slot of all environments is always correct. If an environment 
is added to a node's label, then that node is also added to that en-
vironment's node list. Conversely, if an environment is removed from 
some node's label, that node is also removed from that environment's 
node list. Also, if an environment is added to any node, the enqueue-
procedure is called on every element of its rules slot. 

The procedure in-antecedent? uses weave? to check whether 
any union of antecedent environments is consistent. The procedure 
supporting-antecedent? uses in-node? to check whether each of the 
antecedent nodes holds in a given environment. The procedure remove-
node removes nodes from the ATMS. It simply removes this node from 
all relevant datastructures. If this node appeared as an antecedent in any 
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justification, then removing the node would require a complicated analy-
sis of all affected nodes. Therefore this procedure only works in the case 
where the node appears in no other justifications. It should be used with 
great caution. It is used in ATCON (Chapter 16). 

12.5.7 Creating and extending environments 

The procedures in this section ensure that one unique instance of the 
env datastructure is assigned to every environment. This is important for 
quickly determining the consequences of a contradiction and streamlin-
ing ATMS operations. The most basic way to create a new env structure 
is create-env, which presumes that the set of assumptions supplied is 
properly sorted (via assumption-order) and that no datastructure has 
yet been created for this environment. It should only be called after fail-
ing to discover it in the environment tables (see next section). union-env 
returns the environment resulting from the union of its two arguments. 
cons-env returns the environment resulting from adding an assumption 
to an environment. 

12.5.8 Env tables 

The ATMS maintains two tables in identical formats. atms-env-t able 
contains all environments created during ATMS processing. atms-
nogood-table contains all unsubsumed nogoods discovered so far. The 
table groups environments by their size. The table consists of a set of 
buckets, each bucket consisting of an integer indicating the size of all en-
vironments in this bucket, followed by these environments. The table is 
kept sorted, so smaller environments come first. The procedure insert-
in-table adds an environment to a table. The nogood table is used to 
check whether newly created environments are subsumed by known no-
goods. The environment table is used to ensure that a single, unique 
datastructure is created for each distinct set of assumptions. 

The procedure lookup-env sees whether an env structure has already 
been created for the environment specified by the assumptions. It pre-
sumes the assumptions are properly ordered. The procedure subset-
env? checks whether the assumptions of el are a subset of e2. Many 
ATMS procedures need to compare two environments. So compare-env 
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returns : EQ if its two arguments are identical, :S12 if the first is a proper 
subset of the second, and : S21 if the second is a proper subset of the 
first. 

12.5.9 Processing nogoods 

new-nogood is called whenever the ATMS discovers that an environment, 
thus far presumed to be consistent, is nogood. It first removes the newly 
nogood environment from all the node labels it appears in by calling 
remove-env-from-labels. It then adds the new nogood to the nogood 
table. Then it removes any subsumed nogoods from the table. The no-
good table is kept in minimal form because every new environment must 
be checked to see whether it is nogood by comparing it to every nogood 
in the nogood table. Finally, it checks all existing environments to see 
whether they are subsumed by the new nogood, and marks them no-
good as well. These environments are removed from node labels as well. 
The procedure set-env-contradictory is called whenever a new env is 
created. If the newly created env is subsumed by some nogood in the no-
good table, then the new environment is nogood as well. The procedure 
remove-env-from-labels is an auxiliary procedure to remove nogoods 
from labels. 

12.5.10 Generating explanations 

Constructing explanations for ATMS deductions is surprisingly subtle 
because the ATMS does not maintain a current context, nor keep track 
of which justifications are responsible for particular label environments. 
The procedure explain-node constructs an explanation for why node 
follows from the set of assumptions represented by env. It is impor-
tant to note that the naive way of constructing explanations by just re-
cursively identifying any justification that supports a label environment 
is not guaranteed to construct well-founded explanations if the depen-
dency graph contains cycles. The only way to truly find a non-circular 
support is to ignore the node labels and trace back through the justifica-
tions. 
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12.5.11 Interpretation construction 

interpretations is the basic procedure to create interpretations. The 
main work is done by two auxiliary procedures. get-depth-solutions 
constructs solutions by simple depth-first backtrack search. extend-
via-defaults takes every interpretation that satisfies the choice-sets 
and adds as many defaults to it as possible. These two procedures are 
extremely primitive and inefficient. 

12.5.12 Printing 

The final procedures in the file atms . lisp provide convenient ways of 
printing and inspecting ATMS datastructures. Most of these functions are 
used for debugging only. 

why-node prints out the label of a node. why-nodes prints out the 
labels of all ATMS nodes. node-justifications prints out the justifica-
tions for a node. print-justification prints out a single justification. 
e finds the environment with a specific index. print-env prints out an 
environment as a set of assumptions. env-string is a general proce-
dure which returns a string describing an environment. print-nogoods 
prints out all current unsubsumed nogoods. print-envs prints out all 
environments in the environment table. print-atms-statistics prints 
out the sizes of two main ATMS tables. 

12.6 Exercises 

1. * The label for GOAL (see Figure 12.6) can also be constructed by a 
binary tree of justifications. Pick a slightly larger example and show 
how. What are the advantages and disadvantages of this? 

2. * * Ignoring efficiency, implement the functionality of an ATMS with 
the JTMS. 

3. * * Show a set of justifications which cause the number of environ-
ments the ATMS constructs to be exponential in the number of these 
justifications. 
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4. 	* Interpretation construction is in some sense a form of dependency-
directed search, carried out with respect to the logical constraints 
that already exist in the ATMS justification database. Sometimes 
there are additional constraints that solutions must satisfy, and 
the results of interpretations will be filtered further. These con-
straints may be very expensive to apply, and hence they are not done 
antecedently. Yet there is a tradeoff, since intermediate interpreta-
tion bulge can bring one's machine to a crashing halt. Define a filter 
procedure as a procedure that takes an environment and returns non-
nil if it satisfies the constraints of interest. 

a. Write a version of interpretations that invokes filter functions 
when it appears that intermediate interpretation bulge is occur-
ring. 

b. The file aqueens . lisp solves the N-queens puzzle by anteced-
ently installing nogoods. Rewrite this system to use filter proce-
dures instead. 

5. 	* * * Bit vectors are a more efficient representation of assumption 
sets, if the number of assumptions is not too large. Each bit position 
is assigned to a particular assumption. The bit is set to 1 if the 
assumption is in the set, and set to 0 if not. Rewrite atms . lisp to 
use bit vectors to represent assumption sets. 

6. For many problems, not all logically consistent solutions are equal. 
People have preferences, and one can view solutions as being at least 
partially ordered by these preferences. Consider, for example, the 
problem of finding an assignment of groups in an organization to 
rooms and floors in a new building. While many consistent solutions 
exist, there is a wide variation in desirability. Some groups will ben-
efit from close spatial contiguity with others. Some groups may pre-
fer not to be near others. In some cases, special facilities needed by 
groups impose important constraints on location. 

a. * * * Develop a representation for the topological and spatial re-
lationships between the different rooms of a building. 

b. * * * Develop a representation for preference criteria which uses 
the spatial vocabulary. 
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c. * * * Develop a program that uses these representations to pro-
duce reasonable solutions to this spatial planning problem. 

d. * * * * Test this program on a real organization and a real build-
ing. 

7. * * An intriguing possibility is to allow the ATMS to accept arbitrary 
clauses as input. Such a program might have the same advantages 
over the ATMS as the LTMS has over the JTMS. Using atms . lisp as a 
base, implement a simple version of such a TMS. How difficult will it 
be to ensure logical completeness? 

8. * * Interpretation construction is just conventional backtrack search 
(assuming no defaults). Implement an interpretation constructor 
which uses the conventional techniques of forward checking and 
future variable reordering to improve search efficiency. Such an in-
terpretation constructor dynamically reorders the choice sets by 
size (future variable reordering) and remove choices from as-yet-
unconsidered choice sets which are guaranteed to be inconsistent 
with the solution constructed so far (forward checking). 

9. * * A constraint satisfaction problem (CSP) is specified by a set of 
variables each having a domain set of possible variables and a set of 
constraints among subsets of the variables. A constraint can be spec-
ified by listing all the allowable combinations of variable values. We 
don't bother listing constraints that are universal. A solution is an 
assignment of values to variables which satisfies all the constraints. 
(We describe CSPs in more detail in Section 18.1.) A familiar CSP 
problem consists of three variables x, y, and z, with respective do-
mains Dx  = {a, b}, Dy = {e, f}, and Dz  = {e, d, 3}. The constraints are 
C„,„ = {be, bf }, Cxz  = {bc, bd, bg}, and Cyz  = {ed, fg}. One solution 
is x = b, y = e, z = d. Using one of the two methods for construct-
ing solutions, write a simple Common Lisp procedure for solving CSP 
problems. The example problem could be specified by: 

(csp '((x a b) 
(y e f) 
(z c d g)) 

'(((x y) (b e) (b f)) 
((x z) (b c) (b d) (b g)) 
((y z) (e d) (f g)))) 
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What are the results of the following examples? Explain. 

(csp '((n1 r g b) 

(n2 r g b) 

(n3 r g b)) 
'(((n1 n2) (r g) (r b) (g r) (g b) (b r) (b g)) 

((n2 n3) (r g) (r b) (g r) (g b) (b r) (b g)) 
((ni n3) (r g) (r b) (g r) (g b) (b r) (b g)))) 

(csp '((n1 r g b) 

(n2 r g b) 

(n3 r g b) 

(n4 r g b)) 

'(((n1 	n2) (r g) (r b) (g r) (g b) (b r) (b g)) 
((n2 n3) (r g) (r b) (g r) (g b) (b r) (b g)) 
((n1 n3) (r g) (r b) (g r) (g b) (b r) (b g)) 

((nl n4) (r g) (r b) (g r) (g b) (b r) (b g)) 
((n2 n4) (r g) (r b) (g r) (g b) (b r) (b g)) 

((n3 n4) (r g) (r b) (g r) (g b) (b r) (b g)))) 
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13 	Improving the Completeness 
of Truth Maintenance Systems 

The LTMS implementation of Chapter 9 achieves a subtle balance be-
tween two tensions. On the one hand it has sufficient expressive power 
to represent arbitrary formulas. On the other hand it is based on an effi-
cient but incomplete Boolean constraint propagation algorithm. On aver-
age, the BCP-based LTMS achieves an excellent balance between computa-
tional tractability and logical expressibility. However, the incompleteness 
of BCP means that sometimes we cannot obtain the inferences we desire. 
Although it is often better to leave the inference engine to deal with this 
incompleteness, sometimes it is useful to have a more complete LTMS. 
Analogously, the ATMS implementation of Chapter 12 accepts only Horn 
clause justifications. We would like to be able to generalize the ATMS to 
accept arbitrary clauses and formulas. 

This chapter addresses a collection of techniques to improve the com-
pleteness of TMSs to varying degrees. It is important to realize at the 
outset of this chapter that any improved degree of completeness invari-
ably comes at significant computational cost. Therefore, the techniques 
of this chapter are impractical for many problem-solving tasks. Neverthe-
less, they represent the logical generalization of TMS systems, and are 
extremely useful for some tasks. 

Unlike the other TMS chapters, which follow a single line of develop-
ment, this chapter presents a collection of ideas to extend the TMSs we 
have seen. However, the fundamental idea of prime implicate will under-
lie all of them. (Intuitively, a prime implicate is a minimal clause that fol-
lows logically from the information the inference engine has provided.) 
This chapter is organized as follows. First, we show how to extend a BCP-
based LTMS to arbitrary formulas by exploiting prime implicates. Second, 
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we show that through the use of prime implicates an LTMS can be made 
logically complete. Third, we briefly discuss a simple way of producing 
an ATMS that operates on formulas and is logically complete. Fourth, as 
prime implicate algorithms are typically extremely slow, we spend con-
siderable effort analyzing how to make these algorithms more efficient. 
Finally, as in all the preceding chapters, we provide Common Lisp code 
to illustrate how these ideas can be implemented. 

   

13.1 Extending BCP to formulas 

The core idea of BCP is that of propagating labels through a dependency 
network of clauses. We can extend the BCP concept to propagate labels 
through networks of arbitrary formulas. In this generalized BCP, a label 
propagates through a formula in essentially the same way as through 
clauses: the known literals of the formula force some unknown literal 
of the formula. Such a BCP still propagates labels locally and therefore is 
relatively efficient, although still incomplete. 

In Section 9.4 we examined a scheme for expanding any formula into 
a logically equivalent set of clauses. Why doesn't BCP on these clauses 
have the same results as BCP would produce on the original formulas? 
Consider a simple example: 

(x = (y v z)) A (x v y v z). 

From y labeled : FALSE BCP concludes from this single formula that z 
is labeled : TRUE. One way to see this is to imagine what would be the 
case if x were known. If x were labeled : TRUE, then, by the implication 
in the first conjunct, z would have to be labeled : TRUE. If x were labeled 
:FALSE, then to satisfy the second conjunct, z would have to be labeled 
:TRUE. As x must be either true or false, z should be labeled : TRUE. 
Expanding the formula produces two clauses, one for each of the two 
cases. We can no longer draw the same conclusion, since it depended on 
the combination of the two cases: 

-1x vyv z, 
xvyvz. 

Running clausal-BCP on these two clauses does not label z : TRUE. 
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This example shows that the results of running BCP on a set of for-
mulas does not produce the same results as running BCP on the clauses 
produced by converting those formulas to CNF. In general, BCP on the 
formulas is always stronger (i.e., labels more nodes : TRUE/ : FALSE or 
detects more contradictions) than BCP on the corresponding clauses. 
Hence, we cannot directly use the efficient BCP algorithms that have been 
developed for clauses for arbitrary formulas, and no correspondingly 
efficient BCP algorithm is known for arbitrary formulas. When the de-
pendency network consists solely of clauses, propagation can be made 
efficient because we just store a counter with each clause that is incre-
mented and decremented as the labels of its literals change (see Sec-
tion 9.9). We would like an analogously simple scheme for formulas, 
not just clauses. What we seek is a simple test which, given a current 
set of labels for symbols and a formula, determines whether the for-
mula violates the labeling or forces additional symbols to be labeled 
: TRUE/ : FALSE. Later we lay out a scheme that achieves this. The ba-
sic intuition is to encode every formula as a logically equivalent set of 
clauses, which includes logically redundant clauses which describe all the 
ways the formula can be violated or force a symbol's label. The encoding 
of Section 9.4 does not achieve this because although the CNF encoding 
is formally equivalent given the complete inference rules of propositional 
logic to the original formula, it is not equivalent given the incomplete 
unit resolution strategy clausal-BCP is based on. The key idea is that we 
can add additional clauses which produce an equivalent set of clauses 
given unit resolution. In order to do this we must go through some for-
mal preliminaries. 

13.1.1 Some basic formalities 

Our formula-BCP algorithm is based on extending our encoding of formu-
las into clauses such that clausal-BCP on the resulting clauses produces 
the same labeling as formula-BCP on the original formulas. To achieve 
this we must define some basic terminology. 

Definition 13.1 
For every symbol s, s and —is are complementary literals. A clause is 
a disjunction of literals with no literal repeated and no complementary 
literals. 
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Definition 13.2 
An implicate of a formula or a set of formulas C is a clause entailed by 
C. 

If we replace every formula with its entire set of implicates, then BCP 
on the resulting set of implicates produces the same result as BCP on the 
original formulas. Returning to our example, reducing 

(x = (y V z)) A (x v y v z), 	 (13.1) 

to CNF produces two clauses: 

-,xvyvz, xvyvz. 

However, the clause, 

y V Z, 

is also an implicate of the formula. The addition of this clause allows 
clausal-BCP on the implicates to produce the same result as formula-BCP 
on the original formulas. In this example, adding this third implicate to 
the encoded formula was sufficient to achieve formula-BCP. In general, 
we may have to add a large number of such implicates. 

Unfortunately, there may be a very large number of implicates, most of 
which are redundant. Suppose two implicates of a formula are: 

avbvc, 

a v b. 

The first clause a v b v c is both logically redundant and has no value 
to BCP. There are only four ways BCP can use the clause a v b v c. If the 
clause is used to force b : TRUE, then a and c must have been : FALSE 
and the second clause will force b to be : TRUE also. The situation is iden-
tical for a. If the first clause is used to force c :TRUE, then both a and b 
must be : FALSE and the second clause is violated. Finally, if the first 
clause is violated, then the second clause is necessarily violated. There-
fore, the clause a v b v c can be safely removed. We say this clause is 
subsumed by the clause a v b. 

Definition 13.3 
Clause A subsumes clause B if all the literals of A appear in B. 
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Generalizing the preceding shows that: 

Theorem 13.1 
Suppose C is a set of clauses and C' c C are the clauses of C not 
subsumed by any other. BCP on C produces the same labels as BCP on 
C' 

Notice that in formula 13.1, if we have the implicate y v z, it is unnec-
essary to have the two clauses: 

v y v z, 

xvyvz. 

Definition 13.4 
A prime implicate of a formula C is an implicate of C which is not sub- 
sumed by any other implicate of C. 

Therefore it is sufficient to only use the prime implicates in our en-
coding. This greatly reduces the number of implicates needed to achieve 
formula-BCP. 

Theorem 13.2 
Given a set of formulas F and the union, /, of the prime implicates of 
each individual formula of F, then BCP on F produces the same labeling 
as BCP on 1. 

Proof We presume BCP is sound. As each formula is individually re-
placed by its prime implicates, BCP on 1 cannot label any symbol that 
BCP on F does not. We do the reverse direction by proof by contradic-
tion. Suppose BCP on formula b E y labels symbol s while BCP on the 
prime implicates of b does not. If s is labeled : TRUE let x be the literal s, 
and if s is labeled : FALSE let x be the literal -'s. Given BCP on b labels s 
it must be the case that, 

AiA•••AAn AXiA•••AXm ~ X 

follows from b alone where the .1c, are literals involving symbols of b, and 
Ai are assumption literals. Therefore, the clause 

v • • • v 	v 	v • • • v -ocm v x 



460 	 Chapter 13 

is an implicate of {b} alone. Therefore, it either is or is subsumed by a 
prime implicate of {b}. As this prime implicate necessarily contains x, 
BCP on this implicate must have labeled x true. 	 • 

Returning to the example in Section 13.1, the formula 

(x 	(y v z)) A (X V y v z), 	 (13.2) 

has only one prime implicate: 

y v z. 

However, the CNF transformation of the formula produces the two 
clauses: 

—x v y v z, 	xvyvz. 

This example illustrates that there may be fewer prime implicates than 
conjunctions in the conventional CNF. Unfortunately, the reverse is usu-
ally the case. Consider the clause set: 

▪ 	v b, 

-'c v d, 

- v e, 

▪ v v -'e. 

All four are prime implicates, but there are three more: 

- v v -'e, 

▪ v 

- v 

13.1.2 A simple algorithm for constructing prime implicates 

The key step in computing prime implicates consists of a resolution rule 
called consensus[4, 7, 8]. Given two clauses: 

x v 

v y, 

where x is a symbol and and y are (possibly empty) disjunctions of 
literals, the consensus of these two clauses with respect to x is the clause 
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f3 v y, 

with duplicate literals removed. If the two clauses have more than one 
pair of complementary literals, then the consensus would contain com-
plementary literals and is discarded (since it is a logical tautology). 

The consensus of any two clauses is necessarily an implicate of those 
two clauses. Intuitively this can be seen as follows. Consider any labeling 
satisfying all the clauses. If x is : FALSE, then one of the literals of /3 must 
be : TRUE. On the other hand if x is : TRUE, then one of the literals of y 
must be true. As x must be : TRUE or : FALSE, one of the literals of /3 or 
y must be : TRUE. 

The prime implicates of a set of clauses can be computed by repeatedly 
adding the consensus of any pair of clauses to the set and continually re-
moving all subsumed clauses (until no further consensus and subsump-
tion is possible). In our simple example, this process was particularly 
simple: 

(x 	(y v Z)) A (x v y V Z) 

expands into two clauses, 

-ixvyvz, xvyvz, 

which are reduced to one prime implicate: 

y v z. 

This prime implicate is the result of computing the consensus of the two 
CNF clauses: 

-,xvyvz 

xvyvz 

y V Z. 

The result subsumes the two original clauses; therefore, this is the only 
prime implicate. 

The following algorithm finds the prime implicates of an arbitrary for-
mula: 

Algorithm 13.1 (BRUTE-FORCE) 

1. 	Let P (the result) be {}. 
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2. Let Q be the set of clauses obtained by converting the formula to 
CNF. 

3. Take the first clause q off of Q. If none, we are done. 

4. If q is subsumed by any clause of P, then go back to step 3. 

5. Remove all clauses of P that are subsumed by q. 
6. Try to compute the consensus of q and every clause in P. Whenever 

the consensus exists, add it to Q. 

7. Add q to P. 

8. Go to step 3. 

Suppose the formula expands into the following CNF clauses: 

v b, 	 (1) 

- v d, 	 (2) 

▪ v e, 	 (3) 

-‘19 v 	v -e. 	 (4) 

We start with clause 1, it is not subsumed, and as P is empty, we immedi-
ately move it to P = {1}. Q is now {2, 3, 4}. Clause 2 is not subsumed by 
clause 1, nor does it resolve with it. Therefore P = {1, 2} and Q = {3,4}. 
Similarly, after processing clause 3, P = {1, 2, 3} and Q = {4}. Clause 4 
is not subsumed by any other in P, therefore the algorithm continues to 
step 6 and it is resolved with every clause in P. The consensus of clauses 
1 and 4 is 

- v -d v -e. 	 (5) 

The consensus of clauses 2 and 4 is 

-'b v-cv -'e. 	 (6) 

The consensus of clauses 3 and 4 is 

• v v 
	

(7) 

Clause 4 is added to P and Q = { 7, 6, 5}. Clause 7 is not subsumed by 
any other clause in P therefore, the algorithm continues to step 6 and it 
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is resolved with every other clause in P. The consensus of clauses 2 and 
7 is 

v mac. 	 (8) 

The consensus of clauses 1 and 7 yields 

v 	v mod. 	 (9) 

Clause 7 is added to P and Q = {9, 8, 6,5}. Clause 9 is not subsumed by 
any other clause in P, therefore the algorithm continues to step 6 and it 
is resolved with every other clause in P. The consensus of clauses 2 and 
9 is 

v mac. 	 (10) 

Clause 9 is added to P and Q = {10,8, 6, 5}. Clause 10 is not subsumed 
by any clause in P. However, clause 9 is subsumed by clause 10 and is 
thus removed from P. Resolving clause 10 with every other produces no 
new results. Clause 10 is then added to P (which now consists of the 
clauses {10, 7,4, 3,2,1}) and the queue consists of {8, 6, 5}. Clause 8 is 
not subsumed by any clause in P. However, clause 7 is subsumed by 
clause 8 and thus is removed from P. The consensus of clauses 1 and 
8 is 

v 	 (11) 

Clause 8 is added to P (which now consists of {10,8,4, 3, 2,1}) and Q = 
{11, 6, 5}. The next clause to process, 11, is the same as clause 10 (i.e., is 
subsumed) and is discarded. The queue now consists of clauses {6, 5}. 
Likewise, clause 6 is subsumed by clause 8 and is discarded, leaving 
Q = {5}. Clause 5 is not subsumed by any clause in P. The consensus 
of clauses 3 and 5 is 

- a v-'cv -'d. 	 (5') 

The consensus of clauses 2 and 5 is 

- v v -'a. 

Clause 5 is added to P, producing {10,8, 5,4,3,2,1}. Both the new 
clauses produced are subsumed by a clause in P. Thus, these are the 
prime implicates of the clause set {1, 2,3,4}. 
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Figure 13.1 A NAND gate 

Table 13.1 
Truth table for NAND gate 

:TRUE 	:TRUE 	:FALSE 

:FALSE 	:TRUE 	:TRUE 

:TRUE 	:FALSE 	:TRUE 

:FALSE 	:FALSE 	:TRUE 

13.1.3 The importance of formula-BCP 

The basic advantage of formula-BCP is that it enhances the logical com-
pleteness of the LTMS without paying an excessive penalty in compu-
tational performance. Under what circumstances is this enhanced com-
pleteness useful? In this section we examine three examples in detail. The 
basic intuition behind the examples is that often it is more natural for an 
inference engine to operate with formulas (or sets of clauses considered 
as single units). For those cases, the prime implicate encoding of clauses 
provides the extra information BCP needs. 

Suppose that we are building a reasoner for digital circuits. This rea-
soner should be able to predict circuit outputs from its inputs as well as 
inputs from outputs. Digital components are specified in terms of truth 
tables. The NAND gate of Figure 13.1 has the truth table illustrated in 
Table 13.1. One could encode this truth table for the LTMS as a con-
junction of four implications corresponding to the four rows of the truth 
table: 

X A y 

—ix A y z, 

x A 	z, 

—ix A 	z. 
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Figure 13.2 An XOR gate built up from NAND gates 

Suppose we know that z is : FALSE but y is : UNKNOWN. In this case, x 
remains : UNKNOWN using BCP, which is not at all what we want. If instead 
we replace the formula with its prime implicates we get 

-tx v 	v 

X V Z, 

y v z. 

Using BCP on the prime implicates, it is possible to make the desired 
inference: if z is : FALSE, BCP labels x : TRUE regardless of y's label. 

Suppose we wish to model an exclusive or (XOR) gate built up out 
of four more primitive NAND gates as illustrated in Figure 13.2. If we 
describe each NAND gate by the three prime implicates just discussed, 
then we will not be able to infer from z : TRUE and y : TRUE that x must 
be : FALSE. Consider the prime implicates for the NAND gate N4. As both 
b and c are : UNKNOWN, the fact that z and y are : TRUE does not force 
any other value. However, treating the conjunction of all four models as 
a single formula and expanding it to its prime implicates yields twenty-
eight clauses. Only four of those prime implicates constrain the input-
output variables x, y, and z: 

v v 

X V yv 

X V -9/ v z, 

-X V y v z. 

From these prime implicates we can see that we can now infer that x 
must be :FALSE from z : TRUE and y : TRUE. 

Suppose our task is to build a composite model of the two-pipe system 
shown in Figure 13.3 that characterizes how pressure varies with flow. 
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B 	 C 

Figure 13.3 Building a model of two pipes 

Each pipe is modeled by the qualitative equation (see [1]) [dP1 ] - [dPr ] = 
[d(2] where P1 is the pressure on the left, Pr  is the pressure on the right, 
and Q is the flow from left to right. ([dx] denotes the sign (+, 0, -) of 
(i'-'t̀ ). Thus, the attached pipes are completely modeled by three qualitative 
equations: 

[dPA] [dPB] = [dQAB], 
	 (13.3) 

[dPB ] - [dPc] = [dQBc], 	 (13.4) 

[(IC/AB] = [dQBcl• 	 (13.5) 

An inference engine can encode these equations as follows. Each qualita-
tive variable x is encoded as a taxonomic formula: 

tax(x = +,x = 0,x = —). 

Each qualitative equation is expanded into a set of clauses listing all the 
combinations of values disallowed by qualitative addition. For example, 
x + y = 0 expands to: 

= +) v -(y = +), 

= +) v -'(y = 0), 

-(x = 0) v = +), 

= 0) v = -), 

-(x = -) v (y = 0), 

= —) v -, (y= -). 

Suppose we know that the pressure is rising at A (i.e., [dPA ] = +) and 
the pressure is fixed at C (i.e., [dPc] = 0). Applying BCP to the clause 
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set does not produce any useful inferences. This can be seen directly 
from looking at the qualitative equations. Considering each component 
or qualitative equation individually, we cannot infer anything about the 
flows. We only know one of the three variables in the first and sec-
ond qualitative equations, and none of the variables in third. Therefore, 
none of the equations, individually, can be used to infer a new variable 
value. The only way to determine the behavior is to somehow solve the 
equations—but that requires global reasoning over the entire set of equa-
tions. 

If we compute the prime implicates of the conjunction of the entire set 
of clauses, they include the prime implicate: 

= +) v -'([dPc] = 0) v  ([dQAB] = +)• 

Hence, BCP can infer that [dQAB ] = + and from this [dQBc] = +. This 
example illustrates that in the context of qualitative physics, compiling 
a model into its prime implicates allows simple propagation (BCP) to 
derive inputs from outputs and vice versa. Using qualitative algebra we 
can solve the qualitative equations to obtain: 

[dPA] — [dPc] = [dQAB] = [c112sc]• 

If we reduce this qualitative equation to its prime implicates, we obtain 
the same result as before. As the combination of two pipes occurs com-
monly, we can compile these prime implicates and include them in a 
model library so that we need not repeatedly compute the prime impli-
cates for every two-pipe combination. 

13.2 A complete LTMS 

Let us review (from Section 9.5) how clausal-BCP is incomplete. If clausal-
BCP is given the two clauses 

x v —y, 

x v y, 

it cannot determine that x should be labeled : TRUE. BCP fails to do this 
because x does not follow from either one of these two clauses alone. 



468 	 Chapter 13 

If BCP is given the following four clauses: 

x v y, 

x v -'y, 
- v 

- v y, 

it fails to detect that the database is contradictory. 
BCP is refutation-complete and partially literal-complete for a broader 

range of clause types. In particular, BCP is refutation-complete for any 
clause set which, by substituting literals with their negations, can be 
put in Horn clause form (note that it is not necessary to actually do 
the substitution for BCP to work) [3, 5]. Analogously, BCP will be literal-
complete for the positive literals in the substituted clause set. 

There are, however, many trivial syntactic checks that sometimes in-
dicate the existence of a substitution that can transform the clause set 
into Horn clauses. If a symbol only occurs negatively or positively (often 
called a dangling literal), then only clauses not mentioning that literal 
need be Horn for BCP to be complete. If a symbol occurs only once pos-
itively in a Horn clause and otherwise only occurs in negative clauses, 
then it can be replaced by its negation in an attempt to make more 
clauses Horn (this substitution must be applied sequentially). (In these 
conversions, any assumptions must be taken into account, as well, and 
can prevent a conversion from being of any use.) 

13.2.1 An inefficient full LTMS 

The prime implicate idea provides the conceptual basis for a logically 
complete LTMS for formulas. The intuition is basically that if we regard 
the database as a single formula (the conjunction of all its constituents), 
and replace this single formula with its prime implicates, then the result-
ing clausal-BCP is logically complete: 

Theorem 13.3 
Suppose that the set of clauses 1 is the set of prime implicates of some 
set of formulas. Then BCP on / is logically complete. 

Proof We presume BCP is sound. We must show that the theorem holds 
for any initial set of assumptions .91. Suppose that literal x logically 
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follows from 2 and assumptions A1, , An (possibly none). If x follows 
from A1, , An, then the formula, 

Ai A • • • A An X, 

which in clausal form is 

~Al v•••v 	v x, 

must be an implicate of 2 and thus subsumed by some clause of 1. In one 
step, BCP will deduce x is : TRUE from all the A. 	 • 

Unfortunately, the number of prime implicates of a set of formulas 
is often exponential in the size of the formula. Therefore, unless the 
formula representing the encoding of the entire database is small, this 
technique is somewhat impractical. Nevertheless, there is a class of cir-
cumstances where this can be the right thing to do. Suppose we are per-
forming a qualitative simulation task and we want to analyze the same 
device over and over again with slightly different inputs. Suppose the de-
vice has n inputs, each of which can be one of +, 0, or —. By computing 
the prime implicates of the device it is now possible to instantly read off 
the outputs for any given set of inputs. In effect, we have cached 3n simu-
lations. Whether this is the right approach or not is a time-space tradeoff. 
For smaller devices, it may often be worth it. From the resulting database 
of prime implicates one can determine the inputs from the outputs just 
as easily as the outputs from the inputs. So the same database can be 
efficiently utilized for a variety of distinct tasks. 

Consider the pressure regulator (Figure 13.4) as an example. One ver-
sion of the pressure regulator is described by: 

[dP1] — [dP2] — [dQ] = 0, 

[dP2] — [dP3 ] — [dQ] + [dA] = 0, 

[dP3] — [dP4] — [dQ] = 0, 

[dP4] — [dP51 — [dQ] = 0, 

[dP4 ] + [dA] = 0. 

Converting into formulas and providing no initial labels, the full LTMS 
yields 2,814 prime implicates. At first sight this seems like an awful lot 
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Figure 13.4 Constructing a composite model of the pressure regulator 

of information, but these 2,814 prime implicates contain a very large 
amount of information for performing a variety of tasks on the device, 
and thus it makes sense to construct these implicates if we are repeat-
edly performing tasks on the same device. For example, many of the 
implicates are of the form 

-'([dP1] = +) A -'([dP5] = -) 	-'([dA] = +). 

Often we are only interested in those values which follow from some 
other, and not such inequalities. Of the 2,814 prime implicates, 496 are 
such definite clauses. If we regard all except P1, P5 and Q as internal 
variables about which we will make no additional queries, there remain 
21 prime implicates. Equivalently, of the 2,814 prime implicates, only 50 
do not contain internal variables, and 21 of these are definite clauses. 
Thus we see that the input-output behavior of the pressure regulator can 
be compiled into relatively few very simple clauses. 

13.2.2 A lazy full LTMS 

The basic difficulty with the previous full LTMS is that it may be ex-
tremely difficult to construct the prime implicates, and there might well 
be an exponential number of them. Intuitively, computing all prime im-
plicates is overkill if our goal is to make BCP complete. If we reduce the 
LTMS database to prime implicates, all BCP propagations are one step 
long and could just as well have been done by table look-up. For ex- 
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ample, suppose A, B, and C are assumption literals which lead to the 
non-assumption conclusion d, given the current database. From this we 
immediately know that 

-A v v v d 

is either itself a prime implicate or has a subclause which is a prime 
implicate. Therefore, d can be concluded in one step. 

In many cases it is sufficient to compute only a portion of the prime 
implicates. Consider the example we have been working with: 

(x 	(y v z)) A (X V y V Z). 	 (13.6) 

A direct, easy conversion yields the clauses 

-ixvyvz, xvyvz. 

Resolving these two clauses together produces one prime implicate: 

y v z. 

This prime implicate is needed to ensure completeness. But let us 
assume that x is labeled : TRUE by the inference engine. In this case, 
it is unnecessary to produce the prime implicate. If x is : TRUE as far as 
BCP is concerned, -ix v y v z and y v z provide the same information 
and therefore the prime implicate is redundant. This idea leads to a vari-
ation of the full LTMS algorithm which computes prime implicates only 
when necessary. The general principle is that the consensus of a satisfied 
clause (i.e., a clause one of whose literals is labeled : TRUE) and any other 
necessarily produces a satisfied clause. Even though the satisfied clause 
produced is a prime implicate, it is unimportant to BCP. 

This observation is central for producing a more efficient full LTMS, so 
it bears further analysis. Consider the consensus of two clauses: 

x v /, 

V y, 

where x is a symbol and $ and y are (possibly empty) disjunctions of 
literals. Then the consensus of these two clauses with respect to x (pre-
suming there are no complementary literals) is the clause 

v y, 
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with duplicate literals removed. Suppose x is unknown. If one of the 
antecedent clauses is satisfied, then one of the literals in /3 or y is true. 
Hence, the consensus is satisfied. Otherwise, suppose x is known. If x is 
labeled : TRUE, then x v is satisfied, and to satisfy -ix v y one of the 
literals of y must be true. The consensus /3 v y therefore adds no useful 
information. The situation is analogous if x is labeled :FALSE. Therefore, 
it is unnecessary to compute the consensus of two clauses, one of which 
is satisfied. 

A lazy full LTMS algorithm never computes the consensus of a satisfied 
clause. Instead, every such consensus calculation is delayed, and the 
satisfied clause is marked as dirty such that if it ever becomes non-
unit open (see Section 9.3), consensus calculations will proceed. However, 
interspersed within the prime implicate algorithm are calls to BCP in 
order to avoid as many consensus calculations as possible. 

Consider a simple example. Suppose the assumption x is enabled to be 
:TRUE and the LTMS receives the clauses 

x v y, 

v y. 

The first clause is satisfied by x's label, so there is no point resolving 
the two clauses, but this clause is marked as dirty. BCP simply labels y 
: TRUE. However, if x's label is later retracted, then it becomes worth-
while resolving the two clauses to conclude the singleton clause y, and 
thus y would continue to be labeled : TRUE. 

As a consequence of this efficiency consideration, the LTMS rarely ac-
tually computes the set of prime implicates. Instead it computes a set of 
unsubsumed implicates which are sufficient for BCP alone to achieve full 
completeness for the current assumption labels. 

13.3 Application to ATMS 

The ATMS of Chapter 12 is restricted to accepting only Horn clauses 
as input justifications. The prime implicate formulation we have been 
discussing provides a way of extending the ATMS to accept arbitrary 
clauses (and formulas) as input. Such a system is sometimes called a 
clause management system (CMS)[7]. 



473 	 Improving the Completeness of Truth Maintenance Systems 

Intuitively, the CMS accepts arbitrary clauses (or formulas converted 
into clauses) and computes ATMS labels for them. Consider a simple 
example. Suppose the CMS is given 

avbvC, 

a-- d, 

b d, 

where a, b, and d are non-assumption nodes and C is an assumption. An 
ATMS cannot even accept the first clause (because it is non-Horn) and 
thus does not provide a label for d. On the other hand, a CMS gives d the 
label environment 

Given the terminology established by the ATMS, the CMS is very easy 
to define formally. The set of nodes defines a set of symbols S. A subset 
of those symbols are marked as assumptions: . c S. Let C be the set of 
all clauses supplied by the inference engine (or obtained from converting 
formulas). An environment E is a subset of the set of assumptions, that 
is, E c 

What follows parallels the definition of the ATMS almost exactly, ex-
cept that we must define labels of literals instead of nodes and the 
clauses are no longer restricted to being Horn. A literal 1 is said to hold 
in environment E if 1 can be derived from E u C. The notion of nogood 
is generalized to any environment N consisting purely of assumption lit-
erals such that the empty clause can be derived from N u C. A nogood is 
minimal if it contains no other as a subset. The CMS maintains for each 
literal 1 a set of environments {E1, , Ek} (called the label) having the 
four properties: 

1. [Soundness.] 1 holds in each E,. 

2. [Consistency.] ± cannot be derived from any F, (given C). 

3. [Completeness.] Every consistent environment E in which 1 holds is a 
superset of some E1. 

4. [Minimality.] No E, is a proper subset of any other. 

The CMS label can be computed directly from the prime implicates of 
C which mention 1. The label for a non-assumption literal 1 is constructed 
as follows. For every prime implicate of the form 

-10(1 V • • • V 	V 1 
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where each of the oci represent assumption literals, I al, • • • 	is a label 
environment of 1. The intuition behind this can be seen from the fact that 
the clauses that meet this pattern are equivalent to material implications 
of the form 

cX1 A•••Aak=1. 

If 1 is an assumption literal, then in addition to the previous construction, 
the label also contains the singleton environment mentioning / itself. 

Although the CMS is inefficient, it is extremely powerful. For exam-
ple, many diagnostic tasks can be formulated directly within it (see Sec-
tion 17.4.2 and Exercise 9). However, for most applications the full CMS is 
far too inefficient to be of much practical use. For some relatively simple 
tasks it might be just the right thing. One area in which the CMS can be 
useful is in abduction tasks. Suppose P, Q, and R are all assumptions and 
g is a non-assumption which represents some observation of the world. 
We have the following formulas: 

P AQAR—g, 

—IP Q g, 

~QA R—g. 

Suppose the inference engine is seeking the simplest explanations (i.e., 
an explanation not subsumed by another) for the observation g. g does 
not logically follow, and therefore is not explained. The inference engine 
seeks an explanation consisting of an hypothesis which, if added to the 
database, would cause g to logically follow. For this example, we can just 
read off three such explanations: 

P AQA R, 

—P A Q, 

A R. 

But these are not the simplest explanations. It is the job of a CMS to pro-
vide such simplest explanations. If the above three formulas are provided 
to a CMS, it finds the following environments for g: 

{ -'13, 

{R 
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Thus, there are two simplest explanations for g, namely 	A Q and R. 
These are the simplest explanations that permit the derivation of g. Al-
though this technique is very general, it tends to be exponential, and 
therefore for more complex abduction tasks more sophisticated tech-
niques should be used. 

13.4 Improving the efficiency of prime implicate construction 

The algorithm presented in Section 13.1.2 is intuitively appealing but 
quite inefficient in practice. Constructing prime implicates is known to be 
NP-complete, and therefore it is unlikely that any really good algorithm 
exists. Nevertheless we can do dramatically better than the algorithm of 
Section 13.1.2. In this section we discuss two major improvements. First, 
through logical analysis we can eliminate a large number of the redun-
dant consensus calculations. Second, we can redesign the datastructures 
to support addition and deletion of clauses relatively efficiently. 

13.4.1 A more efficient consensus algorithm 

When one observes the algorithm of Section 13.1.2 running, one sees that 
almost all the clauses produced by the consensus calculation are sub-
sumed by others. One reason for this is somewhat obvious: the consen-
sus operation is often commutative and associative. For example, if we 
have three clauses a, ti and y, typically consensus(a,consensus(Ay)) 
= consensus (consensus(a,$),y)). Unfortunately, the number of ways 
to derive a result grows exponentially in the number of clauses used to 
produce the final result. 

Tison [4, 8] introduced the following key intuition which suppresses 
the majority of the consensus calculations. To compute the prime im-
plicates of a set of clauses, place an ordering on the symbols, then it-
erate over these symbols in order, doing all consensus calculations with 
respect to that symbol only. Once all the consensus calculations for a 
symbol have been made it is never necessary to do another consensus cal-
culation with respect to that symbol, even for all the new consensus results 
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Av B 
	

B v C 	 CvD 

Figure 13.5 Tison's method 

that are produced later (of course, when the inference engine incremen-
tally supplies the next clause, the symbols must be reconsidered). Fig-
ure 13.5 provides a simple example. Suppose we are given clauses A v B, 
-B v C, and -'C v D. The symbols are ordered: A, B, and C. There are 
no consensus calculations available for A. There is only one consensus 
calculation available for B (on the first and second clauses—at C) in the 
figure). Finally, when processing C there are two consensus calculations 
available (at () and C) in the figure). One of those consensus calculations 
produces -43 v D. Although this resolves with the first original clause, 
Tison's method tells us that the result will be irrelevant because all the 
useful consensus calculations with respect to B have already been made. 

The following algorithm incorporates his idea. The algorithm IPIA (this 
derives from the incremental Tison method presented and proved cor-
rect in [4]) takes a current set of prime implicates N and a set S of new 
clauses to add. 

Algorithm 13.2 (IPIA(N, S )) 

1. Delete any D E N u S that is subsumed by another D' E N u S. 

2. Remove a smallest C clause from S. If none, return. 

3. For each literal 1 of C, construct n, which contains all clauses of N 
that resolve successfully with C. 

4. Let E be the set containing C. 

5. Perform the following steps for each literal 1 of C. 
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a. For each clause in which is still in N, compute the consensus of 
it and every clause in H which is still in N. 

b. For every new consensus, discard it if it has been subsumed by 
N u S. Otherwise, remove any clauses in N u S subsumed by it. 
Add the clause to N and E. 

Comparing this algorithm to the previous one, we see that a great many 
consensus computations are avoided: 

■ Consensus calculations with respect to a literal earlier in the order 
are ignored. 

■ Two clauses produced in the same main step (choice of C) are never 
resolved with each other. 

■ Consensus calculations with a D in the original N are ignored unless 
the consensus of D and C exists. 

13.4.2 Implementing subsumption checking efficiently 

Thus far we have been analyzing the logic of the prime implicate algo-
rithms in order to improve their efficiency. However, all the algorithms 
we know of depend critically on subsumption checking, and unless that 
is properly implemented, all the CPU time will be spent checking sub-
sumption. This section lays out some of the basic data structure consid-
erations for performing subsumption checking efficiently. 

A key observation is that we are maintaining a database of unsub-
sumed clauses. We need to implement 3 transactions with this database. 

1. Check whether clause x is subsumed by some clause of the database. 

2. Add clause x to the database. 

3. Remove all clauses from the database which are subsumed by x. 

To understand some of the complexities, consider the most obvious 
implementation: we could implement the subsumption check by the 
Common Lisp function subsetp and maintain the database as a simple 
list. This would be computationally disastrous for two independent rea-
sons. First, using subsetp on two clauses of length n and m requires 
on the order of nm element comparisons. Second, using lists makes 
checking for subsumption of order the number of clauses, and thus the 
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complexity of generating k prime implicates, at least k2. Some of the 
problems we want to experiment with have 1, 000, 000 prime implicates, 
of average size 5, and it is clear that 25, 000, 000, 000, 000 of any funda-
mental operation is beyond the reach of most current computers. 

Our implementation is based on an integration of two ideas. First, each 
clause is always represented in a canonical form. Second, the clause data-
base is represented as a discrimination tree. To achieve a canonical form 
for clauses, we use the unique id assigned to it by the LTMS which is in 
trim-node-index. We order the literals of every clause in ascending or-
der of tms-node-index. (Complementary literals have the same id, but 
they can never appear in the same clause, as this would produce a tau-
tology.) This means that two sets of literals refer to the same clause if 
their respective clause-literals are Common Lisp equal. For exam-
ple, given nodes A, B, and C with ids 1, 2, and 3, the clause, 

AvBvC 

is represented by the list 

[A, B, C]. 

The representation of clauses is very sensitive to the choice of ids. If the 
ids were 3, 1, 2 respectively, then the clause would be represented by the 
list, 

[B, C, A ] 

Recall that the basic LTMS also canonicalizes literals such that two liter-
als are the same if and only if they are eq. This also makes it possible 
to test whether a clause of length n subsumes a clause of length m in 
at most n + m eq comparisons. However, our algorithm never checks 
whether one clause subsumes another. Instead, our algorithm stores the 
canonical forms of clauses in a discrimination tree. By storing canonical 
forms in a discrimination tree, a single clause can be checked against all 
existing clauses in a single operation. 

The discrimination tree for clauses is relatively simple. Conceptually, 
it is a tree, all of whose edges are literals and whose leaves are clauses. 
The edges below each node in the discrimination tree are ordered by the 
id of the literal. Suppose that A, B, C, D, and E are a sequence of nodes 
with ascending ids and the LTMS database contains the three clauses 
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B 

D 

Av D 	 BvD 

AVBVC 

Figure 13.6 Database with 3 clauses 

AvBvC, 

BvD, 

AvD. 

The resulting tree is illustrated in Figure 13.6. Because clauses are canon-
ically ordered, our discrimination trees have the important property that 
the id of any edge is less than the id of any edge appearing below it at any 
depth. This property is heavily exploited in the update algorithms that 
follow. This datastructure is called a trie [6], which has been explored 
extensively for representing dictionaries of words. 

The most commonly called procedure checks whether a clause is sub-
sumed by one in the database. Given an ordered set of literals, the re-
cursive function SUBSUMED? checks whether the set of literals L is sub-
sumed by trie N. The ordered literals are represented as an ordered list, 
and the trie by an ordered list of edges. 

Algorithm 13.3 (SUBSUMED?(L, N)) 

1. If N is a terminal clause, return success. 

2. Remove literals from the front of L until the id of the first edge of N 
is greater than that of the first literal of L. 
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3. If no literals remain (L is empty), return failure. 

4. For each literal 1 of L do the following until success, or until the id of 
the first edge of N is no longer greater than that of I. 
a. If the first literal of N is 1, recursively invoke SUBSUMED? on the 

remaining literals and the edges below the first element of N. 

b. If the recursive call returns success, return success. 

S. 	Remove the first element of N. 

6. Go to step 2. 

Suppose we want to check whether D v E is subsumed by the database 
of Figure 13.6. The root of the trie has two outgoing edges, A and B. D 
has a larger id than the top two edges of the trie (A and B), therefore SUB-
SUMED? immediately reports failure. Suppose we want to check whether 
A v B v D is subsumed by the trie. The first edge from the root matches 
the first literal, so the recursive call tries to determine whether the re-
maining subclause B v D is subsumed by the trie rooted from the edge 
below A. Again B matches, but D does not match C, so the two recursive 
calls to SUBSUMED? fail. Finally, the top-level invocation of SUBSUMED? 
again recursively calls itself and finds a successful match. 

Adding a clause to the database is very simple. Our algorithm exploits 
the fact that the clause to be added is not itself subsumed by some 
other clause, and that any clause it subsumes has been removed from 
the database. 

Algorithm 13.4 (ADD-TO-TRIE (L, N)) 

1. Remove edges of the front of N, until the id of the first edge of N is 
greater than or equal to the first literal of L. 

2. If the label of the first edge of N is the first literal of L, then recur-
sively call ADD-TO-TRIE with the remainder of L, the edges under-
neath the first edge of N, and return. 

3. Construct the edges to represent the literals of L and return, and 
side-effect the trie such that it appears just before the current po-
sition N. 

The potentially most expensive operation, and the one that requires 
the greatest care, is the third basic update on the trie. Here we are given 
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D 

AvBvC 

Figure 13.7 CLTMS database with two clauses 

a clause not subsumed by the trie, and we must remove from the trie all 
clauses subsumed by it. 

Algorithm 13.5 (REMOVE-SUBSUMED (L, N)) 

1. If there are no literals, delete the entire trie represented by N, and 
return. 

2. If we are at a leaf of the trie, return. 

3. For each edge e of N, do the following. 

a. If the label of e is the first literal of L, then recursively call 
REMOVE-SUBSUMED with the rest of the literals and the edges 
below e. 

b. If the label of e is lower than that of the first literal of L, then 
recursively call REMOVE-SUBSUMED on the same literals but the 
edges below e. 

As an extreme case, suppose we want to remove all clauses subsumed 
by D from Figure 13.6. Because D is last in the ordering, the algorithm 
simply searches in left-to-right depth-first order removing all clauses 
containing D. After adding the clause D, the resulting trie is illustrated 
by Figure 13.7. 
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13.5 The full LTMS interface 

The full LTMS is designed as an extension to the basic clausal LTMS. 
Therefore, the inference engine's interface to it is remarkably simple. 
One overall change is that the informant takes a more significant role in 
the CLTMS. In the other TMS implementations, informants were provided 
purely as a convenience to the inference engine (usually used to cache 
the name of the rule that constructed the justification). However, in the 
CLTMS they play a significant role. If the informants of two clauses (or 
two formulas) are non-nil and Common Lisp eq, the implementation 
will never attempt to resolve them (or, in the case of formulas, any of 
their constituent clauses) together. This allows the inference engine to 
indicate which resolutions need actually be performed. 

(add-formula ltms formula &optional informant) 

The procedure add-formula is redefined to add the prime implicates 
of the formula to the clause database. Therefore, the resulting LTMS 
labels will be the same as those a formula-BCP would find. 

(create-ltms title &key (title nil) 
(node-string 'default-node-string) 
(debugging nil) 
(checking-contradictions t) 
(contradiction-handler 'ask-user-handler) 
(enqueue-procedure nil) 
(complete nil) 
(delay-sat t)) 

The procedure to create an LTMS can be supplied a keyword : COM-
PLETE argument indicating whether it should be logically complete. 
There are three options for this keyword: 

nil This indicates a conventional BCP will be used. If the inference 
engine only supplies clauses, then no resolutions will be performed. 

t This indicates that a complete LTMS will be used. 

: DELAY This is the typical way to use the CLTMS. The TMS will behave 
as a conventional BCP-based LTMS. However, enough datastructures will 
be accumulated so that the inference engine can later explicitly ask to 
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produce the same database as would have resulted if this flag had been t 
initially. This is important because often the inference engine has a whole 
set of formulas to communicate to the CLTMS, and it would be futile 
for the CLTMS to compute prime implicates which would immediately be 
subsumed by additional inference engine clauses. 

When the last keyword argument delay-sat is t, then the LTMS will 
delay consensus calculations of satisfied clauses. To use the CLTMS as a 
clause management system, this flag should be nil, otherwise it should 
be left at its default value. 

(change-ltms ltms &key node-string 
debugging checking-contradictions 
contradiction-handler enqueue-procedure 
complete delay-sat?) 

The procedure change-ltms can change the type of LTMS used. The 
inference engine should use this judiciously, as the implementation does 
not try to change the results of previous LTMS operations accordingly. 

(support-for-node node) 

Some of the clauses used by the full LTMS are the result of resolution. 
Therefore, the procedure support-for-node is extended. If the first el-
ement of the informant is RESOLVE, then the second and third elements 
of the list are two clauses which resolve to produce this one. This in-
formant is stored in the clause-informant slot of the clause currently 
supporting the node. 

Notice that the LTMS procedure set-truth queues any nodes that re-
ceive new : TRUE or :FALSE labels for delayed consensus computations. 
New consensus computations are only called for when a retraction is 
done. Therefore, any call to retract-assumption eventually leads to a 
call to ipia, which either performs the delayed consensus computation 
or delays it again. 

(complete-ltms ltms) 

complete-ltms performs consensus computations which have been 
delayed because the : COMPLETE flag is set to : DELAY. It will have no 
effect if the : COMPLETE flag is t or nil. 
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13.6 A simple example of CLTMS usage 

This simple example shows CLTMS behavior on the simple clauses that 
show BCP incompleteness. 

> (setq *ltms* (create-ltms "Simple Example" :COMPLETE :delay)) 

We add the two clauses (compile-formula is always the preferred 
method of adding to the CLTMS database): 

• (compile-formula *ltms* '(:OR x y)) 

• (compile-formula *ltms* '(:OR x (:not y))) 

We print out the clause database via 

> (pretty-print-clauses *ltms*) 

(:OR Y X) 

(:OR (:NOT Y) X) 

We can print out the node labels via 

> (why-nodes *ltms*) 

Y is unknown. 

X is unknown. 

After performing the delayed consensus calculation via, 

(complete-ltms *ltms*) 

we obtain 

> (pretty-print-clauses *ltms*) 

(:OR X) 

Notice that the two original clauses have been removed and replaced with 
a new singleton clause. 

> (why-nodes *ltms*) 

Y is unknown. 

X is TRUE ... 
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13.7 The full LTMS code 

The code in cltms . lisp contains a set of procedures which must be 
combined with those in ltms . lisp in order to build a logically complete 
LTMS. Before studying the code in cltms . lisp, we should review some 
of the relevant hooks in ltms . lisp. The main LTMS datastructure ltms 
contains a field clauses. In the basic LTMS, this contains a list of the 
clauses the inference engine provided the LTMS. In the CLTMS, this con-
tains the trie containing all the clauses of the LTMS database. The LTMS 
datastructure contains two additional fields used only in the CLTMS. 

queue A queue of pending clauses that need to be resolved against 
other clauses in the database. This queue is organized for convenient 
insertion and removal of the shortest clause. It consists of a list of lists. 
Each component list consists of an integer length followed by clauses of 
that length. The top-level list is sorted on this integer length such that 
the list of shortest clauses always occurs first. Thus, an example queue 
value is: 

( (2 #<Clause 3> #<Clause 2) 
(4 #<Clause 5>) 
(7 #<Clause 9> #<Clause 101>) ) 

conses A list of cons cells to be used as temporaries in the consensus 
algorithm. 

delay-sat If this flag is t, then a satisfied clause should never be 
resolved with another. 

cons-size The number of conses available in the conses slot. 

The clause datastructure contains one additional field, clause-
status, for use within the CLTMS. This field has four possible non-nil 
values: 

: SUBSUMED This clause has been subsumed by some other in the data-
base. 

: QUEUED This clause is part of the database, but is queued for pending 
consensus calculations, i.e., it is a member of S in IPIA. 
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:DIRTY A consensus calculation of IPIA was blocked because this 
clause is satisfied. When this clause ceases to be satisfied, this clause 
must be requeued for further consensus calculations. 

:NOT-INDEXED This clause has just been created in the inner loop of 
IPIA but has not yet been inserted into the connection graph. 

There are three places in ltms . lisp which explicitly branch to code 
in cltms.lisp. The LTMS procedure add-clause-internal calls the 
CLTMS procedure full-add-clause instead of bcp-add-clause. bcp-
add-clause does not perform any resolutions or subsumption tests. 
When the LTMS procedure find-alternative-support determines 
that a node becomes :UNKNOWN, it first tries to use simple BCP to de-
termine its label, and if unsuccessful it invokes a procedure to compute 
additional implicates, which hopefully will constrain other node labels. 
The LTMS procedure propagate-unknownness, which is called when a 
node's label becomes : UNKNOWN, calls the CLTMS procedure propagate-
more-unknowrmess to check whether some previously satisfied clauses 
need to be resolved with other clauses. 

The LTMS procedure tms-create-node also maintains a sequence of 
temporary conses used by the consensus algorithm. As these conses are 
heavily used, it attempts to ensure that all these conses are localized in 
memory. Most Common Lisp implementations ensure that conses that 
are created at the same time are located in the same area of memory. In 
order to prevent creating a new sequence of conses every time a node is 
created, tms-create-node only recreates the sequence of conses every 
fiftieth node creation. 

13.7.1 Adding formulas and clauses 

The code in this section takes any inference engine-supplied formula, 
converts it into its prime implicates, and adds these to the clause data-
base. 

add-formula is the top-level procedure for adding formulas. Like the 
analogous LTMS procedure, it first converts the formula into conjunctive 
normal form (as explained in Section 9.4). However, there are some im-
portant improvements. The straightforward LTMS algorithm can produce 
an exponential number of clauses, most of which are ultimately removed 
by subsumption (see Exercise 3). Therefore the conversion code here 
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performs subsumptions during the conversion to conjunctive normal 
form. In addition, it eliminates tautologies and duplicate literals as well 
as sorting the literals in canonical order during the conversion. These 
extensions yield dramatic performance improvements on many of the 
otherwise exponential cases. The procedures normalize-disjunction, 
normalize-conjunction, disj oin-clauses, and subsumed-by? com-
bine with the procedures in ltms . lisp to perform this encoding. This 
first improvement simply depends on datastructure improvements to 
perform subsumption. It would be straightforward to extend the basic 
LTMS in the same way. 

The second change to add-formula is that it converts the formula to 
its prime implicates. It achieves this by creating an instance of a complete 
LTMS, installing all the CNF clauses into it, converting these to prime 
implicates, and then copying these clauses back into the top-level LTMS. 
Although creating a temporary LTMS instance seems like overkill, this 
process has two important advantages. First, it is unnecessary to have a 
distinct algorithm to convert a formula to its prime implicates. Second, 
in the case where the database is expressed as a few very large formulas, 
the procedure exploits all the efficiency advantage of the main algorithm. 
In order to prevent two prime implicates of the same formula from being 
futilely resolved with each other, the consensus calculation refuses to 
process two clauses with the same informant. The inference engine can 
also exploit this property: individual clauses or formulas with the same 
informant will never be resolved with each other. 

The procedure compile-formula functions identically to its LTMS 
counterparts. However, it transforms the formula at compile time. This 
improves execution time at the expense of compile time. 

The macro map-over is used by add-formula to map the clauses from 
the main CLTMS to the temporary one and back again. 

add-clause is almost identical to the basic LTMS version. Although 
the inference engine guarantees that there are no duplicate or comple-
mentary literals, every clause must be put in canonical form. 

13.7.2 Consensus algorithm 

The procedure simplify-consensus interleaves three primitive opera-
tions. First, it computes the consensus of two clauses with respect to a 
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symbol. If the result would contain complementary literals, it fails. Sec-
ond, it removes any duplicate literals that might appear in the result. 
Third, it ensures that the resulting literals are in canonical order. All 
three operations can be performed in one pass through the clauses, be-
cause the original clause literals are in canonical form to start with. To 
achieve this operation in one pass, it must construct the result clause as 
it goes—even though the partial result might be discarded if complemen-
tary literals are found. 

Unless great care is taken, an exorbitant number of cons cells will be 
used inside this procedure. This is partially a consequence of the fact 
that in order to succeed in one pass, simplify-consensus may have to 
discard partially constructed results. But, more importantly, even with all 
the strategies we have discussed to reduce redundant consensus calcula-
tions, most consensus calculations remain redundant. Therefore, most 
of the clauses built by simplify-consensus are immediately discarded 
because they fail the subsequent subsumption check with respect to the 
database. Although Common Lisp's cons is relatively cheap, performing 
a great number of them in the inner loop of an algorithm significantly 
degrades performance and wastes storage. Therefore, our implementa-
tion uses an advanced Common Lisp programming idiom to save cons 
cells. When we initially create the ltms datastructure, we allocate a fixed 
number of cons cells. These cells are used repeatedly in consensus cal-
culation. The body of the function simplify-consensus is written as if 
it were calling the usual cons procedure. However, the macrolet tem-
porarily redefines Common Lisp's push within the body of the proce-
dure such that all cons cells are allocated from the fixed set. Of course, 
simplify-consensus should not be called a second time until the re-
sults of the first call are copied or discarded. Otherwise the result of the 
first call will be changed as a consequence of the second. 

The procedure simplify-subsume-consensus is called at the inner 
step of Tison's method. It first calls simplify-consensus to check 
whether a consensus exists, and if one does, it obtains the literal se-
quence. It then immediately checks whether the result is subsumed by 
the current database. Only if the clause is not subsumed does it copy the 
clause literals out of the temporary cons cells and install the clause in 
the database via a call to process-clause. 
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13.7.3 Maintaining the connection graph 

In order to implement BCP efficiently, the basic LTMS maintains a list for 
each symbol containing the clauses in which it appears positively and 
negatively. This same datastructure plays a dual role in our consensus 
algorithm. When provided a new clause, we need to be able to quickly 
identify all the other clauses it can potentially resolve with. (In theo-
rem proving, this datastructure is called a connection graph.) We have 
already seen in a number of places in this chapter that it is productive 
to find the shortest resolvents first. Therefore, we want to resolve the 
shortest clauses first. In order to facilitate this, the clauses in tms-node-
true-clauses and tms-node-f alse-clauses are stored by descending 
length. The macro insert-clause achieves this and is used in the proce-
dures insert-true-clause and insert-false-clause, which replace 
their LTMS counterparts. 

The connection graph is not consulted in the inner loop of IPIA and 
many of the clauses constructed there are immediately subsumed. There-
fore, the construction of the connection graph is delayed. The procedure 
index-clause inserts the clause into the connection graph when needed 
later—the indexing right after the clause is created in bcp-add-clause 
is suppressed. The procedure literal-connections is a handy func-
tion which returns the list of clauses in which the complement of a literal 
appears. 

13.7.4 LTMS entry points 

When the inference engine does a retraction, nodes may lose support. 
Whenever a node becomes : UNKNOWN, clauses which it previously satis-
fied may no longer be satisfied. If any clause becomes unsatisfied and 
IPIA was previously blocked from performing any resolutions with it, 
then the clause is queued for future consensus calculations. It is impor-
tant to not immediately do the consensus calculations, as BCP may find 
alternative support for the node. 

The procedure full-add-clause is called from the basic LTMS when 
a clause is added to a complete LTMS. It calls install-clause to add 
the clause to update the database. If the new clause is not subsumed 
by the database adds install-clause to the pending resolution queue. 
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Unless the CLTMS is run in delayed mode, it calls IPIA to perform all the 
necessary consensus calculations. 

13.7.5 Implementing Tison's method 

The next sequence of procedures implements Tison's method. This im-
plementation combines all the different ideas discussed in this chapter 
plus a number of implementation strategies, and is therefore hard to 
follow. Experience has shown that it is preferable to always construct 
small resolvents first. Therefore, many of the internal lists are sorted 
by size (in the same format as ltms-queue). The first group of pro-
cedures and macros help Tison's algorithm maintain these lists. The 
macro insert-list2 maintains a list in the form of ltms-queue. The 
procedure insert-queue uses this macro to insert clauses into ltms-
queue. The procedure insert-list-1 is simply the procedure version 
of the macro. The macro insert-list adds a clause to an arbitrary 
Common Lisp value using this format. The macro delay-sat? is used 
to delay consensus calculations involving satisfied clauses. If the LTMS is 
created with : COMPLETE : DELAY, then the inference engine should call 
complete-ltms to perform all pending consensus computations. 

The heart of the prime implicate algorithm is the procedure ipia. It 
follows the outline of IPIA, but it is extended to block any consensus 
calculations with satisfied clauses. Also, it incorporates numerous local 
efficiency improvements. 

13.7.6 Maintaining the discrimination tree 

The next set of procedures implements the algorithms of Section 13.4.2. 
Note that the procedure subsumed? is actually less sophisticated than 
discussed there. This is because unless the problem is relatively large, 
the additional checking of the canonical order is not worth while. In par-
ticular, the member test which ignores the id order of literals, is almost 
always faster than a hand-coded search that does pay attention to the id 
order, simply because most Common Lisps implement member well. The 
procedure add-to-trie functions exactly as described in Section 13.4.2. 
It uses build-trie as an auxiliary procedure which consists of a fresh 
(sub)trie for a single (sub)clause. 
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The procedure remove-subsumed performs as described in Section 
13.4.2. It uses remove-subsumed-1 as an auxiliary. walk-clauses is a 
general auxiliary procedure used in a number of places. It invokes the 
procedure it is supplied as an argument on every clause in the LTMS. 
The procedure collect uses walk-trie to construct a list of all the 
clauses in the trie. The procedure remove-clause is designed to be 
called only from remove-subsumed. It removes the clause from the con-
nection graph and updates the relevant BCP records. Note its use of the 
Common Lisp procedure delete. Even though a clause will appear only 
once in this list and one should think using delete with a keyword argu-
ment of : COUNT 1 should be more efficient, most Common Lisps imple-
ment this operation poorly. 

13.7.7 Processing clauses 

The next two procedures do the top-level processing of new clauses 
and do all their work by calling other procedures. install-clause first 
checks whether the clause is subsumed by the current database, and if 
not, calls process-clause. process-clause first passes the clause to 
BCP, then removes all clauses it subsumes from the database, and finally 
adds it to the database. 

The procedure tms-env is unrelated to the CLTMS, but provides a 
facility to implement a CMS. This procedure will take a node and a 
: 

 
TRUE! : FALSE label and return a set of literals (each indicated by a cons 

consisting of a node and its sign— : TRUE/ : FALSE). 
The procedure pi is included to support experimentation with prime 

implicates. It computes the prime implicates of a formula. It uses an 
heuristic to ensure that the initial trie is as small as possible. In many 
experiments this considerably improves the running time to compute the 
prime implicates. 

13.8 Exercises 

1. * Find a formula that has far more prime implicates than conjuncts 
in conjunctive normal form. 
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2. * Show three clauses that illustrate that the consensus calculation is 
not associative. 

3. * * Modify our LTMS to allow the user to justify, enable, and retract 
formulas. 

4. * * Consider a TAXONOMY formula on n nodes. How many prime im-
plicates does it have? 

5. ** Implement a version of subsumed? which does check ids. Does it 
make any difference in performance? 

6. * * Write a procedure to convert qualitative equations to formulas 
and then reduce them to prime implicates. 

7. * * Implement a version of the ATMS that is plug compatible-with 
our earlier implementation but which uses the CLTMS. 

8. * * Our CLTMS datastructures for representing clauses are far more 
efficient for representing clauses than our ATMS nogood tables. Im-
plement a more efficient ATMS which uses a trie to represent the 
nogoods. 

9. * * Consider the following Common Lisp code: 

(defun kean (m k &aux as) 
(setq *ltms* (create-ltms "Kean Problem" :COMPLETE t)) 
(do ((i 1 (1+ 0)) 

((> i k) (add-formula *ltms* (cons :OR as))) 
(push '(:NOT (a ,i)) as) 
(do ((j 1 (1+ j))) 

((> j m)) 
(compile-formula *ltms* '(:OR (a ,i) (:NOT (s 	,j))))))) 

How many prime implicates are there for (kean 3 6)? How many 
for (kean 5 10)? Derive the formula for the number of prime impli-
cates. Answer: (kean 5 10) has 60,466,236 prime implicates. 

10. * * * * We discussed how computing prime implicates was overkill 
when using BCP. Our current algorithm is essentially post hoc, block-
ing consensus calculations when BCP satisfies clauses. Does it make 
sense to define the general notion of BCP-prime implicates which 
would be directly computable from a set of clauses and which en- 
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sured that BCP would be complete (with respect to the original clause 
set)? 

11. * * * An implicant of a set of formulas is a conjunction of literals 
Tr containing no pair of complementary literals. Tr is a prime impli-
cant of E if no proper subconjunction of Tr is an implicant of L Show 
that the prime implicants of are the negations of the prime impli- 
cates of 	(i.e., treating E as a conjunction of formulas). Using the 
CLTMS implementation as a base, write a Common Lisp procedure 
that returns the prime implicants of a set of formulas. 
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14 	Putting the ATMS to Work 

The ideas of assumption-based truth maintenance introduced in Chap-
ter 12 provide a new set of problem-solving capabilities. The compact 
encoding of contexts via environments makes it easy, in theory, for a 
problem solver to switch its focus (or foci) of attention. This should 
streamline searches and facilitate comparing alternatives. The associa-
tion of complex labels with nodes and the maintenance of a global data-
base of nogoods should simplify the propagation of results between dif-
ferent activities inside a problem solver. 

This chapter explores how to organize problem solvers that capitalize 
on the strengths of the ATMS. To illustrate these ideas we present yet 
another variant of the Tiny Rule Engine, called ATRE. We begin by ex-
amining the issues involved in interfacing a rule engine to an ATMS. We 
outline two strategies (many-worlds and focused) for organizing ATMS-
based problem solvers, followed by the design of ATRE which supports 
them. Section 14.2 then details how these design changes are reflected 
in ATRE's implementation. In Section 14.3, ATRE is used to build a sim-
ple planner. This system illustrates how to think about encoding domain 
rules in terms of restricting models. It also shows how an ATMS is used 
in envisioning, a reasoning technique briefly mentioned in Chapter 11. 
Envisioning, like other problem-solving techniques based on interpreta-
tion construction, works best for small problems or for small pieces of 
larger problems. In Section 14.4 we describe more focused ATMS-based 
problem-solving strategies, indicating how they can be more efficient in 
simple domains and can enable ATMS techniques to be used on much 
larger problems. 
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14.1 Interfacing to an ATMS 

Although there are several important new issues raised by using an 
ATMS, many aspects of the TMS/inference engine interface remain the 
same. Like any other TMS, we expect that the inference engine (here, a 
version of FTRE) maintains the link between its data and the TMS. The 
format of ATMS justifications is identical to that of JTMS justifications, 
so we use the same conventions for assuming and justifying data. Like 
the JTMS, if we wish to adopt a strict propositional model for assertions, 
we shall have to enforce that explicitly in the inference engine. That 
is, distinct nodes for a proposition and its negation must be created, 
along with justifications that keep them from both being believed in any 
consistent environment, analogous to the justifications for contradiction 
nodes in JTRE which prevented a proposition and its negation from both 
being believed at the same time. Thus we shall see that many aspects 
of ATRE can be borrowed directly from JTRE. The reification of the 
notion of environment, however, gives us a new set of design choices 
for organizing problem solvers, which in turn affects how we should 
design our inference engine. Therefore we examine these organizations 
next. 

14.1.1 Organizing ATMS-based problem solvers 

Two strategies for organizing ATMS-based problem solvers can be char-
acterized as follows: 

Many-worlds Work in all consistent contexts at once; seek all possible 
solutions. 

Focused Work in a single context (or small number of contexts) at a 
time to find a good solution. Switch contexts opportunistically. 

In a design system, for instance, a context would include assumptions 
about the current state of the design and the specifications the artifact 
should satisfy. In a planner, the context would include a description 
of the plan generated so far. In an analysis system, the context would 
include information about the results achieved so far by a particular 
method. In all of these cases the context might also include control infor- 
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mation (e.g., show assertions) describing the problem solver's goals and 
chosen methods. 

The many-worlds strategy trusts in the "small infinity" effect [9] often 
found in artificial intelligence: while worst-case analyses look appalling, 
in realistic cases the amount of work or number of solutions is often 
small, due to the many constraints imposed by the world and due to the 
discovery of clever ways of carving up the problem. The use of envision-
ing in qualitative physics, and in the planner shown later, are examples 
of the many-worlds strategy. Efficient support for problem solvers us-
ing this strategy was the original motivation for developing assumption-
based truth maintenance. "I will fear no exponentials" is the motto of the 
dedicated builder of many-worlds problem solvers. 

The focused strategy is most like the strategy used in other TMS-based 
problem solvers. Here, a single environment is chosen to represent the 
problem solver's locus of effort. This environment is typically called the 
focus environment or focus. All queries are considered with respect to 
the focus, and activities irrelevant to the current focus are suspended. 
The leverage provided by the ATMS comes from the ease with which 
the focus can be changed. In a traditional TMS, changing assumptions 
requires retracting some subset of the old assumptions and enabling new 
ones, which can force label propagations through substantial portions 
of the dependency network. The ATMS extracts its price in advance, by 
making the initial propagation of an assumption more expensive (due 
to the need for label updating and maintaining the nogood database), 
but then switching becomes free. It is the expense of swapping sets of 
assumptions that forced JTRE and LTRE to use stack-oriented techniques 
for organizing searches and assumption-making operations. Freed of this 
expense, we can now explore more flexible problem-solver organizations. 

It is important to realize that these strategies are extreme points in the 
design space of ATMS-based problem solvers. Many systems have been 
built using each strategy in its pure form. However, it is often more con-
venient and efficient to find an appropriate blend of them. Nevertheless, 
we continue to focus on the extreme cases below to simplify discussion. 

Each strategy imposes different requirements on the inference engine 
and on the inference engine/ATMS interface. Specifically, we next exam-
ine how these choices impact the vocabulary of database queries, the 
control of rule execution, and contradiction handling. 
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14.1.2 Database queries 

Under the focused strategy, the database can be treated as if it were a 
JTMS-based system. That is, a given statement is in if it is implied by 
the focus, and out otherwise. This can be implemented by a simple test 
to see if there is an environment in the label which is a subset of the 
focus environment. The many-worlds strategy requires a more catholic 
view of the database: a non-empty label may be sufficient reason for 
the problem solver to work on a given assertion. Thus, under the many-
worlds strategy, we consider a node in if the label is non-empty, and out 
only if the label is empty. 

The ATMS also facilitates queries about relative consistency. In the fo-
cused strategy, for example, it may be necessary for a problem solver to 
figure out how to extend its current focus to include some desirable con-
sequence. (A designer, for instance, may need to extend the design of an 
aircraft by choosing a particular class of engine that will satisfy the air-
craft's mission requirements.) In the many-worlds strategy, there may be 
several potential extensions to a partial solution, and the problem solver 
must filter out those which are inconsistent. (A logistics planner, for in-
stance, may have several choices for routing a ship, each of which will 
allow the satisfaction of different goals.) In both cases the underlying 
ATMS operations are the same: if the given environment can be consis-
tently combined with some environment in the statement's label, then 
the extension is consistent. In the focused problem solver, each such 
union is a candidate for its new focus, and in the many-worlds problem 
solver each union is a new (perhaps partial) solution. 

The idea of computing relative consistency by unioning environments 
is commonly exploited in ATMS-based problem solvers. However, there 
are two caveats which must be kept in mind. First, nogoods discovered 
later on may render these new environments inconsistent. Second, these 
new environments are only complete relative to the set of assumptions in 
force when the label is examined. Adding new assumptions may enable 
yet more possible extensions. Minimizing the occurrence of these two 
situations is an important consideration in good problem-solver design. 
The first may be minimized by trying to discover nogoods as early as 
possible. The second may be minimized by structuring work so that, 
when possible, labels are used only when they are maximal (i.e., as large 
as they are going to get). Figuring out how to exploit the constraints 
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of a domain to achieve these ends is an important part of the art of 
organizing ATMS-based problem solvers. 

14.1.3 Rule execution strategies 

The improved vocabulary for beliefs provides similar scope for improve-
ment in controlling the execution of pattern-directed rules. Like the pre-
vious TMS/inference engine interfaces, we place the burden of finding 
matching sets of data on the inference engine, and delegate scheduling 
the execution of rules to the TMS. Let us consider what is needed to im-
plement each ATMS strategy. 

To implement many-worlds strategies, we need rules that operate as 
freely as possible. For instance, the notion of triggering rules when state-
ments appear in the database, regardless of label, is especially useful 
when installing justifications which justify contradiction nodes. Con-
sequently, we keep the intern triggering condition used in previous 
TMS-based inference engines. The definition of in used by many-worlds 
problem-solver queries can be turned into a trigger condition, by execut-
ing the body of a rule only when the triggers can be consistently believed 
together. 

To implement focused strategies, we need tighter control over rule 
execution. The definition of in used in focused problem-solver queries 
naturally leads to the idea of executing a rule only when all of its triggers 
are implied by the current focus environment. We call this the implied-by 
strategy for rule execution. 

The implied-by strategy for rule execution provides much tighter con-
straint than the intern or in strategies. Consider an intelligent design aid 
for VLSI. If the initial design called for CMOS, the program might begin 
elaborating and exploring the various alternatives under this assump-
tion. If external factors force the design to use gallium arsenide instead, 
it should stop working on the CMOS version of the design. The CMOS 
design has not become inconsistent, it has simply become irrelevant (at 
least for the time being). Yet a program based on in or intern rules would 
continue to pursue both. Actually, the implied-by rule execution strategy 
is the ATMS analog to the label-sensitive strategies used in other TMSs—
the problem of working on other possibilities simulaneously never arose 
in other TMSs due to their use of a single global context. 
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Figure 14.1 Applicability of rule execution strategies. This Venn diagram 
illustrates how the ATMS-based rule execution strategies compare in terms 
of their applicability to combinations of facts. 

Figure 14.1 depicts the relative degree of control offered by each strat-
egy. The intern strategy is the most profligate, since any combination 
of mentioned facts will do. The in strategy is more restrained, requir-
ing that the combination of facts be mutually consistent. The implied-by 
strategy is the most restrictive, forcing the combination to be implied by 
the current focus, and hence presumably relevant to the problem solver's 
current activities. In all but a few cases, using some mixture of these 
strategies typically provides the most efficiency. 

14.1.4 Contradiction handling 

In non-ATMSs, the current context of the system is defined in terms of 
the belief states of the nodes in the dependency network. When context 
is implicitly represented by the global state of the TMS, contradiction 
handling must also be performed through a global mechanism. Every 
inference engine task must register its strategy for how contradictions 
involving its assumptions should be processed (e.g., the stack-oriented 
contradiction handling mechanism of Section 10.1.2). The explicit, dis-
tributed representation of context in the ATMS suggests using a differ-
ent strategy. By associating contradiction handlers directly with environ-
ments, we can provide localized, distributed contradiction processing. 

Let us see how this works. Consider first the focused problem solver. 
Suppose a task T has a procedure P that should be called if a contra-
diction relevant to T occurs. T always has some focus environment F 
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associated with it, corresponding to the assumptions under which that 
task makes sense to perform. (F may or may not be the focus of the 
problem solver at any particular time. It will be the problem solver's fo-
cus if the problem solver is working on T or some other task that shares 
F as its focus environment, and otherwise it won't be.) We can arrange 
the ATMS/inference engine combination so that the procedure P can be 
linked with F, so that P is executed exactly when F becomes contra-
dictory. This can be done for each task independently. In other words, 
contradiction handlers are now indexed by environments. 

Timing is always an important issue in processing contradictions. By 
decentralizing contradiction handling we cut what was a tight link be-
tween the processing of a task and the TMS operations associated with 
it. This leads to new constraints on representing tasks. The simplest case 
is that the focus environment F for task T is discovered to be contradic-
tory while T is being processed. The simple non-local exit mechanism we 
used in most previous contradiction handlers would suffice for this case. 
But there is nothing that prevents F from being discovered as contra-
dictory before or after T is processed. Good problem solver design can 
(and should) minimize this, of course, but sometimes it is inevitable. For 
instance, if we discover that we cannot actually afford to buy a new com-
puter, then any tasks concerning which kind or configuration suddenly 
become irrelevant. Our new contradiction handling strategy forces us to 
represent tasks in such a way that we can mark them as irrelevant, even 
when they are not executing. There are a variety of ways to do this, some 
of which are considered in Section 14.4. 

14.2 Implementing ATRE 

ATRE is designed to support both the many-worlds and focused problem-
solving strategies. Its organization follows that of the other TREs, with 
JTRE being the closest match. Let us consider each part of the system in 
turn. 

14.2.1 The ATRE interface (ainter.lisp) 

The code in this file defines four parts of the system: 
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1. The global structure of ATREs and manipulations on them. 

2. The datastructures used by the other components. 

3. The interface to the focus mechanism. 

4. The implementation of contradiction handlers. 

The first two parts are almost exactly like earlier TREs. The only new 
fields of the ATRE struct are: 

in-rules Rules to be executed when their triggers are jointly believed. 

focus An environment which is the current focal point of ATRE's pro-
cessing. 

contradiction-rules Contradiction handlers associated with partic-
ular environments. 

imp-rules Rules to be executed when their triggers are implied by the 
current focus. 

How these fields are used is explained below. The definition of rules has 
become more complex, with fields in-nodes and imp-nodes containing 
the lists of antecedent nodes that must be jointly believed and implied by 
the focus, respectively, before the rule is executed. The other new aspect 
in this part of the file is the procedure solutions, which provides an 
interface to the ATMS procedure interpretations. 

The third part, focus manipulations, ensures that rule scheduling 
appropriately tracks changes in focus environments. The procedure 
change-focus does reality checks on the ATRE and the proposed focus 
environment, and if sound, makes the change. To support the implied 
by rule execution strategy, the vocabulary of trigger conditions is ex-
tended to include the keyword : IMPLIED-BY. The rules stored in the 
atre-imp-rules field are rules with : IMPLIED-BY triggers which were 
not executable under the previous focus. They may be implied by the new 
focus, though, so they are requeued for examination at the appropriate 
time. (If they still are not relevant they will be returned to atre-imp-
rules later.) The procedure focus-okay? is provided for procedures 
using ATREs. Presumably, if the focus has failed, the control strategy 
must find a new task to work on. The macro with-focus encapsulates 
these mechanisms to simplify working with a focus temporarily. 

The implementation of contradiction rules uses the ATMS to do the 
hard work. A contradiction rule is a procedure which takes one argu- 
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ment, the environment it is associated with. Contradiction rules are cre-
ated by the procedure contradiction-rule. contradiction-rule op-
erates by first seeing if the environment is already contradictory. If so, 
it queues the procedure for execution. Otherwise, it stashes the proce-
dure and its argument on the environment's env-rules slot. If the envi-
ronment ever becomes contradictory, the ATMS will call the enqueueing 
procedure given to it by ATRE, which ultimately will cause the procedure 
to be executed. (The procedure in the ATMS that services the env-rules 
field is remove-env-from-labels.) 

14.2.2 The ATRE database (adata.lisp) 

The basic structure of ATRE's database is the same as in the other TREs. 
The differences lie in the treatment of assumptions and the set of inter-
rogatives provided. 

Since assumptions are permanent in the ATMS, there is no distinct no-
tion of enabling or disabling an assumption. Instead, assume ! provides 
an interface to the ATMS procedure assume-node, which permanently 
makes the node associated with the fact into an assumption. (The proce-
dures already-assumed? and assume-if-needed allow procedures to 
avoid mistakenly re-assuming facts.) 

A common operation in ATMS-based problem solvers is stating that a 
combination of facts is mutually inconsistent. Thus we include the macro 
rnogood!, which allows us to state that a combination of facts taken 
together comprise a contradiction. (This is accomplished by providing 
a justification for false, the inference-engine statement whose node is 
the contradiction node for the ATRE's ATMS.) The syntax of rnogood! is 
close to what we have been using for Horn justifications, namely an in-
formant followed by a list of antecedents. In an N-queens puzzle solver, 
for instance, the consistency rule might look like this: 

(rule :IN ((Queen ?columnl ?rowl) :VAR ?Q1 
(Queen ?column2 ?row2) :VAR ?Q2 
:TEST (not (or (= ?columnl ?column2) 

(queens-okay? ?columnl ?rowl 
?column2 ?row2)))) 

(rnogood! :DEATH ?Q1 ?Q2)) 
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The set of interrogatives provide interfaces to the underlying ATMS 
procedures. true? is non-nil only when the fact holds in the empty 
environment, that is, is universally believed. As noted in Section 14.1.2, 
in? and out? play dual roles, according to whether or not they are given 
an environment to work with. Since environments are explicit objects to 
be reasoned with, procedures for constructing and dissecting environ-
ments are needed. The procedure environment-of produces the envi-
ronment corresponding to a set of assumed facts, and the procedure 
environment-cons produces a new environment by adding an assumed 
fact to a given environment. The procedure view-env supports the dis-
section of environments by mapping their assumptions back into ATRE 
assertions. 

The set of interrogatives for debugging has also expanded. get-tms-
node, show-data, and view-node are defined as they were in previ-
ous systems. But the definition of assumptions-of has been simplified, 
from a search through the dependency graph to find the current set 
of assumptions supporting a fact to simply returning the fact's label. 
The procedures the-e and get-just provide methods for retrieving en-
vironments and justifications based on their index numbers, which is 
very useful in interactive debugging and instrumenting code. In addi-
tion to showing the whole database (show-data) and printing database 
statistics broken down by database class (show-dclass), the procedure 
show-context presents the subset of the database implied by the given 
environment. 

14.2.3 The ATRE rule system (arules.lisp) 

The major changes in the ATRE rule system stem from the need to keep 
track of the different trigger conditions during rule definition and ex-
ecution. In defining rules, the global variables *in-nodes* and *imp-
nodes* are used as registers to pass into a rule the nodes corresponding 
to the : IN and :IMPLIED-BY triggers accumulated from its surround-
ing environment. These are introduced into the form for defining nested 
rules by build-rule. In addition, the syntax for trigger conditions has 
been simplified by moving the trigger condition outside the list of an-
tecedents. This change makes sense because most ATRE rules are writ-
ten with a single trigger condition. No expressive power is lost by this 
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change, since rules with different trigger conditions can be explicitly 
nested if required. Otherwise, the process of defining rules is directly 
analogous to JTRE. 

Executing rules is a bit more complicated. Let us start by considering 
try-rule-on, which, as in previous systems, sees if a rule should be ex-
ecuted on a given datum. First, the rule's matcher is called on the form of 
the datum to see if it matches the trigger pattern. As before, the matcher 
returns the trigger condition of the rule as one of its results, and if the 
condition is other than : INTERN, the node is added to the list of bind-
ings. When we queue the procedure, we have to keep track of two lists 
of nodes in addition to the bindings—the : IN nodes and : IMPLIED-BY 
nodes for that rule. Thus what we put on the queue has three parts: 
the procedure that is the body of the rule, the list of bindings, and the 
nodes that comprise the rest of the triggering environment for the rule. 
In execute-rule, this information is used to determine whether or not 
to actually run the rule. The globals *in-nodes* and *imp-nodes* are 
reset to reflect the control environment for the given rule, so that if the 
rule is executed, any new rules will receive this environment. If the nodes 
comprising the in triggers are jointly believable, and the nodes compris-
ing the implied-by triggers are a consequence of the current focus, then 
the rule is executed. Otherwise, the rule is stored back in the ATRE for 
future consideration. 

14.3 Building a planner 

Planning is a good example of the need to construct and compare alter-
native solutions. We begin by examining how different world states can 
be compactly represented in an ATMS so that reasoning about changes 
in them becomes quite simple. The specific example we use is the classic 
Blocks World, but the lessons are applicable for a variety of more realis-
tic domains as well. Then we explore the many-worlds problem-solving 
strategy by building an envisioner for Blocks World situations. Finally, 
we look at how the same world representations can be used in a more 
restrained planning strategy which can be applied to larger problems 
where envisioning would be inappropriate. 
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14.3.1 Representing worlds 

There are many ways to represent states of affairs. As is often the case 
in knowledge representation, the properties of the content to be repre-
sented, while crucial, leave open a bewildering array of design choices. 
Considering how we wish to use that knowledge, however, can provide 
considerable constraint. If we are building a planner, then presumably 
we need to model actions and their effects. This requirement, combined 
with the computational properties of the ATMS, considerably narrows 
the range of sensible alternatives. 

Here is the strategy we use. In any class of domain to be formalized, 
there is some set of actions which we want to reason about. We presume 
that actions directly change certain properties of the world. These direct 
changes may cause other properties to change in turn. For instance, if we 
are formalizing the Blocks World, the action of stacking block A on block 
B directly affects the position of A (that is, after the action A is on B) and 
whether B's top is clear (it was before, but isn't afterwards). There are 
indirect effects as well: It is now the case that A is above B, and if B was 
the pinnacle of a large tower containing block Z, it is now the case that A 
is above Z as well. 

Let us call statements that are directly affected by some action causally 
primitive. Let us further suppose that we can derive all other rele-
vant statements in a world model from causally primitive statements, 
just as conclusions about whether one block is above another can 
be derived from statements about what blocks are directly atop other 
blocks. When true, these conditions allow us to closely align the 
representation of the world with the structure of the ATMS. That 
is, a compact way to represent a state of the world is to create an en-
vironment that consists of all causally primitive statements. The other 
statements which hold in a state of affairs are then the consequences of 
this environment. With this representation for states, actions can be 
represented as manipulations on environments of causally primitive 
statements. 

This is not the only way to represent world states in an ATMS-based 
problem solver, but it is probably the most efficient and most useful. Let 
us see how this model can be applied to formalizing the Blocks World. 
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14.3.2 A simple Blocks World formalization 

We use a standard set of simplifying assumptions in modeling the Blocks 
World. Specifically, we assume a table of indefinite extent and a collection 
of solid, rigid blocks. Blocks can neither be created nor destroyed. The 
set of blocks to be considered in a session of reasoning is fixed in ad-
vance. Each block is identified only by a unique name. Every block fits on 
the table, and the table has space for any number of blocks. Each block 
can have exactly one block stacked on top of it. We assume there is only 
one agent in this world, which has a single hand capable of gripping, 
lifting, and stacking any block, and a perceptual system that perfectly 
identifies blocks and their positions. 

Here are the predicates used in this formalization, with their intuitive 
meanings: 

(on (block) (thing)) Holds if block (block) is on top of (thing), which 
can be another block or the table. 

(above (thing]) (thing2)) Holds if (thing]) is somewhere above 
(thing2). 

(clear (thing)) Holds if (thing) has space for a block on top of it. 

(holding (thing)) Holds if (thing) is being held aloft by our canonical 
agent. 

(hand-empty) Holds if our canonical agent is not clasping a block. 

The following actions can be taken by this world's agent: 

(pickup (block)) Grasps (block), which must not have anything on it, 
and hoists it high over the table, out of contact with any other block. 

(unstack (block]) (block2)) Like pickup, but (block]) is lifted from 
the top of (block2) instead of from the table. 

(putdown (block)) Places (block), which was being held, on the table. 
(stack (block]) (block2)) Like putdown, but (block]) is placed on 
top of (block2) instead of upon the table. 

Given these actions, which predicates should count among the causally 
primitive? Clearly holding and hand-empty should be included, since 
these are the most direct effects of these actions. It is useful to keep the 
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set of primitive predicates as small as possible, to shift the burden of 
bookkeeping from our action representation onto the inferential mech-
anisms. Can we avoid including other predicates? If we had exactly one 
block, then occurrences of holding and hand-empty would suffice to 
completely define the state of the world. If hand-empty were true, our 
block would be on the table, and if holding were true of our block, then 
we would know where it was. But in situations where there is more than 
one block, on statements must be treated as causally primitive, since 
they preserve world state beyond our agent's gripper. 

What about above? We can prove that one block is above another by 
finding a chain of blocks, each of which is on the other, such that the 
blocks in question form the ends of the chain. (How to calculate above 
efficiently is described below.) Since occurrences of above can be derived 
from on, above does not need to be causally primitive. Actually, in our 
simple model we cannot treat above as causally primitive. If we pick up 
a block, we are making invalid an arbitrary number of above statements, 
since the block we grab could be the top block of an arbitrarily high 
tower. It is hard to see how to specify an action if we must take into 
account an arbitrary amount of the world surrounding the objects that 
the action is to directly affect. On the other hand, since a block is on 
top of exactly one other block, the action unstack need only specify two 
blocks, the one being hoisted and the one being relieved of its burden. 
The ability to derive the effects of this local change on its surroundings 
thus greatly simplifies the encoding of actions. 

What about clear? The status of this predicate is less obvious at first 
glance. On one hand, clear statements are local effects of actions, given 
our simplifying assumptions. That is, 

■ If we unstack, then the block we freed of its burden becomes clear. 

■ If we stack, the recipient block is no longer clear. 

■ If we stack or putdown, the block just released is clear. 

So we could easily include the bookkeeping to track changes in clear 
statements in the actions. 

On the other hand, since clear statements are local effects of on state-
ments, it might seem as though they should be easily derivable from 
on statements. The required inference runs something like this: Given a 
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block A, (clear A) holds exactly when there is no other block B such 
that (on B A) holds. Since our set of blocks is finite, we could justify 
the nonexistence of a B for any given A by the disjunction of each con-
sistent collection of on statements ascribing different locations to each 
of the other blocks. The inelegance of this "solution," let alone its combi-
natorics, make it too horrible to contemplate. What about establishing 
clear via default reasoning? That is, given a state resulting from an 
action, we could extend it incrementally by postulating clear for each 
block in turn, and backtracking when contradictions occur. This method 
would work correctly if the set of on descriptions in the state was suffi-
cient to pin down every block's location (see Exercise 6). However, this 
computation of default extensions is still more work than putting the 
bookkeeping in the actions, and in this implementation we use the sim-
pler technique. 

The discussion of clear actually points out a subtle problem with our 
formalization of above. Certainly we can easily define positive instances 
of above using only positive on statements. Negative instances of above, 
that is, showing that a block is not above another, lead us to the same 
problems as trying to define clear. The most natural way to show that 
A is not above B is to show that A is not in the set of things above B. We 
could do this by calculating the set of things above B explicitly, using a 
closed-world representation for sets like that described in Chapter 10. Or 
we could use a form of negation by failure, presuming that if (above A 

B) isn't a consequence of our world's environment, then it isn't true. Or 
we could use the extension-by-defaults method suggested for clear, and 
try extending the state with negated above statements when relevant. 
For simple domains like the Blocks World, the differences between these 
alternatives are irrelevant. For more complex domains, the trade-offs are 
less clear, and have as much to do with the tasks to be performed as with 
the structure of the domain itself. 

We now have an abstract design for our domain. Laying out a set of 
predicates and actions, and deciding which predicates will be causally 
primitive, was the first step. The next step is defining the laws of the 
domain, to more precisely determine the meanings of our predicates. (We 
use ATRE rules to encode them, naturally.) Then we define the actions for 
the domain, using a variation of the STRIPS formalism. With this design 
in hand, Section 14.3.4 shows how these ideas can be implemented. 
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14.3.2.1 The laws of blocks 

Exactly what do we have to say in order to pin down the meanings of our 
predicates? A common problem in knowledge representation is knowing 
when to stop: Should we include weight, texture, or any of the myriad 
other properties we know about blocks? In this case clearly not: we have 
placed so many simplifying assumptions on our domain that predicates 
beyond our initial set are not required. But there is still the problem of 
determining when we have been precise enough about the relationships 
involving just the vocabulary we have chosen. In essence, we want to say 
enough about these predicates so that the states of affairs we generate 
are accurate. But how do we generate situations? 

A useful way to think about situations is to find a collection of choice 
sets whose consistent combinations spans the collection of situations. 
The vocabulary used in these choice sets must be limited to the causally 
primitive predicates. Furthermore, all of the causally primitive predicates 
must participate in these choice sets. Otherwise, they would not ade-
quately span the set of possible situations. What choice sets are appro-
priate for Blocks World situations? Three kinds of choice sets are needed: 

1. For each block, what is it on top of? 

2. For each block, what is on top of it? 

3. What, if anything, is the gripper holding? 

Clearly, having complete answers for each of these questions com-
pletely determines a Blocks World situation. Would less suffice? Consider 
a scenario involving just two blocks, A and B. The choice sets are: 

1.  { (holding A) , (on A B) , (on A Table)} 

2.  { (holding A) , (on B A) , (clear A)} 

3.  {(holding B), (on B A), (on B Table)} 

4.  {(holding B), (on A B), (clear B)} 

5.  {(holding A), (holding B), 	(hand-empty)} 

The first two choice sets pin down the location of A, the third and fourth 
pin down the location of B, and the fifth determines the state of the grip-
per. Although there is redundancy, each choice set contains one unique 
element. Therefore any subset of them would fail to span the space of 
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legal situations. Can they be merged? No, since each is a true set of ex-
haustive alternatives—merging any of them would again lead to a failure 
to span the space of legal situations. Such minimal collections of choice 
sets which span the situations implied by a scenario are called generating 
sets or basis sets (the latter by analogy with linear algebra). 

So far we have focused on ensuring that the set of situations generated 
is large enough to contain all legal situations. But not all combinations 
of statements of a generating set are reasonable situations. For instance, 
the combination 

(on B A),(on A B),(hand-empty) 

violates our intuitions about physical blocks. Ruling out such combina-
tions is the first constraint that must guide our formalization of the 
domain: the laws must suffice to rule out absurd situations. The sec-
ond constraint is that all legitimate occurrences of statements from the 
non-causally primitive portion of the domain vocabulary are correctly 
inferred. Any formalization that satisfies these two constraints will be 
appropriate for our purposes. 

We use ATRE rules as the medium for defining our laws. The first 
constraint to enforce is that a block cannot be in two places at once: 

(rule :INTERN ((on ?obj ?s1) :VAR ?f1 
(on ?obj ?s2) :VAR ?f2 

:TEST (not (equal ?s1 ?s2))) 
;Something cannot be two places at once 
(rnogood! :PLACE-EXCLUSION ?fl ?f2)) 

We use the intern condition to ensure that this constraint is imposed as 
quickly as possible. We use rnogood! to state that any collection of facts 
satisfying the triggers are mutually inconsistent, thus ensuring that no 
consistent global state will contain them together. Since we also stipu-
lated that only one block could fit on top of another, we must enforce 
the uniqueness of on with respect to the other argument as well: 

(rule :INTERN ((on ?objl ?s) :VAR ?f1 
(on ?obj2 ?s) :VAR ?f2 

:TEST (and (not (equal ?objl ?obj2)) 
(not (equal ?s 'TABLE)))) 

;Only one thing can be on top of a block at any time. 
(rnogood! :TOP-EXCLUSION ?fl ?f2)) 
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The exception to this rule, as specified in the :TEST, is the table, which 
can have an arbitrary number of blocks on it. 

One might expect that the relationship between clear and on is ade-
quately expressed by the mutually exclusive nature of choice sets. That 
is, since (clear A) and (on B A) are in the same choice set, they would 
not end up in the same state, so we shouldn't have to rule out this pos-
sibility. Notice, however, that (on B A) will be in yet another choice set, 
the one constraining where B might be. This means that such combina-
tions must be ruled out explicitly: 

(rule :INTERN ((clear ?obj) :VAR ?fl 

(on ?other ?obj) :VAR ?f2) 

;;Something cannot be clear if something else is on top of it. 
(rnogood! :TOP-CLEAR-EXCLUSION ?fl ?f2)) 

A similar argument applies to the relationship between holding and 
clear and on. That is, if the gripper is holding a block then that block 
isn't clear, nor can something be on it, nor can it be on something else: 

(rule :INTERN ((holding ?obj) :VAR ?fl 

(clear ?obj) :VAR ?f2) 

;if you are holding it then it is not clear 
(rnogood! :CLEAR-HOLDING-EXCLUSION ?fl ?f2)) 

(rule :INTERN ((holding ?obj) :VAR ?fl 

(on ?other ?obj) :VAR ?f2) 

; You cannot hold a block that has something on it. 
(rnogood! :SINGLE-BLOCK-HOLDING ?fl ?f2)) 

(rule :INTERN ((holding ?obj) :VAR ?fl 

(on ?obj ?other) :VAR ?f2) 

;; When you are holding something, it is not on anything else. 
(rnogood! :HOLDING-IN-AIR ?fl ?f2)) 

To finish defining holding, we must enforce the stipulation that the 
gripper can only hold one thing at a time, and enforce the obvious con-
straint that if something is being held then the hand isn't empty: 

(rule :INTERN ((holding ?ol) :VAR ?fl 

(holding ?o2) :VAR ?f2 

:TEST (not (equal ?ol ?o2))) 
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;; You can only hold one thing at a time 
(rnogood! :MULTIPLE-HOLD-EXCLUSION ?fl ?f2)) 

(rule :INTERN ((hand-empty) :VAR ?fl 

(holding ?obj) :VAR ?f2) 

;; Your hand isn't empty if it is holding something 
(rnogood! :EMPTY-HOLDING-MUTEX ?fl ?f2)) 

Now we have completely pinned down the causally primitive predi-
cates. What about above, the derivable predicate? The simplest case of 
above is on: 

(rule : INTERN ( (on ?a ?b) :VAR ?fl) Base case for ABOVE 
(rassert! (above ?a ?b) (:ABOVE-BASE-CASE ?f1))) 

We can use the fact that above is transitive to complete the definition: 

(rule :INTERN ((above ?a ?b) :VAR ?fl 

(above ?b ?c) :VAR ?f2) ;;ABOVEistnansitive 
(rassert! (above ?a ?c) (:ABOVE-TRANSITIVE ?fl ?f2))) 

The transitivity of above also suggests encoding other mathematical 
properties of it, namely that it is antireflexive and antisymmetric: 

(rule :INTERN ((above ?a ?a) :VAR ?f1) ;;ABOVE is antireflexive 
(rnogood! :ABOVE-ANTIREFLEXIVE ?f1)) 

(rule :INTERN ((above ?a ?b) :VAR ?fl 

(above ?b ?a) :VAR ?f 2) ;; ABOVE is antisymmetric 
(rnogood! :ABOVE-ANTISYMMETRIC ?fl ?f2)) 

These rules may be found in the file blocks . lisp. With our predicates 
defined, we turn to defining operators. 

14.3.2.2 Defining actions 

To define actions we adapt the STRIPS representation. That is, we view ac-
tions as operators, which transform one state into another. An operator 
has four parts: 
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Defining form. This form lists the name of the operator and the vari-
ables which must be defined for each instance of it. An example of a 
defining form is 

(Pickup ?x) 

Preconditions. A list of statements which must hold in a situation in 
order for the operator to be applicable to that situation. The precondi-
tions for Pickup, for example, are 

((on ?x Table) ;; The block ?x is on the table. 
(clear ?x) 	;; ?x has nothing on top of it. 
(hand-empty)) ;; Not holding anything already. 

Delete-list. A list of statements believed in the situation before the 
action occurs that will no longer be true in the situation afterwards. The 
delete list for Pickup is 

((on ?x Table) ;; Block ?x no longer on the table. 
(clear ?x) 	;; ?x no longer has space for a block. 
(hand-empty)) ;; The gripper is no longer empty 

Add-list. A list of statements not believed in the situation before the 
action occurs, but true in the situation afterward because of the action. 
The add list for Pickup is 

( (holding ?x)) ;; The gripper is holding block ?x 

Clearly, the functors of every member of the delete and add lists must 
be causally primitive predicates. The preconditions do not need to be 
causally primitive predicates, but often are. 

Our syntax for operators follows the same pattern used in earlier sys-
tems. That is, we use the keyword defoperator to indicate that a form 
is defining an operator. The defining form is the next argument, and the 
rest are denoted via keywords. Thus the operators Pickup and Putdown 
can be encoded as follows: 

(defoperator (Pickup ?x) 
:PRECONDITIONS ((on ?x Table) 

(clear ?x) 
(hand-empty)) 
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:DELETE-LIST ((on ?x Table) 

(clear ?x) 
(hand-empty)) 

:ADD-LIST ((holding ?x))) 

(defoperator (Putdown ?x) 
:PRECONDITIONS ((holding ?x)) 
:DELETE-LIST ((holding ?x)) 
:ADD-LIST ((on ?x Table) 

(clear ?x) 
(hand-empty))) 

Sometimes simple tests are needed to supplement the list of pre-
conditions. For instance, the operators stack and unstack only make 
sense if the block being released or placed is on top of another block 
and not on the table. We allow an optional field : TEST to provide this 
capability. Thus the operators stack and unstack can be encoded as 
follows: 

(defoperator (stack ?x ?y) 
:PRECONDITIONS ((holding ?x) 

(clear ?y)) 
:TEST (not (eq ?y 'TABLE)) 
:DELETE-LIST ((holding ?x) 

(clear ?y)) 
:ADD-LIST ((hand-empty) 

(on ?x ?y) 
(clear ?x))) 

(defoperator (unstack ?x ?y) 
:PRECONDITIONS ((hand-empty) 

(clear ?x) 
(on ?x ?y)) 

:TEST (not (eq ?y 'TABLE)) 
:DELETE-LIST ((hand-empty) 

(clear ?x) 
(on ?x ?y)) 

:ADD-LIST ((holding ?x) 
(clear ?y))) 
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There are two activities we must perform with operators. First, we 
must be able to ascertain what operator instances might be used in a 
given situation. Our convention is that if a statement of the form 

(Applicable (Operator Instance)) 

holds in a situation, then (Operator Instance) may be legally applied in 
that situation to create a new situation. 

The other activity involving operators is actually applying them to a 
situation. This involves performing surgery on the environment repre-
senting the situation, i.e., removing the facts in the delete list and adding 
facts in the add list in order to create (or retrieve) a situation repre-
senting the result of that action occurring. We explore next how both 
activities are performed when describing the implementation. 

14.3.3 Implementing operators and planning domains 

The listing aplanr . lisp provides an infrastructure for building ATMS-
based planners. Although we use only the Blocks World as an example 
here, the code is designed to be quite general. The file contains three 
distinct parts: 

1. A datastructure to organize the information about a particular plan-
ning problem. 

2. The definition of operators and procedures for finding and applying 
them. 

3. Procedures for finding states that satisfy particular criteria. 

We examine each in turn. 
The pinpr ("planning problem") struct provides the basics for describ- 

ing any domain. Its fields are: 

title String for printing. 

atre The ATRE it is associated with. 

basis-set The collection of choice sets which define the specific sce-
nario. 

operators The list of operators for the domain. 

plist A property list for caching intermediate results. 
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The usual variables and procedures are supplied for operating within a 
particular planning problem (whose default name is *pinpr*). 

The procedure create-planning-problem takes as input a title, an 
ATRE, and the basis set for a planning problem. Its main job is creating 
the ATRE which serves as the inferential scratch pad for planning. Since 
domain files are loaded by an external system, the operation ensuring 
that the statements in the basis set are all assumptions is part of a sepa-
rate procedure, setup-choice-sets, which should be executed once the 
appropriate domain theory has been loaded into the ATRE. 

We use a variation of the same strategy for implementing operators 
that was used in Chapter 8. That is, we define def operator as a macro 
that produces a datastructure representing that operator. def operator 
starts by extracting the possible fields from the given form, distribut-
ing this information appropriately among the fields of a new operator 
struct. It also creates an ATRE rule which detects combinations of the 
preconditions, and justifies the appropriate applicable assertion for 
each set of statements that satisfies the operator's preconditions. Fig-
ure 14.2 shows what def operator produces for the stack operator de-
fined previously. 

The ATRE rule created by def operator automatically detects combi-
nations of facts satisfying an operator's preconditions. The procedure 
find-applicable-operators fetches those results of this rule that are 
relevant to a given situation. It accomplishes this by filtering applicable 
statements, requiring that they be implied by the state (i.e., environment) 
provided as input. Finally, the procedure fetch-operator retrieves the 
operator datastructure from the current planning problem, so that the in-
formation can be used in figuring out the effects of an operator instance. 

The procedure apply-operator implements the semantics of action 
for STRIPS operators. It takes as input an environment representing a 
state and an operator instance that is applicable to that state, as provided 
by find-applicable-operators. It produces as output an environment 
corresponding to the state that results from the action represented by 
the operator instance occurring in the input state. The first step is to in-
stantiate the add lists and delete lists for the operator with the specific 
bindings of the operator instance. We have arranged our definitions so 
that an association list of bindings can be built by associating the ele-
ments in the defining form with the description of the operator instance. 
The appropriate add and delete lists are then generated using sublis 
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(PROGN 

(LET ((ENTRY (ASSOC 'STACK 

(PLNPR-OPERATORS *PLNPR*))) 

(OP 

(MAKE-OPERATOR :FORM 

'(STACK ?X ?Y) 

:PRECONDITIONS 

'((HOLDING ?X) (CLEAR ?Y)) 

:ADD-LIST 

'((HAND-EMPTY) (ON ?X ?Y) (CLEAR ?X)) 

:DELETE-LIST 

'((HOLDING ?X) (CLEAR ?Y))))) 

(COND (ENTRY (SETF (CDR ENTRY) OP)) 

(T (PUSH (CONS 'STACK OP) 

(PLNPR-OPERATORS *PLNPR*))))) 

(RULE :INTERN 

((HOLDING ?X) (CLEAR ?Y)) 

(WHEN (NOT (EQ ?Y 'TABLE)) 

(RASSERT! (APPLICABLE (STACK ?X ?Y)) 

(:0P-PCS-SATISFIED (HOLDING ?X) (CLEAR ?Y)))))) 

Figure 14.2 What def Operator produces 

to make the substitutions of values for variables. The effect of the ac-
tion is implemented by transforming the list of assumptions of the initial 
situation. First, the assumptions corresponding to the delete list are re-
moved (in the remove-if statement). Next, assumptions corresponding 
to the add list are blended in (using ordered-insert). Finally, the envi-
ronment corresponding to the transformed list of assumptions is found 
(or built, if necessary) by the ATMS primitive find-or-make-env. Fig-
ure 14.3 shows an example. 

The final section of this file provides procedures which compute rela-
tionships between sets of statements and states. The procedure fetch-
states finds all states that satisfy a ground partial description. This 
procedure is mainly useful for finding candidate initial states. It exploits 
the ATMS interpretation constructor by generating a list of redundant 
choice sets from input specification, in effect providing a "seed" envi-
ronment around which states composed from the other choice sets can 
crystallize. Figure 14.4 shows an example of fetch-states in operation. 
In this case the input information can be satisfied by only a single state, 
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> (print-env (the-e 411)) 

E-411: (CLEAR A),(HOLDING C),(ON A B),(ON B TABLE) 

NIL 

> (apply-operator (the-e 411) '(stack c a)) 

E-192 

> (print-env (the-e 192)) 

E-192: (CLEAR C),(HAND-EMPTY),(ON A B),(ON B TABLE),(ON C A) 

NIL 

Figure 14.3 Operators can be applied by manipulating environments 

> (fetch-states '((on c b)(on b a))) 

(E-216) 

> (print-env (the-e 216)) 

E-216: (HAND-EMPTY), (CLEAR C), (ON C B), (ON B A), (ON A TABLE) 

> (show-context (the-e 216)) 

(APPLICABLE (UNSTACK C B)) 

(BLOCK C) 

(BLOCK B) 

(BLOCK A) 

(HAND-EMPTY) 

(ABOVE C TABLE) 

(ABOVE C A) 

(ABOVE C B) 

(ABOVE B TABLE) 

(ABOVE B A) 

(ABOVE A TABLE) 

(CLEAR C) 

(ON A TABLE) 

(ON B A) 

(ON C B) 

15 facts total. 

15 

Figure 14.4 Contents of a sample state 
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represented by environment E-216. The assumptions in the environment 
itself show the causally primitive predicates which hold in it, and if we 
look at the statements implied by them (via show-context), we see that 
its implications are exactly what we can say about this situation, given 
our vocabulary of predicates. 

The procedure satisfies-goal? determines whether or not a state 
can satisfy a list of statements. It searches through the potential uni-
fications of the goal conjunction with the statements implied by the 
candidate solution state, returning t and a suitable set of bindings if it 
succeeds, and nil otherwise. Finally, the procedure show-plan prints 
an alternating list of states and operator instances in an easily digestible 
form. 

14.3.4 An envisioner for the Blocks World 

Small exponentials make nice pets. 
—Anonymous 

The idea of envisioning is very simple. The fact that we can define a basis 
set for Blocks World situations means that we can enumerate the possi-
ble states for any fixed collection of blocks. Moreover, we can generate 
the effects of every possible plan on a fixed collection of blocks by the 
following procedure: 

1. Generate all legal situations for the given blocks. 

2. For each state S, 

a. Find the applicable operator instances for S. 

b. For each operator instance 0 on S, 

i. Find the state T that results from applying 0 to S. 

ii. Install a pointer from S to T in a table of transitions. 

This procedure is an example of envisioning. Its result, an envision-
ment, describes all possible situations that can occur for the given col-
lection of individuals. These situations are linked by the actions that 
transform them from one to another. Given an envisionment, the prob-
lem of planning is reduced to graph search. 

Envisioning is the prototypical many-worlds ATMS problem solving 
strategy. It works well for small problems, and can be very useful in gain- 
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ing insight into the structure of a domain. However, it quickly becomes 
unmanageable. Clearly, games like chess and checkers are outside the 
scope of what can be explicitly generated, and even Blocks World sce-
narios can strain computational capacities, if enough blocks are consid-
ered. Nevertheless, its usefulness in understanding problem spaces and 
its simplicity make it a good place to start in understanding the use of 
ATMSs in planning. 

The listing plan-e . lisp implements the procedure outlined above. It 
performs interpretation construction on the basis set to create the set of 
possible states, caching the result in the : STATES property of the plan-
ning problem's plist. It then iterates over the set of states, applying 
every operator in turn (by calling the procedure apply-all-operators), 
caching the result in the : TRANSITIONS property of the plist. These 
two properties comprise the envisionment for the planning problem. The 
procedure show-envisionment produces a report describing the envi-
sionment. 

The procedure envis-find-plan uses the envisionment to find a se-
quence of actions that transforms a state satisfying the given initial con-
ditions to one satisfying the given goal conditions. There is a striking 
resemblance between this procedure and bsolve in CPS (Chapter 3). This 
should not be surprising upon reflection, since the compact represen-
tation of context provided by the ATMS provides a simple interface to 
the rest of the problem solver, just as our encapsulation of states in CPS 
did. The difference is that the knowledge of the domain (i.e., the laws 
and operators of the Blocks World) can be expressed in a more general, 
declarative fashion than in CPS. 

Let us see how the envisioner works on some Blocks World examples. 
The procedures in the file bcode . lisp orchestrate the creation of Blocks 
World planning problems. Given a list of blocks, the procedure build-
blocks-problem sets up a session of Blocks World problem solving. It 
creates a planning problem datastructure to orchestrate the information, 
and loads whatever file is specified by *blocks-file* to set up the ap-
propriate laws and operators. (Recall that the file blocks . lisp contains 
this information.) It asserts the identity of the blocks in the ATRE, and 
calls setup-choice-sets to ensure that the basis set elements are all 
assumed. 

Suppose we have three blocks, A, B, and C. Figure 14.5 shows the report 
generated about the envisionment for this scenario. The envisionment 
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22 states have been generated: 

E-411: 	(HOLDING C), 	(ON A B), 	(ON B TABLE), 	(CLEAR A) 
E-402: 	(HOLDING C), 	(CLEAR B), 	(ON B A), 	(ON A TABLE) 
E-394: 	(HOLDING C), 	(CLEAR B), 	(ON B TABLE), 	(CLEAR A), 	(ON A TABLE) 
E-376: 	(HOLDING B), 	(ON A C), 	(ON C TABLE), 	(CLEAR A) 
E-364: 	(HOLDING B), 	(CLEAR C), 	(ON C A), 	(ON A TABLE) 
E-350: 	(HOLDING B), 	(CLEAR C), 	(ON C TABLE), 	(CLEAR A), 	(ON A TABLE) 
E-333: 	(HOLDING A), 	(ON B C), 	(ON C TABLE), 	(CLEAR B) 
E-320: (HOLDING A), (CLEAR C), (ON C B), 	(ON B TABLE) 

E-304: (HOLDING A), (CLEAR C), (ON C TABLE), 	(CLEAR B), 	(ON B TABLE) 
E-293: (HAND-EMPTY), (ON B C), (ON C A), 	(CLEAR B), 	(ON A TABLE) 
E-279: (HAND-EMPTY), (ON B C), (ON C TABLE), 	(ON A B), 	(CLEAR A) 
E-270: (HAND-EMPTY), (ON B C), (ON C TABLE), 	(CLEAR B), 	(CLEAR A), 	(ON A TABLE) 
E-251: (HAND-EMPTY), (ON A C), (ON C B), 	(ON B TABLE), 	(CLEAR A) 
E-235: (HAND-EMPTY), (ON A C), (ON C TABLE), 	(CLEAR B), 	(ON B A) 
E-229: (HAND-EMPTY), (ON A C), (ON C TABLE), 	(CLEAR B), 	(ON B TABLE), 	(CLEAR A) 
E-216: (HAND-EMPTY), (CLEAR C), (ON C B), 	(ON B A), 	(ON A TABLE) 

E-208: (HAND-EMPTY), (CLEAR C), (ON C B), 	(ON B TABLE), 	(CLEAR A), 	(ON A TABLE) 

E-192: (HAND-EMPTY), (CLEAR C), (ON C A), 	(ON A B), 	(ON B TABLE) 

E-185: (HAND-EMPTY), (CLEAR C), (ON C A), 	(CLEAR B), 	(ON B TABLE), 	(ON A TABLE) 

E-169: (HAND-EMPTY), (CLEAR C), (ON C TABLE), 	(ON A B), 	(ON B TABLE), 	(CLEAR A) 

E-160: (HAND-EMPTY), (CLEAR C), (ON C TABLE), 	(CLEAR B), 	(ON B A), 	(ON A TABLE) 

E-152: (HAND-EMPTY), (CLEAR C), (ON C TABLE), 	(CLEAR B), 	(ON B TABLE), 	(CLEAR A), 	(ON A TABLE) 

contains twenty-two states, with forty-two transitions between them. It is 
easy to inspect this table to see that each state and each transition makes 
sense. Confirming that these are the only legitimate possibilities takes 
more effort (see Exercise 2). Once the envisionment has been generated, 
however, planning is easy. Figure 14.6 provides an example. The initial 
state is a tower with C on top and A on the bottom, and the goal is 
a tower with the positions of A and C reversed. Since find-plan uses 
breadth-first search, we know this is no longer, in terms of operator 
applications, than any other plan for achieving the same goal. 

14.3.5 Other ATMS-based planning strategies 

Although envisioning is a natural way to use an ATMS, the same advan-
tages accrue for most other planning strategies. For example, the file 
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Transition Table: 

E-411: 

(PUTDOWN C) -> 

(STACK C A) -> 

E-402: 

(PUTDOWN C) -> 

(STACK C B) -> 

E-394: 

(PUTDOWN C) -> 

(STACK C B) -> 

(STACK C A) -> 

E-169 

E-192 

E-160 

E-216 

E-152 

E-208 

E-185 

E-333: 

(PUTDOWN A) -> 

(STACK A B) -> 

E-320: 

(PUTDOWN A) -> 

(STACK A C) -> 

E-304: 

(PUTDOWN A) -> 

(STACK A C) -> 

(STACK A B) -> 

E-270 

E-279 

E-208 

E-251 

E-152 

E-229 

E-169 

E-229: 

(PICKUP B) -> 

(UNSTACK A C) 

E-216: 

(UNSTACK C B) 

E-208: 

(PICKUP A) -> 

(UNSTACK C B) 

E-192: 

(UNSTACK C A) 

E-376 

-> E-304 

-> E-402 

E-320 

-> E-394 

-> E-411 

E-376: E-293: E-185: 

(PUTDOWN B) -> E-229 (UNSTACK B C) -> E-364 (PICKUP B) -> E-364 

(STACK B A) -> E-235 E-279: (UNSTACK C A) -> E-394 

E-364: (UNSTACK A B) -> E-333 E-169: 

(PUTDOWN B) -> E-185 E-270: (PICKUP C) -> E-411 

(STACK B C) -> E-293 (PICKUP A) -> E-333 (UNSTACK A B) -> E-304 

E-350: (UNSTACK B C) -> E-350 E-160: 

(PUTDOWN B) -> E-152 E-251: (PICKUP C) -> E-402 

(STACK B C) -> E-270 (UNSTACK A C) -> E-320 (UNSTACK B A) -> E-350 

(STACK B A) -> E-160 E-235: E-152: 

(UNSTACK B A) -> E-376 (PICKUP A) -> E-304 

(PICKUP B) -> E-350 

(PICKUP C) -> E-394 

Figure 14.5 An envisionment for a three blocks problem 

plan-a. lisp contains a forward-chaining search program that does not 
require an envisionment in order to operate. If we run it on the same 
problem we tested find-plan on, we get the following results: 

(plan-a start '((on a b) (on b c))) 

(E-279 (STACK A B) E-333 (PICKUP A) E-270 (STACK B C) E-350 
(UNSTACK B A) E-160 (PUTDOWN C) E-402 (UNSTACK C B) E-216) 

15 

The plan is the same, but seven fewer states (and their attendant tran-
sitions) needed to be examined. In this simple scenario we only cut the 
search space by 32 percent, but of course for larger problems the savings 
could be substantial. It is also straightforward to implement backward-
chaining strategies and other more sophisticated problem-solving tech-
niques using these state and operator representations. In other words, 
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(find-plan '((on C B) (on B A)) '((on A B) (on B C))) 

(E-279 (STACK A B) E-333 (PICKUP A) E-270 (STACK B C) E-350 

(UNSTACK B A) E-160 (PUTDOWN C) E-402 (UNSTACK C B) E-216) 

> (show-plan *) 

E-216: (HAND-EMPTY), (CLEAR C), (ON C B), (ON B A), (ON A TABLE) 

then, by (UNSTACK C B), 

E-402: (HOLDING C), (CLEAR B), (ON B A), (ON A TABLE) 

then, by (PUTDOWN C), 

E-160: (HAND-EMPTY), (CLEAR C), (ON C TABLE), (CLEAR B), (ON B A), (ON A TABLE) 

then, by (UNSTACK B A), 

E-350: (HOLDING B), (CLEAR C), (ON C TABLE), (CLEAR A), (ON A TABLE) 

then, by (STACK B C), 

E-270: (HAND-EMPTY), (ON B C), (ON C TABLE), (CLEAR B), (CLEAR A), (ON A TABLE) 

then, by (PICKUP A), 

E-333: (HOLDING A), (ON B C), (ON C TABLE), (CLEAR B) 

then, by (STACK A B), 

E-279: (HAND-EMPTY), (ON B C), (ON C TABLE), (ON A B), (CLEAR A) 

> (show-context (the-e 279)) 

(APPLICABLE (UNSTACK A B)) 

(BLOCK C) 

(BLOCK B) 

(BLOCK A) 

(HAND-EMPTY) 

(ABOVE A C) 

(ABOVE B C) 

(ABOVE C TABLE) 

(ABOVE A B) 

(ABOVE B TABLE) 

(ABOVE A TABLE) 

(CLEAR A) 

(ON A B) 

(ON C TABLE) 

(ON B C) 

15 facts total. 

15 

Figure 14.6 Finding plans using the envisionment 
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the ATMS is neutral with respect to the planning strategy employed. By 
propagating information across contexts easily, an ATMS provides a rea-
sonably efficient system for world-modeling. 

There are always trade-offs, naturally. The disadvantage of using an 
ATMS in planning is the cost of propagating complex labels versus re-
peatedly propagating simple labels. If backtracking is actually rare, or 
only a small fraction of the potential search space ends up being ex-
plored, then the extra inferential work involved in propagating complex 
labels is wasted. Worse yet, in some circumstances the size of labels can 
grow exponentially, making the ATMS itself a liability rather than an ally. 
Research on these trade-offs and how to extend the useful range of ATMS 
techniques continues (see [2, 4, SD. 

14.4 Using an ATMS in focused problem solving 

While the many-worlds strategy can be surprisingly effective, it is clearly 
inappropriate for many kinds of problems. For many real problems, 
the full search space is vastly larger than the subset that needs to be 
explored to find an acceptable solution. Examples include engineering 
design, interpreting data from multiple sources, and solving textbook 
physics problems. Problem solvers for such domains must carefully 
shepherd their resources, narrowly focusing attention on only a small 
number of alternatives, while keeping track of the possibility that their 
current focus of attention could be wrong. 

Section 14.1 outlined the mechanisms needed for such tight con-
trol: the encapsulation of locus of attention as focus environments, the 
implied-by strategy which only executes rules implied by the current fo-
cus, and contradiction handlers, which decentralize the choice of action 
to take when inconsistencies arise. This section examines how to arrange 
these mechanisms into coherent problem-solving strategies. 

The easiest way to build a new problem solver is to adapt and gener-
alize previous systems. Let us use the design of JSAINT from Chapter 8 
as a starting point. The data, procedure, and reference models of JSAINT 
were based on JTRE. The global control structure was an AND/OR tree of 
tasks, built up from suggestions created by pattern-directed rules. 
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The first step in adapting the JSAINT organization to exploit the ATMS 
is to associate a focus environment with each task. Part of what it means 
for the problem solver to be working on a specific task is making the 
problem solver's focus be the environment of that task. This ensures 
that all pattern-directed rules implied by that environment will be ex-
ecuted. Like JSAINT, these rules will either solve the given subproblem 
directly or make suggestions about more expensive operations to try. If 
the initial problem remains unsolved, the leaves of the AND/OR tree will 
be examined and the most promising task scheduled for execution. This 
processing continues until either the initial problem is solved or there 
are no more tasks to try. 

Let us examine more closely the impact of adding environments to 
tasks. The underlying logic of the relationships between tasks in the 
AND/OR tree (Section 8.5.2.3) would remain unchanged. However, we 
now have a new kind of event in our problem solver: the task's envi-
ronment can become inconsistent. For most tasks, this indicates that the 
task is not worth trying, and should be marked as a failure. However, in 
some cases (i.e., indirect proofs) a contradiction is actively sought, and 
so for such cases a different contradiction handler should be supplied. 

Although our goal is to design a general-purpose problem solver, it is 
useful to have some motivating examples in mind. We use natural de-
duction here, in order to draw on the reader's experience with the FTRE-
based implementation of KM* from Chapter 5. In using our new problem 
solver to perform natural deduction, the initial task environment con-
sists of the premises of the proof, and the goal condition is the existence 
of a proof for the given desideratum based only on the initial assump-
tions. 

How different would the encoding of the knowledge of natural deduc-
tion be for this new system? Not very different, it turns out. The imple-
mentation of the laws of KM* could be adapted directly from fnd. lisp. 
Rules that do not make assumptions (e.g., CONDITIONAL ELIMINATION) need 
only have their trigger syntax modified to fit the ATRE conventions and 
ensure that the appropriate justifications are created. For instance, the 
rule for CONDITIONAL ELIMINATION becomes 

(rule :IMPLIED-BY ((implies ?p ?q) ?p) 
(rassert! ?q (:CE (implies ?p ?q) ?p))) 
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More complex natural deduction rules can be implemented by a sug-
gestions mechanism, analogous to that used in JSAINT. That is, part of 
the work of the pattern-directed rules implementing a natural deduction 
rule is to make a suggestion about some more complex problem-solving 
operation to perform. Suggestions for unsolved subproblems are then 
gathered up and used to extend the AND/OR graph. Some problem-solver 
operations, such as linking a goal to the solution of a conjunction or dis-
junction of subgoals, should be built in. For instance, the rule for AND 
INTRODUCTION must require both conjuncts to be proven before the con-
junction may be asserted. If the show-all operation causes interest to 
be expressed in all of its arguments, and further ensures that if one sub-
goal fails the whole attempt fails, then we can write the rule for AND 
INTRODUCTION as follows: 

(rule :IMPLIED-BY ((show (and ?a ?b)) :VAR ?f1) 
(rule :IMPLIED-BY (?a ?b) 

(rassert! (and ?a ?b) (:AI ?a ?b))) 
(rassert! (suggest-for ?fl 

(show-all ?a ?b)) (:BC-AI ?f1))) 

Similarly, the ability to handle disjunctive subgoals could be introduced 
by a show-any operation, which expresses interest in both of its sub-
goals, and succeeds if either of them does. Using this operation, we can 
write the rule for OR INTRODUCTION as follows: 

(rule :IMPLIED-BY ((show (or ?p ?q)) :VAR ?f1) 
(rule :IMPLIED-BY (?p) 

(rassert! (or ?p ?q) (:0I ?p))) 
(rule :IMPLIED-BY (?q) 

(rassert! (or ?p ?q) (:0I ?q))) 
(rassert! (suggest-for ?fl 

(show-any ?p ?q)) (:BC-0I ?f1))) 

The operations show-all and show-any are likely to be useful in 
building a variety of problem solvers. A wise implementer, of course, will 
make the set of problem solver operations extensible to allow domain-
specific constructs. In KM*, we saw that the ability to make local contexts 
was required by several of the inference rules. In the FTRE implementa-
tion, these rules called seek-in-context. We can replace them by rules 
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that make suggestions about assumptions to try. For instance, the rules 
for CONDITIONAL INTRODUCTION and INDIRECT PROOF could be written as: 

(rule :IMPLIED-BY ((show (implies ?p ?q)) :VAR ?f1) 
(rassert! (suggest-for ?fl 

(try-box ?p ?q (implies ?p ?q) CI)) 
(:BC-CI ?f1))) 

(rule :IMPLIED-BY ((show ?f) :VAR ?fl 
:TEST (not (and (listp ?f) 

(member (car ?f) 
'(implies and iff not))))) 

(rassert! (suggest-for ?fl 
(try-box (not ?f) contradiction ?f IP)) 

(:BC-IP ?f1))) 

where try-box is a problem-solver operation whose arguments are 
something to be assumed (i.e., ?p), something to be proved based on 
that assumption (i.e., ?q), the conclusion to be drawn if the proof is suc-
cessful (i.e., (implies ?p ?q)), and the informant to use in justifying 
the conclusion if successful (i.e., CI). 

Although the necessary changes to the rules are syntactically small, 
their impact should not be underestimated. In the FTRE-based system, 
the use of a stack to manage assumptions forced us into a depth-first 
reasoning strategy. In that system, each new assumption had to be com-
pletely explored (within the given resource limitations) before exploring 
a different assumption. The reification of contexts as environments facil-
itates the use of other control strategies. For instance, the system can be 
biased toward shorter proofs by organizing the agenda of tasks to prefer 
those with smaller focus environments, resulting in a breadth-first search 
pattern. 

When discussing contradiction handling previously, the issue of turn-
ing off tasks when they become irrelevant arose. The same vocabulary of 
control predicates (i.e., open, solved, and failed) used in JSAINT can 
be adapted to describe properties and relationships of tasks in the new 
system. That is, unless a contradiction is being sought, any task with a 
contradictory focus environment can be said to have failed. For tasks 
that seek contradictions (e.g., indirect proofs), a contradiction handler 
for the environment corresponding to the previous focus plus the dis- 
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puted assumption can assert that the task has been solved should that 
environment become contradictory. 

While this discussion is based on working systems we have built, we 
have not included an implementation of this design. Instead, in Exercises 
12 through 14 we invite the reader to reconstruct a system like that of 
[7]. 

14.5 Backpointers 

The particular Blocks World formalization used here is based on [8]. The 
model of actions and planning presented here corresponds to an early 
standard for AI research, the STRIPS model [6]. It is a very coarse approx-
imation of the problems which originally motivated planning research. 
The real world in which human beings live is extremely complicated, with 
huge numbers of objects and many actions that can be taken with re-
spect to them. Even more complexity arises from the fact that there are 
multiple agents and that nature itself does things. Predicting the distant 
future in such a complex world is a chancy enterprise, and even enu-
merating the indirect consequences of an action can be difficult. Much of 
the current research in the planning community, and on reasoning about 
actions in the knowledge representation community, is aimed at address-
ing these limitations. A good starting point from which to approach this 
literature is [1]. 

ATMSs were used commercially by both KEE (from IntelliCorp) and ART 
(from Inference Corporation). Their use of ATMSs to encode contexts 
rested on using assumptions as context markers. We believe that for 
most purposes the representation scheme described in this chapter is 
more efficient. 

14.6 Exercises 

1. * Remove the antisymmetric and antireflexive laws from the blocks 
formalization. Does plan-e generate any more states in the three-
blocks case? If their condition was : IN instead of : INTERN, would 
they ever be executed? 
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2. 	* * Write a formula that predicts how many states there will be in 
an envisionment of N blocks and another formula that predicts how 
many transitions there will be in an envisionment of N blocks. 

3. 	* * A handy debugging tool for problem solvers with other TMSs 
was explore-network. Write a version of explore-network for the 
ATMS which takes two additional arguments compared to the earlier 
versions. The first additional argument is an environment. The sec-
ond additional argument is a keyword. If the keyword is : IMPLIED-
BY, only nodes and justifications that are in under the given envi-
ronment are shown. If the keyword is : CONSISTENT, only nodes and 
justifications whose labels are consistent with the given environment 
are shown. 

4. 	* * Use the ATMS procedure remove-node to implement an efficient 
mechanism for executing rules with : IN triggers. 

5. Suppose we wish to weaken the restriction that at most one block can 
be on top of another. In particular, let straddles be the set of things 
that a block is on, and let straddlers be the set of blocks on a given 
block. 

a. * Explain what extensions must be made to the STRIPS opera-
tors to correctly manipulate states defined using straddles and 
straddlers instead of clear and on. 

b. * * Define a new set of laws and operators for the Blocks World 
using straddles and straddlers as the causal primitives. 

c. * * * Implement your extended planner and new Blocks World 
formalization, and test it on several examples. 

6. 	Suppose we wish to define clear as a default assumption. That is, 
a block will be presumed to be clear unless there is another block 
known to be on it. 

a. * What parts of the Blocks World implementation would become 
simpler and what parts would need to be more complicated if we 
make this change? 

b. * * Implement this change, and demonstrate that the examples 
in plan-a still operate correctly. 
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c. * Consider the operation of dropping a block. That is, before 
the drop operator occurs, the gripper is holding a block, and 
afterward it is not. Could we implement this operation in our 
original Blocks World formulation? Can we implement it with 
clear as a default? 

d. * * Implement the drop operator. How does this new operator af-
fect the envisionment for a three-blocks situation? For N blocks? 

7. Given the extensions from previous problems, suppose we modeled 
a Casino Robot as follows: The action grab-dice causes the pair of 
dice lying on the table to be in the gripper and shaken. The action 
shoot spills the dice onto the table. For any situation, the predicate 
(Score (n)) is true exactly if the sum of the faces showing on the 
dice is (n). 

a. * * Assuming fair dice, how would you use this formalization 
with this chapter's planning systems to compute the odds on 
various outcomes? 

b. * * Using whatever extensions you need from previous problems, 
implement the domain model for the Casino Robot. 

8. Suppose we add another property to blocks, for example, color. Color 
can be changed by an operator paint, e.g., 

(paint A red) 

would result in A's color becoming red, no matter what it was before. 

a. * Write paint as a STRIPS operator. 

b. * What other changes must we make to the Blocks World domain 
to support the addition of color to the domain? 

c. * Suppose we further specify that painting is a very inexact op-
eration, so that if we set out to paint a specific block, any other 
block resting on it also changes color. That is, applying (paint 
B red) to the situation 

(On A table) 
(On B A) 
(On C B) 
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will result in all three blocks turning red. Why can't this version 
of paint be encoded in a standard STRIPS formulation? 

d. 	* * * Extend the operator implementation to handle actions with 
partially specified add and delete lists, and demonstrate that 
your solution works by solving problems involving combinations 
of block movements and the extended paint operation. 

9. 	The rule strategies described in Section 14.1.3 only partially span the 
space of possibilities. Here are two others: 

: EACH-IN The rule is queued for execution if each trigger is : IN 
by itself. 

:CONSISTENT-WITH The rule is queued only if the triggers are 
consistent with the current focus. 

a. * Do these strategies require an ATMS? Why or why not? 

b. * Explain whether or not these strategies are useful, including 
examples to support your argument. 

c. * * Implement the : EACH-IN strategy and evaluate its utility. 

d. * * Implement the : CONSISTENT-WITH strategy and evaluate its 
utility. 

10. * * * Using plan-a as a model, implement a backward-chaining plan-
ner. 

11. * * * Reimplement your favorite planning technique using ATRE as a 
world modeling system. 

12. * * * Using the design in Section 14.4 as a starting point, implement 
a general-purpose ATMS-based problem solver that uses a focused 
control strategy in the suggestions architecture. 

13. * * * Using your general-purpose problem solver from Exercise 12 
as a module, implement a natural deduction reasoning system which 
solves propositional logic problems using KM*. 

14. Focused ATMS-based problem-solving strategies are clearly the only 
viable candidates for very large problems. This question explores 
how useful they are for small puzzles, where the many-worlds strat-
egy is often used. 
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a. * * * Using ATRE, implement a cryptarithmetic puzzle solver 
based on a many-worlds problem-solving strategy. Compare the 
efficiency, both in terms of run times and in terms of number of 
rules fired, of using : INTERN versus : IN rules. 

b. * * * Using your general-purpose problem solver from Exercise 
12, implement a focused cryptarithmetic puzzle solver. Compare 
the relative efficiency of breadth-first versus depth-first search, 
and variations in rule triggering strategies. 

c. * * * Based on your analyses of the two cryptarithmetic systems, 
which strategy seems better for such puzzles? To what sorts of 
problems would you expect these results to generalize? 

15. * * * * * While most ATMSs have been implemented on serial com-
puters, the local nature of its computations suggests that parallel 
processing could be very effective. For example, a data-parallel ATMS 
has been implemented on Connection Machines [3]. Data-parallel ma-
chines are just one class of parallel machines, of course. How would 
you organize an ATMS to most efficiently operate in a scalable multi-
processor architecture, where there may be as few as two processors 
and as many as one hundred? Implement your scheme, and analyze 
its performance both theoretically and empirically. 

16. * * * * * Two problems faced by teams of designers are (a) trying to 
keep their operations as coherent as possible and (b) encouraging the 
appropriate reuse of the products of their individual efforts, such 
as analyses, drawings, and so forth. For computer problem solvers 
implemented within a single address space, an ATMS provides con-
siderable help in dealing with these difficulties. Can ATMS ideas be 
"turned inside out," to help solve these problems for other kinds of 
problem-solving systems? Consider how an ATMS-like system could 
be used as a component in a distributed computer system that sup-
ported a team of designers. 
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15 	Antecedent Constraint Languages 

A long-standing goal in artificial intelligence is to provide languages that 
automatically bridge the gap between "knowing what" and "knowing 
how." Existing languages tend to lie at one end or the other of a "what—
how" spectrum. A traditional computer programming language is an 
example of the "how" extreme. Programs written in such languages focus 
on what to do, and when, while other kinds of knowledge are only em-
bodied in the interpretation of opaque variable names and the ordering 
of conditional tests. An example of the "what" extreme, i.e., declarative 
languages, is traditional mathematics, where one can express constraints 
in the form of equations without formally specifying how and when these 
equations are to be used. This chapter examines a class of languages, an-
tecedent constraint languages, which provides a model of computation 
that is much closer to the mathematical notion of constraint, while still 
providing an effective computational scheme. Today such constraint lan-
guages have found their way into spreadsheets, computer-aided design 
systems, and other computational aids to engineers. 

We begin by describing the constraint network model in the abstract, 
and outlining what kinds of problems it is appropriate for. Then we 
"open the hood" and explore the implications of this abstract model for 
the choice of knowledge model, procedure model, and execution strategy 
for its implementations. Next we describe TCON, a simple constraint-
network interpreter, and show how constraints can be used via two ex-
amples. First we show how constraint networks can be used as a scratch 
pad for using mathematical relationships in the course of problem solv-
ing. Second, we illustrate an important technique of model-based reason-
ing, called constraint suspension, which has been used in diagnosis tasks. 
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We end by describing several advanced topics involving antecedent 
constraint systems, including efficient implementation techniques, self- 
extending networks, and modeling changes over time. 

15.1 The constraint model 

Constraint languages are organized around the idea that the user (hu-
man or program) should express relationships between data declara-
tively. While computation must occur to determine and enforce the con-
sequences of these relationships, the required computations should oc-
cur automatically, without special effort on the user's part. 

Consider the equation z = x + y. To incorporate the knowledge ex-
pressed by this equation in a traditional, procedural computer language 
we might write 

(setq z (+ x y)) 

which of course is interpreted as "find the value of the symbol x and the 
value of the symbol y, add them, and store the result as the value of the 
symbol z." This captures only part of the meaning of our original equa-
tion. For instance, given z and x, we can use subtraction to calculate y. 
Similarly, given z and y we could calculate the value of x. We could start 
to capture these two ways of using the equation by writing additional 
setq statements, but this requires additional code to describe the condi-
tions under which each setq is appropriate. Writing such code on an ad 
hoc basis demands too much bookkeeping. 

In the constraint metaphor, such bookkeeping occurs internally. We 
use a graphical notation for constraints, both to make the propagation 
of information among them clearer and to remove the potential ambi-
guity between declarative and imperative interpretations of equation-like 
statements. Figure 15.1 illustrates our conventions. To depict constraints 
we use icons similar to those used in diagrams of logic circuits in digital 
electronics. The boxes labeled x, y, and z are cells. The principal feature 
a cell has is its value. A cell also records several other pieces of infor-
mation, including its relationships to the rest of the constraint network 
and how its value was supplied. All connections between constraints are 
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product 
a I 

a2 
	

SUM m2 

in out 

Figure 15.1 Graphical notation for constraints. Boxes indicate cells, which 
hold values. Icons similar to those used for logic circuitry are used to indicate 
constraints. The label indicates the type of constraint. Unlike logic circuits, 
it is assumed that information can flow in every direction. The cells which 
the constraint holds among are connected to it by lines. The constraint on 
the left is an adder constraint, the middle constraint is a multiplier, and the 
constraint on the right ensures that its in is the positive square root of its 
out. 

made via cells. Such connections are depicted by lines running between 
the cells and the constraints. 

An important difference to remember between constraints and logic 
circuits concerns the possible directions of information flow. Logic cir-
cuits have predefined inputs and outputs, and information only flows 
from inputs to outputs. In constraints, information can flow in any di-
rection that makes sense, whenever possible. So, for example, if we knew 

X = 2 A Y = 3 

then automatically the constraint should figure out that 

Z = 5 

while if 

Y = 3 A Z = 6 

then automatically the constraint should figure out that 

X = 3 

From the perspective of a constraint, the cells it is connected to are its 
terminals. Each terminal has a name, corresponding to the particular role 
it plays in the constraint. (Even though information must be able to flow 
in every feasible direction between the terminals of a constraint, we still 
need to identify which terminal is which.) Terminals can be considered 
as the parts of a constraint that allow it to be connected to other things. 
(Other kinds of parts are discussed shortly.) In this adder constraint, 
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velocity xstart 

deltaX 

adr 
mul 

deltaT 

xend 

Figure 15.2 Constraint network for uniform motion. This network of con-
straints expresses the relationships which hold between the parameters of a 
body undergoing uniform motion in one dimension. 

for instance, the terminals are Al (played by x), A2 (played by y), and 
SUM (played by z). In this icon and many others, the form of the icon 
suffices to distinguish different terminals. Traditionally, the rounded end 
constitutes the result of the addition, and the connections on the flat 
end constitute the inputs to the addition. The distinction between Al 
and A2 is moot in any correctly implemented adder constraint because 
addition is commutative. In cases where the part names are obvious or 
irrelevant, we leave them off to simplify diagrams, otherwise we label the 
wire leaving the constraint with the part name. 

In problem solving, a network of constraints is built to model aspects 
of a problem or situation. The cells in the network correspond to aspects 
of the problem which can be thought of as having values. Like the con-
stituents of assertions in the TREs, values can in principle be anything. 
However, constraint languages tend to be optimized around cells hav-
ing values which are either numbers or uninterpreted symbols. The con-
straints in the network correspond to the relationships that hold in the 
situation. For example, Figure 15.2 shows a constraint network describ-
ing the mathematics of uniform one-dimensional motion. The cells xs-
tart, xend, velocity, deltaX, and deltat describe the initial position, 
final position, velocity, distance traveled and time taken, respectively. 
Constraints communicate via shared cells. In this case, the cell deltaX 
is both the A2 of an adder constraint and the product of a multiplier con-
straint. Suppose we provide numerical values for xstart, velocity, and 
deltat. As soon as velocity and deltat are known, the multiplier con-
straint can calculate a value for deltaX. This new value gives the adder 
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constraint the information it needs to operate, since xst art is already 
known, and hence it computes xend. This flow of information through 
the network is an example of propagation via constraints.1  

Continuing our example, suppose we now wish to use this network 
to calculate how long a moving object will take to reach a goal posi-
tion, given the initial position and velocity. We must retract the value 
for deltat, which causes all values computed on the basis of it to be 
retracted in turn. In this case, deltaX and xend become unknown. Set-
ting xend to be the goal position allows the adder constraint to calcu-
late deltaX, which in turn allows the multiplier constraint to calculate 
deltat, which provides our answer. 

As this example illustrates, we presume a built-in dependency mecha-
nism to handle retraction and to provide explanations when required. An 
important role for constraint networks in problem solving is checking 
the consistency of proposed values: If our example network calculated 
a negative value for deltat, for instance, that might be a good signal 
to investigate different values for velocity (see Exercise 1). As later ex-
amples illustrate, contradictions can also arise because different parts of 
the network might compute two distinct values for a cell. We assume that 
each constraint network has a coincidence handler which judges whether 
or not two values should be considered distinct, and a contradiction han-
dler that is executed whenever a contradiction is detected. 

Powerful languages require a means of abstraction. For constraint lan-
guages, the means of abstraction is packaging up a network as a new 
primitive constraint. Since motion in different dimensions can be treated 
independently, if we treat the network of Figure 15.2 as a primitive 1D-
uniform-motion constraint, we can write a constraint for motion with 
uniform acceleration by using the uniform motion constraint with a con-
straint expressing the effects of acceleration (see Figure 15.3). 

1. In the literature this is sometimes called propagation of constraints, which is a 
misnomer here because constraints are being applied rather than created. The term 
became popular because early systems would propagate algebraic expressions through 
the network, as outlined in Section 15.5.2. Propagation of constraints is also commonly 
used in frame systems, for example, in the inheritance of type or number restrictions 
in role fillers. If a neutral term covering both styles of computation is desired, we 
suggest "constraint propagation." 
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accel 
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1 D-uniform-motion 
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deltat 

deltat 

Figure 15.3 Networks can become higher-order primitives 

15.1.1 Why use constraint languages? 

The constraint metaphor just described has several attractive features, 
but why should we view it as the basis for a distinct class of languages 
for reasoning? After all, we could implement systems which use this 
metaphor via pattern-directed rules that would create the same external 
behaviors that we have described so far. Suppose, for example, we define 
the relationship has-value as relating a cell to its value, that is, believing 

(has-value (>> al adderl) 2) 

is tantamount to believing that the numerical value of (>> al adderl) 
equals 2. Constraints could be defined as predicates expressing laws that 
hold between cells, such as 
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(adder x y z) 

We could then define rules for each such predicate that triggered on 
statements of constraints (e.g., adder statements) and values of its cells 
(e.g., has-value assertions concerning its parts), which would then com-
pute the values of other cells by asserting more has-value statements. 
We must be sure to define enough rules, of course—ideally, given n - 1 
cells of a constraint we should be able to compute the nth. (Not every re-
lationship follows this pattern, as the definition of multiplication below 
illustrates.) The ability to inspect the rationale for all results would come 
from using a general-purpose TMS. We must also include a rule which 
states that any two sufficiently distinct has-value assertions for a cell 
are mutually contradictory (see Exercise 7). 

Such PDIS-based systems can indeed implement the antecedent con-
straint model. But a PDIS implementation would ignore several simplifi-
cations allowed by the constraint network model which, if exploited cor-
rectly, can lead to important benefits. All the simplifications derive from 
the fact that the cell/constraint data model needs only local references. 
No pattern-matching is required, thus reducing overhead in both the 
database and the reference mechanism for procedures. Efficient datas-
tructures can be built which "wire in" the connection between a cell and 
the procedures that use it. Furthermore, the rules associated with a con-
straint can be associated with a prototype constraint description and in-
herited by instances of that constraint. The PDIS overhead of building 
new rule instantiations for each combination of triggering data is thus 
avoided. 

There are other efficiencies as well. Since the principal relationship is 
that of a cell having a value, we can leave that relationship implicit in 
the datastructure representing the constraint network. If the values of 
cells are assumed to be primitive data items, we do not need to cache 
values (assuming, of course, that rule executions are cheap). This means 
that we can simply store in some appropriate field the current value of 
a cell, and when we change the value, throw away the old one. Thus if 
we have n distinct values for a cell during the course of a computation, 
the cell at any time has stored with it at most one value and its associ-
ated dependency information. The PDIS version would require n distinct 
value assertions, with their associated TMS structures, and all the rule 
applications required to check for contradictions. 
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These efficiencies can be crucial for building large systems. Consider 
for example the construction of a VLSI design tool. A typical chip de-
sign might consist of hundreds of thousands of logic elements, which 
are implemented via millions of transistors. The laws of this domain are 
local, in that parts that are physically adjacent are the only parts that 
can interact.2  This makes the domain a natural one for the antecendent 
constraint model. One function that a VLSI design tool provides is check-
ing design rules: laws about allowable relationships between the param-
eters of parts (such as distance between two parts) which must hold for 
a circuit to work given a particular implementation technology. Imple-
menting such a system in a PDIS is unlikely to work very well. However, 
such VLSI CAD systems have successfully been built using constraint lan-
guages. Moreover, ideas from constraint languages are finding their way 
into other design tools (e.g., mechanical CAD) as well. 

15.2 The TCON constraint language 

Here we outline a particular constraint language, TCON, which embod-
ies the constraint metaphor. We begin by describing how primitive con-
straints are defined, and then describe how to link them into networks. 
Finally, we discuss how compound constraints can be defined in terms of 
primitive constraints, to provide the language with a means of abstrac-
tion. The implementation of TCON is described in Section 15.3. 

15.2.1 Defining primitive constraints 

Describing constraints and constraint networks requires a uniform con-
vention for naming parts. We stipulate that every constraint has a name 
and a type. The function >> provides access to nested constraint struc-
ture. That is, the expression 

(>> sum adderl) 

2. Assuming we can ignore field effects, of course. 
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(constraint adder ((al cell) (a2 cell) (sum cell)) 
(formulae (sum (al a2) (+ al a2)) 

(al (sum a2) (- sum a2)) 
(a2 (sum al) (- sum al)))) 

Figure 15.4 Definition of the ADDER constraint. Classes of TCON constraints 
are defined via prototypes, like the one above. 

should be read "the sum of adder 1". >> can take an arbitrary number of 
arguments, thus we can say 

(» x velocity ba1132) 

to mean "the x component of the velocity of ba1132." 
Each type of constraint is defined in terms of a prototype. The format 

of these definitions is 

(constraint (name) (parts) . (body) ) 

where (name) is the name of the class of constraint being defined. 
(parts) is a list of parts that each instance of the constraint must have. 
Each entry in (parts) takes the form 

( (PartName) (PartType) ) 

where (PartName) is the name by which the part is refered to within 
(body). (PartType) is the kind of thing the part is, either a cell or an-
other kind of constraint. (To start with, think of cells as the only kind 
of parts; Section 15.2.3 describes how compound constraints are built.) 
A constraint's cells are best interpreted as properties of the constraint it-
self. Figure 15.4 shows how the adder constraint used in Section 15.1 can 
be defined using this syntax. This definition specifies that adders have 
three parts, an Al, A2, and SUM, each of which are cells. The body of the 
adder constraint consists of a definition of formulae, which are rules 
that enforce the appropriate relationships between the values of these 
cells. Figure 15.5 depicts the relationships between the cells and rules. 

Notice that in defining this constraint we have been forced to write 
rules that define what computation should occur for each combination 
of known inputs. What have we gained? First, we no longer must worry 
about when these rules are applied: the constraint interpreter handles 
that, ensuring that they are executed whenever relevant. Second, while 
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Figure 15.5 How an adder is implemented 

primitive constraints require such rules, we shall see that once a prim-
itive vocabulary of constraints is established we can write new, higher-
order constraints solely in terms of primitive constraints. 

The formulae declaration consists of a list of rules. Each rule com-
putes a value for at most one cell, given the values for some other non-
empty subset of the constraint's cells. The format of each rule is: 

( (sets) (uses) (RuleBody) ) 

(sets) is the cell for which the rule can provide a value. (uses) is a 
list of cells whose values must be known before the rule is executed. 
(RuleBody) is the procedure which is executed and whose result is the 
value for (sets). The first rule in the adder prototype, for example, spec-
ifies that when al and a2 are known, one can compute a value for sum by 
adding al and a2. Similarly, the second rule specifies that if sum and al 
are known, then a2 can be computed by subtracting al from sum, and so 
forth. 

Formulae are interpreted antecedently. That is, whenever the values 
for the properties it uses are known, the rule is queued and eventually 
executed. Otherwise, no particular execution order is assumed between 
rules. In general, there may be multiple formulae which set any particular 
cell. And, of course, any cell may be used by multiple formulae. However, 
to ensure well-founded support, no (uses) of a rule can include the cell 
which it sets. When defining a primitive constraint, how do we know that 
the set of formulae is adequate? There have to be enough rules so that, 
given values for any subset of cells in the constraint, any other proper- 
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ties that follow from those values and the semantics of the relationship 
expressed by the constraint are calculated by the rules.3  

Given a rule or cell, the constraint model provides concise ways of 
describing the potential dependency relationships between it and other 
constituents of the network. The following abstract procedures define 
these relationships. For rules: 

sets The cell the rule provides a value for. 

uses The set of cells which must be known before the rule can be 
executed. 

For cells: 

Users The set of rules which use the cell as an input. 

Suppliers The set of rules which can provide a value for the cell. 

To maintain the constraint model of computation, the code within the 
body of rules must follow certain guidelines: 

1. A rule's body should only rely on the values of its uses cells. 

2. All inferential work of a rule should occur via the result it returns. 

3. A rule must refuse to return a value when only a subset of informa-
tion from its uses cells suffices to obtain that value. 

4. A rule must detect inconsistent data and signal the interpreter when 
it is found. 

The first two guidelines are straightforward, and are analogous to sim-
ilar limitations in PDIS systems. Drawing information from global vari-
ables which can change over the course of an analysis reduces the use-
fulness of the dependency system. Requiring side effects to carry out 
inferential work similarly prevents the model from providing maximal 
benefits. The second two guidelines are somewhat subtle and are best 
understood via example. 

Figure 15.6 shows a definition of a multiplier constraint which illus-
trates the impact of the second two guidelines. Recall that the adder only 

3. The analogous idea in propositional reasoning is the set of prime implicates of a 
theory. See Chapter 13. 
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(constraint multiplier ((ml cell) (m2 cell) (product cell)) 
(formulae (product (ml) (if (nearly-zero? ml) 0.0 :DISMISS)) 

(product (m2) (if (nearly-zero? m2) 0.0 :DISMISS)) 
(product (ml m2) (if (or (nearly-zero? ml) 

(nearly-zero? m2)) 
:DISMISS) 

(* ml m2)) 
(ml (product m2) (if (nearly-zero? m2) 

(if (nearly-zero? product) 
:DISMISS 

:LOSE) 
(/ product m2))) 

(m2 (product ml) (if (nearly-zero? ml) 
(if (nearly-zero? product) 

:DISMISS 

:LOSE) 

(/ product m1))))) 

(defun nearly-zero? (m) (< (abs m) 1.0e-9)) 

Figure 15.6 Definition of a multiplier constraint. This multiplier constraint 
illustrates some subtleties involved in defining primitive constraints. To 
properly implement the constraint model requires paying careful attention 
to "squeezing out" as much information as possible from the properties of 
the relationship. 

required three rules to enforce the relationship between its parts. En-
forcing multiplication requires five rules because of special cases where 
certain values provide more or less information than normal. Suppose 
one of the inputs to the multiplier (e.g., ml or m2) is zero. In that case we 
know the output (e.g., product) must be zero no matter what the other 
input is. The first two rules in the formulae definition for the multiplier 
encode this fact. Of course, when their input isn't zero these rules cannot 
actually provide a value, even though their uses are completely known. 
Rules must return a special value, i.e., :DISMISS, in such circumstances. 
The TCON interpreter understands :DISMISS to mean "with the particu-
lar input values, this rule cannot produce an output." 

The third rule of the multiplier encodes the usual definition of multipli-
cation. The extra control structure is to comply with the third guideline. 
The TCON interpreter guarantees that every rule will be fired sometime 
after it has the data it needs to run, but places no guarantee on the or- 
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der in which rules execute. This means that if the third rule can execute, 
so can the first two, but they may or may not have already run when the 
third rule is executed. The if tests to see if one of the first two rules is 
relevant, and if so, returns : DISMISS to allow the other rules to produce 
a zero value instead. Doing this may seem odd at first, since executing 
* would compute the correct value of zero if one of the inputs is zero. 
Recall, however, that TCON tracks dependency information. If we use the 
third rule to set the value of product to be zero, then we would record 
that this value depended on the conjunction of both inputs, whereas it 
actually only depended on one of them alone. If this result led to a con-
tradiction, for instance, we might retract what we thought was a relevant 
value and find the contradiction still with us. Such pecularities in the re-
lationship to be enforced must be kept in mind by the author of primitive 
constraints. 

The last two rules in the multiplier constraint illustrate the fourth 
guideline. When appropriate, they use the value of the product and one 
input to compute a value for the other input. If the known input is zero, 
then these rules must dismiss themselves because in this case the other 
input could legitimately be anything. However, should the known input 
be zero and the product be something other than zero, we have a se-
rious problem, since we know it must be zero. Clearly these data are 
contradictory, and the TCON interpreter needs to be informed about this 
discovery. Rules can signal such circumstances by returning the special 
value : LOSE, which declares the values for its uses cells to be contra-
dictory. When a contradiction is detected, the TCON interpreter signals a 
contradiction handler which works exactly like contradiction handlers in 
truth maintenance systems. That is, it computes the set of assumptions 
underlying the contradiction and executes a user-supplied procedure to 
take care of the problem. 

15.2.2 Creating networks of constraints 

Problems are modeled by creating networks of constraints. Creating a 
constraint network requires building its parts and then wiring them to-
gether. Constraints are created by the procedure create, which takes 
two arguments, the name of the constraint being created, and the kind 
of constraint it is. For example, to create an adder called f oo one says 
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(constraint 1D-uniform-motion ((xstart cell) (xend cell) 
(velocity cell)(deltat cell) 
(adr adder)(mul multiplier)) 

(» xstart) (>> al adr)) 
(» xend) (>> sum adr)) 

(== (» velocity) (>> ml mul)) 
(== (» deltat) (>> m2 mul)) 
(== (» product mul) (>> a2 adr))) 

Figure 15.7 Specifying the constraint in-uniform-motion 

(create 'foo 'adder) 

Global properties can be represented by creating cells or constraints. 
If we were modeling an amplifier, for instance, a cell to represent the 
output voltage of the amplifier could be created by the call 

(create 'output-voltage 'cell) 

The primitive == provides the means to connect constraints to form 
networks. == takes two cells as input. Its result is a special constraint 
that propagates value information between the two cells. So for example, 
if we stated 

(== output-voltage (>> sum foo)) 

then whenever a value was derived for the sum of foo, the value of 
output-voltage would be set to the same thing, giving the connection 
between the two cells as the reason. Naturally, the same thing would hap-
pen if we set output-voltage, since constraints are multidirectional. 
Equality links between cells can be broken by calling un==. un== retracts 
all values derived using the equality link as well as removing the equality 
constraint. 

Figure 15.7 shows how these primitives can be combined to define the 
one-dimensional uniform motion constraint illustrated in Figure 15.2. 

15.2.3 Defining compound constraints 

Abstraction helps the vocabulary of a language keep pace with increased 
complexity. Abstraction in constraint languages is accomplished by 
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(constraint 3-adder ((al cell)(a2 cell)(a3 cell)(sum cell) 
(addl adder)(add2 adder)) 

al (>> al addl)) 
a2 (>> a2 addl)) 
a3 (>> al add2)) 

(» sum addl) (>> a2 add2)) 
sum (>> sum add2))) 

al 

+ ) 
a3 

g um 

Figure 15.8 Definition of a three-input adder. By composing primitive con-
straints, more complex abstractions can often be built without resorting to 
defining new rules. 

defining new constraints as networks of more primitive constraints. As 
Section 15.2.1 showed, TCON's syntax for defining constraints already 
allows parts to be other types of constraints as well as cells. The only 
restriction on this nesting is that constraints cannot be recursively de-
fined. That is, the part relationship over types of constraints forms a 
lattice. The interconnections between the parts are define via ==, as intro-
duced in Section 15.2.2. The three-input adder in Figure 15.8 illustrates 
how a new compound constraint can be defined in terms of primitive 
constraints, without the use of formulae. 

Sometimes specific property values are part of the definition of a con-
straint; we use the form 

(constant (Cell) (Value) ) 

to indicate that (Cell) always has the value (Value). 
The ability to define hierarchical constraint networks provides an ex-

citing ability: After defining a certain basic level of primitive constraints, 
we can often stay completely within a purely declarative style of compu-
tation. 
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15.3 Implementing TCON 

The file t con . lisp contains a complete implementation of TCON. We 
begin by outlining the interface procedures. We then describe in turn 
the data abstractions, the way networks, prototypes, and constraints are 
implemented, the rule system, the dependency system, and the interrog-
atives. 

15.3.1 TCON's interface 

New kinds of constraints are defined using the Constraint macro. A 
Constraint form has the syntax 

(Constraint (name) (PartList) . (body)) 

(name) is a symbol which is name of the kind of constraint being de-
fined. (PartList) is a list of entries of the form ((PartName) (PartType), 
where (PartName) is the name of the part (a symbol) and (PartType) is 
a type of constraint. (body) specifies rules and the forms that should be 
evaluated in order to create an instance of this constraint type. 

A common statement in (body) is formulae: 

(formulae . (ListOfRules)) 

where (ListOfRules) is a list of rules of the form 

( (sets) (uses) (RuleBody)) 

(sets) is the cell the rule sets and (uses) is a list of the cells whose values 
are required to execute (RuleBody), which is Lisp code. Both (sets) and 
(uses) must be cells defined in (PartList). 

New constraints may be defined at any time. Typically, such definitions 
are accumulated in files which may then be loaded as part of an analysis. 

As with previous systems, we use a global variable (here *tcon*) to 
simplify referring to the constraint network currently used. The follow-
ing three procedures are included for creating constraint networks and 
modifying their global properties: 

(create-tcon title &keyelhpses) Builds a new constraint network 
with the name title. There are four keyword arguments: 
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:DEBUGGING When non-nil, prints information about internal TCON 
operations. The default is nil. 
: PROTOTYPE-FILE A file name which specifies an initial set of con-
straint prototype definitions. The default is nil. 
: CONTRADICTION-HANDLER Procedure to be called when a contradic-
tion occurs. The default is default-contradiction-handler. 
:COINCIDENCE-HANDLER Procedure used to compare values for a cell 
to determine if they are consistent or conflict. The default is default-
coincidence-handler. 
(load-prototypes file-name &optional (tcon *tcon*)) Loads 
the constraints of file file-name into the specified constraint network, 
which defaults to the current one. 
(change-t con tcon &key (debugging nil)) Provides a way to set 
the debugging flag associated with a network. The coincidence handler 
cannot be reset since there would be no guarantee that the state of the 
network would be consistent with the new criteria unless restarted from 
scratch. 

The following procedures are used to create and examine the structure 
of constraint networks: 

(create name type &optional (tcon *tcon*)) Builds a con-
straint of type type called name in the constraint network tcon. Cells 
are created the same way by specifying the type cell. 
(» &rest args) Refers to a constraint or part of a constraint, using 
the names with respect to the current constraint network. 
(== first second) Equates first and second. 

The procedures for switching between constraint networks are 

(with-network tcon &rest forms) Evaluates forms in the context 
of the constraint network tcon. 
(use-network tcon) Makes the current constraint network be tcon. 

The interrogatives used in TCON mirror those of pattern-directed in-
ference systems in several ways, but the difference in data model allows 
some interesting variations. For instance, the constraints of a network 
are often aligned with natural structures in the domain being modeled, 
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and thus provide a convenient way to package queries. Information about 
values in a constraint network can be gained using the following proce-
dures: 

known? Returns non-nil if the given cell has a known value. 

what-is Prints the value of a cell. 

constraint-values Prints the values of all cells in a constraint. With 
a non-nil second argument, does so recursively. 

show-network Prints the value of every cell in the network, if known. 

The dependency system is basically a stripped-down JTMS, so the 
kinds of information we can provide are similar to what we get in a 
stand-alone JTMS: 

why Describes the informant for a value. This provides roughly the in-
formation that knowing the support would provide in a stand-alone 
JTMS. 

premises Shows the list of ground values, similar to assumptions-
of -node. 

needs Describes what other cells might be given values in order to 
determine the value for a cell of interest. 

Notice that the last procedure, needs, allows us to examine some in-
formation that is difficult to get in a PDIS. This works because the de-
pendency system is more tightly coupled to the rule system. In JTRE an 
approximation of this information is available for nodes corresponding 
to the consequences of previously-executed rules, but finding out what 
might be derivable from rules that have not actually been executed is dif-
ficult, if not impossible. 

Values can be set, retracted, or changed via the following procedures: 

set-parameter sets a cell to a given value. 

forget-parameter Retracts an assumed value. 

change-parameter Changes the assumed value for a cell. 

constant Provides a fixed value for a cell. 

tcon-answer Tells the contradiction handler which assumption to re-
tract given a contradiction. 
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Each procedure performs the appropriate local change and then prop-
agates the effect of this change through the rest of the network. When 
called on a cell whose value was assumed, change-parameter retracts 
its value and does not attempt to find alternate support before assuming 
a new value for the cell. Typically this is more efficient than the compo-
sition of forget-parameter and set-parameter. Values provided us-
ing constant have the same status as premises in truth maintenance 
systems. That is, they cannot be retracted without violating the inter-
face conventions. As with the JTMS, the macro with-contradiction-
handler rebinds a network's contradiction handler during a computa-
tion. 

Sme additional interface procedures for using TCON as part of a larger 
system are: 

known? Predicate for determining if a cell has a value. 

enforce-constraints Executes all pending rules for the given con-
straint network. 

cell-ground Lists the cells providing ground support to the given cell. 

15.3.2 Datastructures 

The t con struct provides a means of bundling up the properties of a 
particular constraint network. It has the following fields: 

title String for printing. 

prototypes List of prototypes associated with this network. 

cells List of cells in the network. 

constraints List of constraints in the network. 

beg-queue Queue of cells to examine for alternate support. 

help-queue Queue of rules ready for execution. 

coincidence-handler Identity procedure for cell values 

contradiction-handler User-supplied contradiction processor. 

debugging Controls printing of information about internal operations. 

The decision to store prototypes locally with a network allows us to 
explore the consequences of different definitions by building identical 
networks with different prototypes. 
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Prototypes have the following fields: 

name A symbol. 

tcon Network it is part of. 

parts List of parts. 

creation-forms Evaluated for each constraint of this type when cre-
ated. 

cells Information about its cells (users and suppliers). 

rules Information about its rules (sets and uses). 

The connections between cells and rules are made at the level of the 
prototype—these connections replace the pattern matching and indices 
used in pattern-directed inference systems. Since most of the informa-
tion about a constraint is inherited from its prototype, the constraint 
datastructure itself is quite simple: 

name A symbol. 

tcon Network it is part of. 

owner The constraint it belongs to. (If global, this is : USER.) 

parts An alist of names and associated parts for this instance. 

prototype Where to get information about rules and cells. 

The datastructure for cells must support three functions. It must 
record the value for that cell, keep track of structural information so 
that the value is propagated appropriately, and keep track of dependency 
information so that explanations are accurate and retraction works prop-
erly. The cell structure has the following properties: 

name A symbol. 

tcon The network it belongs to. 

owner The constraint it is part of. If global, this is : USER. 

value The current value. 

informant Either a rule, symbol (if ground support), or nil if the cell 
is unknown. 

roles The parts the cell plays in various constraints. Used to find its 
users and suppliers. 

plist Usual place to store extra information. 
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Aside from *t con*, two other global variables are used by TCON. The 
variable $self is always bound to the cell or constraint currently being 
processed. This variable is rebound dynamically during the construction 
of hierarchical constraints. When no constraint is being processed, it 
is bound to :USER. The other global variable is $inf ormant, which is 
bound internally to the current source of information. $inf ormant is 
mainly useful for debugging. 

15.3.3 Creating constraints, networks, and prototypes 

The purpose of create-tcon and change-t con and their inputs have al-
ready been described, so there are only a few more features to note. The 
special constraint prototype == must be included in every network, so 
it is added automatically by create-tcon. While the : PROTOTYPE-FILE 
keyword simplifies starting a network, new prototypes can be added at 
any time. Notice that change-t con makes no provision for rebinding the 
coincidence handler. This is deliberate, because changing the criteria for 
judging two values to be the same could lead to previously consistent 
values being judged as contradictory. There would be no easy way to en-
sure the consistency of the network, short of recomputing every derived 
value in it. 

The macro Constraint provides the syntactic sugar for defining pro-
totypes. We presume *t con* is dynamically bound, so that constraint 
definitions need not refer to a network explicitly. The bulk of its work 
is performed by analyze-prototype-body, which analyzes the body 
of the definition. formulae statements are passed on to process-
constraint-rules, which will be described shortly. Within the body 
of a constraint definition, everything other than formulae statements 
are treated as forms which should be executed whenever an instance of 
that type of constraint is built. Examples of such statements are == and 
constant. All references (i.e., terms starting with >>) within a constraint 
must be local. Thus statements like 

(.= (» sum adderl) (>> al adder2)) 

are converted into local statements by adding an indicator ($self) stand-
ing for the current constraint being built. TCON ensures that $self is 
always bound to the constraint currently being operated on. So if the 
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== statement above appeared in the scope of a constraint definition, it 
would automatically be transformed into 

(== (>> sum adderl $self) (>> al adder2 $self)) 

which places $self at the base of the reference chain. This job is done 
by the procedure localize-references. 

The procedure process-constraint-rules analyzes the contents of 
a formulae statement. It builds up two alists, one describing rules and 
the other describing the cells referred to by the rules. These alists supply 
the dependency information that links rules and cells. The sets and 
uses of each rule are cached on the rules alist, and inverted to find the 
Users and Suppliers for each cell. For easy reference, rules are named 
by their order in the formulae statement. 

The procedure create builds a constraint of a given type. It serves as 
an entry point, binding $self and *t con* before calling createl, which 
does the real work. create1 starts by building an instance of the con-
straint struct and fills its fields with information appropriate to its type. 
Next it recursively builds the constraint's parts, rebinding $self appro-
priately. Finally, the creation forms associated with the prototype are 
executed to finish setting up the interrelationships between the new con-
straint's parts. create-cell operates similarly, initializing the new cell's 
values and backpointers to weave it into the constraint and network. 

An implementation of >> must allow for the fact that a chain of rfer-
ences can be arbitrarily long. The simplest way to support this is to 
define >> as a macro that alters its argument to simplify subsequent 
processing. Reversing the reference chain and stripping off the first el-
ement to identify the base of the chain turns the process into a simple 
iteration. This iteration is carried out by nested-lookup, which uses 
lookup-global to get the base of the chain and lookup-part to find 
the appropriate part from a constraint's list of parts. When the base is 
$self, lookup-global simply evaluates it, exploiting our convention of 
its dynamic binding, and otherwise looks up the constraint's name in the 
network. 

References are inverted by the procedure pretty-name, which, given a 
constraint or cell, produces a reference chain that serves to specify the 
given object. cell-pretty-name and constraint-pretty-name are its 
helpers, doing the obvious recursive descent. These procedures are used 
in print routines found later in the file. 
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15.3.3.1 Defining == 

Recall that when create builds a new constraint, it also builds new 
constraints and cells to serve as its parts. This means that we can-
not simply use create to build instances of ==, for then it would not 
serve its purpose of establishing new connections between existing cells. 
Consequentlly, the macro == expands into a call to a new procedure, 
process==, instead of a call to create or creat el. process== recur-
sively walks through the structure of two constraints, equating each of 
their corresponding cells. The actual construction of == instances for 
cells is handled by ==cells, which makes an instance of the == con-
straint with the argument cells as its parts, and increments their roles 
slots to indicate the additional part they play in the network. Since these 
cells may already have values, the rules of this constraint are queued to 
see what new conclusions can be drawn, if any, from this new connection. 

15.3.4 The rule system 

The implementations of the abstract functions sets, uses, Users, and 
Suppliers are the procedures rule-sets, rule-uses, cell-users, 
and cell-suppliers. Obviously, cell structs are the legal arguments 
for cell-users and cell-suppliers. The naming convention for rules 
is to use a pair whose car is the local name of the rule (as generated 
by process-constraint-rules) and whose cdr is the constraint struct 
the rule is defined in. All four procedures use the information cached 
with constraint prototypes to calculate their results. rule-sets and 
rule-uses are a simple nested lookup using assoc on the rule's pro-
totype. cell-users and cell-suppliers are a bit more complicated 
because a cell can participate in multiple constraints. The cell-roles 
field specifies what these constraints are, and a nested lookup analogous 
to the procedures for finding rule information is performed on each con-
straint. 

15.3.4.1 Setting and propagating values 

The interface procedure known? is obvious—the special value : UNKNOWN 
is stored in a cell's value field to indicate that it currently is not known. 
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set ! is the internal procedure that does the work involved in giving 
a value to a cell, including consistency checking and propagating the re-
sults. It begins by seeing if the cell is already known. If so, then if the 
newly computed value is not consistent with the previous value (i.e., co-
incidence? returns nil) contradiction handling is invoked. Otherwise, 
the cell's value and informant fields are updated to reflect the new 
value and its source. The source argument will always be either a pair 
indicating a specific rule (as noted previously) or a symbol, indicating 
ground support. Finally, spread-results propagates the effects of this 
new value by queuing for possible execution the rules which use the 
newly set cell. 

The procedure help ! is called internally to process items in a net-
work's help-queue. It first tests whether the rule is executable by calling 
runnable?, which ensures that every cell in uses is known. It then exe-
cutes the rule and examines the result. The special values :DISMISS and 
:LOSE are recognized here, and appropriate action is taken for each. Any 
other value is treated as a new value for the rule's sets cell, and so set ! 
is called to store this value. 

As with the PDIS rule system, much of the mechanism in defining 
TCON rules is designed to simplify the alignment of the procedure model 
with Lisp procedures. Specifically, the body of a rule is simply a proce-
dure which is applied to the values of the cells the rule uses. In addition 
to rebinding the special variables $self and *tcon*, the global variable 
$inf ormant is bound to the current rule for debugging purposes. A con-
straint author might, for instance, use these variables to print out more 
detailed information about the execution environment of a piece of code 
that appears in the body of several rules. 

15.3.5 The dependency system 

We have already seen how set ! keeps track of informants as a means 
of caching dependency information. When assumed values are retracted, 
this information must of course be used to retract derived values. The 
procedure forget ! carries this out by recursively retracting all the con-
sequences of a given value. Two features are worth noting here. First, we 
must check to be sure that the informant sanctioning the retraction ac-
tually is the informant for the value. (It might not be, if some external 
system set a cell which already had a compatible value.) Second, we use 
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an internal queue rather than syntactic recursion, since the number of 
cells traversed could be a substantial fraction of the network. The proce-
dure beg ! looks for alternate support (i.e., rederiving a new value for a 
cell) by queuing any executable suppliers for a newly forgotten cell. 

The rest of the dependency system is concerned with detecting and 
processing contradictions. default-coincidence-handler provides a 
default test for equivalent values. ground-justification returns non-
nil unless it is given a constraint rule. The procedures cell-ground 
and rule-ground return the set of cells whose assumed values form the 
set of support on which that cell or rule rests, respectively. default-
contradiction-handler is a bit more complicated than some of the 
earlier TMS versions. The reason is that we have chosen to split the 
assumed values into three sets: those on which the old value relies, those 
on which the new value relies, and those which both values require. This 
provides users with a bit more information about what they might wish 
to retract. 

1 S.4 Examples 

We explore how constraints can be used in two kinds of problem solv-
ing. We start with a simple example to illustrate TCON in action. Sec-
tion 15.4.2 illustrates the use of constraint networks as an inference 
facility in a larger system. Section 15.4.3 illustrates how constraint net-
works can be used in constraint suspension, a diagnosis technique devel-
oped by research in model-based reasoning. 

15.4.1 A simple TCON example 

Let us create an instance of the one-dimensional uniform motion con-
straint and examine how TCON computations work. First we need to 
build a network: 

> (create-tcon "1D Motion" :prototype-file "/u/bps/code/tcon/motion.lisp") 
;;; Loading source file "/u/bps/code/tcon/motion.lisp" 
<TCON: 1D Motion> 
> (create 'M '1d-uniform-motion) 
<Constraint M> 
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Now the expression (>> M) refers to the constraint we just built, which 
instantiates the equations of uniform motion. Suppose we set an initial 
position and velocity of 0.0 and 3.2, respectively: 

>(set-parameter (>> xstart m) 0.0) 
4 
0 
>(set-parameter (>> velocity m) 3.2) 
5 
0 

Do we know the final position yet? TCON says no: 

>(known? (>> xend M)) 
NIL 

Unlike a PDIS, where we do not know in advance what rule instances 
might be created that could provide a given assertion, in TCON we can 
actually find out, using needs or by examining what other cells of the 
constraint might be filled in: 

>(constraint-values (>> m)) 

(>> DELTAT M) is unknown. 
(>> VELOCITY M) = 3.2. 
(» XEND M) is unknown. 
(>> XSTART M) = 0.0. 

NIL 

So by selecting a value for deltat we should be able to compute (>> 
xend m). Suppose we let deltat be 24.0 seconds: 

>(set-parameter (>> deltat m) 24.0) 

15 
0 
>(what-is (>> xend m)) 

(>> XEND M) = 76.8. 
NIL 

Now we have the value of the final position. We can also obtain details 
about the derivation of that value using why and find the assumptions 
underlying it with premises: 
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>(why (>> xend m)) 

(>> XEND M) = 76.8, via (RULE-1 . <Constraint 1<=>2>) 

and inputs: 

(>> SUM ADR M) = 76.8. 

NIL 

>(premises (>> xend m)) 

(>> XEND M) = 76.8, because: 
(>> deltat M) = 24.0, via USER. 

(>> VELOCITY M) = 3.2, via USER. 

(>> XSTART M) = 0.0, via USER. 

NIL 

Suppose we had a desired final position, say 5, 000, and wanted to 
know how long it would take for the moving object to reach that position. 
By retracting deltat and setting xf inal, we can derive our answer: 

>(forget-parameter (>> deltat m)) 

1 

6 
>(set-parameter (>> xend m) 5000) 

15 

0 
>(what-is (>> deltat m)) 

(>> deltat M) = 1562.5. 

NIL 

Notice that we have succeeded in using the knowledge of arithmetic in 
a very declarative fashion. Once the problem solver has built a constraint 
network, it can be used to compute useful information in a variety of 
ways. 

15.4.2 Using constraint networks as scratch pads 

Many kinds of problems contain subproblems which involve solving 
mathematical equations. Often these problems involve not just comput-
ing numerical answers, but figuring out if the parameters of a situation 
or proposed solutions make sense. Suppose, for example, we are try-
ing to destroy a falling satellite before it crashes into a populated area. 
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We may have several kinds of interceptor rockets at our disposal, and 
need to select one that is fast enough to reach the satellite's path be-
fore impact. Let us build a constraint network to evaluate the choice of 
interceptor. 

We can model the satellite's motion as it approaches impact as if 
it were a projectile, falling under the Earth's gravitational field. If we 
assume that our interceptor rockets burn all their propellant extremely 
quickly, we can approximate their trajectory in the same way. The fol-
lowing variables are needed: 

(Xi, YO Initial position of the satellite 

(4,11) Final position of the satellite 

(XIX ) Initial position of the interceptor 

(Xl, Y1) Final position of the interceptor 

(VXi, VII) Initial velocity of the satellite 

(V4, VYif ) Final velocity of the satellite 

(VXJ, VII) Initial velocity of the interceptor 

(VXI, VYI) Final velocity of the interceptor 

T, Time taken to intercept 

T, Time until the satellite crashes 

For the interception to succeed it must be the case that 

= A = 

It is also desirable to have the collision take place as high as possible, so 
that the debris will be slowed down by air resistance and do less damage 
to the people and property below. 

Let us build a constraint network to use as a scratch pad in solving this 
problem. That is, we can build a model of the situation by instantiating 
constraints to represent the trajectory of the satellite, the trajectory of 
the interceptor, and their intersection. By plugging numerical values into 
this network and evaluating the results, we can find a reasonable solu-
tion. 

To model the trajectories of the satellite and interceptor we need a 
constraint which describes two-dimensional motion under the influence 
of gravity. One way to do this is to define a constraint which defines one-
dimensional motion under acceleration and use two copies, one for X 
and one for Y. What should the 1D motion constraint contain? We can 
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accel 

deltax 

Figure 15.9 Constraint network for 1D uniform acceleration 

use the 1D uniform motion constraint defined previously as a building 
block, but we must add a correction for the effects of acceleration. The 
equations for 1D motion under uniform acceleration are 

Sf = Si + ViAT + 2 atT2  

Vf = + aAT 

where AT is the interval over which the motion occurs and a is the 
acceleration. Notice that the first two terms of the right-hand side of 
the first equation are exactly what is incorporated in the uniform motion 
constraint. To handle the effect of acceleration we must add a correction 
factor of z  a.AT 2  to the uniform motion constraint, and add an equation 
defining the change in velocity as well. Figure 15.9 graphically depicts the 
1D-uniform-accelerationconstraint; the file motion. lisp contains 
the TCON definition for this and the other constraints introduced in this 
example. 

Our simplified problem presumes that all the momentum transfer oc-
curs in a brief moment, and we also ignore air friction. Since rocket 
engines produce thrust in a particular direction, we need to know the 
required initial speed and heading for the interceptor. These parameters 
are comfortably expressed in polar coordinates. Of course, the constraint 
models for motion developed above are in terms of rectangular coordi-
nates. We need to convert between the two; the 2D-vector constraint 
shown in Figure 15.11 illustrates such a constraint. It is based directly 
upon the standard conversion formulas: 
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Figure 15.10 Representing two-dimensional motion 

X = R x cos(0) n Y=Rx sin(0) 

R = X2  + Y2  A = atan(—
X

) 

The procedural implications of these equations are worked out in the 
formulae statement. The code ensures that all angles are within the 
range [0, 2-rr) and R is always non-negative, using acos-corrected, 
asin-corrected, and atan-corrected to transform the answers ac-
cording to the quadrant the vector is in. (Exercise 14 explores an alter-
nate organization.) 

The constraint for two-dimensional motion (2D-motion) must include 
two copies of 1D-motion, one for X and one for Y. The 2D-vector 
constraint is used to translate between the polar coordinates desired 
for input and output and the rectangular coordinates used to model the 
motion. Figure 15.10 illustrates the constraint subnetwork for the 2D-
motion definition. 
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(constraint 2D-vector ((x cell)(y cell) 
(signx cell) (signy cell) 

(sgnx sign) (sgny sign) 

(r cell)(theta cell) 
(quadrant cell)) 

(== (>> x) (>> in sgnx)) 
(" (>> signx) (>> out sgnx)) 

(== (» y) (» in sgny)) 
(== (>> signy) (>> out sgny)) 
(formulae (quadrant (signx signy) 

(quadrant-from-signs signx signy)) 

(signx (quadrant) 
(multiple-value-bind (x-sign y-sign) 
(signs-from-quadrant quadrant) 

x-sign)) 
(signy (quadrant) 

(multiple-value-bind (x-sign y-sign) 
(signs-from-quadrant quadrant) 
y-sign)) 

(theta (quadrant) 
(angle-from-quadrant quadrant)) 

(x (r theta) (if (nearly-zero? r) :DISMISS 

(* r (cos theta)))) 
(y (r theta) (if (nearly-zero? r) :DISMISS 

(* r (sin theta)))) 
(theta (r x quadrant) 

(if (or (nearly-zero? r) 
(not (simple-quadrant? quadrant))) :DISMISS 

(acos-corrected (/ x r) quadrant))) 
(theta (r y quadrant) 

(if (or (nearly-zero? r) 
(not (simple-quadrant? quadrant))) :DISMISS 

(asin-corrected (/ y r) quadrant))) 
(x (r) (if (nearly-zero? r) 0.0 :DISMISS)) 

(y (r) (if (nearly-zero? r) 0.0 :DISMISS)) 

(r (x y) (sqrt (+ (* x x) (* y y)))) 
(theta (x y) (if (and (nearly-zero? x) 

(nearly-zero? y)) 
0.0 ;; By convention 
(atan-corrected y x))))) 

(constraint sign ((in cell) (out cell)) 
(formulae (out (in) (if (nearly-zero? in) 0.0 

(signum in))) 
(in (out) (if (= 0.0 out) 0.0 :DISMISS)))) 

Figure 15.11 Representing 2D vectors 
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Now let us begin to model the system. We can instantiate two copies 
of the 2D-mot ion constraint, one for the satellite and one for the in-
terceptor. Let us call these constraints sat and int respectively. Given 
our problem's assumptions, we must set the Y acceleration of both con-
straints to be -9.98T (i.e., the acceleration of gravity in MKS units) 
and their X acceleration to zero. We can also encode the presumption 
of intersection by using == to equate the end points of the two trajec-
tories. 

Suppose we have the following initial data: 

Xs = -1000m; Ys = 1000m 

XI = 100m; = Om 

Let us set the parameters of the network to this data and see what 
happens: 

>(create 'sat '2d-motion) 
>(create 'int '2d-motion) 

(>> 	deltat inf )) ;; equate intervals 
x start sat) -1000) 
y start sat) 1000) 
x start int) 100) 
y start int) 0) 

Do we have enough to derive our answer? Not yet. Why? Examining the 
network closely (by using constraint-values on the parts of sat and 
int) will reveal that almost nothing has been computed about the con-
straints describing the end of the motions. Given even a smattering of 
information about the end state, the various motion constraints can start 
filling out the rest, but we must add some additional fact or stipulation 
for the system to get an answer. We should not have to add much in-
formation, and there are several natural choices. The desire to minimize 
damage on the ground suggests that we specify at what height the inter-
ception should take place. Let us be pessimistic about our rocket's power 
and try taking 11 = 100m: 

>(set-parameter (>> y end sat) 100) 
447 
0 

>(== (» 	deltat sat) 
>(set-parameter (>> 

>(set-parameter (>> 
>(set-parameter (>> 
>(set-parameter (>> 
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This single assumption lets us derive values for all of the relevant 
variables. By inspecting the (>> vstart int) constraint we can find out 
the necessary speed and heading for the rocket: 

>(constraint-values (>> vstart int)) 

(>> X VSTART INT) = -63.30380008156704. 
(>> Y VSTART INT) = 48.45800007415186. 
(» SIGNX VSTART INT) = -1.0. 
(>> SIGNY VSTART INT) = 1.0. 
(>> R VSTART INT) = 79.72169639410284. 
(» THETA VSTART INT) = 2.48825566963078. 
(>> QUADRANT VSTART INT) = 2. 

The initial speed needs to be roughly 80-7, at a heading of roughly 2.49 
radians (~ 142 degrees). We can perform sensitivity analyses by vary-
ing the desired interception height and seeing how the required speed 
varies. For example, if we want to intercept at a height of 200m we 
need an initial speed of roughly 102"Tt , and for 500m we need roughly 
2187. 

15.4.3 Diagnosis via constraint suspension 

Unfortunately, things break. Diagnosis is the process of figuring out what 
is wrong with a broken artifact or a malfunctioning system, be it a ra-
dio, a computer, a person, or an economy. The capabilities of constraint 
languages to model the behavior of some kinds of systems makes them 
natural candidates for thinking about diagnosis problems. This section 
describes a simple technique, called constraint suspension, which has 
been used in diagnostic systems. Another technique, called GDE, is de-
scribed in Chapter 17. 

Suppose the system to be diagnosed can be modeled as a set of in-
teracting parts, in which all of the important relationships between the 
objects of the system are determined by the interconnections between 
the objects of the system. Systems that are naturally modeled this way in-
clude digitial logic circuits and many analog electronic circuits. (Systems 
that are not easily modeled this way include high-frequency electronic 
circuits, where geometric properties become important in determining 
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Figure 15.12 Polybox: A simple digital circuit 

interactions, and spatially distributed systems like weather fronts.) Sys-
tems satisfying these assumptions can easily be modeled via constraint 
networks: each part is modeled by a constraint, and the constraints are 
linked together according to the relationships between the parts. For in-
stance, in digital circuitry we might have integer adders and multipliers, 
which can be linked together to form a circuit as in Figure 15.12. 

The task of diagnosis involves many subproblems. One important sub-
problem is generating candidate hypotheses of what is wrong with a 
system, given a set of observations of its behavior. Two common assump-
tions made in solving this subproblem are: 

1. Single-fault assumption: At most one component of the system has 
failed. 

2. Non-intermittent failure assumption: If a component is broken, it re-
mains broken in the same manner while reasoning proceeds. 

Even given these two assumptions, a component can break in many 
ways. A valve may be stuck open or stuck closed, for example, or clogged 
so that the maximum flow through it is below what it normally would 
be. One approach to diagnosis is to develop a library of fault models for 
each component, and use this library to construct explanations of the 
observed behavior. Each explanation thus identifies a possible faulted 
component. If there is only one explanation, then that component can 
be replaced. If there are multiple explanations, then more observations 
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can be made to determine which explanation is correct.4  One problem 
with this scheme is that libraries of fault models can be hard to generate, 
and if a problem arises that isn't covered by the library, the diagnostic 
algorithm will be in trouble. On the other hand, having a model of the 
correct behavior of a component is crucial to understanding the system's 
normal functioning. Constraint suspension exploits this fact. The key 
insight is that possible failures can be identified by retracting those parts 
of the normal explanation for behavior that result in discrepancies. Let 
us examine this idea in more detail. 

Suppose that part of the definition of our system includes distinguish-
ing a set of inputs and a set of outputs. In the circuit of Figure 15.12, 
the inputs are terminals A, B, C, D, and E, and the outputs are terminals F 
and G. By setting the input cells to the observed inputs, the normal con-
straint propagation mechanism will produce predictions for the values 
of the outputs. These predictions can then be compared against the ob-
served values of the outputs. Suppose some of the observed outputs do 
not match the predicted values. Then we can use the dependency system 
to extract what constraints were used in the prediction of each question-
able output value. The union of these sets of constraints represents the 
possible set of components which could explain the discrepancies. Since 
we are assuming single faults, we can further simplify our problem by 
taking the intersection of the constraints implicated by each discrepancy, 
since the same cause must explain them all. 

Now we have a set of candidates. Each candidate is a constraint which 
participates in the explanation of the aspect of the normal behavior of 
the system contradicted by the discrepancies. Can we be certain that 
each candidate can explain the failure? Not yet. After all, the depen-
dency system only maintains a single justification for any believed value. 
There might be alternative derivations which would still provide the pre-
dicted output values even if the constraint under suspicion weren't there. 
The only way to rule out this possibility is to suspend the constraint in 
question—in effect, unwire it from the network and make sure the values 
predicted for the questionable outputs are no longer believed. If this is 

4. Or, in some circumstances, simply replace everything indicted by the explanations—
a strategy sometimes favored by shady auto mechanics who would rather trade off 
your money against their CPU time. 
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(constraint polybox-example ((a cell)(b cell)(c cell) 

(d cell)(e cell)(f cell) 

(g cell) (x cell)(y cell)(z cell) 
(add-1 adder)(add-2 adder) 
(mult-1 multiplier) 
(mult-2 multiplier) 
(mult-3 multiplier)) 

(== (» a) (>> ml mult-1)) 
(== (» b) (» ml mult-2)) 
(== (>> c) (>> m2 mult-1)) 
(== (» c) (» ml mult-3)) 
(== (>> d) (>> m2 mult-2)) 
(== (>> e) (>> m2 mult-3)) 
(== (» 	(>> sum add-1)) 

(>> g) (>> sum add-2)) 
(== (>> x) (>> product mult-1)) 
(== (» x) (>> al add-1)) 
(== (>> y) (>> product mult-2)) 
(.. (>> y) (>> a2 add-1)) 
(== (» y) (>> al add-2)) 
(== (>> z) (>> product mult-3)) 
(== (>> z) (>> a2 add-2))) 

Figure 15.13 TCON formulation of the circuit example 

the case, then the component represented by that constraint is a reason-
able candidate to explain the failure. Furthermore, with the constraint 
unwired we can also get some additional leverage for comparing expla-
nations. By propagating observations backward from the outputs, we can 
gain some predictions sanctioned by that explanation. 

The candidate generation algorithm using constraint suspension we 
have just outlined can be summarized as: 

1. Identify discrepancies by comparing observed outputs with pre-
dicted outputs derived via constraint propagation from observed 
inputs. 

2. Compute the initial candidate set by intersecting the constraints in-
volved in the explanation underlying each discrepancy. 

3. Evaluate each candidate by suspending its corresponding constraint, 
and use constraint propagation to derive potential new observations 
from the observed output values. 
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Figure 15.14 Simple test case for digital circuit diagnosis 

The file suspend. lisp contains an implementation of this algorithm. 
The procedure generate-candidates organizes the computation. The 
first step is carried out by the sequence setup-inputs and find-
discrepancies. The second step is carried out with the help of find-
contributors, which itself is adapted from the procedure rule-ground 
in tcon. lisp. The third step is carried out by evaluate-candidate. 

Now let us experiment with the example of Figure 15.12. For simplicity, 
we use the same adder and multiplier constraints as before. (Exercise 13 
illustrates a useful variation.) Figure 15.13 shows the TCON definition of 
this example. Suppose we run generate-candidates on the combina-
tion of measurements and initial values shown in Figure 15.14. 

> (create-tcon "Polybox Example" :debugging nil 
:PROTOTYPE-FILE *suspend-file*) 

> (create 'ex 'polybox-Example) 
> (generate-candidates *tcon* 

,(((>> a ex) . 	3)((>> b ex) 	. 2) 
((>> c ex) . 	2)((>> d ex) 	. 3)((>> e ex) . 	3)) 

)(((» f ex) . 	10)((>> g ex) . 	12)) 
t) 

;;; Loading source file "/u/bps/code/tcon/krd.lisp" 

1 discrepancies found. 
(>> F EX) was 12, should be 10. 
Contributors to (>> F EX) being 12 instead of 10: 

(<Constraint MULT-2> <Constraint MULT-1> <Constraint ADD-1>) 
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Candidates are (<Constraint MULT-2> <Constraint MULT-1> 

<Constraint ADD-1>). 
Suspending <Constraint 
.. <Constraint MULT-2> 
Suspending <Constraint 
.. <Constraint MULT-1> 
Suspending <Constraint  

MULT-2>.. 
exonerated. 
MULT-1>.. 
possible. 
ADD-1>.. 

.. <Constraint ADD-1> possible. 
((<Constraint 

(<Constraint 

ADD-1> (<Cell (>> SUM ADD-1 EX)> . 10) 
(<Cell (>> A2 ADD-1 EX)> . 6) 
(<Cell (>> Al ADD-1 EX)> . 6)) 

MULT-1> (<Cell (>> PRODUCT MULT-1 EX)> 4) 
(<Cell (>> M2 MULT-1 EX)> . 2) 
(<Cell (>> M1 MULT-1 EX)> . 3))) 

Predictions are easily generated by propagating the observed input val-
ues through the constraint network, and discrepancies can be identified 
by comparing the predicted values to the observations. The contributors 
are identified as the constraints "upstream" in the dependency trace for 
the predictions. With these observations there are two candidates, add-1 
and mult-1. Suppose the measured values were different. If for instance 
we measured both f and g to be 3, our algorithm produces the following 
analysis: 

2 discrepancies found. 
(>> G EX) was 12, should be 3. 
(>> F EX) was 12, should be 3. 
Contributors to (>> G EX) being 12 instead of 3: 

(<Constraint MULT-3> <Constraint MULT-2> <Constraint ADD-2>) 
Contributors to (>> F EX) being 12 instead of 3: 

(<Constraint MULT-2> <Constraint MULT-1> <Constraint ADD-1>) 
Candidates are (<Constraint MULT-2>). 
Suspending <Constraint MULT-2>.. 
.. <Constraint MULT-2> possible. 

((<Constraint MULT-2> (<Cell (>> PRODUCT MULT-2 EX)> . -3) 
(<Cell (>> M2 MULT-2 EX)> . 3) 
(<Cell (>> M1 MULT-2 EX)> . 2))) 

Assuming only a single fault, there is just one candidate, MULT-2. Intu-
itively this makes sense, because both of the other inputs to ADD-1 and 
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ADD-2 are identical, so if the same problem shows up at both of them, it 
must be due to the one component they have in common. 

Constraint suspension has its limitations. Consider what must be 
wrong if we have the same inputs, but now f is measured to be 8 and 
g is measured to be 16. There is no single component failure that could 
explain this problem, and indeed the constraint suspension algorithm 
cannot find an explanation: 

;;; Loading source file n/u/bps/code/tcon/krd.lisp" 

2 discrepancies found. 
(>> G EX) was 12, should be 16. 
(>> F EX) was 12, should be 8. 
Contributors to (>> G EX) being 12 instead of 16: 

(<Constraint MULT-3> <Constraint MULT-2> <Constraint ADD-2>) 
Contributors to (>> F EX) being 12 instead of 8: 

(<Constraint MULT-2> <Constraint MULT-1> <Constraint ADD-1>) 
Candidates are (<Constraint MULT-2>). 
Suspending <Constraint MULT-2>.. 
.. <Constraint MULT-2> exonerated. 
NIL 

Since the problem affected both outputs, the intersection of the candi-
dates lists yielded only MULT-2. But suspending MULT-2 and applying the 
output values to the network resulted in a contradiction, which means 
that the all of the remaining constraints cannot be correct and yet pro-
duce those outputs, given our particular inputs. From our perspective it 
is easy to see that something else must be broken. We explore a different 
algorithm which handles such cases in Chapter 17. 

15.5 Extending the TCON model 

TCON represents the simplest member of a family of languages that has 
been used to explore ideas in efficient reasoning about mathematical 
properties and engineered systems. For example, Chapter 16 shows how 
to hitch up an assumption-based truth maintenance system to TCON, 
leading to a system for easily implementing more sophisticated diagno-
sis systems. This section focuses on other extensions. First, we consider 
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some implementation tricks for increasing efficiency and simplifying in-
teractions with other reasoning facilities. Second, we outline several tech-
niques for overcoming incompleteness in local propagation. Finally, we 
describe ways to use constraint languages in modeling dynamic systems. 

15.5.1 Implementation techniques 

To keep TCON simple, several standard implementation techniques for 
such languages were not incorporated, including sharing structure, com-
pilation, indirect cells, and removal rules. We outline each in turn. 

15.5.1.1 Sharing structure 

Constraint languages permit efficient implementations in part by avoid-
ing the overhead of pattern matching. The implementation of TCON de-
scribed here does not fully exploit the possibilities for datastructure effi-
ciency. Consider the role of == in defining a higher-order constraint (e.g., 
Figure 15.10. The parts equated will always be so, by the very definition 
of the constraint. Why, then, should two separate structures be built at 
all? For instance, if the definition of a constraint includes 

(== (>> sum addl) (>> a2 add2)) 

then we could simply build a single cell to represent both (>> sum 
add1) and (>> a2 add2). The savings in terms of cells may not seem 
very large, but if shared parts are themselves complex constraints, the 
savings can be considerable. 

This strategy does not always make sense, of course. In defining a 
constraint network to model a specific system rather than a general class 
of constraints, the ability to undo connections is crucial. Consider, for 
instance, 

(== (>> workstation port32 lan) 

(>> workstation Rm349 ILS)) 

i.e., that the workstation on port 32 of the LAN is the machine at Room 
349 at ILS. Physically, of course, there is just one workstation, but never-
theless this equality may need to be broken if the machine is moved. 
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Implementing shared structure is not very difficult. Already, cells have 
the capability to support access of procedures from multiple sources, 
since that is how the special == constraints are implemented. Some care-
ful analysis must be performed at the time of constraint definition, to 
identify which references resolve to the same entities. The only tricky 
part is that in creating a new constraint the code must become sensitive 
to what parts already exist, due to the context in which the constraint is 
being built (see Exercise 9). Implemented properly, sharing structure can 
typically cut the storage requirements of a constraint network by up to 
SO percent. 

15.5.1.2 Compilation opportunities 

There are several opportunities for small speedups via compilation. First, 
the procedures that serve as the bodies of rules can be compiled. This 
compilation can be performed when the constraint prototype is loaded. 
Alternatively, techniques analogous to those in FTRE can be used to ex-
pand prototype definitions to include separate, named procedures, so 
that files of constraint prototypes can be compiled once and loaded as 
needed. The second opportunity for compilation is in creating instances 
of constraints. create analyzes each constraint prototype from scratch, 
every time something is created. It is more efficient to perform this anal-
ysis once and cache a special-purpose procedure for creating constraints 
of particular types. (This becomes even more useful as the analysis in-
volved in processing a prototype definition becomes more complex, as in 
the structure-sharing technique described above.) 

15.5.1.3 Indirect cells 

A fundamental limitation of constraint networks as described so far is 
that they are not metacircular; that is, the act of building a constraint 
network is completely distinct from the the act of reasoning within a 
constraint network. This limitation is also a source of strength—limiting 
inference to be within the network makes it cheap, and thus simple 
antecedent control strategies suffice. Propagation via constraints cannot 
result in combinatorial explosions, and (given simple data) the amount of 
memory required is strictly bounded by the size of the network. Even so, 
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the gains to be had by adding some rudimentary metacircular capabilities 
to constraint networks can be substantial. 

Let us introduce a new class of cell, the indirect cell. The value of 
an indirect cell, if known, is always another constraint or cell. Indirect 
cells can participate in formulae statements just like any other. What 
does this mean? If an indirect cell is the sets of a rule, then that rule 
should produce a constraint which legitimately could play the role of 
the indirect cell. For example, suppose we are trying to figure out what 
a physical object, such as a ball, is doing at some particular time. If it 
is on a horizontal surface it is resting, on a steeply inclined surface it 
may be sliding, and if in midair it is falling. A constraint describing the 
state of the ball at a given time might have an indirect cell called action, 
which should be filled by a constraint which describes the ball's current 
activity. 

Indirect cells can also particpate in wiring rules, a new kind of rule 
which specifies connections between the value of an indirect cell and the 
constraint of which it is a part. To continue the ball example, once a con-
straint for an action has been instantiated, it must be connected properly 
into the network. Wiring rules do this. For instance, to use the action con-
straints for simulation, the wiring rules must specify that the position 
and velocity of the ball should be equated with the initial position and 
velocity in the action description. In some constraint languages this is be 
stated in a form analgous to formulae: 

(Wiring-Rules 
((initial-state) 
(== (>> position initial-state) (>> initial-position)) 

(== (>> velocity initial-state) (>> initial-velocity)) 

This rule is triggered when the initial-state cell receives a value, 
which must be a constraint. The initial-position and initial-
velocity constraints of the action are then linked to the position and 
velocity parts of the constraint stored in initial-state. For instance, 
suppose we have a constraint fly12 which describes the dynamics and 
kinematics of motion, and a constraint ball-statel7 which describes 
the state of a ball that is about to start flying through the air. Executing 
the statement 
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(set-parameter (>> initial-state fly12) (>> ball-state17)) 

has the identical effect to stating 

(== (>> position ball-statel7) (>> initial-position fly12)) 
(== (>> velocity ball-statel7) (>> initial-velocity fly12)) 

The combination of indirect cells and wiring rules provides important 
modularity as well as shared structure. Suppose we have constraints 
describing a variety of physical systems, each of which involves different 
kinds of energy. If we stipulate that for any such system there will be 
a cell energy which is the sum of the kinds of energy involved in that 
system, then we can invoke conservation of energy through the following 
constraint: 

(constraint Energy-Conservation ((before indirect) 
(after indirect)) 

(wiring ((before after) 
(== (» energy before) (>> energy after))))) 

That is, no matter how the details of the system are transformed be-
tween its state as described by the network in before and the network 
described in after, the energy must be the same. 

Increased expressiveness must always be used with caution. It should 
be obvious by now that the ability to have the constraint network extend 
itself can lead to combinatorial explosions and even runaway (see Exer-
cise 11a). 

15.5.1.4 Removal Rules 

Interfacing constraint networks to other inferential facilities often re-
quires using side effects. For instance, in building a VLSI design system, 
once the coordinates of a rectangle are known, a rule associated with the 
constraint describing that rectangle can call a graphics system to cause 
the rectangle to be displayed. But if a coordinate is retracted, we then 
want the rectangle to be erased. Such cleaning up can be handled by rules 
that are triggered when a cell's value is removed. 
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(constraint 1D-motion ((xstart cell)(xend cell) 

(vstart cell)(vend cell) 

(accel cell)(deltat cell) 
(basic 1D-uniform-motion) 

(fix 1D-uniform-accel) 
(adrl adder)(adr2 adder) 
(mul multiplier)) 

(== (>> deltat) (>> deltat basic)) 
(== (>> deltat) (>> deltat fix)) 

(== (>> deltat) (>> ml mul)) 
(== (>> xstart) (>> xstart basic)) 
(== (» xend) (>> sum adrl)) 
(== 	vstart) (>> velocity basic)) 

(== (>> vstart) (>> al adr2)) 
(== (» vend) (>> sum adr2)) 

(== (>> accel) (>> accel fix)) 
(== (>> accel) (>> m2 mul)) 
(== (>> xend basic) (>> al adri)) 

(== (>> deltax fix) (>> a2 adri)) 
(== (>> product mul) (>> a2 adr2)) 
(formulae (deltat (xstart xend vstart accel) 

(if (nearly-zero? accel) :DISMISS 
(let* ((det (sqrt (- (* vstart vstart) 

(* 2.0 accel 
(- xstart xend))))) 

(ansl (/ (- (- vstart) det) accel)) 
(ans2 (/ (+ (- vstart) det) accel))) 

(if (< ansl 0.0) 

(if (< ans2 0.0) :DISMISS ans2) 
(if (< ans2 0.0) ansl 

:DISMISS))))))) 

Figure 15.15 Constraints sometimes use formulae to overcome incomplete-
ness. Most of the work in the constraint above is performed by more primi-
tive constraints. Because of a loop in the constraints, however, deltat cannot 
be computed by these constraints in some circumstances where it can be 
figured out. The formulae statement defines a rule which performs this cal-
culation as needed. 



379 	 Antecedent Constraint Languages 

2 

1/2 

\ CIld 
	

xstart 

vstart 	 I 	 deltaT  
2  ›— 

Figure 15.16 Loops in constraint networks lead to incompleteness 

15.5.2 Overcoming the incompleteness of local propagation 

Constraint propagation is very efficient, but as we have seen before, ef-
ficiency is typically purchased at the price of incompleteness. And in-
deed purely local propagation techniques on constraint networks are 
incomplete. We have already seen such an example in the relationships 
describing one-dimensional motion under uniform acceleration (see Fig-
ure 15.15). Suppose we represented the equation 

xend = xstart + vstart x deltat + a x deltat
2  

directly as a constraint network, as shown in Figure 15.16. If we knew 
xstart, xend, vstart, and a, then deltat can be determined by using 
the solution for quadratic equations, filtering out any negative solutions. 
Local propagation cannot derive this answer: it is stymied by the loop in 
the constraint network. The way we solved this problem previously was 
to add a special-purpose rule, using the formulae statement, in the 1D-
motion constraint which solved the quadratic equation for deltat when 
the right information became known. 

The technique of introducing extra rules to break such loops is a good 
one, when there is some standard locality (e.g., higher-order constraint) 
in which to put such information. This is not always possible, since loops 
can arise within systems of constraints connected on an ad hoc basis. If 
the domain of the cells is a discrete set of values, dependency-directed 
search can be used to find possible solutions. If the domain of the net-
work's cells are real numbers, non-local mathematical techniques can 
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often be applied effectively to the constraint data model. The rest of this 
section examines two such techniques. 

The first technique is to use numerical relaxation. Suppose we ex-
tended our constraint language so that every constraint included er-
ror procedures which estimated the degree to which its values violated 
the constraint and change procedures which suggested what parameters 
could be changed in which directions to reduce the error. Given a subnet-
work that could not be solved via propagation, the local error procedures 
and change procedures could be assembled to produce a numerical opti-
mization program that would iteratively find reasonable values for the 
subnetwork. This is essentially what Borning's THINGLAB [2] did. For 
drawing programs and other systems where constraints are viewed as 
advice about the structure of something, as opposed to hard statements 
which must be perfectly satisfied, this technique can be quite useful. 

The second technique is to use the unsolved pieces of the constraint 
network to drive the formulation of equations which can then be solved 
via algebraic manipulation. This is essentially what was done by hand in 
defining the 1D-motion constraint. Consider the unsolved portion of the 
network in Figure 15.16. Suppose we define primitive constraints so that 
if their cells that normally hold numbers are given symbols as a value, 
the constraint produces as output a symbolic expression which encodes 
the relationship it enforces. Then instead of placing a numerical guess 
in the network, as occurs with relaxation, we choose some variable to 
receive a symbolic value, which is then propagated through the system. 
(The act of giving a variable a symbolic value to allow the analysis to 
proceed is called plunking the variable, and the symbol given is called 
a plunk.) When a cell gets multiple symbolic values, it must be the case 
that each expression can be equated. Thus we can use local propagation 
to generate sets of equations to solve. This process is illustrated for the 
simple motion network in Figure 15.17. 

The choice of cell to solve for strongly determines the efficiency of the 
solution process and, in some cases, even the form of the result, if solu-
tions that contain symbolic parameters are satisfactory. There are several 
interesting issues in implementing system of this kind; see Exercise 12. 

This algebraic propagation strategy is very powerful. It does have cer-
tain limitations. First, every constraint in the network must be translat-
able into an expression that can be manipulated symbolically. For mathe-
matical constraints this is straightforward, but for many kinds of con- 
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Figure 15.17 Loops can be broken by plunking 

straints it is difficult. Second, these algorithms can waste much time 
generating and exploring redundant sets of equations (i.e., those which 
when solved yield such stunning insights as 1 = 1). Such blunders can be 
minimized by careful algorithms, but can be hard to eliminate entirely. 

15.5.3 Modeling dynamic systems 

So far we have presumed in our modeling that time could be mostly 
factored out. For example, in discussing motion we relied on distinct 
named times (e.g., xinitial and xf inal) whose temporal relationship 
was only specified in relative terms (i.e., delt at). For many problems 
time must be represented more explicitly. There are two ways typically 
used to make time more explicit in constraint languages. 

The first method is network replication. Suppose an object Obj with 
time-varying properties is described by a piece of constraint network N 
at a particular time t1. To represent the properties of Obj at a new time 
t2, we can simply build a copy of N, called, say, N'. Using constraints 
which describe classes of change (like the motion constraint described 
earlier), N' can be wired into the network. Then we can start using N' 
to reason about the properties of Obj at t2, either using the values of 
N' found via propagation through the dynamics constraints, or setting 
values of N' and using propagation to see what that implies about Obj 
at tl. This technique has the virtue of simplicity. Its disadvantage is that 
it seems to waste structure: only the cells of N' really need to be distinct, 
if the same relationships govern Obj at both t1  and t2. 
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The second technique can be thought of as historical cells. Suppose we 
represent Obj by a single subnetwork N for all time, but augment cells 
to allow multiple values with time stamps. Digital logic circuits, for exam-
ple, typically use a global clock to keep the parts of the circuit operating 
in harmony, and the time of each discrete clock tick can be used to de-
compose time into distinct pieces. Thus the value of a cell might consist 
of entries that include a time stamp, a value, and an informant for that 
value at that time. Using historical cells with a discrete temporal ontology 
is fairly straightforward. Efficiently using historical cells with a continu-
ous temporal ontology is still something of an open problem. Time is 
typically modeled as continuous when phenomena like feedback are cru-
cial to model, which means that the value of a cell over an interval of 
time might depend on both the values of other cells and the value of the 
same cell at some earlier time. 

15.6 Backpointers 

TCON is based on CONLAN [9], which extended the language described in 
[16]. Carrying out the extensions suggested in Exercises 9, 10, and 11 will 
yield a modern implementation of CONLAN. [15] provides a good tutorial 
on implementation style. 

In the early literature on using constraint propagation in engineering 
problem solving, the process of solving a network of constraints by pick-
ing a cell to solve for was called plunking, with the chosen variable called 
a plunk [6, 14]. 

The network replication technique for modeling dynamic systems was 
first used in FROB [8, 10]. Since constraint networks are most efficient 
for reasoning about systems that can be modeled as having fixed struc-
ture, historical cells have become the preferred technique for temporal 
reasoning. The technique of historical cells was first used in de Kleer's 
Ph.D. work [5], where timestamps consisted of ATMS-like assumptions. 
This technique has also been used by Davis's group at MIT in modeling 
digital logic circuits [3, 4]. Several ideas for reasoning with continuous 
temporal ontologies have been explored, including [1, 7]. An interesting 
proposal for maintaining appropriate justifications via concise intervals 
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was made by Williams [17], but the computational complexity of such 
schemes is still an open question. 

The idea of programming via constraints has taken several interest-
ing turns. For example, [11] explores the declarative specification of new 
constraint languages, and [12, 13] extend the semantics of logic program-
ming with mathematical constraints. 

15.7 Exercises 

1. Constraints can be used to perform various logical operations as 
well as numerical calculations. 

a. * * Implement a constraint ==? that places T in its cell output 
when the values of its inl and in2 cells are equal, in the sense 
of Lisp equal, and nil otherwise. 

b. * * Implement a constraint comparator that places a symbol in 
its output indicating what ordinal relationship holds between 
the values of its cells inl and in2. 

c. * * Using your constraints from the previous parts, implement 
the constraints positive?, zero?, and negative?, whose out-
put cells are T exactly when the values in their input cells have 
the appropriate relationship with zero. 

d. * Use your positive? constraint to enforce positive travel 
times in the uniform motion constraint. 

e. * * Implement a relay constraint that equates either inl or in2 
to output depending on whether or not its coil cell is T or nil. 

f. ** Use your relay constraint to implement a signed square root 
constraint: that is, if the input is non-negative the positive root 
is chosen, but if the input is negative, the negative root for the 
magnitude of the input is produced. 

g. * Physical relays can be connected together to make oscillators. 
Why doesn't this work with relays modeled as constraint net-
works? 

2. 	* The definition of process-constraint-rules presumes that ev-
ery constraint definition contains at most one formulae statement. 



584 	 Chapter 15 

Explain why by describing a problem that would arise when two for-
mulae statements are used in a single prototype. 

3. 	* Why shouldn't constraints from two different networks be hooked 
up together via ==? 

4. 	* What modifications are required to allow sets of symbols and num-
bers as the values of cells? 

5. Given compatible values for a cell, the current implementation of 
set ! keeps whichever value and informant came first. 

a. * One can imagine circumstances in which this is not the optimal 
behavior. Describe a set of interactions with TCON that could 
cause a problem due to this choice. 

b. * Modify set ! so that ground values take precedence over de-
rived values. 

6. 	* * TCON requires authors of constraint formulae to ensure that 
every input is used in computing a value, so that the dependency 
records will be accurate. A different approach would be to require 
formulae to return, in addition to the value computed for the cell set 
by the rule, what subset of the input information was actually used in 
deriving that value. Modify TCON to use this approach, and analyze 
the trade-offs involved. 

7. 	* Earlier we asserted that one could implement constraint languages 
using a pattern-directed inference system. Demonstrate that this is 
so, by writing a set of JTRE rules that implement an adder constraint, 
and a rule for detecting contradictory values. 

8. 	* Consider again the three-input adder defined in Figure 15.8. Does it 
always accurately reflect the semantics of a three-input adder? If so, 
explain why. If not, explain how it might be fixed to do so. 

9. 	* * Modify TCON to use shared structure in building constraints, as 
outlined in Section 15.5.1.1. 

10. * * Modify TCON to allow removal rules, as described in Section 
15.5.1.4. 

11. This exercise explores the techniques outlined in 15.5.1.3. 



585 	 Antecedent Constraint Languages 

a. * Describe how indirect cells and wiring rules permit constraint 
networks to exhibit uncontrolled growth. What limitations might 
be imposed to prevent this problem? 

b. * * Extend TCON to support indirect cells and wiring rules. 

c. * * * Test your extended TCON by building a constraint-based 
simulation that "grows" a description of behavior over time on 
demand. 

12. This exercise explores the use of algebraic manipulation to over-
come limitations in local propagation. Assume that the vocabulary of 
constraints consists entirely of algebraic relationships and analytic 
functions (e.g., sin, cos, . . . ). 

a. * * Write a procedure gather-equations which, given as input 
a partially solved constraint network and a cell to solve for, uses 
the structure of the network to compute a set of equations con-
cerning the value of that cell. 

b. ** Hook up gather-equations to the algebraic manipulator of 
your choice, and explore the limitations of this combination us-
ing several examples. 

c. * * * Rewrite TCON to support the generation of equations via 
propagation of symbolic values, as outlined in Section 15.5.2. 

d. * * * * Using your extended TCON, reconstruct the SYN circuit 
synthesis program [6] or build a system for solving textbook al-
gebra problems. 

13. Many real devices can be approximated as having predefined inputs 
and outputs, with information always flowing from inputs to out-
puts. In [3], the formulae in a constraint were partitioned according 
to whether they represented simulation or inference; that is, whether 
they calculated outputs on the basis of inputs or inputs on the basis 
of outputs. This distinction is useful because the constraint propaga-
tion step of candidate generation can be used to provide predictions 
which can be tested by further measurements. 

a. 	* Of the three calculated values returned by generate-candi-
dates on the example in Section 15.4.3, which are legitimate pre-
dictions, and why? 
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b. * * One method for implementing the simulation/inference split 
is to divide constraints into two distinct components. Thus an 
adder might be defined in terms of an adder-sim constraint 
which incorporates the simulation rules for an adder and an 
adder-inf constraint which incorporates its inference rules. Us-
ing this scheme also requires associating two cells with each ter-
minal, one to hold its inferred value and one to hold its simulated 
value. Thus we might set up our example by statements like 

(set-parameter (>> sim a) 3) 
(set-parameter (>> inf f) 10) 

That is, we simulate from observed inputs and infer from ob-
served outputs. Using this dualist method, write a set of con-
straints sufficient for this example. 

c. * * Rewrite suspend. lisp to exploit the dualist method of con-
straint organization. 

14. ** The definition of 2D-vector (see Figure 15.11) is flat; that is, it 
uses a large number of rules to define the relationships between its 
cells directly, rather than expressing the interrelationships in terms 
of simpler constraints. Design a new version of 2D-vector without 
a formulae statement whose meaning is derived from simpler con-
straints. (Hint: Several new types of constraints will be needed, and 
to use this constraint will require minor changes in 2D-mot ion.) 
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16 	Assumption-Based Constraint 
Languages 

In the previous chapter we explored the simple antecedent constraint 
language TCON. Although TCON does not exploit a TMS directly, it in-
corporates many JTMS-like facilities. TCON could easily be adapted to 
use a full JTMS, which would significantly reduce the number of rule 
executions (see Section 16.2). Nevertheless, in this chapter we skip this 
intermediate step and develop ATCON—a tiny constraint language based 
upon an ATMS. For many applications, ATMS-like capabilities are far 
more appropriate. For example, the diagnostic application we discuss in 
the next chapter needs to analyze many alternatives simultaneously in 
order to perform differential diagnosis to identify which tests to make 
next. ATCON illustrates only a small fraction of the capabilities that 
are possible in connecting an ATMS to a constraint instead of a rule 
language. We primarily focus on a few capabilities which enable us to 
develop a very simple but surprisingly powerful architecture for model-
based diagnosis. 

Implementing ATCON requires extending TCON in two directions si-
multaneously. First, TCON must be adapted to work with a separate TMS 
module. Second, TCON, which takes a single context perspective, must 
be extended to operate in multiple contexts. Therefore, to successfully 
implement this desired functionality requires reexamining many of the 
issues we discussed in earlier chapters—this time in the context of a con-
straint language. Before we analyze implementations in detail, let us first 
consider what ATCON is supposed to do. 
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16.1 The ATCON language 

16.1.1 The concept of cell in ATCON 

In TCON a cell is a location which holds a value. Therefore, we write 
"x = 1" to indicate that cell x has the value 1. Using a TMS, each possible 
assignment of a value to a cell is represented as a TMS node. Thus, in 
ATCON, "x = 1" refers to a particular node representing the fact that cell 
x has the value 1. While each TCON cell could contain only one value at a 
time, when using a TMS, typically there will be multiple nodes associated 
with any particular cell. If we were using a single-context TMS such as an 
LTMS or a JTMS, at most one of the nodes associated with any cell should 
be believed at any given time. However, with an ATMS, each node of a cell 
simply has a distinct ATMS label representing the environments in which 
the cell has that value. No pair of cell nodes can simultaneously hold in 
any consistent environment. 

16.1.2 Introducing assumptions in ATCON 

The syntax of ATCON constraints is almost identical to that of TCON. For 
example, the following TCON constraint is also a perfectly valid ATCON 
constraint: 

(constraint adder 
((al cell) (a2 cell) (sum cell)) 

(formulae (sum (al a2) (+ al a2)) 
(al (sum a2) (- sum a2)) 
(a2 (sum al) (- sum al)))) 

As ATCON includes a TMS, each conclusion of a constraint will now also 
have a justification. Let us reexamine the contents is of a constraint body. 
Each rule of a formulae of the form: 

( (Sets) (Uses) 	(RuleBody) ) 

(Sets) is a cell for which the rule can provide a value. (Uses) is a 
list of cells whose values must be known before the rule is executed. 
(RuleBody) is fragment of Common Lisp code which is executed and 
whose result is the value for (Sets) (unless this value is :DISMISS or 
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:LOSE). In ATCON, if (RuleBody) returns the value : DISMISS, then that 
rule execution is ignored. If the result is : LOSE, then the fact that the 
values in (Uses) are inconsistent is recorded via a call to the ATMS pro-
cedure nogood-nodes. In ATCON, a contradiction merely results in the 
introduction of a nogood; both ATCON and the underlying ATMS avoid 
working on values that do not hold in consistent environments. There-
fore, all the contradiction-handling techniques of TCON are irrelevant 
here. Otherwise, the value produced by the rule is justified by the values 
in (Uses). For example, if we know that al=1 and a2=1, then ATCON 
will deduce sum=2, justified by both a1=1 and a2=1. 

The central change from TCON to ATCON is that both the constraint 
language and the ATMS operate in all contexts (i.e., all environments) at 
once. Environments and their contexts are built up out of assumptions, 
so we need some linguistic way of creating these assumptions. 

ATCON has a new part-type assumption. Every time a new instance 
of a constraint is created, a new assumption is created for each one of its 
assumption parts (there need not be any, of course). For example, in the 
diagnostic task, one makes the default assumption that components are 
working correctly unless there is evidence to the contrary. Therefore, to 
describe an adder component one might write: 

(constraint adder-component 
((al cell) (a2 cell) (sum cell) (ok assumption)) 

(formulae (sum (al a2 ok) (+ al a2)) 
(al (sum a2 ok) (- sum a2)) 
(a2 (sum al ok) (- sum al)))) 

Note that we include ok in (Uses) even thought it is not referenced in any 
(RuleBody). The intention is that the adder component only propagates 
values under the assumption that the particular component in question 
is functioning correctly. Every conclusion produced by one of the rules 
of the constraint includes this assumption. For example: 

> (create 'add 'adder-component) 
> (set-parameter (>> al add) 1) 

> (set-parameter (>> a2 add) 2) 
> (what-is (>> sum add)) 
(>> SUM ADD) = [3,{{ADD}}] 
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(Notice that ATCON has been extended to print out values with their ATMS 
labels.) In other words, the output of the adder component is 3, assuming 
it is working correctly. 

As this style of writing constraints occurs so commonly, ATCON pro-
vides a new primitive, assume-constraint, for it. The adder component 
constraint can be simply written equivalently as: 

(assume-constraint adder-component ((al cell) (a2 cell) (sum cell)) 
(formulae (sum (al a2) (+ al a2)) 

(al (sum a2) (- sum a2)) 

(a2 (sum al) (- sum al)))) 

For every instance of an assume-constraint, an ATMS assumption is 
created such that whenever any variable is set this assumption will be 
included as an antecedent. 

16.1.3 Constraint programming style 

In a more serious constraint language, one would like to be able to simply 
write the constraint as sum=al+a2. In order to avoid symbolic algebra—
which might be easy if the only operator was addition, but can get arbi-
trarily complicated otherwise—we must specify in our language how the 
constraint is to be implemented by a set of rules. There is therefore noth-
ing in our language that would prevent one from writing a nonsensical 
constraint such as: 

(assume-constraint adder-component ((al cell) (a2 cell) (sum cell)) 
(formulae (sum (al a2) (+ al a2)) 

(al (sum a2) (+ sum a2)) 
(a2 (sum al) (+ sum al)))) 

This rule only makes sense if all the cells are 0. The consequences of 
writing such a rule are highly implementation- and context-dependent. 
For example, in our ATCON implementation, if a1=1 and al=2, and 
we know nothing else, then sum=3 without any contradiction. The im-
plementation doesn't bother checking whether the other two rules for 
adder-component are consistent with the first. If, however, sum=3 is dis-
covered for some independent reason (in an environment different than 
the previous derivation of sum=3), then the other two rules are checked 
and the ATMS will discover a new nogood(s). Therefore, good constraint 
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programming style demands that the rules of a constraint be consistent. 
Analogously, because ATCON will not run one rule of a constraint on the 
output of another, each rule of a constraint should make all the deriva-
tions that can be made from the inputs, given the conceptual constraint 
being implemented. 

The (RuleBody) of a formulae can be an arbitrary fragment of Common 
Lisp code. This provides the programmer arbitrary power, but also opens 
the door to poor programming style. The basic conceptual style principle 
is that the Common Lisp code in (RuleBody)s should be such that the 
results of an ATCON program are insensitive to the particular order in 
which the rules are executed. Some syntactic conventions which help 
ensure this are: 

■ (RuleBody)s should not set the values of cells. 

■ (RuleBody)s should not access cells other than those in (Uses). 

■ (RuleBody)s should not perform any side effects on global datastruc-
tures or create state in any way. 

16.1.4 Setting ATCON parameters 

Consider the basic TCON interface for changing parameters: set-
parameter, forget-parameter and change-parameter. In ATCON, 
set-parameter has a more rigid definition. 

(set-parameter cell expression) 

This permanently sets cell to expression by providing it an ATMS jus-
tification with no antecedents, i.e., it creates a premise. Thus, cell will 
be expression in all possible environments. There is no ATCON analog 
to TCON's forget-parameter and change-parameter—the analogous 
effects are now achieved through the introduction of ATMS assumptions. 
If a cell value may later be changed, one must use the new procedure 
assume-parameter. 

(assume-parameter cell expression &optional string) 

This assumes that cell is expression by making an ATMS assumption 
for the purpose. The optional string argument provides a pretty way 
to print out the ATMS assumption when it appears in environments. 
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Let us create an adder A and assume that its two inputs are 1 and 10 
and that its sum is 100: 

• (create 'a 'adder) 
• (assume-parameter (>> al a) 1 "al") 
• (assume-parameter (>> a2 a) 10 "a2") 
• (assume-parameter (>> sum a) 100 "sum") 
• (show-network *tcon*) 
(>> SUM A) = [100,{{sum}}][11,-(fal,a211] 
(>> A2 A) = [99,{{al,sum}}][10,{{a2}}] 
(>> Al A) = [90,{{a2,sum}}][1,{{al}}] 

(show-network calls what-is on every cell in the network.) The final 
three lines are ATCON output. The first output line states that the output 
of the adder can have two possible values: 100 and and 11. The sum is 
100 under the assumptions sum and a1. The interrogative why now prints 
out explanations for all environments: 

> (why (>> sum a) 11) 
(>> SUM A) = 11 under environment {al,a2}: 
(>> SUM A) = 11 via <Constraint A> and inputs: 
(» Al A) = 1 

(>> A2 A) = 10. 
Assuming that (>> A2 A) = 10. 
Assuming that (>> Al A) = 1. 

16.1.5 Language extensions 

TCON's primitive == for building composite constraints works in ATCON 
as well. Therefore, the following is a perfectly valid ATCON constraint. 

(constraint 3-adder ((al cell)(a2 cell)(a3 cell)(sum cell) 
(addl adder)(add2 adder)) 

(== (» al) (» al addl)) 
(== (>> a2) (>> a2 addl)) 
(== (>> a3) (>> al add2)) 
(== (» sum addl) (>> a2 add2)) 
(== (>> sum) (>> sum add2))) 

ATCON will be used extensively in simulation and diagnostic tasks, 
and this syntactic convention becomes cumbersome for larger circuits. In 
addition, the == convention requires first creating cells and then equating 
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them, which produces a larger number of redundant cells. In ATCON, the 
part-type can optionally be followed by a list which enumerates the type 
and some of the parts—when the part-type is created it will reuse parts 
that it is supplied. Thus, 3-adder can be conveniently written as: 

(constraint 3-adder ((al cell)(a2 cell)(a3 cell)(sum cell) (i cell) 
(addl adder al a2 i) 
(add2 adder i a3 sum))) 

This constraint specifies that a part of type adder should be created with 
name addl, but that it should not create instances of its first three parts 
(which are all of them), but instead reuse parts al a2 and i of its parent. 
The first definition of 3-adder created ten distinct cells while this new 
definition requires only five. One difference is that internal cells (e.g., i) 
must now be given names. Notice that we can still access internal cells 
with the same accessors as before. For example, if we create an instance 
of 3-adder called 3, then the following all refer to the same cell: 

(» i 3) 
(» al add2 3) 
(>> sum addl 3) 

The previous version of 3-adder required constructing three distinct 
cells for i and relating them with == constraints. 

ATCON also allows a constraint to specify the values a cell can have. 
For example, if the adder can only add quantities between 0 and 3 (i.e., 
of two bits), this can be specified by enumerating the possible values to 
a cell part-type as follows: 

(assume-constraint adder-component ((al cell 0 1 2 3) 
(a2 cell 0 1 2 3) 
(sum cell 0 1 2 3)) 

(formulae (sum (al a2) (+ al a2)) 
(al (sum a2) (+ sum a2)) 
(a2 (sum al) (+ sum al)))) 

If a value is produced for al, a2 or sum which is not between 0 and 3, a 
contradiction is detected and an ATMS nogood(s) will be constructed. 

The final extension from TCON to ATCON is the ability to add disjunc-
tions of cell values. For example, 

> 	(disjunction ((>> sum a) 100) ((>> al a) 90)) 
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states that either (>> sum a) must be 100 or (>> al a) must be 90. 
Disjunctions are not used in the constraint propagation phase, but are 
important when constructing solutions. This is the subject of the next 
section. 

16.1.6 Finding solutions 

ATCON continues propagating values through constraints until no more 
rules apply. Although this process determines all possible variable val-
ues in all possible environments, it does not explicitly identify overall 
solutions. Exactly what constitutes a solution is determined by the appli-
cation. ATCON incorporates a simple interface to the two basic mecha-
nisms the ATMS provides to specify the conditions a solution must meet. 
The ATCON procedure solutions provides access to the ATMS's inter-
pretation constructor. 

A very common use of assumptions is as representations of defaults 
(see Sections 12.3.3 and 6.1.5), i.e., a node whose belief is presumed 
unless there is evidence to the contrary. This notion of default is very 
common throughout artificial intelligence research. Under this definition, 
an interpretation is a consistent environment to which no other assump-
tion can be added without making the environment nogood. ATCON pre-
sumes that every assumption is a default. 

Consider the simple example we discussed earlier. 

> (create 'a 'adder) 
> (assume-parameter (>> al a) 1 	"al") 

> (assume-parameter (>> a2 a) 10 "a2") 

> (assume-parameter (>> sum a) 100 "sum") 

> 	(show-network *tcon*) 
(>> SUM A) = [100,{{sum}}][11,{{al,a2}}] 

(» A2 A) = [99,{{al,sum}}1110,{{a2}}] 
(>> Al A) = [90,{{a2,sum}l][1,{{a1}1] 

As there are three assumptions, there are eight environments, three of 
which are interpretations: 

> (solutions) 
The solutions are: 
{al,a2} 
{al,sum} 
{a2,sum} 
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Consider the first solution {al a2}. It meets the two basic criteria for in-
terpreting defaults. If the one remaining assumption sum is added to it, 
then the environment becomes nogood because 100 # 1 + 10. Conversely, 
the consistent environment {al} is not an interpretation because both 
the assumptions a2 and sum can be added to it to yield another consis-
tent environment. 

The ATCON function pr int -solut ions prints the values of all ATCON 
cells for each solution: 

> (print-solutions) 

Cell values for solution {al,a2}: 
(>> SUM A) = 11. 
(>> A2 A) = 10. 
(>> Al A) = 1. 
Cell values for solution {al,sum}: 
(>> SUM A) = 100. 
(>> A2 A) = 99. 
(>> Al A) = 1. 
Cell values for solution {a2,sum}: 
(>> SUM A) = 100. 
(>> A2 A) = 10. 
(>> Al A) = 90. 

The ATMS allows an ATCON application to express very simple disjunc-
tions. The ATCON function disjunction is provided a set of nodes, 
and the interpretation constructor ensures that every solution contains 
at least one node from each disjunction. Note that the only role dis-
junctions play is in constructing solutions, and they have no effect on 
the labels. ATCON (and the underlying ATMS) can clearly be extended to 
consider these disjunctions in the labeling algorithm itself, but this is 
beyond the scope of this book (see [1, 3]). 

In the above example, after adding the disjunction: 

> 	(disjunction ((>> sum a) 100) ((>> al a) 90)) 

solution { al a2} is eliminated. 
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Figure 16.1 An n-bit ripple carry adder 

16.1.7 Extended example 

This section illustrates ATCON's functionality with an extended example. 
Suppose that we want to simulate and reason about a simple n-bit ripple 
carry adder such as that illustrated in Figure 16.1. Each bit of the ripple 
adder consists of a single full adder, and each full adder is built out of a 
combination of gates. We first must define the constraints for the three 
basic gates that comprise the full adder: 

(constraint xor ((inl 
(formulae 

cell 0 	1) (in2 cell 0 1) (out cell 0 1)) 
(out (inl in2) (if (= inl in2) 0 1)) 

(inl (out in2) (if (= in2 out) 0 	1)) 
(in2 (out inl) (if (= in1 out) 0 	1)))) 
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(inl (out in2) (if (and (= out 0) (= in2 1)) 0 :DISMISS)) 

(in2 (out inl) (if (and (= out 0) (= inl 1)) 0 :DISMISS)))) 

Each full adder is built out of these gates as follows (see Figure 16.2). 

(constraint full-adder ((co cell) (ci cell) (a cell) (b cell) (q cell) 

(x cell) (y cell) (z cell) 

(xl xor a b z) 

(al and a b y) 

(x2 xor ci z q) 

(a2 and ci z x) 
(ol or x y co))) 

We can define a two-bit adder by: 

(constraint 2-bit-adder ((ripple cell) 

(bit() full-adder ripple) 
(bitl full-adder 0 ripple))) 

Notice that we need only create a cell for the intermediate carry because 
it is shared between the two full adders that comprise the two-bit adder. 

Suppose we want to study the behavior of this adder under various 
inputs. We can do this by making every possible input an assumption: 

(create 'add '2-bit-adder) 

(assume-parameter (>> a bit0 
(assume-parameter (>> a bit() 

(assume-parameter (>> b bit() 
(assume-parameter (>> b bit() 

(assume-parameter (>> a bitl 
(assume-parameter (>> a bitl 
(assume-parameter (>> b bitl 

(assume-parameter (>> b bitl 

(assume-parameter (>> ci bit() 

(assume-parameter (>> ci bit0 

add) 1 "a0=1") 
add) 0 "a0=0") 
add) 1 "b0=1") 
add) 0 "b0=0") 
add) 1 "a1=1") 
add) 0 "a1=0") 
add) 1 "b1=1") 
add) 0 "b1=0") 
add) 1 "ci=1") 
add) 0 "ci=0") 
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We can now look at the labels of the outputs to understand what inputs 
are responsible for what outputs. For example, we see that the label of 
the high-order output bit is: 

(>> Q BIT1 ADD) = [1,{{a0=0,a1=0,b0=0,b1=1} 
fa0=1,a1=1,b0=1,b1=11 
fa0=0,a1=1,b0=0,b1=01 
{a0=1,a1=0,b0=1,b1=0} 
{a0=1,a1=1,b0=0,b1=1,ci=1} 
{a0=1,a1=0,b0=0,b1=0,ci=1} 
fa0=0,a1=1,b0=1,b1=1,ci=11 
{a0=0,a1=0,b0=1,b1=0,ci=1} 
{a1=0,b0=0,b1=1,ci=0} 
{a1=1,b0=0,b1=0,ci=0} 
{a0=0,a1=0,b1=1,ci=0} 
{a0=0,a1=1,b1=0,ci=0}I] 

This label indicates all the patterns of inputs that force the high-order 
output bit. Note that in many cases one of the inputs is irrelevant to forc-
ing this bit to 1. The ATMS only records the minimal sets of assumptions 
to produce a node's label, and therefore these are not included in the 
above list. The label for the high-order carry-out bit is: 

(» CO BIT1 ADD) = [1,f{a1=1,b1=1} 
fa0=1,a1=0,b0=1,b1=11 
{a0=1,a1=1,b0=1,b1=0} 
{a0=1,a1=0,b0=0,b1=1,ci=1} 
{a0=1,a1=1,b0=0,b1=0,ci=1} 
{a0=0,a1=0,b0=1,b1=1,ci=1} 
{a0=0,a1=1,b0=1,b1=0,ci=1}1] 

Let's use the same circuit for a slightly different example. Suppose we 
are faced with a diagnostic task in which the inputs to the two bit adder 
are all supposedly 1, but the carry out is observed to be 1. The task is to 
identify which inputs are not 1. We could set this up by: 

(create 'add '2-bit-adder) 
(assume-parameter (>> a bit0 add) 1 "a0=1") 

(assume-parameter (>> b bit() add) 1 "b0=1") 

(assume-parameter (>> a bitl add) 1 "a1=1") 

(assume-parameter (>> b bitl add) 1 "b1=1") 

(assume-parameter (>> ci bit() add) 1 "ci=1") 

(set-parameter (>> co bitl add) 0) 
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This results in the following ATMS interpretations: 

fa0=1,a1=11 

{al=1,b0=1} 

fa0=1,b1=11 

{b0=1,b1=1} 

{a0=1,b0=1,ci=1} 

fal=1,ci=11 

{b1=1,ci=1} 

An ATMS interpretation lists only those assumptions which are true—
all other assumptions are necessarily false. This result indicates that the 
order the observed carry out of 0 can only be caused by at least two and 
usually three inputs being 0 instead of 1. 

16.2 Comparison of TCON and ATCON 

One of the goals of the architecture of Figure 16.3 is to minimize the 
overall computational effort to perform a task. In particular, we would 
like the combined effort of using an inference engine and a TMS to be less 
than the effort of using some other inference engine without a TMS. Oth-
erwise (assuming the other desiderata for using a TMS are not relevant) 
using a TMS just introduces a needless layer of bookkeeping. This fig-
ure illustrates a partitioning of concerns generically, but there are many 
different kinds of TMSs, and each leads to a somewhat different par-
titioning. The progression from TCON to ATCON provides an excellent 
case study. 

Although TCON's dependency system is, in effect, a limited JTMS, it 
does not exhibit the familiar inference engine/TMS partitioning. TCON's 
dependency system performs three of the functions commonly associ-
ated with a TMS by: (1) identifying responsibility for conclusions (Sec-
tion 6.1.1), (2) helping recover from inconsistencies (Section 6.1.2), and 
(3) guiding backtracking (Section 6.1.4). However, it does not maintain 
enough of a cache of inference engine deductions (Section 6.1.3) to be 
considered a JTMS. As a consequence, TCON may execute the same rules 
(i.e., the formulae which define constraints) repeatedly on the same an-
tecedents as well as discover the same contradictions over and over 
again. 
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Figure 16.3 Problem solver = inference engine + TI\IS 

AI 

Figure 16.4 TCON's wasted effort 

Let us first consider one of the kinds of troubles TCON gets into by not 
using a JTMS. Consider Figure 16.4. Adder A has inputs Al and A2 and 
output SUM. If we set both Al and A2 to 1, then TCON determines that 
SUM is 2 and records that SUM depends on Al and A2. If we then change 
A2 to 2, then TCON determines that the SUM is 3. The old inference 
that SUM=2 follows from Al =1 and A2=1 is thrown away. Thus, if we 
subsequently change A2 back to 1, then TCON must redo the addition 
and set SUM to 2. Considering that SUM=2 might in turn trigger many 
other rules, one can easily see how not caching can lead to an exponential 
slowdown in performance. 

If TCON had been hooked up to a TMS which cached all results, then 
the same addition need not be reexecuted. Figure 16.5 illustrates the 
justifications a TCON connected to a JTMS might produce. Initially, as 
TCON infers that SUM=2, it records a justification that SUM=2 follows 
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Figure 16.5 ICON with a JTMS 

Figure 16.6 ATCON with an ATMS 

from A1=1 and A2=1. Subsequently when A2 becomes 2, it records a 
justification that SUM=3. However, the original justification that SUM=2 
follows from A1=1 and A2=1 is not discarded. Thus, when A2 is changed 
back to 1, the TMS can immediately infer that SUM=2, and the addition 
does not have to be repeated. 

If we were using a single-context TMS, then every duplicate rule execu-
tion is replaced by a JTMS label propagation. In ATCON even this label 
propagation is avoided. For example, if A1=1 holds in environment {A} 
and A2=1 holds in environment {B}, then SUM=2 holds in environment 
{A,B}. If A2=2 is later introduced, then SUM=3 holds under environment 
{A,C} (see Figure 16.6). In ATCON there is no necessity to change values 
at all. To find the value of a cell in a context, one just looks at that node 
associated with the cell which has a label environment that is a subset of 
the context's environment. There will always be at most one such node. 
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The basic advantage of ATCON is that all of TCON's duplicate rule ex-
ecutions are avoided. On the other side of the balance is the additional 
bookkeeping cost. Which way this scale tips depends on the task. If ex-
ecution is cheap, and there are few context switches (i.e., few duplicate 
rule executions), TCON performs better. If rule execution is expensive or 
there are a large number of context switches, ATCON will be better. How-
ever, seeing this tradeoff purely in terms of efficiency misses much of the 
picture. As context switching is truly free in ATCON (because it becomes 
an unnecessary operation), problem-solving tasks that would otherwise 
require a vast number of context switches become conceivable. One such 
example is discussed in the next chapter. (Of course, if the problem be-
comes large enough, the ATMS datastructures will exceed the available 
memory resources and performance will degrade, in which case TCON 
again will perform better.) 

16.3 The ATCON interface 

ATCON is designed as an extensible language. The most general defini-
tion of a constraint is: 

(constraint (name) (parts) (body)) 

The (body) consists simply of a list of forms. These forms are evaluated 
by a very simple interpreter. We have already seen the disjunction, 
formulae, and == forms. However, the user can very easily define ad-
ditional forms or just insert Common Lisp code in the (body). If the 
interpreter cannot identify the special form, then it analyzes the expres-
sion for all occurrences of >> and presumes they should all refer to 
the instance under creation. This interpreter is implemented via a set of 
Common Lisp macros, so the forms in a constraint body can be compiled 
by the conventional Common Lisp compiler. 

ATCON is not a stand-alone problem-solving system. At a minimum, a 
user must make top-level Common Lisp calls to start an ATCON task, 
and for most tasks the user will write some additional Common Lisp 
procedures which function in tandem with ATCON. We see an extended 
example of this in the diagnostic task of the next chapter. 
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The following enumerates the main interface procedures. In this sec-
tion we only discuss those procedures that have not already been ade-
quately described. 

>> fire-constraints solutions 

assume-parameter nearly-equal? what-is 

cell-value-string pretty-name with-network 

create print-solutions 

create-atcon show-network 

Each constraint has a distinct global name. By loading a file, all the 
constraints defined therein become globally available in the Common 
Lisp environment. Files of constraints can also be compiled; however, any 
loading or compiling of constraint files can only be done after ATCON is 
loaded. 

(create-atcon (title &key (nearly-equal 'default-nearly-equal) 
(debugging nil) 
(delay t)) 

creat e-at con returns a datastructure which returns the entire state of 
the ATCON. This call will create an instance of the ATMS which ATCON 
will use. The meanings of the keyword arguments are as follows: 

nearly-equal This is the procedure that ATCON should use to deter-
mine whether two values are equal. ATCON considers two values iden-
tical if they are equal, but many applications want to specify a level of 
precision within which two values are considered equal. 

debugging If this flag is t, then ATCON will print out additional tracing 
information about its internal operations. 

delay This flag defaults to t. If this flag is nil, then ATCON does not 
go to much effort to prevent the execution of rules that would produce 
useless results (see Section 16.4.8). When rule execution is cheap, the 
effort to prevent useless rule execution may outweigh the cost of the use-
less rule executions. Note that if the ATCON rules have any side effects 
or find any contradictions, the order of evaluation of constraint rules will 
vary. This may produce some unexpected effects. 
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Some ATCON procedures reference the variable *atcon* freely. The 
best way to bind this variable is to use the macro: 

(with-network atcon &body forms) 

The variable at con must be bound to an ATCON instance. forms is a list 
of Common Lisp forms which reference this ATCON instance by default. 

The user can create instances of ATCON constraints directly via: 

(create name type &optional supplied-parts (atcon *atcon*)) 

This creates an instance of constraint type and gives it the name name. 
If there are supplied-parts, then these parts will be reused in the con-
straint instance just as in constraint definitions. If at con is not supplied, 
then the current value of *atcon* is used, which can be bound with 
with-network. 

The accessor >> can be used outside of constraint definitions: 

(>> it ... in) 

Note that in must be the name of a constraint (or cell) explicitly created 
by the user via create. However, when used within the body of a con-
straint, the current constraint is implicitly considered to be in. 

The procedure known? is used to determine the value of a cell. The 
invocation: 

(known? cell env) 

finds the node (if any) associated with the cell that holds in a given 
environment. If env is not specified or nil, then known? returns a list 
of all the nodes which are known in any environment. 

(nearly-equal? expi exp2 &optional atcon) 

Returns t or nil depending on whether the equality checker of the cur-
rent ATCON determines whether these two values should be considered 
identical. 

(fire-constraints &optional (atcon *atcon*)) 

This instructs ATCON to run all the constraint rules that are currently 
pending and to continue doing so until no more new constraint rules are 
runnable. 
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(pretty-name thing) 

This is the preferred procedure to obtain the name as a string of ATCON 
cells and constraints. The problem solver can use this string for any 
input-output with the user. 

(cell-value-string node) 

This procedure returns a string of the form (cell)=(value). This is how 
nodes print out by default. 

(what-is cell &key env) 

If env is not supplied, this procedure prints out a description of all its 
values and under which environments they hold. Otherwise, it prints out 
the values that hold in env. 

16.4 The ATCON code 

16.4.1 Overview 

The ATCON program is divided into nine parts. 

1. Definitions and initialization. The datastructures and initialization 
procedures. 

2. Defining prototypes. The procedures for interpreting constraint defi-
nitions. 

3. Creating constraints. The procedures for creating instances of con-
straints. 

4. Accessors. Procedures for accessing constraints and their parts. 

5. Equality system. This implements ==. 

6. Setting and accessing cell values. The procedures for accessing and 
setting cell values. 

7. Rule execution. Controls the scheduling and execution of ATCON 
rules. 

8. Constructing solutions. Provides an interface to the ATMS interpreta-
tion constructor. 
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9. Interrogatives. A set of procedures for convenient printout of names 
and values. 

16.4.2 Definitions and initialization 

As with most of the systems we have seen in this book, we use a sin-
gle global ATCON datastructure. The atcon datastructure contains the 
following fields: 

title Ignored by ATCON but is useful for debugging. Used when print-
ing out the ATCON defstruct. 

cells A list of all cells in the ATCON network. 

queue A list of all rule-node pairs waiting to be run by ATCON. 

constraints A list of all the constraints in this ATCON. 

user-parts A hash table of all the parts the user has created directly. 

atms The ATMS instance this ATCON is associated with. 

nearly-equal A procedure to be called to test whether two values are 
equal. 

disjunctions A list of the disjunctions supplied by the user. ATCON 
does not do anything with this list itself. However, whenever it is nec-
essary to call the ATMS interpretation constructor, it passes the list of 
disjunctions along to the ATMS. 

debugging A debugging flag to trace the internals of ATCON opera-
tions. 

delay A flag that controls to what degree ATCON tries to prevent the 
execution of useless rules. This flag is set in the call to create-atcon. 

executions A simple debugging variable to keep count of how many 
rules have executed. 

The primary repository for values in ATCON is the cell. The cell def-
struct contains the following fields: 

at con The ATCON instance it is part of. 

name The local, unqualified name of the cell it was given when created. 
Names are not unique. Different constraints may use the same variable 
names, and different instances of the same constraint will have different 
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cells with the same name. Note that when the cell is reused in another 
constraint, this slot is unchanged. However, the ATCON look up mecha-
nism can find this cell using either name. 

owner The instance of the constraint that first created this cell. Note 
that the combination of the name and the owner slots is always unique. 
If the cell is used in later constraints, this slot will not be changed. If the 
cell is not part of any parent constraint, then this slot will contain the 
symbol :USER. 

nodes The list of nodes associated with this cell. 

users This describes all the rules that use this cell. For example, it 
might contain ( (RULE-4 RULE-3 RULE-1) . <Constraint 01>) 
( (RULE-7 RULE-6 RULE-5 RULE-4) . <Constraint Al>. The first el-
ement of this list states that RULE-4, RULE-3, and RULE-1 of the con-
straint instance <Constraint 01> use this cell as an antecedent. Thus, 
when this cell receives a value, those rules should be checked to see 
whether they can be executed. (For brevity, this example named rules 
by integers. In the actual implementation, rules print out by listing the 
variables they use and set.) 

domain A list of the allowable values a cell can have. 

The ATMS tms-node defstruct contains only one slot, tms-node-
datum, for use by the inference engine. Unfortunately, there are a number 
of distinct pieces of information that ATCON needs to associate with 
each datum. Therefore, ATCON has another distinct defstruct used store 
this additional information with each datum. Each node that ATCON 
creates will have an instance of the value defstruct as its datum. The 
value defstruct has the following fields: 

datum The datum that we would normally have put into the TMS node 
datum directly. For example, in our digital circuit examples datum is 
typically 0 or 1. 

cell A pointer back to the cell containing the node for which this value 
is the problem-solver datum. 

processed A list of constraints which have looked at this value and 
processed it. This is used to prevent any rule from being executed more 
than once. 
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string A string, supplied by the user, which is only used to print cell 
values. 

Each instance of a constraint is described by the constraint def-
struct. Its fields are: 

at con The ATCON instance it is part of. 

name The local, unqualified name of the constraint it was given when 
created. Names are not unique. Different constraints may use the same 
part names, and different instances of the same constraint will have dif-
ferent component constraints with the same name. Note that when a 
constraint is reused in another constraint, this slot is unchanged. How-
ever, the ATCON look up mechanism will find this constraint using either 
name. 

owner The instance of the constraint that first created this component 
constraint. Note that the combination of the name and the owner slots 
is always unique. If the constraint is used in later constraints, this slot 
will not be changed. If the constraint is not part of any parent constraint, 
then this slot will contain the symbol : USER. 

parts An alist that describes the parts which comprise the constraint. 
Each pair of the alist consists of the local name of the part and the actual 
part instance. 

prototype The prototype this constraint is an instance of. 

Each constraint definition is stored as an instance of the prototype 
datastructure. Its fields are: 

name The constraint name. This name will be global, so ATCON records 
only one constraint prototype with every name. 

parts The list of parts directly specified by the constraint definition. 

creation-form Either an interpreted or compiled Common Lisp 
procedure which is invoked whenever an instance of this constraint is 
created. 

cells An alist that describes all of the parts that can hold values (cells 
and assumptions). Each pair in the alist consists of the name of the cell 
followed by the actual rule instances which use that cell. 
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Each rule defined in a formulae of a constraint is described by an 
instance of the rule defstruct. Its fields come directly from the constraint 
definition: 

uses A list of the names of the constraint cells upon which every con-
clusion of this rule depends. This list is stored in reverse order. 

sets The name, if any, of the constraint cell which this rule can set. 

body The body of the rule stored as a Common Lisp procedure. If the 
file containing the constraints is compiled, then this body is a compiled 
procedure. 

The variable *atcon* is declared as a special variable. Some ATCON 
procedures refer to it freely. The macro with-network is the recom-
mended way to bind *atcon*. All the constraint definitions (i.e., pro-
totypes) are stored in a separate hash table *prototypes*. Notice that 
the same prototype definitions are then used for every ATCON instance. 
ATCON sometimes has to create temporary ATMS nodes in its inter-
nal operations. All such nodes with have as their datum the value of 
*temporary-datum*. The macro debugging-atcon is used throughout 
atcon. lisp to check whether the debugging flag is set for this ATCON 
instance. create-atcon simply creates an ATCON defstruct which ref-
erences a newly created ATMS instance. default-nearly-equal is the 
equality checker that create-at con uses if none is supplied by the prob-
lem solver. Most problem solvers will need to supply their own version 
of nearly equal. The default procedure is overly simplistic and presumes 
that two values are identical if they are equal or within .001 of each 
other. Although allowing the problem solver to supply its own equality 
checker helps with some problem-solving tasks, the notion of approxi-
mately equal is fraught with complexities outside the scope of this book. 

16.4.3 Defining prototypes 

This section consists of a set of macros and procedures to transform 
constraint definitions into Common Lisp code. If necessary, the resulting 
code can be compiled by the Common Lisp compiler to improve the 
efficiency of rule execution. 
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The macros constraint and assume-constraint are identical except 
that assume-constraint adds an ok assumption part. The procedure 
constraint-1 constructs the basic definition for a constraint. It calls 
the procedure analyze-prototype-body to analyze the body of a con-
straint. The procedure constraint-1 creates an instance of the proto-
type defstruct and binds it to the variable self. analyze-prototype-
body generates Common Lisp code which modifies the prototype in-
stance stored in self. In addition, the Common Lisp code is interpreted 
in a context where the macro >> is redefined (via macro-let) to refer to 
self. Notice that constraint-1 expands into code which finally adds 
the prototype to the *prototypes* hash table. 

The procedure analyze-prototype-body examines every top-level 
form in the body. If the form is a formulae, then it invokes the pro-
cedure process-constraint-rules to analyze a formulae. All other 
forms in the body of a constraint are treated as conventional Common 
Lisp code which is evaluated in the context where self is bound to the 
current constraint and the macro >> is redefined to refer to this instance. 

The procedure process-constraint-rules analyzes the rules of a 
formulae form. It generates Common Lisp code which first creates an 
instance of the rule datastructure for each rule of the form. This code 
also sets up the cells slot of prototype such that each cell name is listed 
with rules that use it. Notice that this code also creates all the Common 
Lisp procedures that implement the actual body for formulae. Since these 
are defined with function forms, by compiling a file of constraints one 
compiles the bodies of all the rules. 

As the file atcon.lisp itself contains a constraint, some of the proce-
dures that process constraints must be available at compile time. There-
fore, three of the procedures of this section are embedded in eval-when 
declarations to ensure that this is the case. 

16.4.4 Creating constraints 

The procedure create is provided purely for the user. It immediately 
calls createl, which is the main procedure for creating constraint in-
stances. creates creates constraints. Notice that there are only two 
primitive constraint types: cell and assumption. All other constraints 
are treated identically. The procedure create-prototype creates all 
instances of defined constraints. It first finds the prototype of the con-
straint type. It creates an instance of that constraint, and then it in turn 
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creates instances of all the parts of the constraint (unless these have 
been supplied). create-cell is the primitive for creating cells. 

16.4.5 Accessors 

The procedures of this section allow one to access cells, constraints, 
and their parts. The macro >> is used at top level. It presumes that 
the final indicator it is supplied refers to a global value, and therefore 
looks the object up in the global ATCON hash table. Note that >> is 
redefined within constraint bodies to refer to the current constraint. The 
procedure nested-lookup is used to look up parts for both definitions 
of >>. nested-lookup starts with the final indicator and works from 
back to front, repeatedly looking for a subpart with the given name. If the 
part is not found, it signals an error. lookup-part is a commonly used 
procedure to look up subparts, of a constraint. Notice that it is possible 
to attempt to reference a part of a cell. As cells have no parts this should 
produce a Common Lisp error. 

16.4.6 Equality system 

The procedures of this subsection implement ==. Notice that == is not 
treated as a special form when interpreting constraint bodies. Instead it 
is implemented as a simple set of Common Lisp procedures that could 
easily be separated from the rest of ATCON. It is an example for how to 
provide user-defined functionality within constraint bodies. 

If both parts to a == are cells, then these cells are equated via the 
==cells procedure. If both parts are constraints having the same defini-
tion, then each part is equated recursively. This section also contains the 
definition of the == constraint itself. Thus, whenever ATCON is loaded, 
the prototype of the == constraint is available. 

16.4.7 Setting and accessing cell values 

The cell datastructure contains a slot nodes which lists all the nodes 
associated with the cell. Each node, in turn, points to an instance of the 
value datastructure which contains the value that the ATCON constraint 
body sees. 

set ! is the main procedure used for setting the value of a cell. It first 
invokes the the procedure lookup-node to find a node of the cell having 
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that value. Then it calls the usual ATMS procedure justify-node to set 
the cell to that value under the appropriate contexts. 

The procedure lookup-node does the main work. It first checks wheth-
er a node with the same (or approximately the same) value exists for that 
cell. To determine whether two values are approximately equal, ATCON 
uses a procedure atcon-nearly-equal which can be specified when the 
ATCON instance is first created. If the desired node is not found, then 
ATCON creates a new instance of a value and a node that refers to 
it. Then it enforces the condition that cells can have only one value by 
forcing every pair of nodes of a cell to be contradictory. Finally, it checks 
that the domain specification of the cell is not violated. 

The remaining three procedures of this section are provided purely 
for the convenience of the problem solver. The procedure known? allows 
the problem solver to check whether a cell is known to have some value 
in some given environment. assume-parameter and set-parameter al-
low the problem solver to set the initial values of parameters, possibly 
under an assumption. Notice that both of these procedures call f ire-
constraints, which executes any rules that depend on the new values. 

16.4.8 Rule execution 

The next set of procedures controls the execution of ATCON rules. AT-
CON uses the ATMS-provided interface for scheduling execution. The 
tms-node-rules of every node contains a queue of ATCON rule ob-
jects which are to be executed when that node receives a non-empty 
label. Whenever the ATMS discovers a node to have a non-empty label it 
calls an inference engine-supplied procedure. When ATCON creates the 
ATMS instance it specifies consider-node to be this procedure. Since 
consider-node is called within ATMS operations, it cannot perform any 
ATMS operation recursively. Hence, ATCON maintains a queue of rules 
pending execution and runs these rules after the ATMS returns. 

Creating an instance of a constraint will cause the creation of its sub-
parts. Whenever a new cell is created, datastructures must be created to 
ensure that when this cell receives a value the rules which depend on 
that value are scheduled for execution. The code does not treat every in-
dividual rule of a constraint distinctly. Instead, if any of the rules of a 
constraint depend on a given cell, then ATCON creates a rule object that 
includes all the rules which use this cell and the the constraint itself. This 
rule object is then pushed on the tms-node-rules of the node. As add- 
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role can be called when a node already has a value (this happens when 
a part is reused), add-role may call consider-node directly. 

The procedure f ire-constraints contains the main loop that exe-
cutes rules. fire-constraints can be invoked by internal ATCON oper-
ations or by the problem solver directly. The inner loop of ATCON is like 
that of many inference engines that use the ATMS. fire-constraints 
repeatedly takes one of the queued rule objects on ATCON's queue. 
f ire-constraints always runs the most recent rule object queued and 
hence executes in a LIFO order—however, that is relatively unimportant. 
A rule object appears on ATCON's queue only if its associated node had 
a non-empty label at the time. However, by the time fire-constraints 
is called and this rule object examined, this node may well have gone out. 
Therefore, ATCON first checks for this case, and if so, it simply requeues 
the rule object on the ATMS node. 

Recall that ATCON has two execution modes. In the normal mode 
(where at con-delay is t), ATCON prevents all unnecessary rule execu-
tions. However, when rule execution is cheap, the overhead of preventing 
all unnecessary rule executions is not worth the savings. In normal op-
eration, fire-constraints performs an additional preliminary check 
to determine whether the rule object is executable. However, if at con-
delay is not set, then fire-constraints executes the rule(s) immedi-
ately without further checking. Notice that there are two distinct types 
of rule objects: (1) rule objects produced by add-role, and (2) rule ob-
jects created with the ATCON rule execution strategy—these rule objects 
have nodes whose datum is distinguished as containing the value of 
*temporary-datum*. These are explained later. 

The two procedures that help prevent the execution of unnecessary 
rules are has-external-support and has-complete-external-
support. These procedures are not intended to prevent the duplicate 
execution of rules—that is handled by rule-weave. Rather, these pro-
cedures are designed to help prevent the execution of rules when it is 
known, beforehand, that the resulting value will be useless. The most 
common case occurs when the output of one rule seems to trigger the 
input to some other rule of the same constraint. This is the case which 
has-external-support detects. It exploits the ATCON convention that 
the cdr of every informant is the constraint that derived the value. has-
external-support exploits the ATMS primitive in-antecedent? to 
identify those justifications which support the node, and if any of those 
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justifications derive from outside of the current constraint, then the rule 
object is considered executable. 

While has-external-support performs this filtering action in the 
simple case involving a single node, the procedure has-complete-
external-support performs the definitive test to determine whether 
a rule should be executed. has-complete-external-support is de-
signed to be executed just before every rule of a constraint is executed. 
Note that has-complete-external-support is only invoked if all the 
antecedent nodes have non-empty labels and each of them has exter-
nal support. However, the fact that each of the antecedent nodes is in 
and has external support, does not guarantee that the result of rule 
execution will hold in any consistent environment. The procedure has-
complete-external-support ensures this by first computing the label 
that any result of a particular rule would have. If there are no such envi-
ronments, then the rule is requeued (in the caller). Even if there are such 
environments, one must identify an environment within which all the 
inputs have external support. All the antecedent nodes may have exter-
nal support, but this external support may all be in mutually inconsistent 
environments. In these cases, rule execution again should be suppressed. 

The procedure fire-constraint executes conventional rule objects 
constructed by add-role. In this case, rule-pair is a pair consisting 
of the set of rules which use the cell and the constraint instance itself. 
f ire-constraints is designed to prevent duplicate rule executions (as 
opposed to the two procedures just discussed, which prevent the first ex-
ecution of a rule when the result is known to be without value). Consider 
the case of a rule with two antecedents, both of which simultaneously 
receive a value. In this case, ATCON will queue this rule for execution 
twice. The naive execution strategy would execute the rule twice: once 
for each value. However, f ire-constraint only executes the rule once. 
It achieves this by associating a mark with each node (stored in the pro-
cessed slot of the value defstruct in the node's datum) which indicates 
whether a constraint has processed a particular value. It only executes a 
rule if all of its antecedent nodes have been processed. So in our example 
where two antecedent cells receive values simultaneously, when f ire-
constraint is first called, it does nothing because the second value has 
not been marked as processed. Only when the second value is dequeued 
does fire-constraint execute this rule. Most of the work of avoid-
ing this duplicate rule execution is done by the procedure rule-weave. 
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f ire-constraint operates by calling rule-weave to determine all com-
pletely processed sets of antecedent cell values for each rule. As a final 
filter before executing the rule, it checks whether this combination of 
rules has external support via the procedure has-complete-external-
support. If this combination of nodes does not yet have external sup-
port, then fire-constraint delays its execution. Of course, if atcon-
delay is not set, then the rule is never delayed. 

Delaying the execution of a rule is complex and resource-consuming. 
fire-constraint first creates a new, dummy ATMS node which is jus-
tified by the antecedents to the rule. This node is designed to be in only 
when the result holds in a consistent environment. Therefore, a special 
rule object is attached to this node so that a different execution proce-
dure will be called if it ever comes in and has external support. Notice 
that at the very last, fire-constraint marks the new node it has pro-
cessed by pushing the current constraint instance on the processed slot 
of the value of the current node. 

The essential action of the procedure rule-weave has been described 
in the context of fire-constraint. rule-weave returns a list of lists of 
nodes, each of which can trigger the rule and include the newly discov-
ered node. 

16.4.9 Constructing solutions 

The procedure solutions is the ATCON interface to the ATMS inter-
pretation constructor. It will return a set of environments with every 
assumption interpreted as a default under the condition that all the in-
terpretations must satisfy every disjunction. The disjunction macro 
provides a direct method for storing the disjunctions the ATMS interpre-
tation constructor must satisfy. 

16.4.10 Interrogatives 

The final set of procedures provide facilities to nicely print ATCON datas-
tructures and to make inquiries. pretty-name returns a string that de-
scribes the cell or constraint it is passed as an argument. It uses one of 
two subprocedures, depending on whether it is called with a constraint 
or a cell. cell-pretty-name first determines whether the cell has a con-
straint owner. If so, it constructs the descriptor that >> could use to 
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access it. Otherwise, the cell is global and only this global name is re-
turned. constraint-pretty-name constructs a descriptor that >> could 
use to find this constraint. 

label-string is given a node and returns a string describing that 
node's ATMS label. env-string returns a single environment as a string. 

The remaining procedures are primarily used as part of the interface 
and are intended for debugging. They are straightforward and most have 
been explained in Section 16.3. constraint-parts calls what-is on 
all the cells associated with a particular constraint. print-solutions is 
invoked with (usually) a set of interpretations and prints out the state 
of the network within each of those environments by calling show-
network. Finally, why is like what-is except it exploits the ATMS ex-
planation facility to construct an explanation for every particular value 
and environment of the cell. 

16.5 Exercises 

1. * Demonstrate an ATCON program whose performance significantly 
improves with atcon-delay set to nil. Demonstrate an ATCON pro-
gram whose performance significantly degrades with atcon-delay 
set to t. Abstract the characteristics of the two programs that pro-
duce these results. 

2. * * The JTMS can be modified to maintain an explicit nogood data- 
base (see Exercise 6) which is consulted before any assumption is 
enabled. Show a TCON program which manifests an exponential per-
formance improvement using such nogoods. 
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17 	A Tiny Diagnosis Engine 

In this chapter we use ATCON to build the Tiny General Diagnostic En-
gine or TGDE (a simplified version of GDE [2, 5]). Diagnosis is the task 
of identifying which components of a device are not functioning accord-
ing to their behavioral specifications. Diagnosis is difficult because we 
almost never have direct evidence of the malfunctioning of any com-
ponent. Components usually do not look faulted, and it typically is too 
expensive to remove all the components and check them individually. In-
stead, we only have indirect evidence from their behavior. The diagnostic 
process is characterized by hypothesizing faults which explain the ob-
servations and then determining what next measurement provides the 
most information to discriminate among those hypotheses. The ATMS 
is an ideal tool to implement a computer-based diagnostician because it 
can maintain multiple hypotheses simultaneously, quickly switch among 
them, and efficiently compare them. 

TGDE is an example of the many-worlds strategy (Chapter 14) for build-
ing problem solvers. Although one can characterize what TGDE does in 
terms of the contexts representing hypotheses which explain the symp-
toms, the internal operations of TGDE pay almost no attention to them. 
Instead, TGDE works on all hypotheses simultaneously, using the ATMS 
to implicitly share results among them. In this kind of problem-solver de-
sign, once the designer has chosen the assumptions to be manipulated, 
no attention has to be paid to contexts, context-switching, backtracking, 
or contradiction handling. This leaves the designer free to focus on the 
issues that are specific to the task at hand. 
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Unlike most of the previous chapters, this chapter contains very little 
description of code. This is because the essence of TGDE can be im-
plemented in a single page of Common Lisp code. Nevertheless, as it 
exhibits an important problem-solving paradigm which is of use for a 
variety of applications, this chapter lays out in detail the concepts of di-
agnosis and how ATCON and the ATMS are used to implement them. We 
also show how a formal analysis of the diagnosis task yields insights into 
the strengths and limitations of the implementation. 

17.1 Example 

Later in this chapter we give a precise formal characterization of the 
diagnostic task. But first we explore the concepts in terms of an extended 
example. The diagnosis task is initiated because of some discrepancy 
between an observation and an expectation. We presume the device has 
been correctly designed and thus the discrepancy is not due to a design 
error but rather to some component fault. Thus there is a discrepancy 
between what we predict a measurement outcome to be, given the design 
model of the device, and the actual observation. Consider the circuit of 
Figure 17.1. (This is the same circuit we studied in Section 15.4.3). 

The circuit consists of three multipliers, MI, M2, and M3, and two 
adders, Al  and A2. The inputs are known to be A = 3, B = 2, C = 2, D = 3, 
and E = 3. One output, F, has been measured to be F = 10. Is this a 
symptom? As the inputs to multiplier M1 are A = 3 and C = 2, X must 
be 6. As the inputs to multiplier M2 are B = 2 and D = 3, Y must be 

3 

2 

2 

3 

3 

MULTIPLIERS 

Figure 17.1 The polybox 
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6. Given these inputs to adder Al, F must be 12. However, F has been 
measured to be 10. Therefore, F = 10 is a symptom. As F is observed to 
be different from its predicted value, one of the components underlying 
this prediction must be faulted. In particular, one of the set {M1, M2, Al } 
must be faulted—there may be other faulted components, but at least 
one of these must be malfunctioning to explain the symptom F = 10. We 
call such a set of components underlying a symptom a conflict. 

We define a diagnosis to be a set of components whose malfunction-
ing can explain all the symptoms. Thus, {M1}, {M2}, and {Al } are all 
diagnoses. As there may be other faulty components, the correct diag-
nosis may contain more components. However, the sets cannot be made 
smaller and still explain the conflict. Therefore, {M1}, {M2}, and {A1} 
are all minimal diagnoses. 

In order to discriminate among the diagnoses we need to obtain more 
observations. There are four possible places we can still measure: X, Y, 
Z, and G. To choose the best place to measure next, we have to analyze 
each possible measurement outcome and weigh the alternatives. Z is a 
very bad place to measure next because it provides no information about 
any of the three minimal diagnoses. X is a much better place: whatever 
the outcome, {M1} or {Al} (or possibly both) will be eliminated as a 
diagnosis. Analogously, whatever the outcome of measuring Y and G, 
{M2} or {Al } (possibly both) will be eliminated. Measuring G is best 
because it provides as much information about the minimal diagnoses 
as measuring either X or Y, but it also provides some weak information 
about A2 and M3. Suppose we measure G and observe that G = 12. 

Is G = 12 a symptom? Multiplier M2 multiplies B = 2 and D = 3 to pro-
duce Y = 6. Nlultiplier M3 multiplies C = 2 and E = 3 to produce Z = 6. 
Adder A2 adds these two to produce G = 12. Even though this obser-
vation corroborates the prediction, it does not guarantee that M2, A2, 
and M3 are unfaulted. After all, M3 could be faulted adding a 1 to its 
output and A2 could be faulted subtracting a 1 from its output. Nev-
ertheless, this observation has told us something very important about 
M2. Consider the diagnosis {M2}. If M2 is faulted, then Y must be 4 
to ensure the observation F = 10. However, if Y = 4, then G must be 10. 
Therefore, surprisingly, G = 12 is a symptom. In particular, if Ml, Al, 
A2, and M3 are working correctly, then G should be 10. Therefore, we 
have a new conflict: {M1, Al, A2,M3}. This means that {M2} is no longer 
a minimal diagnosis—it is instead replaced by two minimal diagnoses: 
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{M2, A2} and 1M3, A21. Put intuitively, M2 alone can no longer explain 
both observations: If M2 were faulted, contributing to F = 12, then one 
of A2 or M3 must also be faulted to cancel out the effect of M2's fault to 
produce G = 12. 

17.2 Implementation 

We have just explored some of the basic concepts of model-based di-
agnosis through the use of an extended example. Now we describe an 
implementation which can perform this kind of reasoning. 

We presume that we are given a description of how components are 
supposed to behave and how the constituent parts make up a specific 
device. Each component obeys particular behavioral rules. In the polybox 
example, the components are adders and multipliers whose behavior is 
to add and subtract. In digital circuits, we would be provided with models 
of and, or, and not gates and we would be given the schematic of any 
digital device we were requested to troubleshoot. 

In Section 15.4.3 we presented a simple diagnostic algorithm which 
used the idea of constraint suspension in TCON to identify the diag-
noses. That implementation used a single current context, which is awk-
ward for diagnostic tasks. In contrast, TGDE uses an underlying multiple-
context ATMS, which makes it easier to compare alternative diagnoses 
and directly choose which measurements to make next. 

Each component is described by an ATCON constraint. Similarly, each 
composite device is described by an ATCON constraint. For every com-
ponent that could possibly fault, we create a unique ATMS assumption 
which represents the presumption that it is working correctly. The fol-
lowing models suffice for describing the adder and multiplier. Recall that 
assume-constraint creates ok assumptions for each instance of adder 
and multiplier which is implicitly included in all the ( Uses) of the for-
mulae. 

(assume-constraint adder ((al cell) (a2 cell) (sum cell)) 
(formulae (sum (at a2) (+ al a2)) 

(al (sum a2) (- sum a2)) 
(a2 (sum al) (- sum al)))) 
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(assume-constraint multiplier ((ml cell) (m2 cell) (product cell)) 
(formulae (product (ml) (if (= 0 ml) 0 :DISMISS)) 

(product (m2) (if (= 0 m2) 0 :DISMISS)) 

(product (ml m2) (if (or (= 0 ml) (= 0 m2)) 
:DISMISS 

(* ml m2))) 

(ml (product m2) (if (= 0 m2) :DISMISS 

(/ product m2))) 

(m2 (product ml) (if (= 0 ml) :DISMISS 

(/ product ml))))) 

The polybox is described by: 

(constraint poly ((a cell) (b cell) (c cell) (d cell) 
(x cell) (y cell) (z cell) (f cell) 
(ml multiplier a c x) 
(m2 multiplier b d y) 
(m3 multiplier c e z) 
(al adder x y f) 
(a2 adder y z g))) 

(e cell) 
(g cell) 

An instance of polybox with the given inputs can be created by: 

(create 	'p 	'poly) 
(set-parameter (>> a P) 3) 
(set-parameter (» b P) 2) 
(set-parameter (>> c P) 2)  
(set-parameter (» d P) 3)  
(set-parameter (>> e P) 3) 

For simplicity we write each ok assumption created by assume—
constraint as simply the name of the component itself. By default 
TGDE prints out OK assumptions by simply the name of the compo-
nent. The contents of the ATMS label database are now as follows (see 
Figure 17.2): 

= 3,101) 

= 2,{{}}) 

<C = 2,1111) 

= 3,{{}}) 

= 3,{{}}) 

(X = 6, ({M1}}) 

(Y = 6, {{M2}}) 

(Z = 6, {{M3}}) 

(F = 12, {{A1,M1,M2}}) 

(G = 12, {{A2,M2,M3}}) 
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<A= 3 , I ( ))> 

<B= 2 ,Ill)> 

<C = 2 , I( ))> 

<D=3 ,111)> 

<E= 3 !III> 

Ml 
<X= 6 ,11M1))> 

X <F= 12 , ({A1, MI, M2))> 

I) 

<Y= 6 , 042H> 

M3 

Al 

<0 = 12 , { A2, M2, M3 ) )> 

A2 

<Z=6, (iM3)1> 

Figure 17.2 The polybox before any output observations 

From the ATMS/ATCON point of view there is nothing unusual about this 
database. However, from a diagnosis point of view this database tells us 
a great deal. It lists every possible prediction that can be made from 
the inputs and the components, along with the minimal set of work-
ing components that ensure it. For example, we see that F = 12 follows 
from {Al, Ml, M2} all working correctly. As the ATMS label contains only 
minimal environments, we know that each set is minimal—removing any 
component from {Al, M1 , M2} will no longer guarantee that F = 12. 

Suppose we now observe F = 10. This is achieved by: 

(set-parameter (>> f p) 10) 

As {Al, Ml, M2} supported F = 12, we immediately discover it to be no-
good. Recall that a nogood is a set of assumptions at least one of which 
must not hold. Therefore, there is a direct one-to-one correspondence 
between those ATMS nogoods mentioning only OK assumptions and con-
flicts. 

TGDE exploits the fact that ATCON makes all possible derivations from 
the information it is provided. Thus far all of ATCON's constraints have 
been run in the forward-going direction arid the result was simply a 
causal simulation of the polybox from input to output. The consequences 
of F = 10 reveal that ATCON's analysis need not be purely causal. For 
example, given F = 10 and X = 6, the adder rule produces the ATMS 
justification: 
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<A=3, WI> 
<X=4,( 
<X=6,{ 

X 

A1.M211> 

<F=10,i{i}> 
MI 

<B=2,1())> (11‘42)i> 
(1.6.1,M1))> Al <Y=6, 

<Y=4, 

<C=2, Hi)). = 12 , 11.42, M2, M311> 
10, { fAl, A2, Ml, M3} }> <0= 

M2 <0 

<D=3, H A2 

<E=.3 	)1> .I{ 
N13 

<Z=6, ((M3))> 

Figure 17.3 The polybox after F = 10 

F=10 AX=6AA1 Y=4. 

This does not at all imply that the adder Al causes Y = 4-correctly 
functioning digital adders cannot causally affect their inputs. Instead this 
justification should be read: If F is observed to be 10, the other input to 
the adder is 6, and the adder is functioning correctly, then it must be 
the case that some other component is forcing this input to be 4. The 
complete result is (see Figure 17.3): 

(A = 3, MD (Y = 4, {{Al,Ml}}) 

(B = 2, IUD (Y = 6, {{M2}}) 

(C= 2,1111) (Z = 6, {{M3}}) 

(D =3,{{}}) (F = 10,{{}}) 

(E = 3, MD (G = 10, {{A1,A2,M1,M3}}) 

(X = 4, {{A1,M2}}) (G = 12, {{A2,M2,M3}}) 

(X= 6, {{M1}}) 

Note that data with empty labels have been deleted (e.g., F = 12). 
Notice that ATCON derives two predictions for G. G = 12 follows from 

a straightforward causal simulation. G = 10 follows from F = 10 via Al, 
A2, Ml, and M3. Therefore, when we measure G = 12, TGDE immediately 
discovers the new nogood: {Al, A2, Ml, M3}. 
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<A=3,1(1)> 

<B=2, (HI> 

<C=2, III)> 

<D=3, (H)> 

<E=3,{(1)> 
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<X = 4 , {(Al, M2){ Al, A2, M3 H> 
<X=6, IIM1H> 	<F=10, l(H> 

X 
MI 

13 

M3 

<Z =6, IMMA2, M2) J> 
<Z=8 , (Al, A2, M111> 

<G=12,11 ))> 

<Y=6, {(N42)(A2,M3)> 
<Y=4, HAI,M111> Al 

M2 

A2 

Figure 17.4 The polybox after G = 12 

There are no other conflicts, and the final TGDE database is (see Fig-
ure 17.4): 

	

(A= 3,{{}}) 	 (Y =4, {{A1,M1}}) 

	

(B = 2, {{}}) 	 (Y = 6, {{M2}, {A2,M3}}) 

	

(C=2,{{}}) 	 (Z = 6, {{M3},{A2,M2}}) 

	

= 3, MD 	 (Z = 8, {{A1,A2,M1}}) 

	

(E=3,{11}) 	 (F =10, {{}}) 

(X = 4, {{Al,M2},{A1,A2,M3}}) (G =12, {{}}) 

(X = 6,{{M1}}) 

17.2.1 Constructing minimal diagnoses 

A diagnosis is represented by a set of failing components. If we presume 
the device contains a single fault, then all minimal diagnoses are single-
tons and can be constructed by intersecting all the conflicts. Our polybox 
example produced two conflicts: {A1,M1,M2} and {A1,A2,M1,M3}. 
The intersection of those two sets is {A1,M1}, which contains the two 
single fault diagnoses {A1} and {M1}. Early approaches to model-based 
diagnosis presumed that multiple faults could only arise out of combi-
nations of single fault diagnoses. This is incorrect: the set {M2,M3} is a 
perfectly good diagnosis which explains all the symptoms while neither 
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{ M1,M2,M3,A1,A2} 

{mi} 
	

{ 
	

{ M3} 
	

{ Al) 
	

{A2} 

{} 

Figure 17.5 Diagnosis lattice 

of M2 nor M3 is a single fault diagnosis. This is unfortunate, as set in-
tersection is an extremely simple algorithm. Instead, the algorithm that 
generates minimal diagnoses must be more complicated. 

The set of all diagnoses can be arranged as a lattice (see Figure 17.5). 
At the bottom of the lattice is the empty set, which represents the diag-
nosis in which nothing is faulted. At the top of the lattice is the diagnosis 
where all components are faulted. Every edge in the figure represents a 
link between a diagnosis and its immediate superset or subset. In order 
for a diagnosis to explain every symptom, the diagnosis must contain at 
least one component from every conflict. Initially, every set in the lattice 
(i.e., Figure 17.6) is a diagnosis. Every new conflict eliminates some di-
agnoses from the lattice. Since diagnoses include more and more failing 
components as we go upward in the lattice, each conflict can be viewed 
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{ M1,M2,M3,A1,A2} 

{M1,M2,M3,Ai} 
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Figure 17.6 Diagnosis lattice with eliminated diagnoses removed 

as a line drawn through the lattice which eliminates all diagnoses below 
the line. As conflicts accumulate, this line moves upwards through the 
lattice. 

Figure 17.6 illustrates how conflicts affect the diagnosis lattice. The 
first conflict {Al, Ml, M2} eliminates all diagnoses that do not contain 
at least one of Al, Ml, or M2. Thus, the diagnoses {}, {M3}, {A2}, 
and {M3, A2} are eliminated. The second conflict eliminates only one 
additional diagnosis: {M2}. 

Representing the entire lattice in TGDE is out of the question as this 
would requires exponential space. Fortunately, it is sufficient to identify 
only the minimal diagnoses. The minimal diagnoses are those which con- 
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tam no other diagnoses as subsets. Thus the minimal diagnoses occur 
immediately above all those eliminated by the conflicts. All diagnoses in 
the lattice above the line (i.e., above the minimal diagnoses) are necessar-
ily diagnoses. Therefore, to characterize all diagnoses, we simply need 
an algorithm that identifies the minimal diagnoses. The most straight-
forward algorithms to construct minimal diagnoses are set-covering al-
gorithms [1]. Unfortunately, set covering is known to be NP-hard. The 
simplest algorithm for generating diagnoses is to perform a backtrack 
search that selects one component from each conflict, and then remove 
subsumed sets. 

In TGDE, a diagnosis is a minimal set of assumptions which intersects 
every conflict. But we can view diagnoses from a complementary point of 
view. Consider the maximal sets of assumptions which do not intersect 
any conflict. For example, if there are no conflicts, then there is one such 
maximal set for the polybox: {Al, A2, Ml, M2,M3}. In our example, there 
are two conflicts: {M1,M2,A1} and {M1,M3,A1,A2}. There are thus 
four maximal sets of components: 1M2, M3, Al, A21, {M1, M2, M3, A2} , 
{M1, Al, A2}, and {M1, M3, Al}. These are the maximal sets of compo-
nents which can all be OK but that do not support any prediction that 
conflicts with an observation. Such maximal sets clearly are in one-to-
one correspondence with the diagnoses. Fortuitously, we already have 
an algorithm that constructs such sets. The ATMS interpretation con-
struction algorithm, when directed to interpret each OK assumption as a 
default, identifies maximally consistent sets of defaults. Therefore, TGDE 
does not require a distinct algorithm to construct diagnoses—this work 
is done by the ATMS interpretation construction algorithm. 

17.3 Sequential diagnosis 

So far, TGDE merely produces a set of diagnoses which explain the symp-
toms. At the conclusion of the diagnostic task, we need to obtain a 
unique diagnosis that indicates which component(s) of the device must 
be replaced. TGDE usually produces multiple diagnoses. In some cases, 
one of the diagnoses is more likely than the others. In other cases, addi-
tional measurements are required to discriminate among the diagnoses. 
After every measurement, the diagnostician must decide whether to stop 
and replace the faulted components or continue to gather more evidence. 
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A general theory of diagnosis would take into account the failure prob-
abilities of components, knowledge about dependent failures, costs of 
measurements, and the costs of misdiagnosis in order to make the eco-
nomically optimal decision (see [2]). However, these issues raise complex-
ities far beyond the scope of this book and are topics of current research 
in model-based diagnosis. Therefore, in TGDE we make a large number 
of simplifications. 

We assume that every component fails with extremely small likelihood 
as well as independently (see [3]). Suppose every component fails with 
probability c. Then the prior probability of some particular diagnosis D 
is: 

p(D) = c D  (1 - 	D , 

where n is the number of components in the device and IDS is the num-
ber of faulted components in D. We assume that c is very small and 
therefore 

P, =c 

and only the smallest cardinality diagnoses are of interest. Therefore, 
the diagnostic process should continue until a single smallest cardinality 
diagnosis remains. 

Every observation that is made can potentially shift the probabilities 
of diagnoses. We have already made the simplifying assumption that all 
components fail independently. We make the additional assumption that 
the models ensure that for whatever observation is actually made, ev-
ery minimum cardinality diagnosis either predicts that new observation, 
or contradicts it (i.e., that no minimum cardinality diagnosis is agnostic 
about some observation). The combination of these two assumptions en-
sures that every observation divides the current set of minimal cardinal-
ity diagnoses into two sets: (1) the set inconsistent with the observation, 
and the posterior probability of each of these diagnoses becomes 0, and 
(2) the set which predicts (or should predict—see Section 17.4.2) the new 
observation, all of whose posterior probabilities remain identical. Under 
these assumptions, the probabilities of all minimal cardinality diagnoses, 
always remain equal and need not be recorded. 

TGDE continues until one minimal cardinality diagnosis remains (we 
see an example later). If a new observation eliminates every one of the 
current minimal cardinality diagnoses then TGDE simply focuses on the 
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minimal cardinality diagnoses remaining after taking into consideration 
the the new observation. 

17.3.1 Choosing the best next measurement 

If every device quantity were observable and measurements were free, 
then the best diagnostic strategy would be to measure everything. How-
ever, measuring is typically far more expensive than reasoning, as mea-
suring requires a complex action in the world while the reasoning just 
requires computer time. Therefore, TGDE goes to considerable effort to 
plan the best measurement to make next. Depending on the method used 
to select measurement points, there can be dramatic differences in the 
average number of measurements required to isolate a fault. Imagine a 
very long chain of one thousand buffers (simple components whose out-
puts equal their inputs) in which one of the buffers is faulted. Initially 
there are one thousand possible single faults. We could first measure 
the input to the final buffer, trying to determine whether it was faulted. 
Continuing in this pattern, isolating the faulty buffer would take us, on 
average, five hundred measurements. On the other hand, if we first mea-
sured at the middle of the chain we could isolate the fault to one or the 
other subset of five hundred buffers. Repeating this process we would 
isolate any faulty buffer in no more than ten measurements. This simple 
example graphically illustrates that choosing measurement points care-
fully can have substantial payoff. 

The process of choosing the best measurement to make next has two 
facets. First, we have to determine the possible outcomes of a measure-
ment. Second, we have to weigh the different measurements to determine 
which set of outcomes is most informative. 

Let us continue with the polybox example. Consider measuring Z. In 
the ATMS database we have the following information about Z: 

(Z = 6, {{M3}, {A2,M2}}) 

(Z = 8, {{A1,A2,M1}}) 

Every diagnosis of Figure 17.6 provides a possible explanation for 
the symptoms F = 10 and G = 12. Therefore, we can examine each of 
these diagnoses and see what they say about Z. Consider the diagnosis 
{A1,A2} in which Al and A2 are faulted, and Ml, M2, and M3 are 
functioning correctly. We can determine the predicted value of Z in 
{A1,A2} by seeing what value of Z is supported by the environment 
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Figure 17.7 Diagnosis lattice. Rectangles indicate diagnoses where Z = 6. 
Circles indicate diagnoses where Z = 8. 

{MI, M2, M3}. Thus, Z is 6 in {A 1, A2}. Consider the diagnosis {M2, M3}. 
There Z is 8. Some diagnoses do not predict any value for Z at all. For 
example, the diagnosis {Al, A2, M3} predicts no value for Z. Figure 17.7 
summarizes the results. Impossible diagnoses have a line drawn through 
them. Diagnoses that predict Z = 6 are in rectangles and diagnoses that 
predict Z = 8 are in circles. Suppose we measure Z. For TGDE, there are 
three distinct possible outcomes. If Z is observed to be 6, then all the 
diagnoses in circles are eliminated. If Z is observed to be 8, then the di-
agnoses in rectangles are eliminated. If Z is observed to be neither 6 nor 
8, then all diagnoses in circles or rectangles are eliminated. 

{M1 }  
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Figure 17.7 gives us a clear picture of the logical outcomes of a mea-
surement. We can construct a similar picture for each of the possible 
measurement points (X, Y, and Z in the case of the polybox). In order 
to weigh which is better we have to make some assumptions. In addition, 
we need an algorithm which does not have to construct the entire lattice 
to draw its conclusion, as this lattice is far too large for even moderately 
sized devices. 

We assume that the cost of making every measurement is equal and 
therefore we do not have to be concerned with considering the differen-
tial costs among the measurement actions themselves. In particular, mea-
suring X, Y, or Z has equal cost. We also make the simplifying assump-
tion that we are only concerned with the minimum cardinality diagnoses. 
In the polybox example there remain only two minimum cardinality di-
agnoses: {A1} and (M1}. In this case, it is pretty obvious that the only 
reasonable measurement to make is at X. 

Hypothetical measurements could be evaluated by hypothesizing each 
possible outcome, simulating how it reduced the diagnoses, and repeat-
ing this process until one diagnosis remained. This is extremely expen-
sive. Therefore, we evaluate measurements based with one-step look-
ahead alone. If we make the approximation that every measurement has 
k outcomes, then the smallest number of measurements required to dis-
criminate among n diagnoses is logkn (in direct analogy to the number 
of probes required in a binary search where k = 2). Using this as an ap-
proximation, we can score every possible outcome as logk n, where n is 
the number of diagnoses which would remain if that outcome were to oc-
cur. The likelihood that a particular outcome will occur is the fraction of 
diagnoses that predict that outcome. Therefore, a measurement can be 
scored by: 

-logkci, 

where c, is the number diagnoses which predict the i'th outcome. As k 
and n are constants, the best measurement is the one that minimizes: 

clog c1. 

On occasion, some minimal cardinality diagnosis may not predict an out-
come of a measurement. In such cases TGDE identifies (if possible) all 
consistent outcomes for the observation and assumes that each outcome 
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is equally likely. For example, if there are m hypothetically possible val-
ues for a measurement outcome, then it adds ,+„ to each c1. 

17.3.2 TGDE example 

Consider the task of diagnosing the two-bit adder of Section 16.1.7 (see 
Figure 17.8). We use the same models as before, except that every com-
ponent is modeled by an assume-constraint such that an OK assump-
tion is created for every component. Given that all the inputs are 0, (>> 
Q BIT1 ADD) should be 0, but it is observed to be 1. 

Invoking the TGDE procedure diagnose after the inputs and outputs 
have been applied results in the following (as there are multiple compo-
nents with the same name, the node printer is modified to print out fully 
qualified names of assumptions): 

There are 5 minimum cardinality diagnoses: 
{(>> X2 BIT1 ADD)} 
{(>> X1 BIT1 ADD)} 
{(>> 01 BITO ADD)} 
{(>> A2 BITO ADD)} 
{(>> Al BITO ADD)} 

The five single faults that explain the observations are highlighted in 
Figure 17.9. Then TGDE prints out the scores for every measurement 
point: 

Measuring <Cell (>> RIPPLE ADD)> has cost 6.7548876 

Measuring <Cell (>> X BITO ADD)> has cost 8.0 
Measuring <Cell (>> Y BITO ADD)> has cost 8.0 
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Figure 17.9 A full adder with single faults highlighted 

Measuring <Cell (>> Z BIT1 ADD)> has cost 8.0 

All the remaining measurement points provide no information. These 
scores arise because the possible measurement outcomes split the set 
of current diagnoses as follows: 

Cell 
0 

Value 
1 

(>> Z BIT1 ADD) 4 1 

(» Y BIT1 ADD) 5 0 

(» X BIT1 ADD) 5 0 
(» Q BIT1 ADD) 0 5 

(>> B BIT1 ADD) 5 0 
(>> A BIT1 ADD) 5 0 
(» CO BIT1 ADD) 5 0 

(» Z BITO ADD) 5 0 
(» Y BITO ADD) 4 1 
(» X BITO ADD) 4 1 
(» Q BITO ADD) 5 0 
(>> B BITO ADD) 5 0 

(>> A BITO ADD) 5 0 
(» CI BITO ADD) 5 0 
(» RIPPLE ADD) 2 3 
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Thus measuring (>> RIPPLE ADD) is best. TGDE asks to make this mea-
surement. Let us presume the fault lies in (>> Al BITO ADD): 

Please enter result of measuring <Cell (>> RIPPLE ADD)>:1 
There are 3 minimum cardinality diagnoses: 

{(>> 01 BITO ADD)} 
{(>> A2 BITO ADD)} 
{(>> Al BITO ADD)} 
Measuring <Cell (>> X BITO ADD)> has cost 2.0 
Measuring <Cell (>> Y BITO ADD)> has cost 2.0 

Since there are only two places worthwhile to measure, and both provide 
equal information, TGDE asks which of these should be measured: 

0 : <Cell (>> X BITO ADD)> 

1 : <Cell (>> Y BITO ADD)> 

Enter integer of point measured: 1 

Please enter result of measuring <Cell (>> Y BITO ADD)>:1 

Correct diagnosis is: 

{(>> Al BITO ADD)} 

In this case TGDE has isolated the fault in only two measurements. If 
the fault lay elsewhere, then TGDE might take three measurements. In 
general, every single fault in the full adder can be isolated in three mea-
surements or less. 

17.4 A formalization of model-based diagnosis 

So far we have defined the basic concepts of model-based diagnosis in-
tuitively through examples, and then described an implementation em-
bodying those concepts. Can the concepts be defined precisely? Is our 
implementation actually computing the right information? Are there im-
portant inferences we are missing? We can only begin to answer ques-
tions like this by developing a precise formal account of model-based 
diagnosis. A more extensive treatment of this material is found in [4, 6]. 
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17.4.1 A theory of diagnosis 

In the theory of diagnosis, the definition of a system incorporates all the 
information about the device we have available including observations, 
schematics, component models, etc.: 

Definition 17.1 
A system is a triple (SD,COMPS,OBS) where: 

1. SD, the system description, is a set of first-order sentences. 

2. COMPS, the system components, is a finite set of constants. 

3. OBS, a set of observations, is a set of first-order sentences. 

TGDE adopts the convention of specifying a diagnosis by a set of fail-
ing components, leaving implicit that the remaining components are OK. 
The theory generalizes this definition to make it possible for a diagnosis 
to leave the faultedness of a component unspecified. The definition of di-
agnosis is built up from the notion of abnormal. AB(c) is a literal which 
holds when a component c ECOMPS is abnormal. 

The system description for any device is relatively large because it 
must include axioms for equality, arithmetic, etc. The key sentences in 
SD describe the behavior of components. In the case of the polybox, 
SD contains the following two sentences (we presume all free variables 
are universally quantified) which describe the behavior of adders and 
multipliers. 

ADDER(x) [-'AB(x) out(x) = inl(x) + in2(x)] 

MULTIPLIER(x) [ -,AB(x) out(x) = inl(x) x in2(x)] 

The first sentence can be read as: If x is an adder, then if x is not 
abnormal, then the output of the adder is the sum of its two inputs. 
We represent a diagnosis as a conjunction of AB-literals which indicates 
whether each component is normal or abnormal: 

Definition 17.2 
Given two sets of components Cp and Cn define D(Cp,Cn) to be the 
conjunction: 
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[ A AB(,)] [ A --,AB(c) ]. 
ceCp 	 cC"'n 

Definition 17.3 
Let A gCOMPS. A diagnosis for (SD,COMPS,OBS) is D(A,COMPS — A) 
such that: 

SD u OBS u {D(A,COMPS — A)} 

is satisfiable. 

Thus in our polybox example, the TGDE diagnosis 0111 represents 
the formal diagnosis AB(M1) A -,AB(M2) A -'AB(M3) A ---, AB(A1) 
AB (A2) or D(11411, {M2,M3,A1,A2}). 

Unfortunately, there may be 2 COMPS diagnoses. The definition of min-
imal diagnosis derives from a desire to develop a more parsimonious 
characterization of the diagnoses of a system: 

Definition 17.4 
A diagnosis D(A, COMPS — A) is a minimal diagnosis if for no proper 
subset A' of A is D(A', COMPS — A') a diagnosis. 

Our implementation implicitly assumed that every TGDE diagnosis was 
a superset of some minimal TGDE diagnosis. This result can be proven 
from the preceding definitions. 

Theorem 17.1 
If D(A, COMPS — A) is a diagnosis, then there is a minimal diagnosis 
D(A', COMPS — A') such that A' g A. 

More seriously, TGDE presumed that the converse held: 

Hypothesis 17.1 
(Minimal Diagnosis Hypothesis) If D(A', COMPS — A') is a minimal diag- 
nosis and if A' g A g COMPS, then D(A, COMPS — A) is a diagnosis. 

If this hypothesis holds, then every superset of a TGDE diagnosis would 
also be a TGDE diagnosis. Therefore, to completely characterize all the 
diagnoses of a system it is sufficient to identify only the minimal diag-
noses, since all the possible diagnoses can be generated from them. Un-
fortunately, the minimal diagnosis hypothesis does not hold in general. 
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0 	>01 	>0 
Figure 17.10 Two inverters 

Consider the circuit of Figure 17.10. Suppose we know that the invert-
ers we are using have only two failure modes: they short their output to 
their input or their output becomes stuck at 0. The model in SD for such 
an inverter is: 

INVERTER(x) [ -,AB(x) [in(x) = 0 = out(x) = 1E, 

INVERTER(x) AB(x) [SA0(x) v SHORT(x)], 

SA0(x) out(x) = 0, 

SHORT(x) out(x) = in(x). 

Suppose the input is 0 and the output is 1: 	) = 0, out- ([2 ) = 1. 
There are two possible diagnoses: 

AB(h) A -'AB(12), 

--IAB(ii) A AB(II). 

However, the superset AB(I ].) A AB(I2 ) is not a diagnosis. Intuitively, if /2 
is faulted and producing the observed 1, then it cannot be stuck at 0, and 
must have its input shorted to its output. But then Il  must be outputting 
a 1 and there is no faulty behavior of /1, which produces a 1 for an input 
of 0. 

Fortunately, the preceding inverter model cannot easily be encoded as 
an ATCON constraint. It would be, however, possible to extend TGDE 
to be able to express fault models of this form. Diagnoses within this 
extended TGDE framework would violate the minimal diagnosis hypoth-
esis. Fortunately, it is possible to show that the, unextended, TGDE 
model-writing conventions ensure that the minimal diagnosis hypothe-
sis holds. If all the occurrences of AB occur as -,AB in antecedents when 
the system is viewed as implications, then the system is said to obey 
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the ignorance of abnormal behavior (IAB) condition. If we use assume-
constraint to model components, then OK assumptions only appear as 
antecedents to justifications and therefore AB only occurs negatively in 
antecedents. This means that TGDE's models obey the IAB condition. It 
is possible to prove that: 

Theorem 17.2 
If (SD,COMPS,OBS) satisfies the IAB condition, then the minimal diagnosis 
hypothesis holds for (SD,COMPS,OBS). 

Finally, let us analyze TGDE's use of conflicts to construct diagnoses. 
First, we must make some definitions. 

Definition 17.5 
An AB-literal is AB(c) or -,AB(c) for some c E COMPS. An AB-clause 
is a disjunction of AB-literals containing no complementary pair of AB-
literals. A positive AB-clause is an AB-clause all of whose literals are 
positive. 

Definition 17.6 
A conflict of (SD,COMPS,OBS) is an AB-clause entailed by SD u OBS. A 
positive conflict is a conflict all of whose literals are positive. A minimal 
conflict of (SD,COMPS,OBS) is a conflict no proper subclause of which is 
a conflict of (SD,COMPS,OBS). 

Again TGDE's conflicts correspond one-to-one. For TGDE a conflict is 
represented as a set of components one of which is abnormal. The equiv-
alent formal definition is a disjunction of AB-literals. For example, the 
TGDE conflict {M1, M2, Al represents the (positive) clause AB(M1) v 
AB(M2) v AB(A1). As TGDE obeys the IAB condition, it can be easily 
shown that all minimal conflicts are positive. TGDE, through the use of 
the ATMS nogood database, only retains minimal conflicts. The motiva-
tion for only representing minimal conflicts is the same as for only rep-
resenting minimal diagnoses—there typically are an exponential number 
of possible conflicts. Therefore, reducing the conflicts to a small set of 
those possible which is still sufficient to generate the minimal diagnoses 
is very important. 

The key result which we are leading up to is that the minimal diagnoses 
can be generated from the minimal conflicts alone. 
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Definition 17.7 
A conjunction C of literals covers a conjunction D of literals if every 
literal of C occurs in D. 

Definition 17.8 
Suppose E is a set of propositional formulas. A conjunction of literals 
Tr containing no pair of complementary literals is an implicant of E if 
Tr entails each formula in E. Tr is a prime implicant of E if the only 
implicant of E covering Tr is IT itself. 

Theorem 17.3 
(Characterization of minimal diagnoses) D(A, COMPS — A) is a minimal 
diagnosis of (SD,COMPS,OBS) if AcEA AB(c) is a prime implicant of the 
set of positive minimal conflicts of (SD,COMPS,OBS). 

Our polybox example has two minimal conflicts: 

AB(A1) v AB(M1) v AB(M2), 

AB(A1) v AB(M1) v AB(M3) v AB(A2). 

There are four prime implicants of these two clauses: 

AB(A1 ), 

AB(Mi), 

AB(M2) A AB(M3), 

AB(M2) A AB(A2). 

Each of these corresponds to a minimal diagnosis. 

17.4.2 Consequences of incompleteness 

In the previous section we saw that the notions of conflict and diagno-
sis and their interrelationships both make sense and can be precisely 
defined. We saw that there were potential pitfalls (such as the violation 
of the minimal diagnosis hypothesis) but, fortuitously, the limitations of 
TGDE avoided many of those pitfalls. In this section we take the precise 
specification developed in the previous section and examine TGDE more 
closely to see how faithful TGDE actually is to the basic definitions. We 
will discover numerous problems. Unfortunately, to fix many of these 
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Figure 17.11 A simple two-adder device 

problems we will be forced to generalize TGDE enough so that it falls 
victim to new difficulties. 

One very obvious limitation of TGDE is that it cannot represent all 
possible models easily. As TGDE obeys IAB it is not possible to model 
faults as discussed for Figure 17.10. Generalizing TGDE to be able to 
represent such models is difficult and also leads to a violation of the 
minimal diagnosis hypothesis. 

Another, less obvious, limitation is that the only information that 
TGDE can represent about a variable is that it is at a particular value. 
It cannot represent negations or disjunctions of assignments. This limits 
the kinds of observations that can be entered into the system as well as 
the kinds of inferences that are possible. For example, suppose we mea-
sure F and discover it to be 11 or 12. There is no convenient way to 
represent that. If we knew all the possible values for F, then we could 
contradict all values that were not 11 or 12. Suppose ATCON is not able 
to propagate this information. This problem arises even if observations 
are not disjunctive. Suppose we measure the output of a multiplier to be 
1, but don't know any of its inputs. From this we can infer that neither 
input is 0. However, ATCON cannot use this information. 

More generally, TGDE is incomplete. Consider the example of Fig-
ure 17.11. This circuit consists of a sequence of two adders which op-
erate only on integers. Suppose that A = 1 and B = 1. From this, TGDE 
predicts that Z = 4. Suppose we observe Z to be 3. From this, TGDE 
gets the single conflict {Al, A2} and two minimal diagnoses: {Al } and 
{A2}. However, {Al} is not a diagnosis according to our formal defi-
nition. There is no fault in Al that could possibly cause Z to be 3. In 
general, Z has to be an even number if A2 is working. Thus, {A2} is the 
only minimal conflict and {A2} is the only minimal diagnosis. 

Presuming we implemented TGDE correctly, it is sound. Therefore, all 
the nogoods TGDE finds correspond to real conflicts. The preceding ex-
ample shows that minimal nogoods do not necessarily correspond to 
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minimal conflicts. Due to its incompleteness, TGDE may not find all con-
flicts. Unfortunately, if TGDE cannot find all conflicts it may not eliminate 
enough diagnoses. As the example above showed, there are cases where 
TGDE returns diagnoses which, in fact, are not possible. As this weren't 
bad enough, this incompleteness degrades the quality of TGDE's mea-
surement proposals. TGDE will propose measurements to discriminate 
among impossible diagnoses. In addition, since the set of predictions it-
self is incomplete, it may not realize that certain measurement points are 
of value and discriminate among important diagnoses. 

At first blush these problems seem severe. Also, there is no general 
solution to all these difficulties. The literature contains numerous pro-
posals which improve the completeness of representation and inferential 
mechanisms without incurring excessive computational overhead. Ear-
lier, in Chapter 13, we presented a general propositional reasoner using 
prime implicates and prime implicants. Thus, if the problem can be rep-
resented propositionally (see Exercise 9), the CLTMS can be used to im-
plement a completely general diagnostic procedure. In some cases this 
approach will be adequate, but for any large system the this approach is 
computationally unfeasible. 

17.5 Exercises 

I. * How many diagnoses can an n-component device have? What does 
this tell you about the size of the diagnosis lattice? 

2. * Show that every minimal cardinality diagnosis is a minimal diagno-
sis. 

3. * Why is there at most one predicted outcome for each measurement 
for any diagnosis? Consider the discussion of Section 17.3. Could Z 
ever have two values in some diagnosis? 

4. * * The ATMS interpretation construction algorithm works best when 
interpretations contains relatively few assumptions. As there are 
usually only a few faults, the interpretations corresponding to diag-
noses can become quite large, resulting in considerable inefficiency. 
Write an algorithm that computes minimal diagnoses directly and 
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thus manipulates small sets of faulted components instead of large 
sets of good components. 

5. * * For most diagnostic tasks, TGDE spends most of its compu-
tational effort constructing minimal cardinality diagnoses. Rewrite 
smallest-diagnoses such that TGDE rarely spends much effort 
finding diagnoses. 

6. * * Extend TGDE's modeling language to build hierarchical models. 
For example, the model for a full adder would call for a single as-
sumption representing the fact that the adder is OK, and this same 
assumption would be passed along to all the rules which implement 
the behavior of the gates that comprise the full adder. 

7. * * The measurements that best differentiate among the diagnoses 
of cardinality k may not be the best for differentiating among diag-
noses of cardinality k + 1. Show an example where TGDE makes more 
measurements than necessary due to this horizon effect. Hint: Con-
struct a multiple fault example for which the first few measurements 
eliminate all single faults. 

8. * Show an example where TGDE produces a misdiagnosis which is 
not due to logical incompleteness (but due to its oversimplified no-
tion of probability). 

9. * * * The CLTMS provides a general-purpose propositional reasoner. 
Therefore, it is possible to implement a general diagnostic procedure 
that completely implements the formal definitions of diagnosis. Us-
ing the CLTMS, build a diagnostic algorithm that finds the minimal 
diagnoses of any propositional model. Try it on the polybox example. 
What are some of the disadvantages of this approach? 

10. * * * TGDE is designed to determine the best measurement to make 
next. In some cases it may not be possible to make more measure-
ments, but we can choose a different set of inputs and remeasure the 
outputs. Produce a version of TGDE which finds the best inputs to 
apply. Hint: Create an assumption for every possible value of every 
input cell. Try it on the full adder. Will your implementation work on 
the polybox example? 
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18 	Symbolic Relaxation Systems 

Many search problems have a common structure. Each aspect of the 
problem can be represented as a set of alternatives or choice sets. Ex-
amples of choices include selecting the material to be used in an airplane 
wing or the value of a resistor in an electronic circuit. Selecting a consis-
tent collection of alternatives, one from each choice set, yields a solution 
to the problem. In electrical circuit synthesis, for instance, a solution is 
a set of values for each component in the design so that the resulting 
circuit performs as desired. 

Previous chapters have illustrated several general methods to solve 
such problems, including chronological and dependency-directed back-
tracking. In many cases the problems tackled with search techniques re-
quire exponential work. Sometimes, though, special characteristics of the 
problem allow more efficient solution methods to be applied. Exponential 
behavior arises from generating or examining combinations of solution 
fragments. If some fragments can be ruled out by an inexpensive local 
computation, the search space shrinks and the search becomes more 
efficient. In some circumstances search may not even be necessary, if lo-
cal processing leaves only a single consistent alternative in each choice 
set. This is the intuition behind the method of symbolic relaxation, also 
known as Waltz filtering. 

Symbolic relaxation is a commonly used and powerful AI technique. 
No discussion of building problem solvers would be complete without 
it. Furthermore, theoretical analyses of this technique have led to a new 
model of problem solving, constraint satisfaction problems (CSPs), which 
provides a formal method for describing and classifying certain kinds of 
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problems. Such classifications provide insight as to how difficult partic-
ular classes of problems are, and what techniques are necessary to solve 
them. 

This chapter examines symbolic relaxation. We begin by outlining the 
formal notion of constraint satisfaction problems. Next we explore how 
the structure of discrete CSPs can be exploited to implement very ef-
ficient problem solvers, using a variation of the constraint knowledge 
model introduced in Chapter 15. We describe the implementation of a 
specific symbolic relaxation system, WALTZER. The utility of symbolic 
relaxation is illustrated by using WALTZER to solve some classic AI prob-
lems, namely Blocks World scene analysis and reasoning about temporal 
relationships. 

18.1 Constraint satisfaction problems 

Formally, we can consider the collection of choice sets which define a 
problem to be variables, which take values from some specific domain. 
The domain can be finite, as in the search problems we have examined, or 
infinite, as in the antecedent constraint networks of Chapter 15. The con-
nections between variables are described as relations. Relations define 
which assignments of values to variables are consistent. In this chapter 
we focus exclusively on cases where the domains are finite, since this 
class is important in practice and its theory is relatively self-contained. 

Let us consider a simple puzzle to make these ideas concrete. Suppose 
we have the variables pianist, harpist, talker, gambler, money, 
and animals, all of which range over the domain groucho, harpo, 
chico. That is, the value for the variable pianist is the person who most 
likes to play piano, and is one of groucho, harpo, or chico. Puzzles 
include a variety of clues about the assignments of variables to values, 
such as: 

1. The pianist, harpist, and talker are distinct brothers. 

2. The brother who is fond of money is distinct from the one who is 
fond of gambling, who is also distinct from the one who is fond of 
animals. 

3. The one who likes to talk doesn't like gambling. 

4. The one who likes animals plays the harp. 
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5. Groucho hates animals. 

6. Harpo is always silent. 

7. Chico plays the piano. 

Each clue can be construed as a relationship constraining assignments 
of values to the variables. For instance, the first clue can be formalized 
as a ternary relationship which forces assignments to the first three vari-
ables to be distinct. The third clue can be formalized as a binary rela-
tionship which ensures that the assignment for talker and gambler are 
distinct. The sixth and seventh clues can be formalized as unary relation-
ships which force or forbid certain assignments to variables. 

Suppose a problem P consists of the set of variables v1, v2, ... , vn 
and relations R1, R2, . , Rn. Any collection of assignments of values to 
vi, v2, 	, vn  which satisfies all of Ri, R2, 	, Rn  is a solution to P. 

A graph metaphor is often used to describe the collection of relation-
ships. A graph can be defined as a set of nodes connected by a set of 
arcs. In thinking of a problem as a graph, the variables of the problem 
become the nodes of the graph, and the relationships between the vari-
ables become the arcs of the graph. (This is easy to visualize for unary 
and binary relationships, and a bit harder for relations involving more 
variables, but the principle and terminology are the same.) These formal 
definitions can thus be viewed as defining a constraint network, similar 
to those in Chapter 15. Both senses of constraint network encompass 
the notion of describing a situation declaratively using a vocabulary of 
relationships between the parts, and performing some automatic com-
putation to fill in the details of the situation. The difference is in how the 
underlying computation is organized. In antecedent constraint networks 
specific value(s) for part of the network are computed on the basis of 
other known values. In symbolic relaxation networks, a process of elim-
ination is used to filter out solution fragments that cannot be part of a 
global solution. 

To understand this process of elimination requires defining local no-
tions of consistency. Again the graph metaphor proves useful. The sim-
plest version of consistency is to ensure that each node, taken individu-
ally, is consistent. A node is consistent when no unary constraint rules 
out any possible value for the variable represented by the node. Ensuring 
that each arc, taken individually, is consistent is one step more complex, 
since all the variables involved in the relationship must be considered. 
Even more complex is ensuring that each collection of paths through 
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the constraint network is consistent, since combinations of relationships 
must be examined. In the literature these ideas are called node consis-
tency, arc consistency, and path consistency, respectively. 

Logically, node consistency means that each possible value for a vari-
able satisfies the unary relationships on that variable. Suppose R, were 
the only unary relation on the variable v„ whose domain is D1. Then node 
consistency holds exactly when the following formula is true: 

V x 	Ri(x) 

Arc consistency ensures that each non-unary relation is individually 
consistent. That is, if R j  is a k-ary relation, it is arc consistent exactly 
when for each combination of values for k — 1 of the variables, there is a 
value for the kth which satisfies R j. For binary relations, this constraint 
may be stated formally as: 

VX E D, 3y E Dk R j (x, y). 

Given a constraint network, we can enforce node consistency by re-
stricting the domain of each variable so as to satisfy the unary relations. 
In our puzzle above, the fifth, sixth, and seventh clues can be viewed 
as unary relationships on the variables animals, talker, and pianist, 
restricting their ranges to be 

animals E harpo,chico; talker E groucho,chico; pianist E chico; 

Arc consistency can be enforced by further restricting the ranges of 
variables. That is, if a variable v, participating in relationship R, has a 
value V which is not consistent with the possible values for the other 
variables which participate in R„ then V must be removed from the 
domain of v„ In our example, the first clue is equivalent to three bi-
nary relations on the variables pianist, harpist, and talker which 
enforce mutual exclusion between their values. To make the relation be-
tween pianist and harpist consistent we must remove chico from the 
domain of harpist, since the only possible value for pianist is now 
chico. Similarly, chico must be removed from the domain of harpist 
to make the relation between pianist and harpist arc consistent. After 
these restrictions, the domains become: 

pianist E chico; talker E groucho; harpist E groucho, harpo 



651 	 Symbolic Relaxation Systems 

To make the relationship between talker and harpist arc consistent, 
we must remove groucho from the domain of harpist, since groucho 
is now the only consistent value for talker. This leaves harpo as the 
only consistent value for harpist. 

This example illustrates the power of symbolic relaxation: by simple, 
local operations, we are able to remove many possible solutions. If we 
started a standard backtracking search to find all consistent combina-
tions of bindings to these six variables, we would search (in the worst 
case) 36, or 729 combinations. Using the results of the analysis so far, a 
backtracking search would only have to examine at most 27 more com-
binations. And sometimes (as in this example) arc consistency suffices to 
yield a unique solution, and no backtracking search is required at all. 

As our examples later in this chapter illustrate, arc consistency is sur-
prisingly powerful. It can also be enforced in linear time, making it quite 
efficient. As usual, efficiency is gained at the expense of completeness. In 
particular, a network being arc consistent does not even guarantee that a 
consistent solution exists, unless it produces a solution. (Conversely, if a 
network is not arc consistent then it has no consistent solution.) 

Can a consistency-based formulation be generalized to gain complete-
ness? Yes, but at the usual cost. The notion of k-consistency means that 
for any collection of k — 1 variables which satisfy all the constraints on 
them, any kth variable also can be bound such that the constraints on all 
k variables are satisfied. If a network contains n variables, then enforcing 
n-consistency yields a network that can be solved without backtracking. 
Unfortunately, the cost of enforcing k-consistency rises exponentially 
with increasing k. In practice, the best computational trade-off appears 
to be the combination of arc consistency followed by backtracking search 
[7, 8]. 

18.2 Constraint networks and finite CSPs 

Many AI problems have aspects which can be viewed as finite constraint 
satisfaction problems. Recognizing them as such is useful for two rea-
sons. First, complexity bounds can be applied to better analyze how well 
a problem solver can do. Second, there are simplified knowledge models 
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and algorithms that can often be applied in such circumstances that lead 
to greater efficiency. 

When does it make sense to cast a problem as a constraint network to 
be solved via symbolic relaxation? Two properties are important: 

1. Fixed choices: The elements of each known choice set can be fully 
specified in advance. 

2. Fixed choice sets: The set of choice sets itself can be fully specified in 
advance. 

Having fixed choices means we can focus on reasoning by exclusion. Hav-
ing fixed choice sets means we can use local knowledge and procedure 
models. In fact, we can adapt the nomenclature of constraint networks 
from Chapter 15. The variables of the CSP become cells, and the relation-
ships are expressed as constraints. The set of constraints and cells that 
models a problem is called a constraint network. How these models differ 
is described next. 

A cell might hold the interpretations of a line or a junction in Blocks 
World scene interpretation, the relationship between two intervals in a 
symbolic temporal logic, or the identity of the murderer in a drawing-
room mystery. Each cell has a domain, consisting of a finite set of poten-
tial values. The values for a line might be its possible physical interpre-
tations, the values for the relationship between two temporal intervals 
might include Bef ore, After, and During, and the values for a role in 
a drawing-room mystery might be the named characters in the story. The 
value of a cell is the subset of possible values which are still possibilities. 
A cell is determined when it has exactly one value. By the end of a good 
drawing-room mystery, for example, the cell murderer is determined. A 
cell is overconstrained when the set of possible values becomes empty. 
Interpreting a "hard-boiled" detective novel as a drawing-room murder 
mystery can lead to such situations. 

As before, constraints represent relationships between cells. Examples 
of constraints include the participation of a set of lines in a junction, 
the transitivity relationship between related pairs of temporal intervals, 
and the convention that neither the detective nor the murder victim are 
the murderer. Every constraint connects a fixed set of cells. These cells 
are the parts of the constraint. Unlike the previous constraint model, 



653 	 Symbolic Relaxation Systems 

constraints in this model are never hierarchial—all their parts must be 
cells. 

Now that we have our knowledge model specified, let us define the 
procedure model. There are two operations on cells: 

exclude Takes two arguments, a cell and a value. Its effect is to remove 
that value from the list of possible values for that cell. 

pick Takes two arguments, a cell and a value. Its effect is to force the 
given cell to have the given value. 

Each constraint has an associated update procedure. The job of an update 
procedure is to enforce the semantics of the constraint, by seeing if the 
current possible values for its cells can be further restricted. There is 
only one operation on constraints: 

update Takes a constraint as its argument. Its effect is to run the con-
straint's update procedure. 

A constraint is updated whenever the value of one of its cells changes. 
We place no restrictions on how update procedures operate, except the 
following: 

1. Each update procedure terminates in finite time. 

2. The only information in the network an update procedure is allowed 
to draw upon are the values of the cells which are the parts of its 
associated constraint. 

3. All effects on the constraint network occur through requests for ex-
clude and pick operations. 

4. Update procedures are deterministic; that is, given the same values 
for a constraint's cells, the update procedure always generates the 
same set of exclude and pick requests. 

These operations are combined to enforce arc consistency as follows: 
When a constraint network is created, each constraint is queued for up-
dating. Any exclude or pick operations suggested by a constraint are 
queued separately. The queue of cell operations is serviced with higher 
priority than the queue of constraint updates, since the more tightly re-
stricted cells are, the more information each constraint update is likely 
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to yield. Any change in a cell's value results in the constraints of which it 
is a part being requeued. 

The algorithm just sketched is the symbolic relaxation method we im-
plement below. Once started, it continues until either some cell becomes 
overconstrained or the queues become empty. Assuming the constraints 
are implemented as defined above, it must terminate. Why? An update 
operation can only lead to other updates if at least one cell loses at least 
one value, and we presume there are only a finite number of cells and 
values. A quiescent network can either be determined, meaning that ev-
ery cell is determined, or underdetermined, if any cell is not determined. 
An underdetermined network can be further constrained by an external 
source (either the user or another module) picking or excluding some cell 
values. A CSP is solved when the network is determined. Each set of val-
ues which determines the network is a solution to the problem. 

Sometimes an entire task can be cast as a CSP, but such circumstances 
are relatively rare. Typically it makes more sense to decompose a com-
plex task into subproblems, some of which can naturally be formulated 
as CSPs (e.g., providing a restricted set of temporal inferences within a 
planner). In these cases symbolic relaxation provides a filter that can sig-
nificantly speed up additional searches. This is yet another example of 
the divide-and-conquer approach to designing problem solvers. 

18.3 The WALTZER constraint engine 

This section describes a general-purpose symbolic relaxation engine, 
called WALTZER in honor of David Waltz, who pioneered this class of 
algorithms. The code described here is waltzer. lisp in the listings. 
It is divided into three major sections: constructing constraint networks, 
propagation, and interrogatives. 

18.3.1 Datastructures and initialization 

WALTZER uses three main datastructures: network, cell, and con-
straint, which implement constraint networks, cells, and constraints, 
respectively. The parts of a network constraint are: 

title String for printing. 
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cells Alist linking cells to their names. 
constraints Alist linking constraints to their names. 
name-test Procedure to use in looking up names. 
equality-test Procedure for comparing cell values. 
cell-queue Queue of operations on cells. 
constraint-queue Queue of constraints to update. 
timestamp Global clock, useful in explanations. 
event-list List of constraint updates, also useful in explanations. 
debug? Controls printing of information about internal operations. 
status One of : NEW, : QUIESCENT, : IN-PROGRESS, 
:OVERCONSTRAINED. 
contradiction-reason If non-nil, a cell currently overconstrained. 
contradiction-hook Procedure to call when overconstrained. 
plist Cache for storing miscellaneous information about the network. 

The procedure create-network builds constraint networks. The 
name-test and equality-test fields are provided to facilitate domain-
specific naming conventions and allow flexibility in defining the domains 
of cells. The procedure contradiction-hook provides a signaling 
mechanism that external systems can use to receive notification of prob-
lems. 

Cells have the following properties: 

name Name used for indexing. 
network The constraint network it belongs to. 
value Current set of consistent values. 
constraints Set of constraints it participates in. 
possible-values Domain of the cell. 
out-reasons Alist of reasons for each value excluded from the do-
main. 
plist Cache for miscellaneous information about it. 

The list of out-reasons provides a dependency record. If the entry 
for a value is : IN, it is believed to be consistent. Otherwise, the en-
try is a pair consisting of the constraint responsible for excluding the 
value and a time stamp indicating when in the propagation sequence 
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the exclusion took place. As with antecedent constraint languages, a 
general-purpose TMS would not be appropriate for symbolic relaxation. 
In pattern-directed systems, the dependency network constructed by the 
rules is the only long-term expression of the relationships between facts. 
A constraint network itself plays that role, so the caching provided by 
the dependency network would be redundant. There is another reason as 
well: constructing reasonable and efficient justifications for this style of 
reasoning by exclusion is quite tricky (see Exercise 2). 

Cells are created by the procedure build-cell, which expects a name, 
network, and list of values constituting the domain of that cell. How 
constraints are built depends on the specifics of the domain, so the pro-
cedure add-constraint-cell is provided for use by constraint con-
structors to ensure that the cell is updated appropriately. 

Constraints have the following properties: 

name Name used for indexing. 

network Constraint network it belongs to. 

parts Cells the constraint relates. 

update-procedure Procedure to call to update it. 

queued? If non-nil, already queued. 

plist Cache for miscellaneous properties. 

We place no restrictions on the format of the parts field of the con-
straint, so that domain-specific constructors can organize it as desired. 
We use the field update-procedure to hold the domain-specific proce-
dure for accomplishing that constraint's update. 

When a network is first built, it contains neither cells nor con-
straints. We assume external procedures call build-cell and build-
constraint as necessary to create the constituents of the network. Since 
constraints do not hold changeable state aside from their cells in this 
model, clear-network simply initializes each cell, clears the event list, 
and zeros the time stamp. clear-cell refreshes the cell's value and 
out-reasons fields from its list of possible values. 

Often, solving a network requires backtracking. WALTZER supports 
backtracking by caching on each cell's property list a stack of previous 
states. This is indicated by the property : STACK. Each entry on : STACK 
consists of a copy of the value and out-reasons for the cell. The pro- 
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cedure push-network causes each cell to push its state onto its local 
stack, and caches the network's current time stamp and event list under 
its own : STACK property. The procedure pop-network causes every cell 
to restore its state and restores the previous time stamp and event list. 

18.3.2 The relaxation algorithm: Implementation 

We begin with the operations on cells. The procedures are 

(exclude (cell) (value) (informant)) 
(pick (cell) (value) (informant)) 

exclude rules out (value) as a possibility for (cell), citing the constraint 
(informant) as the source of this decision. Similarly, pick forces (value) 
to be the only possibility for (cell). Providing a symbol as the informant 
(e.g., the default : USER) allows the same procedures to be used as in-
terfaces to external systems. exclude first checks to see if the value is 
still believed as a possibility, by fetching its entry on cell-out-reasons 
and testing whether : IN is listed as its state. If so, it starts the actual 
exclusion process. The first step is to update the cell-out-reasons en-
try, setting it to be the pair of the informant and network time stamp. 
This information aids in debugging and explanation. Second, the value is 
deleted from the list of possible values for the cell (i.e., cell-value). If 
that was the last possibility, signal-contradiction is called to mark 
the event. Finally, the constraints that use the newly restricted cell are 
queued to see if yet more restrictions can be applied. 

pick operates via exclusion. That is, assuming the value selected is 
still in the running (as detected by :IN in its entry within the cell-
out-reasons alist), pick simply calls exclude on every other value for 
that cell. Should the selected value have been ruled out for some reason, 
signal-contradiction is called to mark the event. 

The procedure update is an internal procedure which runs the update 
procedure associated with a constraint. Since we treat constraint update 
procedures as black boxes, we call constraint-update-procedure on 
the constraint itself. This gives the procedure full access to any informa-
tion stored in constraint-parts or constraint-plist. 

Constraint update procedures should not call pick and exclude di-
rectly. Instead, the procedure queue-cell is provided which constructs 
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the appropriate call to exclude or pick, placing it on the network's 
queue for cells. 

The internal procedure fire-constraints services a constraint net-
work's queues. It first checks to see whether the network is overcon-
strained and immediately halts if it is so. The reason is that an overcon-
strained cell will tend to wipe out the values for any cells connected to 
it, since the constraints attached to it cannot be satisfied. This is one rea-
son why cell updates are queued rather than allowing constraint update 
procedures to directly call exclude and pick. Ideally one might insist 
that constraint update procedures avoid operating when their cells are 
overconstrained, but centralizing this test provides an additional level of 
safety. 

If the network is not overconstrained, fire-constraints proceeds 
to empty the queues. It performs all cell updates before any constraint 
updates to ensure that the full consequences of each constraint are 
recorded before the next constraint is used. The global time stamp is in-
cremented with each constraint update, since these are the major events 
in the system. When all the queues are empty, the network's status is set 
to : QUIESCENT. The network status : IN-PROGRESS indicates that there 
are still things to do on the queue; this flag is handy for detecting when 
a non-local exit has occurred. 

Since cells can participate in multiple constraints, queue-constraint 
checks the constraint-queued? flag before doing anything, to avoid 
queuing something twice. (In correctly written update procedures exe-
cuting a constraint redundantly will not cause errors, but it does waste 
time.) 

The interface procedure check-constraints starts the whole process 
going by queueing all the constraints and running the network (by call-
ing fire-constraints) until it becomes quiescent or a contradiction is 
uncovered. 

signal-contradiction sets up the network for contradiction han-
dling and calls the contradiction handler associated with the network. 
It starts by updating the network's status field and caches the overcon-
strained cell in the network's contradiction-reason field. A non-nil 
value in network-contradiction-hook is presumed to be a procedure 
for handling contradictions, which is executed with the constraint net-
work itself as its sole argument. 
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18.3.3 Additional interface procedures 

The procedures lookup-cell and lookup-constraint retrieve a 
named cell or constraint from a network. 

The procedures what-are, determined?, and to-plunk interrogate 
the state of a constraint network. what-are prints the status of the 
network and the values remaining for each of its cells. determined? 
returns non-nil if the network has settled into a stable configuration 
where every cell has a unique value. to-plunk returns a list of cells 
which are not yet fully constrained. 

The procedures what-is, known?, and value interrogate the state of 
a given cell. what-is prints the cell's remaining possible values. known? 
returns non-nil if the cell is determined (i.e., has exactly one possible 
value), and value returns that value. 

Finally, the listing of WALTZER ends with a simple depth-first search 
routine, search-network. It takes two arguments: a procedure to exe-
cute when a consistent solution has been found, and a procedure to call 
whenever the network has become contradictory. The local procedure 
search-thru-plunkable-cells does the actual work. It is called with 
a list of underconstrained cells (found via the call to to-plunk) and a 
string. The string is for printing if the debugging flag is on, so that the 
depth in the search will be apparent. 

The structure of search-thru-plunkable-cells is very similar to 
earlier search procedures. It starts by seeing if the network is overcon-
strained. If it is, the contradiction procedure given to search-network 
is executed. Next it checks to see if the network is fully determined. If 
it is, the procedure for consistent solutions (consistent-proc) is ex-
ecuted. In both of these cases, search-thru-plunkable-cells sim-
ply returns after executing the appropriate procedure because any back-
tracking is presumed to be handled by its caller. The third cond clause 
is an error check: given that search-thru-plunkable-cells is always 
called with the entire list of underconstrained cells, and each successive 
call selects a value for one of the cells, then the only way for the list of 
cells to be empty is for the network to be overconstrained or determined. 
Finally, it iterates over each value for the first underconstrained cell, try-
ing each value in turn. It does this by saving the network state (via push- 
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network), selecting the current value (via pick), running the network (via 
fire-constraints), and recursing. No matter what the outcome, pop-
network is executed to restore the network to its previous state so that 
the next value may be tried. 

A simple example of how search-network can be used is provided 
by show-search, which uses say-solution and say-contradiction 
to display the progress and results of a search. 

18.4 Example: Scene labeling 

Vision is an extremely complex problem. It has been studied for hun-
dreds of years by psychologists, philosophers, and other intellectuals. 
More recently, understanding vision has been a major focus of the com-
putational models formulated in artificial intelligence and cognitive sci-
ence. Nevertheless, the problem of how we come to know the world 
through our senses still retains an air of mystery. 

As our understanding of vision grows, our perspectives on it change. 
For example, a popular decomposition in the late 1960s and early 1970s 
divided the problem of monocular vision into line finding and scene anal-
ysis. Line finding took as input an array of intensity data and found "sig-
nificant" discontinuities, producing a result something like a line drawing 
of the objects in the visual scene. Scene analysis interpreted line draw-
ings in terms of three-dimensional objects, dividing the lines and vertices 
into collections representing distinct objects. The responsibility for the 
signal-processing aspects resided in the line finders, and the responsibil-
ity for object semantics resided in the scene analysis module. 

Something like this decomposition is still common in vision research 
today, since it seems that the nature of the physical world provides 
the dominant constraints on the signal-processing aspects of vision [10], 
while the uses to which vision is put provide the dominant constraints 
on semantic interpretations [3]. However, our example in this section is 
drawn from a simpler time. Consider the vision version of the Blocks 
World, where scenes consist entirely of a collection of toy blocks on a 
uniform surface. While camera angles can vary, we assume that the scene 
is lit so that there are no shadows, and that the blocks are perfect matte 
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surfaces,' and we ignore clues from texture, stereo, and motion. These 
were common simplifying assumptions in the early 1970s. Furthermore, 
we will assume that our line finder produces "perfect" data—that is, 
descriptions delivered by the line finder consist entirely of connected 
straight lines and vertices, with no isolated blotches, no gaps in the lines, 
etc. 

A theme of scene analysis during that period was identifying local 
properties of the scene which provided hints about the appropriate 
three-dimensional interpretation of the scene, and then combining these 
hints into a consistent global account which decomposed the regions of 
the image into objects. Guzman identified several local cues based on 
configural properties of vertices. Other researchers, including Huffman, 
Clowes, and Waltz, extended and systematized this approach into intri-
cate and massive catalogs of knowledge that included aspects such as 
detailed geometry and lighting information. Delving into the details of 
these theories would take us too far afield, so we must content ourselves 
with a simplification, due to Winston [16]. 

Suppose we limit ourselves not just to blocks, but further assume tri-
hedral vertices, that is, that no more than three physical surfaces ever 
come together at a point. Recall also that we are assuming uniform light-
ing, so there are no shadows, and that all surfaces are matte, ruling out 
highlights. Consider what a line in the scene might mean under these cir-
cumstances. It could be the boundary of an object. If it is, we still have 
to figure out which side of the line corresponds to the object and which 
side belongs to the background (i.e., which part is "figure" and which part 
"ground.") Another possible interpretation for the line is that it indicates 
a discontinuity between distinct surfaces of the same object. In that case 
the discontinuity could be either convex or concave. Each of these pos-
sible interpretations can be given a distinct label, as shown in Figure 4. 
Notice that the <, > labels give us the ability to identify a collection of 
lines as an object, by traversing the boundary and including all edges 
"inside" it. This means our representation is suitable for our needs, since 
finding objects is exactly what we wanted to do. But how do we compute 
these interpretations? 

1. That is, there are no highlights or shiny parts. A layer or two of titanium dioxide 
paint implements this simplification quite nicely. 
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Convex edge 

Concave edge 

Boundary, with "stuff" 
on the right 

Figure 18.1 Semantics of line labels 

The approach taken by Waltz was to analyze the physics of the domain, 
and construct a catalog of consistent possible interpretations for each 
type of junction. This catalog could then be used to interpret particu-
lar scenes by symbolic relaxation, using the fact that a line participates 
in two junctions to provide mutual constraint. (An important aspect of 
Waltz's work was that he tackled a much more complete version of the 
Blocks World, including cracks and shadows, but the simpler version 
suffices for our purposes.) Given the additional restrictions we have im-
posed, Figure 18.2, taken from [16], provides the appropriate junction 
catalog. 

How can we now encode this problem in WALTZER? Clearly, lines will 
be represented by cells, whose possible values are +, 	<, and >. Junc- 
tions, too, must be represented as cells. The possible values of a junction 
cell are the elements corresponding to that type of junction in the junc-
tion catalog. We then need a type of constraint that links the cell repre-
senting a junction to the cells representing the participating lines. With 
these issues in mind, let us turn to the scene . lisp listing. 

We begin by considering datastructures for scenes and junction cat-
alogs. A scene is a WALTZER constraint network, stored as the value 
of the global variable *scene*. The global variable *jlabel-table* 
holds the junction catalog, and *line-labels* is a constant represent-
ing the possible interpretations of lines. The variables *scene-file* 
and *jcatalog-file* point to default examples. A driving routine is 
provided by analyze-scene, which takes a file containing a scene and 
a file containing a junction catalog, loads them, and analyzes them. The 
analysis is done by interpret-scene, which operates WALTZER on the 
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Figure 18.2 A junction catalog for the simple Blocks World. This catalog 
graphically depicts the possible junctions and their interpretations for a sim-
plified Blocks World. (This figure is based on Figure 3-15, Page 55, of [16]). 

constraint network. The procedure show-scene is essentially a variant 
of what-are, exploiting knowledge about the order of cell definition to 
present the results of these networks in a more intuitive manner. 

The core of the junction catalog implementation is the j label struct. 
The type field refers to the geometric configuration of this junction. In 
our example vocabulary this field can be either Ell, Fork, Tee, or Ar-
row. The name field distinguishes different labels of the same type. We 
use integers for simplicity. The lines field describes the assignment of 
interpretations a catalog entry makes to its constituent lines. Each con-
stituent line is given a unique name, such as : LEFT, : RIGHT, or : BOTTOM. 
These names are used as keys in an alist, linking the line to the inter-
pretation forced by that junction label. The macro junction-labeling 
provides a simple way to enter elements of a junction catalog. Figure 18.3 
shows how our junction catalog can be encoded in this way. The proce-
dure read-junction-catalog assumes that the file it is given consists 
of calls to junction-labeling. It loads a new junction catalog by clear-
ing the existing one and evaluating the forms in the file one by one. 
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(junction-labeling Ell 1 :LEFT < :RIGHT <) 

(junction-labeling Ell 2 :LEFT > :RIGHT >) 
(junction-labeling Ell 3 :LEFT + :RIGHT >) 
(junction-labeling Ell 4 :LEFT > :RIGHT +) 
(junction-labeling Ell 5 :LEFT - :RIGHT <) 

(junction-labeling Ell 6 :LEFT < :RIGHT -) 

(junction-labeling Fork 1 :LEFT + :RIGHT + :BOTTOM +) 

(junction-labeling Fork 2 :LEFT - :RIGHT - :BOTTOM -) 

(junction-labeling Fork 3 :LEFT > :RIGHT > :BOTTOM -) 

(junction-labeling Fork 4 :LEFT - :RIGHT < :BOTTOM <) 

(junction-labeling Fork 5 :LEFT < :RIGHT - :BOTTOM >) 

(junction-labeling Tee 1 :LEFT < :RIGHT < :BOTTOM +) 

(junction-labeling Tee 2 :LEFT < :RIGHT < :BOTTOM -) 

(junction-labeling Tee 3 :LEFT < :RIGHT < :BOTTOM <) 

(junction-labeling Tee 4 :LEFT < :RIGHT < :BOTTOM >) 

(junction-labeling Arrow 1 :LEFT > :RIGHT > :BOTTOM +) 

(junction-labeling Arrow 2 :LEFT - :RIGHT - :BOTTOM +) 

(junction-labeling Arrow 3 :LEFT + :RIGHT + :BOTTOM -) 

Figure 18.3 Implementing a junction catalog (j catalog. lisp) 

Next in the listing is the code for building a particular scene. As usual, 
we use macros to define a syntax that insulates users from the internals 
of the implementation. 

The Scene macro creates a WALTZER constraint network. Any addi-
tional arguments are passed along under the assumption that they are 
keyword-value pairs recognized by create-network. 

The Line macro creates a cell for a line in the scene, and the Junction 
macro creates a cell for a junction in the scene. We restrict line and 
junction names to be symbols, in order to simplify interacting with the 
program. The connections between lines and junctions are expressed via 
additional arguments to the Junction macro. The additional arguments 
are alternating keyword-value pairs, where the keywords are the named 
roles for the lines found in that type of junction. A constraint is created 
for each junction, with constraint-parts setfed as needed and using 
add-constraint-cell to install the appropriate backpointers. 

The only subtlety concerns parse-junction-parts, which checks the 
correctness of the format of a list of constituent lines. Such tests are 
necessary both in defining a junction catalog (so a vision catalog-builder 
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won't include a sequence like : LEFT : RIGHT) and in reading a descrip-
tion of a specific junction. Although the actions to be taken for these 
purposes are different, the underlying logic of the traversal is the same. 
Consequently, we use a third argument, to-do, to provide an appropriate 
procedure to executed for each part name and role found. 

Since constraints are associated with junctions, we name the constraint 
update procedure update- junct ion. We must do two things to correctly 
enforce the semantics of labels. First, we must see what labels are still 
possible for the junction based on the labels for its constituent lines. 
For example, if the : BOTTOM line of a FORK can only be either + or -
, two possible labelings out of five for that junction can be ruled out 
as inconsistent. Once the set of consistent junction labels is computed, 
we can reverse this process to determine the implications of the new 
restricted set of junction labels for the labels of the constituent lines. 
In our FORK example, for instance, ruling out > and < for : BOTTOM means 
the only possible labels for : LEFT and : RIGHT are +, -, and > (see again 
Figure 18.3). While no more work can be done within this constraint 
(since we already know that the junction labels are consistent with the 
existing line labels), WALTZER queues the constraints corresponding to 
the other junction associated with each constituent line. This queuing 
ensures that the effects of these constraints will propagate. 

The propagation step is carried out in update-junction as follows. 
The outermost do loops through the junction labels, ascertaining which 
are consistent. This test is made using check-junction-label, which 
returns T if the label is inconsistent. A call to queue-cell causes the 
failed label to be removed when the constraint is finished. Should the 
label be consistent, we cache the interpretations it assigns to the con-
stituent lines in possible-line-labels. This variable accumulates the 
legal possibilities for each constituent line, and is used in the dolist in 
the exit form of the outermost do to exclude line labels which cannot sat-
isfy the new set of junction labels. For debugging it is sometimes handy 
to examine the junction constraints in detail; show-junction and show-
junctions simplify this. 

The listings contain two examples, cube . lisp and wedge . lisp. 
Drawings corresponding to these descriptions are shown in Figure 18.4. 
Let us see how WALTZER does on these examples. 

Figure 18.5 illustrates the results of the cube search. The drawing 
on the left shows what labelings are possible after symbolic relaxation. 
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Figure 18.4 Two scene analysis examples. The scene described in cube .lisp 
is depicted on the left, and the scene described in wedge.lisp is depicted on 
the right. 

Figure 18.5 Analyzing the cube. On the left is the set of labels as pruned 
via symbolic relaxation, on the right is the sole consistent solution to the 
network, as found by a backtracking search on the pruned network. One 
additional choice sufficed to completely constrain the network. 
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Figure 18.6 Analysis of the Wedge scene. The top drawing shows the pos-
sible labels computed via symbolic relaxation, the bottom shows the single 
consistent labeling found via backtracking search on the constrained net-
work. 

Local propagation has ruled out roughly half of the possible solutions, 
it seems. However, when the network is searched, only one consistent 
solution is found, namely the labeling shown on the right of Figure 18.5. 
A single plunk suffices to completely constrain the network. 

The analysis for the wedge scene (wedge . lisp) is illustrated in Fig-
ure 18.6. Like the cube, symbolic relaxation does not provide a complete 
solution, but a single plunk suffices. 
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18.5 Example: Temporal reasoning 

Serious AI research into temporal reasoning did not begin until the 
1980s. One of the pioneers in this area was James Allen, whose interval-
based temporal logic [1, 2] has had significant impact. Allen pointed 
out several important aspects of temporal reasoning. First, conclusions 
about temporal ordering often are drawn with very little information. For 
instance, if you knew that if Fred left the scene of a crime before Ricky 
arrived, and you also knew that Ricky and Ethel arrived together, then 
you would conclude that Fred also left before Ethel arrived. This obvious 
inference does not require specific dates, times, numerical estimates of 
duration, or other more detailed information. It follows solely from laws 
constraining the relationships between the intervals corresponding to 
the events "Fred left," "Ricky arrived," and "Ethel arrived." Allen identi-
fied a vocabulary of relationships that could hold between intervals and 
a set of laws expressing constraints between them. This section shows 
how WALTZER can be used to implement this logic of time. 

When used as part of a larger inferential system, intervals are associ-
ated with facts or events. For our purposes, intervals are simply atomic 
entities. The relational vocabulary in Allen's logic consists of seven tem-
poral relationships and their inverses: 

bef ore (A ,B) A's entire temporal extent is earlier than B's. The inverse 
of before is after. 
during (A, B) A's temporal extent lies completely within B's. The in-
verse of during is contains. 
equal (A ,B) A's temporal extent is exactly the same as B's. equal is its 
own inverse. 
overlaps (A ,B) B begins sometime in the middle of A, and ends some-
time after A does. The inverse of overlaps is overlapped-by. 

meets (A ,B) A ends just before B begins, with no time "in between." The 
inverse of meets is met-by. 

starts (A,B) A and B start at exactly the same time. The inverse of 
starts is started-by. 
f inishes (A ,B) A and B end at exactly the same time. The inverse of 
finishes is finished-by. 
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Before(X,Y) 

Equal(X,Y) 

Meet(X,Y) 

Overlaps(X,Y) 

During(X,Y) 

Starts(X,Y) 

Finishes(X,Y) 

Y  
X 

Y 
x
I 

Figure 18.7 Allen's temporal logic, illustrated 

These relationships are depicted graphically in Figure 18.7. They are mu-
tually exclusive and exhaustive. In what follows it will prove convenient 
to introduce concise abbreviations for these relationships. From now on 
we use Allen's abbreviations, namely 

< = before 

d = during 

== equal 

o = overlaps 

m = meets 

s = starts 

f = finishes  

>= after 

di = contains 

of = overlapped-by 

mi = met-by 

si = started-by 

fi = finished-by 

Allen focused on cases involving partial information. Often, only dis-
junctive information is known. That is, we may know that only a sub-
set of all of the possible relationships between two intervals may hold, 
but not know exactly which one. For simplicity in presentation, we use 
Allen's compact infix notation for stating such disjunctions. For instance, 

A { < , > } B 
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indicates that [Bef ore(A,B) v After(A,B)] holds. If we know nothing 
about the relationship between A and B, we would write 

A { <,>,d,di,=,o,oi,m,mi,stsi,f,fi } B 

Already one can begin to see how to cast this logic as a symbolic 
relaxation problem: each possible relationship between pairs of intervals 
is a cell, whose domain is the set of legal temporal relationships. What 
are the constraints? 

The example at the beginning of this section used the property of tran-
sitivity. Given that we knew something about the relationship between 
interval A and interval B and something about the relationship between 
B and another interval C, we could use those facts to restrict the possi-
ble temporal relationships between A and C. Allen derived a table that 
expresses, for each possible relationship between two pairs of intervals 
satisfying this pattern, the inferences one may draw through transitivity 
(see allen2.1isp). For example, if A meets B and B meets C, then clearly 
A is before B. On the other hand, if B is during C, then A either over-
laps, starts, or is during C. Some combinations of relationships are more 
constraining than others. 

The transitivity table can be used to restrict the possible relations be- 
tween two intervals A, C as follows. For any intervals II, 12, let R 	, 12) 
stand for the set of possible relationships between them. If we knew 
nothing about the relationship between I I  and 12  then 

R(11, 12) = {<,>,d,di,=,o,oi,m,mi,s,si,f,fi} 

Suppose we have R (A ,B), R(B,C), and R (A ,C). Whatever we currently 
know about the relationship between A and C, it must be the case that 
it is consistent with the possibilities implied by transitivity. The possi-
bilities for any particular pair of relationships drawn from R (A ,B) and 
R(B,C) can be found by using the transitivity table. This means the en-
tire set of possibilities can be found by taking the union of the transi-
tivity results for each pair in the cross product of R (A ,B) and R(B,C). 
Taking the intersection of this set with our previous value of Ft (A ,C) pro-
vides a new value for R (A ,C) that respects the constraints imposed by 
transitivity. 

The simplest implementation of this scheme has some scary combina-
torics. Suppose we have N intervals in our knowledge base. Potentially 
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every interval could be related to every other interval, yielding N2  inter-
vals. Then, since each triple of intervals could in principle yield some 
constraints, we would end up installing N3  constraints. If N is very large, 
such as the set of named times distinguished in a person's life, this 
scheme clearly breaks down. Allen proposed using reference intervals 
to structure one's times and thus reduce combinatorics. A reference in-
terval is an interval which spans some substantial number of connected 
events, such as "being in college" or "living in Barstow." Reference inter-
vals provide an index. Relationships between intervals stored under the 
same reference interval could be introduced at will, while relationships 
between intervals belonging to different reference intervals would be 
minimized. The challenge with reference intervals is to maintain expres-
siveness while preventing relationships from "leaking" between them. At 
this writing, ideas like reference intervals are still the subject of active 
research. 

18.5.1 Design for a temporal database 

A temporal database is a reasoning utility that maintains relationships 
between intervals. We can cast the algorithm above as a constraint satis-
faction problem and thus provide a foundation for temporal databases. 
Cells in the constraint network represent the relationships between in-
tervals. Constraints introduced for each "triangle" of relationships in the 
network enforce the consequences of transitivity. WALTZER's enforce-
ment of arc consistency provides a good trade-off of efficiency versus 
completeness. 

WALTZER provides most of the infrastructure we need to build a tem-
poral database. We still need representations for intervals themselves, 
methods for incrementally building a constraint network, and proce-
dures for constraint updating. Here we consider their design, leaving 
their implementation to the next section. 

Typically an interval of time is distinguished from the rest of the con-
tinuum because it marks the temporal span of some event, object, or 
process. Two examples are the life span of the Golden Gate Bridge and 
the time it takes to read this sentence. The criteria for individuating in-
tervals does not matter for our purposes, so it shall be left unspecified. 
To keep the design simple, the only non-temporal information specified 
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about an interval will be its name. Some reference mechanism must be 
provided to make intervals accessible to external systems and to link 
them to a WALTZER network. We assume this job is done by the temporal 
database itself. 

Since the temporal logic constrains relationships between intervals, 
some manner of asserting and recording such relationships is needed. 
Relating two intervals may also cause the temporal database to add new 
constraints, since new triangles may be formed. To keep the design sim-
ple, we install constraints for every triple of intervals that are mutually 
related and do not provide any representation for reference intervals. 

A major job of the temporal database is setting up and running the 
WALTZER constraint network. As noted above, each relationship between 
intervals is represented in the constraint network as a cell, and each 
triple of relationships over which transitivity holds must have an asso-
ciated constraint. Whenever information about the relationship between 
two intervals is given to the temporal database, it must: 

1. Extend the network to include a cell for that relationship if it does 
not already exist. 

2. Add the new information to whatever constraints have already been 
placed on that relationship. 

3. Propagate this new constraint through the network to restrict other 
temporal relationships. 

Previously determined restrictions must be respected for correct incre-
mental operation. For instance, asserting that "Shakespeare did not live 
during the pre-Cambrian era" (i.e., every relationship except d is possible) 
adds no information if we already know that Shakespeare lived after the 
pre-Cambrian era. 

Here is the outline of the interface we shall use. 

create-timedb Creates a new temporal database. 

interval Creates a new interval within the current temporal database. 

tassert Places restrictions on the possible relationships between two 
intervals. 

what-time Describes the possible relationships between two intervals. 

We turn to the implementation to examine the details. 
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18.5.2 Implementation of a temporal database 

The system consists of three files: 

timedb. lisp Temporal database and definitions. 

alien. lisp Definition of Allen's transitivity table. 

ttest . lisp Simple test cases. 

Since the transitivity table and test cases are straightforward, we only 
describe t imedb . lisp in detail. 

Temporal databases are implemented via the timedb struct. Many of 
this struct's fields should now be very familiar. It uses the usual method 
of introducing a global variable (in this case, *timedb*) as a register for 
simplifying reference to a current temporal database, with in-timedb 
and with-timedb providing global and local methods for changing what 
database is in use. The intervals field stores the intervals for the data-
base, with interval-id providing a unique index for each such inter-
val. The relations field holds the possible temporal relationships. This 
is made an explicit field of temporal databases rather than a global or a 
constant to support experimenting with alternative temporal vocabular-
ies (see Exercise 7). The transitivity-table field holds tables in the 
form of nested alists. The network field holds the WALTZER constraint 
network associated with the database. 

The interval struct provides the internal representation of intervals. 
The name field holds the name for this interval used by external systems. 
For simplicity, we assume that intervals are given names whose identity 
can be established by eql (i.e., typically symbols). To avoid the redun-
dancy of building distinct cells for R (A ,B) and R(B , A), we impose a total 
ordering on intervals, and only create a relationship between two inter-
vals in the canonical order. The procedure interval-order calculates 
the ordering of two intervals based on the information in the interval's 
index field. The timedb field points to the temporal database the inter-
val is part of. The relations field of an interval is an index of relation-
ships with other intervals. This index is an alist whose keys are other 
intervals and whose values are the constraint network cells correspond-
ing to their relationship. 
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Relationships between intervals are accessed via lookup-trel, which 
uses assoc on the interval-relations fields. The virtual? argu-
ment forces the creation of a relationship if there isn't one already. New 
temporal relationships are created via make-trel, which builds a cell, 
indexes it under the interval-relations fields for its constituent in-
tervals, and calls f ind-transitive-relations to figure out what new 
constraints, if any, should be created as a result. 

f ind-trans it ive-relat ions begins by destructuring the cell's name 
to get the intervals of the newly created relationship. The dolist iter-
ates over each relationship involving the first interval to find candidate 
third intervals to complete a triangle. The candidates are then tested 
by assoc to see if they are related to the second interval. The dispatch 
based on interval order when creating a transitivity constraint is due to 
the constraint update procedure expecting its arguments in a particular 
order, that is, R (A ,B), R(B,C), R (A ,C). The actual constraint construc-
tion is carried out by build-transitive-constraint. 

update-trel-transitivity provides the update procedure for con-
straints. It first computes Possibles(A,C) via update-possible-
trel-values, and then finds what subset of R (A ,C) is consequently 
forbidden (through the set-difference call). An exclude operation is 
queued for each forbidden value, thus enforcing the constraint. update-
possible-trel-values is very simple, implementing the cross product 
by nested dolists and using lookup-transitive-trels to fetch the 
appropriate table entry. lookup-transitive-trels, in turn, consists 
of nested assocs. 

The rest of the file timedb. lisp is concerned with interfaces. The 
macros interval and tassert provide constructors. interval creates 
a new interval within the current temporal database with its given name. 
tassert specifies that two intervals should be viewed as related. If the 
third argument to tassert is not provided, every relationship is viewed 
as possible. Otherwise, the third argument is interpreted as the list of 
possible relationships for that pair of intervals. (This interface is not 
bulletproof; see Exercise 5.) 

The real work of tassert is carried out by the procedure temporal-
relations, which does the appropriate error checking and transactions 
with the constraint network. Any relationships not consistent with the 
possibilities provided are ruled out (via the exclude call), and the con- 
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sequences of these restrictions are propagated (via the call to fire-
constraints). 

The procedure what-time displays the possible relationships between 
two given intervals, and what-times summarizes the relationships for 
the whole temporal database. The subroutine make -r e 1 at ions-string 
provides the appropriate infix string for a list of relationships, allowing 
what-time (and hence what-times) to produce easily readable results. 

The end of timedb. lisp contains two macros for defining temporal 
logics. Both operate with respect to the current temporal database. (Re-
call that create-timedb takes a file as an argument; these macros are 
used to define the contents of such files.) The macro defTemporal-
Relation declares a symbol to be a temporal relationship. The macro 
t-transitivity defines an entry in a transitivity table. These macros 
substantially simplify entering large tables. 

The file ttest . lisp contains some test cases. 

18.6 Discussion 

We have seen that sometimes problems, or pieces of them, can be cast as 
constraint satisfaction problems. The CSP formulation provides an alter-
native perspective on characterizing reasoning tasks. This perspective is 
useful in two ways. First, by recognizing that a task can be characterized 
as a particular form of CSP we then have solid bounds on how hard it is. 
Second, in some cases we can identify computational schemes with ad-
vantageous power-efficiency trade-offs (e.g., the use of arc consistency) 
and use off-the-shelf systems as modules (e.g., WALTZER). 

There are limitations to this approach, however. Conclusions reached 
via arc consistency algorithms can be hard to explain, since chains of 
exclusion can be hard to follow (see Exercise 1). For most finite CSP tasks, 
the increased opacity is a small price to pay for the greatly reduced need 
for search. 

Casting subproblems as CSPs allows specialized systems like WALTZER 
to shoulder part of the computational burden, but there are engineering 
tradeoffs which must be carefully examined when making such hybrid 
systems. Adding new possible values or removing constraints, for in-
stance, typically requires reinitializing the entire network because of the 
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difficulty of maintaining detailed dependencies. In architectures for solv-
ing complex problems, such as scheduling systems, the increased design 
effort to integrate disparate subsystems generally pays off. 

18.7 Backpointers 

There is a rapidly growing literature on constraint satisfaction problems. 
[12] provides a good survey, while [6, 11] explore the connections be-
tween CSP and logic. [5] focuses on the use of intervals. [13] explores 
a generalization of the notion of CSP to cover problems where the col-
lection of relevant choice sets changes as a function of the choices that 
are made. Constraint satisfaction continues to be useful for scene analy-
sis, interested readers may find [4, 9, 15] useful starting points into the 
literature. 

18.8 Exercises 

	

1. 	** Often it is useful to understand why a specific value for a cell is 
ruled out or forced. Write a procedure explain-exclusion which 
generates a readable explanation of why a value was ruled out. In 
addition to taking as inputs a cell and a value, your procedure should 
also take an optional integer argument which limits how far back in 
the network's operation the explanation goes. 

	

2. 	Suppose you wanted to incorporate a JTMS into WALTZER in order 
to provide a more detailed trace of its operation. 

a. * * Propose a set of conventions for assertions and justifications 
on them that would accurately express WALTZER's operation. 

b. * * Analyze the efficiency of your proposal, in terms of the num-
ber of justifications required as a function of the size of the net-
work and the size of the domains of the cells. 

3. A WALTZER constraint network can be thought of as a scratch pad to 
be used by other reasoning processes. Sometimes alternate interpre-
tations must be explored in parallel. One way to do this is to create 
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duplicate constraint networks. Another way is to provide a facility 
for naming and saving states of the network. These saved states can 
be compared to facilitate the manipulation of alternate solutions. 

a. * Change WALTZER to enable saving states of the network under 
particular names. 

b. * Implement a procedure that compares two saved network 
states, indicating how they differ in a program-usable form. 

c. * * Implement a version of search-network that explores com-
pletions of a constraint network breadth first, and analyze its 
performance by comparing it to search-network on several ex-
amples. Which works better, and why? 

4. 	* * What do you expect to happen if the scene analysis system is 
given an impossible figure, such as the one below? What should hap-
pen? What actually happens? 

5. * The interface to the temporal database is not as robust as our 
earlier systems. Identify the major problems with interval and 
t assert, then write new versions that fix them. 

6. * * * One service a temporal database can provide is scheduling 
rules for execution when particular temporal conditions hold. For 
instance, a scheduling program might need to detect when two man-
ufacturing operations requiring the same piece of equipment might 
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overlap. Design and implement a system which allows users to spec-
ify rules to be executed when particular temporal conditions are sat-
isfied in a WALTZER temporal constraint network. 

7. * * Allen's logic, while very expressive, requires a large transitiv-
ity table. Suppose the relationships starts, finishes, and during 
were merged into one relationship, called within. What effect does 
this have on (a) the transitivity table and (b) the utility of the vocabu-
lary for reasoning? 

8. * * * There has been some progress on formalizing topology in ways 
analogous to Allen's formalization of time, particularly the work 
of Randell and Cohn [14]. Implement their spatial vocabulary using 
WALTZER, and test it on the examples from their papers. 

9. * * * * Design a system for reference intervals that scales to very 
large temporal databases. 
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19 	Some Frontiers 

In the rest of the book, we have taken you quite deeply into the art and 
science of building problem solvers. Problem solver design and construc-
tion is not a finished field, by any means. Each chapter has included 
signposts marking the borders of what is known in the areas that they 
cover. Here we take a more global view. This chapter highlights some is-
sues and challenges for the design of reasoning systems that we think 
are especially promising and important. 

19.1 Constraint logic programming 

Over the last few years ideas from declarative representation, constraint 
satisfaction and concurrency have come together to create the new sub-
discipline called Constraint Programming [21, 11, 23]. Constraint pro-
gramming incorporates pieces of many of the concepts we have dis-
cussed in this book. For example, the programming language CHIP [23] 
incorporates many of the best CSP techniques within a declarative frame-
work using backtracking to construct solutions. However, the ambition 
of constraint programming goes far beyond that of this book. Its ob-
jective is to provide a fundamentally new perspective on computation 
and what programming is and should be. This subdiscipline has be-
come an exciting new research area of world-wide interest. Over this 
decade we expect substantial cross-fertilization and collaboration among 
researchers developing problem solving techniques with Al and those de-
veloping constraint programming. 
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19.2 Scaling up 

Problems come in many shapes and sizes. The technologies described 
in this book have been extensively applied to problems with up to a few 
thousand facts. Many economically important and intellectually challeng-
ing problems lie in this range. But many interesting problems, such as 
designing, monitoring, or troubleshooting a large industrial plant, under-
standing a broad range of natural language, or building robots that can 
work effectively in relatively unconstrained environments will require 
harnessing much more knowledge. Ballpark estimates of the number of 
common sense facts a person knows range from 106  to 108  facts. Even 
with today's rapid progress in computer hardware, the raw memory and 
CPU capacity required for robust reasoning with such large knowledge 
bases seems daunting. Nevertheless, encouraging research now into un-
derstanding how to develop and use large knowledge bases seems like a 
wise investment, so that we may take advantage of new hardware capa-
bilities as they become available. 

Reasoning with such large knowledge bases raises many new chal-
lenges. For example, storage and indexing techniques that both permit 
the high capacities of today's database technologies and support effi-
cient inference must be developed. Even the definition of what is efficient 
changes as a function of scale: Linear processes like boolean constraint 
propagation may be fine for small databases, but only sublinear pro-
cesses will suffice for knowledge bases approaching the size of what any 
person on the street knows. Just as important is the discovery of tech-
niques for accumulating, organizing, and maintaining large knowledge 
bases. It is a chicken-and-egg problem; without large knowledge bases to 
experiment with, development of reasoning strategies is hindered, and 
without useful reasoning strategies, the incentive to build large knowl-
edge bases is diminished. 

An important long-range goal of artificial intelligence is the creation of 
knowledge bases that capture broad aspects of human knowledge as well 
as narrow, specialized information. The normal process of knowledge 
engineering used in building expert systems, while useful for many ap-
plications, has not led to much progress towards this goal. The reason is 
that most expert system knowledge bases are too tightly focused. An ex-
pert system designed to diagnose problems with a printer, for example, 
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has knowledge about diagnosis, printers in general, and the specific line 
of printers to be diagnosed tightly intertwined for efficient reasoning. 
But this means the same knowledge base is virtually useless for another 
task involving the same kind of printer, or for diagnosing a different kind 
of printer (c.f. [2]). Research in qualitative physics (e.g., Chapter 11) and 
model-based reasoning (e.g., Section 15.4.3 and Chapter 17) attempts to 
overcome this limitation by carefully distinguishing between the knowl-
edge and reasoning required for particular tasks from the knowledge of 
particular domains. Such research proceeds in two ways. It develops do-
main theories, which can be thought of as knowledge bases that encode 
knowledge of a particular domain independently of whatever reasoning 
task or specific system is to be modeled. It also formulates theories of, 
and algorithms for, reasoning tasks that can be used in many domains. 
Thus instead of facing N2  research problems (e.g., "diagnosis of analog 
electronic circuits," "monitoring of fluid/thermal systems", etc.), in this 
approach we only need to tackle 2 x N research problems (e.g., "diagno-
sis" "domain theory for fluid/thermal systems"). We believe this decom-
position is crucial for long-term enterprises such as the formalization of 
engineering problem solving [8]. 

The creation of large-scale knowledge bases, especially broad knowl-
edge bases and domain theories, is a challenging problem. There are 
many obstacles to such an enterprise: 

▪ Shifting foundations: Advances in representation and reasoning tech-
nology can make decisions based on an earlier state of the art seem 
unwise. Sometimes teams decide that it is better to start over than to 
try to convert existing knowledge bases. 

■ Lack of infrastructure: In part because of shifting foundations, there 
have been few tools or methodologies developed to help in the orga-
nization and accumulation of large, coherent knowledge bases. 

■ No respect: There is often little reward for developing domain the-
ories. Currently papers about them are rarely deemed publishable, 
and any activity beyond what is needed to make a current application 
(or demo) work is rarely seen as a good investment towards future 
progress. 

Despite the difficulties, these issues are receiving increasing attention 
in artificial intelligence. Some researchers are attempting to develop deep 
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knowledge bases for particular domains, such as botany [20], electrome-
chanical systems [22], and thermodynamics [8]. These projects tend to 
have a particulare suite of tasks in mind when developing their knowl-
edge bases, and use these tasks to guide their efforts. A different ap-
proach is taken by the the CYC project [13], which is a frontal assault 
at developing a broad, common sense knowledge base. The CYC group 
has built the largest knowledge base to date, and thus has been directly 
confronting issues of scale in crafting and maintaining knowledge bases. 
There are many lessons yet to be learned. 

19.3 Embedding 

Of necessity, this book has focused on problem-solving systems that 
can stand on their own, and many real-world tasks have this character. 
But many do not. Let us call an embedded problem solver one where a 
reasoning system is integrated as a module into a larger system. Some 
examples of embedded problem solvers include the temporal reasoning 
component of a factory scheduling system, the abductive component of 
a natural language understanding system which uses world knowledge 
to disambiguate phrases, and the domain expert subsystem of an intel-
ligent tutoring system. Embedded problem solvers can provide exciting 
capabilities for applications and fascinating technical challenges. 

Designing embedded problem solvers involves a number of constraints 
which were ignored in this book. Here are three that seem particularly 
important: 

■ Bounded-time response: Many applications involving embedded prob-
lem solvers require interaction with people or the physical world. 
Thus the ability to produce results within a pre-determined span of 
time becomes important, even if the results are partial. For example, 
it is rarely wise to spend five hours figuring out the perfect response 
to the question "How are you?" Bounded-time response allows better 
management of computational resources and helps ensure that the 
results of reasoning remain relevant to the system's goals. 

■ Interruptability: An embedded problem solver may have to postpone 
completion of a task, perhaps indefinitely, when new information ar-
rives or priorities change. For example, an intelligent tutoring system 
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which launches into long soliloquy while ignoring the student's ques-
tions will not be very successful. 

■ Articulateness: Dependency networks are an important tool in build-
ing problem solvers that can explain the reasons for their conclu-
sions. Dependency networks are not the whole story, however. De-
pendency networks can provide too much information when they 
contain implementation-specific details that are unnecessary for pur-
poses of the system, and can provide too little information when 
background knowledge that conclusions depend on are "compiled 
out" for efficiency. So although truth maintenance systems provide 
an excellent starting point for explanation generation, generally ad-
ditional work is needed to produce appropriate explanations. 

These issues are being addressed by the AI research community a in a 
variety of ways. For instance, bounded-time response and interruptability 
are key issues for work on blackboard systems [5], reactive systems [14, 
3], and any-time algorithms [4]. Articulateness is a focus of work on using 
Al techniques to aid human-computer interaction, especially with regard 
to explanation generation [18, 15] 

19.4 Integrated architectures 

The long-term scientific goal of artificial intelligence is to understand 
minds well enough to build them. Typically this has involved two kinds 
of research: Understanding the computational nature of particular ca-
pabilities that seem likely to be part of minds (e.g., vision, language, 
reasoning, learning), and understanding how to put capabilities together 
to form mind-like systems, that is, architectures for intelligence. Under-
standably, research on particular capabilities tends to dominate the field, 
since progress on architectures relies critically on progress in under-
standing the capabilities that comprise them. An increasing number of 
AI researchers are now investigating ways to combine the capabilities the 
field has developed into mind-like systems. 

Sometimes the phrase "intelligent architectures" is used to describe 
such experiments, but given that today's systems are nowhere close to 
human in intelligence, we forswear this term in favor of the more neutral 
integrated architectures. An integrated architecture is a system which 
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is intended to be mind-like in some way, and is distinguished by three 
properties: 

1. Integration. In addition to problem-solving, such systems must in-
clude several other parts. Typically these include a means for inter-
acting with the world (e.g., language, graphics, vision, mechanical 
parts, or a combination of these) and some sort of learning corn-
poment (i.e., chunking, explanation-based learning, or analogy). An 
integrated architecture will typically include one or more embedded 
problem solvers, as described above. 

2. Agency. A characteristic feature of integrated architecture research 
is addressing the question of what it means for a computational 
process to be an agent, interacting with a world (either physical, 
social, or simulated), and having its own goals and purposes. 

3. Continuous, long-term operation. Such systems are designed either 
as models of minds or to perform tasks which require minds, hence 
they must operate over extended periods of time, unlike, say, a 
spreadsheet. Ideally, such systems would never be turned off. 

The technological payoffs from breakthroughs in this area are obvious, 
ranging from personal assistant software to smart cars and houses to the 
general-purpose robotic workers of science fiction. However, the state of 
the art in designing integrated architectures is far from such wonders, 
and in fact today is quite primitive. 

Building an integrated architecture requires both good components 
and good ideas on how to put them together properly. Most progress in 
AI has centered on developing deep understandings of particular tasks 
(e.g., qualitative reasoning, object recognition, planning, etc.) in a narrow 
context, often driven by application needs. Such specialist accounts are 
useful for creating applications, but need to be broadened to serve as 
robust components in an architecture. There are deep conceptual ques-
tions as to how to organize integrated architectures. For instance, can 
a loose federation of modules, each with its own internal organization 
and representations, serve as a useful platform or does there need to be 
a uniform substrate within which all capabilities are implemented? And, 
of course, hardware limitations are still a serious problem: Despite dra-
matic improvements in computer technology, the amount of computer 
power on the desk of the typical Al researcher is still minute compared 
to the computer power between his or her own ears. 
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A good indication of the current state of the art can be seen in the fact 
that longevity is still an elusive goal for integrated architectures. Of the 
systems described in the 1991 AAAI Spring Symposium on Integrated In-
telligent Architectures, for example, few if any survived for more than an 
hour of continuous operation.' The causes were manifold, ranging from 
getting stuck under furniture to battery exhaustion to memory overflow. 
Thus progress is needed along many fronts, such as more robust sen-
sors and actuators and better strategies for managing computational re-
sources. 

Despite the current primitive state of the art, we find the progress that 
has been made in integrated architectures very heartening, and in hope 
of encouraging additional work in this area, we suggest two challenges: 

The Day Barrier: Create an integrated agent that performs useful ser-
vices, without interruption, for at least one day. 

The Cockroach Challenge: Create an integrated agent that functions 
continuously and usefully for over a year, without the direct assistance 
of humans with detailed knowledge of its internal structure. 

The definition of "useful" is of course subject to debate: we mean only 
that the agent should do something that others care about, and not sim-
ply brood in a corner. And perhaps it would make sense to allow a "sleep" 
period of up to eight hours per twenty-four hour period, for garbage col-
lection and other self-maintenance chores. In any case, meeting either of 
these challenges would be a milestone in the design of integrated archi-
tectures for intelligence. 

193 Cognitive modeling 

The leading hypothesis about the nature of mind today is that it is a 
computational process. Artificial intelligence draws much of its inspi-
ration about what intelligence is from human cognition. It should not 
be surprising that it, in turn, can be useful in the exploration of hu-
man cognition. Cognitive science is the growing multidisciplinary interac-
tion between artificial intelligence, psychology, neurobiology, linguistics, 

1. This refers to operation in the agent's time frame, since some of the software agents 
operated many times slower than real-time. 
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anthropology, and philosophy to understand the nature of the human 
mind. The goal of the artificial intelligence aspect of this enterprise is to 
better understand human minds by building computer models. Just as 
computer simulations are useful in other branches of science, cognitive 
simulations can provide insight into the possible computational structure 
of the human mind. Cognitive simulation provides a method to address 
questions that normally would be difficult or impossible by other means. 
For example, due to technological and ethical limitations, we cannot sim-
ply "clip out" a piece of knowledge or skill from a human subject to see 
how their performance changes. 

Some identify cognitive modeling with connectionism, the study of the 
properties of neural-like computational systems. Connectionism is an 
important approach to cognitive modeling, but it is only one approach 
among many. One appealing aspect of connectionism is the hope that 
it can provide a description of how neural systems serve as a substrate 
for intelligence. But the structure and behavior of neurons is quite dif-
ferent from what is assumed by most connectionist models, so such 
hopes must be tempered with caution. A second problem is that many 
aspects of human cognition have not been successfully captured by con-
nectionist models [191. And finally, suppose that, someday, we succeed 
in creating an artificial brain, modeling the nuances of organic brains in 
all the relevant details. We would still have not succeeded in our quest 
for a scientific understanding of intelligence, for an account of the brain 
is not the same as an account of what intelligence is. Accounts of neural 
function are no more a satisfactory explanation of how the various capa-
bilities of cognition work than a knowledge of VLSI circuitry provides a 
complete account of how and why operating systems work.2  Thus model-
ing at the level of symbolic processing is an essential part of the cognitive 
modeling enterprise. 

Most cognitive modeling focuses on phenomena at a fairly low level, 
the "assembly language" of cognition, so to speak. For instance, a model 
might be used to calculate reaction times, simulate learning curves, or 
produce other numerical measures that can be compared with human 
performance [1, 121. Such process-oriented studies can provide valuable 
insights, but only provide part of the picture. An alternate approach is 

2. See [16] for a good description of the levels involved in explanations of cognitive 
phenomena. 
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content-oriented cognitive modeling, where the focus is understanding 
the computational theory (in the sense of [16]) underlying a task or ca-
pability. Some examples of content-oriented studies are modeling how 
children learn subtraction [24], modeling the use and acquisition of men-
tal models [9], and modeling analogical reasoning and learning [6, 7, 10]. 
Content-oriented studies tend to be more difficult for several reasons. 
First, they require taking knowledge representation seriously. Second, 
they often use psychological measures that are less easily quantifiable, 
such as protocol analysis. 

The techniques in this book will, we hope, prove useful to cognitive 
modelers. We believe the systems described here can be used as modules 
in models that attempt to capture large-scale properties of human cog-
nition, such as the ability to learn a semester-sized body of knowledge. 
This of course is a chancy enterprise, but one whose potential payoff 
is extraordinary: A deeper understanding of the workings of the human 
mind. 

19.6 Bibliography 

[1] Anderson, J. The Architecture of Cognition, Harvard University Press, 
1983. 

[2] Buchanan, B. and Shortliffe, E. (Eds.) Rule-Based Expert Systems: The 
MYCIN experiments of the Stanford Heuristic Programming Project Addison-
Wesley, Reading, Mass. 1984. 

[3] Chapman, D. Vision, instruction, and action, MIT Press, 1991. 

[4] Dean, T. L., and Wellman, M. P., Planning and Control, Morgan Kaufmann, 
1991. 

[5] Engelmore, R., and Morgan, T. (eds.), Blackboard Systems, Addison-
Wesley, 1988. 

[6] Falkenhainer, B., "A unified approach to explanation and theory forma-
tion," in Shrager, J. and Langley, P. (Eds.)Computational models of scientific 
discovery and theory formation, Morgan-Kaufmann, 1990, pp 157-196. 

[7] Falkenhainer, B., Forbus, K., Gentner, D. "The Structure-Mapping Engine: 
Algorithm and examples", Artificial Intelligence, 41(1989)1-63. 

[8] Forbus, K. "Intelligent computer-aided engineering," AI Magazine, Fall, 
1988, pp 23-36. 

[9] Gentner, D. and Stevens, A. (Eds.), Mental Models, Erlbaum, 1983. 



690 	 Chapter 19 

[10] Gentner, D., Rattermann, M. J., Kotovsky, L., and Markman, A. B., "The 
development of relational similarity," in Halford, G. and Simon, T. (Eds.), 
Developing cognitive competence: New approaches to process modeling, Erl-
baum, 1993. 

[11] Jaffar, J., Michaylov, S., Stuckey, P.J., and Yap, R.H.C., "The CLP(R) Lan-
guage and System", ACM Transactions on Programming Languages and Sys-
tems 14 (1992): 339-395. 

[12] Laird, J. E., Rosenbloom, P. S., and Newell, A., Universal subgoaling and 
chunking: The automatic generation and learning of goal hierarchies, Kluwer, 
1986. 

[13] Lenat, D. B. and Guha, R.V. Building Large Knowledge-Based Systems, 
Addison-Wesley, Reading, MA, 1990. 

[14] Maes, P. (Ed.) Designing Autonomous Agents: Theory and Practice from 
Biology to Engineering and Back, MIT Press, 1991. 

[15] Malin, J. T., Schreckenghost, D. L., Woods, D. A., Potter, S., Johannesen, 
L., Holloway, M., and Forbus, K. "Making intelligent systems team players: 
Case studies and design issues. Volume 1: Human-Computer Interaction De-
sign," NASA Technical Memorandum 104738, September, 1991. 

[16] Man, D. Vision, W. H. Freeman, 1982. 

[17] Newell, A. Unified Theories of Cognition, Harvard University Press, 1990. 

[18] Paris, C. L., Swartout, W., and Mann, W. (Eds.), Natural Language Gener-
ation in Artificial Intelligence and Computational Linguistics, Kluwer, 1991. 

[19] Pinker, S. and Mehler, J. (Eds.), Connections and symbols, MIT Press, 
1988. 

[20] Porter, B., Lester, J., Murray, K., Pittman, K., Souther, A., Acker, L., and 
Jones, T., "AI research in the context of a multifunctional knowledge base: 
The Botany Knowledge Base Project," Technical Report AI-TR-88-88, Depart-
ment of Computer Sciences, University of Texas at Austin, 1988. 

[21] Saraswat, V.A., Concurrent constraint programming, MIT Press, 1993. 

[22] Fikes, R., Gruber, T., Iwasaki, Y., Levy, A. and Nayak, P. How Things Work 
Project Overview Technical Report KSL 91-70, Knowledge Systems Labora-
tory, Stanford University, 1991. 

[23] Van Hentenryck, P., Constraint satisfaction in logic programming, MIT 
Press, 1989. 

[24] VanLehn, K. Mind bugs: the origins of procedural misconceptions, MIT 
Press, 1989. 

[25] VanLehn, K. (Ed.), Architectures for Intelligence/The 22nd Carnegie Mel-
lon Symposium on Cognition, Erlbaum, 1991. 



A 	Putting the Programs to Work 

This appendix provides some tips for setting up and using the programs 
associated with this book. 

A.1 Organizing the files 

We assume many readers have internet access, and will prefer to obtain 
the programs via anonymous ftp. This procedure is described at the 
beginning of the book. Readers who do not have internet access should 
contact the MIT Press, as outlined in the beginning of the book, to get 
floppy disks appropriate to their system. 

The ftp version of the code is in a tar file, which assumes a unix di-
rectory structure. This makes things very simple if you are using a unix 
system, of course. What about other systems? There are good shareware 
and freeware versions of tar that run on most microcomputers, so un-
packing the files should not be too troublesome. (Remember to transfer 
them in binary mode!) The floppy version of the code will use a compres-
sion scheme appropriate to the kind of computer involved. 

All file names were chosen to fit within the most restrictive conven-
tions (i.e., MS-DOS), so those should not require changing. On an MS-DOS 
machine, the sources take up about 1.8MB of space. 

The sources are grouped into subdirectories. These are: 

cps Code for Chapter 3. 

tre Code for Chapter 4. 

ftre Code for Chapter 5. 
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jtms Code for Chapters 7 and 8. 

ltms Code for Chapters 9, 10, and 13. 

tgizmo Code for Chapter 11. 

atms Code for Chapters 12 and 14. 

t con Code for Chapter 15. 

gde Code for Chapters 16 and 17. 

relax Code for Chapter 18. 

ut ils Utility programs, described below. 

For each system, the order in which files are mentioned in the corre-
sponding chapter is an appropriate order for loading. Each system also 
includes a file which contains information which can be used with the 
loading utility described below. 

A.2 A guide to the utility programs 

The utility programs are contained in two files: 

loader. lisp: Procedures for loading a collection of files. 

1st . lisp: Procedures for making listings of code. 

We describe them each in turn. 

A.2.1 The loading programs (loader.lisp) 

In using systems of programs it is typical to have files whose sole pur-
pose is to orchestrate the loading and compilation of those files. The 
utilities in this file make the creation of such system files easier. The pro-
cedures are 

load-files takes as input a list of file names and loads them. There 
are two optional arguments, the current file path and the default exten-
sion for files. 
compile-files takes as input a list of file names and optionally, a file 
path. It compiles each file in turn. 
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compile-load-files takes as input a list of file names and optionally, 
a file path. It compiles and then loads each file in turn. 

The optional argument information is drawn from the following global 
variables: 

*def ault-pathname* is the file path used by default. 

*def ault-source-type* is the file extension for Common Lisp 
sources, used by compile-files. 

*def ault-bin-type* is the file extension for compiled Common Lisp 
files, used both by load-files and compile-files. 

When you first set up the sources, you should edit the values of these 
variables to contain the values appropriate for your operating system 
and version of Common Lisp. (If you are using these files with more than 
one operating system or Common Lisp version, we highly recommend 
using the Common Lisp #+ reader macros to allow the same file to be 
used across multiple environments. You will see examples of #+ in the 
existing files.) 

Each system includes a file which defines a list of other files and the 
file path for that system. When you begin to use a system, you should 
edit the file path variable to reflect where you put the code. To compile 
the programs, the procedure compile-load-files can be used. With 
some Common Lisp implementations it may be necessary to first load 
the sources (using load-files with the source extension as the file ex-
tension) and then call compile-load-files. We have attempted to min-
imize forward dependencies between files, but occasionally we allowed 
them if they optimized the readability of the code. 

A.2.2 The listing program (lst.lisp) 

Software documents are wonderful, but sometimes it is best to curl up 
with a good book or listing. The procedures in this file simplify the cre-
ation of readable listings. These procedures are part of the suite of pro-
grams that generated the companion Listings volume for this book. (If 
you intend to make many listings of programs from the book, we recom-
mend instead buying the Listings volume—the MIT Press can probably 
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print more cheaply than you can, and is selling them at cost.) The main 
procedures are 

1st which takes as input the name of a file to print and produces as 
output a new file of some appropriate form. 1st takes the following 
keyword arguments 

:MODE Determines the form of the output file. Must be one of : LPT, 
for pure ASCII files, :EPSON, for Epson FX-80 compatible printers, 
:LATEX, for producing stand-alone LaTeX source files, or : BOOK, for 
producing source files that can be inserted into other LaTeX files. 
: OUTPUT Name of the the file to be produced. If this argument is not 
supplied, the program makes its best guess. 
:HEADER A string inserted on the top of each page in the output file. 

1st-directory runs 1st on all the files in a given path. 
1st-files runs 1st on a list of files relative to a given path. 

For @TEX users: The BPSCode environment used by the LaTEX and book 
modes is illustrated below. The alltt.sty was written by Leslie Lamport, 
and is commonly available on LaTEX-related ftp sites. 

\newenvironment{BPSCode}{ 
\packlines 
\begin{small} 
\begin{alltt} 

\end{alltt} 
\end{small} 
\unpacklines 
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expanded, 232 
explanation generation, 164 

in symbolic relaxation, 675 
in JSAINT, 225 

explanations 
using clauses, 315 

explicitness 
desideratum, 11 

extension of a default theory, 438 

failed, 232 
:FALSE, 270 
filters 

in search, 37 
finite constraint satisfaction problems, 

648 
flexibility 

desideratum, 10 
fluid flow, 405 
focus environment, 497 
focused strategy, 496 
formulas 

encoding as clauses, 278 
FROB, 582 
Furtado 

R. de L., 135 

gambling, 531 
gases, 404 
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generating sets, 511 
goals 

detection of, 22, 125 
in problem space model, 20 
versus problems, 231 

graceful integration, 354 

habitability, 414 
Hal-9000 problem, 316 
hard comparisons, 393 
heat flow, 405 
historical cells, 582 
histories, 369 

IAB (ignorance of abnormal behavior), 
639 

:IFF, 278 
ignorance of abnormal behavior, See IAB 
implicant, 493 
implicate, 283 

definition, 458 
implied-by rules, 499 
:IMPLIES, 278 
impossible figures, 677 
:IN, 163, 172, 183 
In and out versus true and false, 174 
:IN, trigger condition, 203 
incompleteness 

example, 324 
in constraint networks, 579 
in finite CSPs, 651 

incompleteness in TGDE, 641 
incrementality 

of TMS, 174 
indexing 

discrimination trees, 114 
generalized hashing, 115 

indexing, class, See class indexing 
indirect cells, 576 
indirect influences, 358 
inequality reasoning, 376 

implementation of, 390 
inference engine, 157 
influence resolution 

algorithm, 385 
definition, 366 

informant, 188, 482 
in natural deduction, 93 
in LTRE, 315  

justification, 161, 292, 298, 427, 615 
instantiation, 373 
:INTERN, trigger condition, 203 
interpretation construction, 437, 629, 

644 
interpretations, 596 
isolation methods, 42 

example., 45 
iterative deepening, 65, 147 

JSAINT 
control vocabulary, 234 
performance, 254 

JTMS, See justification-based truth 
maintenance system 

JTRE, See Justification-based Tiny Rule 
Engine 

junction catalog, 663 
justification, 158, 161, 265 

non-monotonic, 167 
Justification-based Tiny Rule Engine 

(JTRE), 197 
justification-based truth maintenance 

system (JTMS), 168, 171 
justifications 

in natural deduction, 93 

k-consistency, 651 
KM* 

ATMS implementation, 526 
basics, 92 
inference rules, 94-96 
proof format, 93 

knowledge model 
concept, 13, 62 
constraint network, 538 
PDIS, 70 
symbolic relaxation, 652 

label 
node, 163 

landmark values, 354 
least dominating term, 44 
limit analysis 

definition, 368 
limit points, 354 
line finding, 660 
liquids, 404 
literal completeness, 468 
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literal incompleteness, 280 
logic 

role in representation, 362 
Logic-based Tiny Rule Engine (LTRE), 309 
logic-based truth maintenance system 

(LTMS), 168, 265 
logical environments 

concept, 120 
stack model, 122 

LTMS, See logic-based truth maintenance 
system 

LTMS compared to JTMS, 270 
LTRE, See Logic-based Tiny Rule Engine 

many-worlds strategy, 496, 619 
Marx brothers, 648 
measurement interpretation, 348 

algorithm, 397 
examples, 407 

MicroPlanner, 76 
minimal cardinality diagnoses, 630 
minimal conflict 

definition, 640 
minimal diagnosis 

definition, 621 
minimal diagnosis hypothesis, 638 
minimal nogood, 473 
modeling languages, 381 
murder, 329 
MYCIN, 76 

N-queens 
definition, 136 

natural deduction, 92 
with quantifiers, 149 

network replication, 581 
NMJTMS, See non-monotonic 

justification-based truth 
maintenance system 

node 
assumption, 167 
contradiction, 160, 167 
premise, 160, 167, 189, 194 
TMS, 159 

node consistency, 650 
nogood, 195, 268, 283, 428, 473 

in dependency-directed search, 216 
non-intermittent failure assumption, 

568  

non-monotonic justification-based truth 
maintenance system (NMJTMS), 168 

non-montonic reasoning, 413 
: NOT, 278 
numerical relaxation, 580 

observations, 378 
one-step look-ahead, 633 
ontology, 350 

component-based, 351 
process-based, 350 

open, 233 
open worlds, 525 
operator protocol 

example, 239 
operators 

in problem space model, 20 
OPS5, 159 
:OR, 278 
or subgoals, 236 
order independence, 75 
ordinal relations 

hard, 393 
soft, 393 

:OUT, 163, 173, 183 
: OUT, trigger condition, 203 

path consistency, 650 
pattern matching 

in symbolic algebra, 46 
pattern-directed inference systems 

basic idea, 69 
pattern-directed rules 

basic idea, 74 
physical process, 350 

axiom schemata, 374 
in causal reasoning, 358 

physob, 402 
planning 

via envisioning, 522 
via forward chaining, 525 

plunk, 580 
plunking, 659 
Polybox, 571 
polybox example, 622 
premise node, 171, 271, 426, 430, 593 
pressure regulator example, 469 
prime implicant, 493, 641 
prime implicate, 455 
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prime implicate (continued) 
definition, 459 

probability of a diagnosis, 630 
probability of component failure, 630 
problem space model, 19 
procedural deduction systems, 76 
procedure model 

concept, 13, 62 
constraint networks, 544 
PDIS, 73 
symbolic relaxation, 653 

process structure 
algorithm for finding, 385 
definition, 365 

production rule systems, 76 
PROLOG, 76, 159 
propagation via constraints, 539 
propositional specification 

of ATMS, 431 
of JTMS, 172 
of LTMS, 272 
of TMS, 166 

QP theory, See Qualitative Process theory 
qualification problem, 413 
qualitative ambiguity, 357 
qualitative equation, 466 
qualitative mathematics, 352 
Qualitative Process theory, 349 

causal account, 358 
feedback, 359 
modeling, 360 

qualitative proportionality, 355 
qualitative state, 369 

implementation of, 396 
qualitative variable, 466 
quantity space, 354 

recursion 
considered harmful, 30 

reductio ad absurdum, 283 
reference intervals, 671 
reference mechanism 

concept, 13 
in constraint languages, 541 
in PDIS, 73 

refutation completeness, 468 
refutation incompleteness, 280 
relative closure 

definition, 317 
relevance principle, 353 
relevant, 233 
removal rules, 577 
representation 

for scene analysis, 662 
of actions, 513 
of actions and effects, 506 
of algebraic laws, 46 
of Blocks World, 511 
of changing worlds, 581 
of common sense thermodynamics, 

402 
of component models for diagnosis, 

622 
of control knowledge, 230 
of equations, 43 
of integration laws, 238 
of liquid, 361 
of logic puzzles, 343 
of motion, 562 
of murder mysteries, 329 
of ordinal relations, 377 
of physical processes, 362 
of quantities, 352 
of sets, 330 
of subways, 36 
of time, 668 

representation problem, 99 
resolution rule, 460 
resource bounds 

in FTRE, 122, 243 
retraction, 159, 161 

via deletion, 100 
rewrite rules, 48 
rlet, definition, 112 
rules 

efficient implementation of, 128 
execution environment, 75 
multiple triggers, 111, 204 
nesting of, 74 
trigger conditions, 202 

SAINT, 225 
scene analysis, 660 
scheduling, 345 
search, 153, 282 

A*, 64 
beam, 34 
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search (continued) 
best first, 34 
chronological, 137 
chronological vs. dependency- 

directed, 220 
depth first, 34 
general strategies for, 24 
in measurement interpretation, 378 
in problem space model, 21 
iterative deepening, 65, 147 

sequential diagnosis, 629 
shared structure, 574 
simplifiers, 47 
single-fault assumption, 568, 626 
small infinity, 41 
soft comparisons, 393 
sole mechanism assumption, 351 
solution-of, 232 
solved, 231 
Star Wars, 562 
states 

expanding, 23 
in problem space model, 20 
qualitative, 369 

STRIPS, 513 
structs 

as system glue, 26 
STUDENT, 66 
substitution strategy, 82 
substitutions 

in unification, 72 
subsumption of clauses 

definition, 458 
suggestions architecture, 224, 228 

operator protocol, 238 
supporting justification, 173 
symbolic algebra, 40, 580 

simplification, 47 
symbolic relaxation, 647 

algorithm, 654 
symptom in diagnosis, 621 
syntax 

desiderata, 110 

:TAXONOMY, 278 
Tech logo, 677 
temperature source, 403 
temporal logic, 668 
temporal representations  

implicit, 370 
terminals, 537 
:TEST, definition, 113 
:TEST, pitfalls, 204 
testing, 91 
TGDE, See Tiny Diagnosis Engine 
theorem proving, 489 
Tiny Dignosis Engine, 619 
Tiny Rule Engine (TRE), 69 

rule syntax, 74 
Tison's method, 475 
TMS, See truth maintenance system 
tradeoffs 

ATMS rule execution strategies, 500 
completeness versus efficiency, 123 
focused versus many-worlds ATMS 

strategies, 497 
PDIS versus constraint languages, 541 
rule execution vs. TMS operation, 601 
rules versus procedures, 414 

trie, 479 
:TRUE, 270 
truth maintenance system (TMS), 151 

as a cache, 175 
inference engine interface, 198, 313, 

499 
when useful, 158 

two-pipes example, 465 

unification 
definition, 72 
open coding, 119 

update procedures, 653 

:VAR, definition, 113 
variables 

binding restrictions, 47 
element, 48 
in CSPs, 648 
in data, 72 
segment, 48 

views, 360 
vision, 660 

Waltz filtering, 647 
wedge, 667 
weight loss, 65 
well-founded explanation, 180, 192, 268, 

276-277, 289, 293, 304, 449 



702 	 Index 

well-founded support, 173, 180, 184, 
192, 194, 289, 293, 300, 304 

when to use 
ATMS vs. JTMS, 426 
LTMS versus a JTMS, 281 
PDIS versus constraint languages, 541 
TCON vs. ATCON, 601 

wiring rules, 576 
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