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Abstract 

An important part of diagram understanding is the problem 
of glyph recognition. This problem is challenging because a 
glyph may be drawn in many different ways and with vary-
ing levels of precision. Diagrams in general are rarely per-
fect and often filled with poorly-drawn glyphs. In order to 
understand a wide range of diagrams, a diagrammatic rea-
soner should recognize glyphs that deviate from standard 
forms. This paper presents a new mechanism for glyph rec-
ognition which combines a probabilistic representation 
with an existing symbolic diagrammatic reasoner. This rea-
soner, GeoRep, recognizes diagram glyphs using a set of 
rules supported by a logic-based truth-maintenance system 
(LTMS). Here we extend GeoRep’s LTMS to include nodes 
that encapsulate Bayesian networks. The result is a rea-
soner that can leverage the benefits of symbolic truth main-
tenance as well as that of probabilistic networks.  

Introduction 

Diagrams are important to a wide variety of tasks that 
include problem solving, communication, and collabora-
tion (Glasgow, Narayanan, and Chandresekaran, 1995). 
These tasks are frequently aided by a diagram’s ability to 
capture and convey many spatial relations at a glance.  
 In most cases, a crucial first step in diagram under-
standing is to combine the initial visual primitives into 
visual symbols or glyphs. Glyphs include such things as 
NAND-gates and AND-gates in digital logic diagrams.  
 Because glyphs are important for diagram understand-
ing, the problem of correctly recognizing the glyphs is 
critical. Glyphs, however, are often created with limited 
precision, especially when drawn quickly, because it is 
assumed that others will still be able to identify the glyph 
being drawn. For example, Figure 1 contains a set of 
glyphs that are all easily interpreted as a NAND-gate, 
even though only (a) is drawn precisely.  
 Importantly, the type of imprecision in each glyph is not 
the type that is captured in a typical qualitative representa-
tion. A qualitative spatial reasoner, such as GeoRep, can 
recognize a glyph properly when the imprecision is cap-
tured by qualitative relationships. For example, in the 
NAND-gate, differently-sized arcs and segments do not 

confuse GeoRep as long as the basic qualitative relations, 
such as perpendicular corners, are preserved. However, in 
the imprecise glyphs these corners may in fact be intersec-
tions, may not be perpendicular, or may not be corners at 
all. GeoRep uses tolerance values to ensure that at least 
some of the spatial relations are captured for such impre-
cise glyphs. However, usually at least some of the expected 
qualitative relations lie outside those tolerances, and so 
may block glyph recognition. For this reason, these types 
of imprecision are not captured in a qualitative representa-
tion.  
 Therefore the problem is one of ambiguity at the level of 
the set of visual relations, rather than at the level of indi-
vidual visual elements or relations.   
 The GeoRep reasoner (Ferguson & Forbus, 2001; Fer-
guson et al., 2003) uses a logic-based truth maintenance 
system (LTMS; Forbus and de Kleer, 1993; McAllester, 
1990) and a rule engine to produce high-level spatial de-
scription of a diagram. While this system can interpret 
diagrams in domains with large glyph vocabularies, such 
as military Course-of-Action diagrams (Ferguson et al., 
2000) the glyphs are required to be drawn with relatively 
high precision. Deviations from the standard glyph such 
as those shown in (b), (c), and (d) in Figure 1 are unrec-

 
Figure 1: (a) is a precisely drawn NAND-gate glyph. (b), (c) 
and (d) are examples of imprecisely drawn glyphs. 



ognizable by standard rules. In addition, it would be im-
practical to create rules for each possible variation of a 
glyph, since the set of possibilities is combinatorial.  
 In order to achieve more robust glyph recognition, a 
new method for recognizing glyphs is necessary. Various 
forms of probabilistic recognizers have been used success-
fully (Alvarado, Oltmans, & Davis, 2002; Cohen et al., 
1997; Gross, 1996). This paper discusses the integration of 
a new probabilistic mechanism into the GeoRep architec-
ture. The mechanism uses Bayesian networks encapsulated 
within a new probabilistic node in the LTMS. The use of 
Bayesian networks provides a new representation for sets 
of visual elements that can capture imprecision and uncer-
tainty inherent in drawn diagrams. The encapsulation of 
these networks in the existing LTMS system allows the 
two systems to combine their strengths and both partici-
pate in the process of glyph recognition.  
 The next section describes the GeoRep diagrammatic 
reasoner. We then demonstrate how probabilistic reason-
ing is integrated, present some results, and compare these 
results to the original system.  

The GeoRep Reasoner 

GeoRep is a diagrammatic reasoner (Ferguson & Forbus, 
2000). The input to GeoRep is the vector graphics repre-
sentation of visual elements. Element types include line 
segments, circles, ellipses, arcs, spline curves, and posi-
tioned text. The most recent version of GeoRep (Ferguson 
et al., 2003) can also process visual elements dynamically 
as they are added to the diagram. GeoRep’s output is a 
predicate calculus representation as given in Figure 2.  
 GeoRep creates this representation using a two-stage 
architecture (Figure 3). The first stage, the low-level rela-
tional describer (LLRD) represents a set of low-level vis-
ual relations. These relations are stored in a dependency 
network to allow quick revisions. Each network node in 
the network represents a set of alternative spatial relations 
between two visual elements. These sets, like many found 
in qualitative spatial vocabularies, are jointly-exhaustive 
and pairwise-disjoint (JEPD; Cohn, 1997).  
 The particular spatial relations captured in the LLRD’s 
representation are designed to model those qualitative 

spatial relations detected in early vision. For example, 
humans are sensitive to relative angles (such as perpen-
dicular lines), indentations in figure boundaries (Hoffman 
& Richards, 1984), and to vertical and horizontal orienta-
tions in the assumed frame of reference (Rock, 1973). 
 The second stage, the High-Level Relational Describer 
(HLRD) uses these low-level relations and a rule-based 
visual domain theory to produce a description of the dia-
gram. The output of the HLRD describes the diagram us-
ing domain-dependent high level relations.  
 The HLRD rules use a pattern-directed inference system 
that is supported by an LTMS. HLRD rules use the 
LLRD’s low-level visual relations as well as domain 
knowledge. For example, to recognize the (system-
output wire-s11) in the representation below, the sys-
tem uses a rule that infers an output wire when the system 
detects a NAND-GATE and a proximate line, and that line 
connects to the circle of the NAND-GATE. Many of these 
rules thus combine spatial and domain-specific reasoning. 
In general, HLRD rules are constrained to run only on 
proximate visual elements to keep processing tractable. 

Implementation 

We have created a new mechanism for glyph recognition 
by extending the capabilities of the GeoRep reasoner and 
introducing Bayesian networks. Bayesian networks have 
been shown to be useful in similar recognition tasks (Al-
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Figure 3: Simplified GeoRep architecture, containing stages for 

low-level and high-level visual reasoning. 

 

Figure 2: SR-Latch logic diagram and the representation produced by GeoRep.  



varado, Oltmans, & Davis, 2002), where the networks 
were used to guide the interpretation of sketched visual 
elements for glyphs. Here we focus on the use of Bayesian 
networks in the context of bottom-up inferencing about 
glyphs given a set of partially-known qualitative visual 
relations.   
 In this system, the Bayesian networks are created dy-
namically as part of the rule firing process, which allows 
them to be created via a simple extension of the visual 
domain theory. The original GeoRep system’s visual do-
main theories used a graphical rule language (Ferguson, 
1994; Ferguson & Forbus, 1995). For example, Figure 4a 
shows the rule for recognizing a NAND-gate from this 
system. The new mechanism uses the same rule architec-
ture to set up the Bayesian network structure (Figure 4b). 
This allows the system to use probabilistic reasoning while 
retaining the advantages of the symbolic visual domain 
theory.  

The Mechanism for Recognition 

We now look at how a rule within the visual domain the-

ory creates integrated probabilistic nodes in GeoRep. For 
each glyph to be recognized, a rule such as the one in Fig-
ure 4b must be created. The rule’s trigger captures the set 
of visual elements that make up the glyph. Alternatively, 
these visual elements can be seen as the set of proximate 
elements necessary to begin a glyph recognition attempt. 
In our implementation, the rule triggers include the exis-
tence of the visual elements as well as proximate relations 
between the elements.  
 In Figure 4, we can see how the rule in Figure 4b works 
on the glyph in Figure 4c. When this rule fires, it performs 
two actions. First, it creates a node in the LTMS depend-
ency network representing the potential glyph interpreta-
tion for the visual element set. The node is created as an 
LTMS node with its existing implicational structure. This 
means that it can be retracted if any of the rule triggers 
becomes false (e.g., if a visual element is deleted from the 
diagram).   
 The rule’s second action is to create a probabilistic node 
and embed it within the previously created LTMS node for 
the glyph interpretation. The probabilistic node captures 
the imprecision in a glyph using Bayesian networks. Al-

 

Figure 4: (b) is a rule in the current system, it demonstrates the information that must be encoded in order to create the Bayes-
ian networks. (a) is a rule from the original GeoRep system to recognize a NAND-gate. (c) is a sample nand-gate that the new 
system can recognize, but that the old rules would fail on. (d) is a fragment of the Bayesian network created by the rule.  



though Bayesian networks are typically used to represent 
the causal dependencies between events, here we use the 
networks to represent the contribution that sets of visual 
relations have on the final glyph interpretation. For in-
stance, in the NAND-gate figure (Figure 4c) the existence 
of perpendicular relations between lines and an abuts re-
lation between the circle and the arc contribute strongly to 
the probability that the glyph should be recognized as a 
NAND-gate. Similarly, if these relations do not exist, a 
NAND-gate is less likely. 
 The network created by the system is, as in Figure 4d, a 
single-layer Bayesian classifier. To determine the probabil-
ity of the interpretation in the created network, the mecha-
nism must first decide which nodes in the Bayesian net-
work are evidence for the interpretation.  
 This is done in two ways. First, the relation that the 
Bayesian network node represents is searched for in Geo-
Rep’s low-level and high-level representations. If the rela-
tion is found, then that node is considered evidence. If the 
relation is not found, then the mechanism uses the visual 
test stored in the node to observe if the relation should be 
part of the representation.  
 For example, in the network in Figure 4d, if the mecha-
nism could not find the relation (Perpendicular L1 
L2), it then runs the visual test (Perpendicular L1 
L2) and applies the result as evidence in the Bayesian 
network. Additionally, the new relation is added to Geo-
Rep’s representations. 

Communication between representation levels 

The last important part of the mechanism is how the cre-

ated probabilistic node interacts with the GeoRep reasoner 
(Figure 5). There are two main ways in which communi-
cation occurs. The first is by affecting the truth labeling 
for the glyph interpretation node in the LTMS. As de-
scribed above, when a rule for a glyph fires, it creates an 
LTMS node for that interpretation. This node is initially 
labeled Unknown. The glyph recognition process in the 
probabilistic node generates a probability for the interpre-
tation based on the existing evidence. When this probabil-
ity reaches a threshold value, the labeling of the LTMS 
node is changed to True. Similarly, if the probability given 
the current evidence is below the threshold, the LTMS 
node will be labeled False.  
 The second method of communication is via the evi-
dence collection process. Here, a probabilistic node ac-
cesses GeoRep’s representations to collect evidence for the 
Bayesian network. It may also change the existing dia-
gram representation if it determines that a visual test is 
required to determine if a relation is evidence for an inter-
pretation. 
 This represents a more sophisticated method of top-
down influences than in earlier versions of GeoRep. Pre-
viously, rules could make callbacks to the LLRD visual 
routines, but would only do so by satisfying a set of rule 
conditions. The visual test results were never added into 
the diagram representation. This new implementation al-
lows the anticipated glyph structure represented in the 
probabilistic networks to guide further visual processing. 

Results 

Using this mechanism, we were able to improve the glyph 

 

 

Figure 5: The interactions and communications between the truth maintenance system and the Bayesian networks.  



recognition capabilities of the GeoRep reasoner. Figure 6 
shows an example of the representation for the SR-latch 
diagram generated by the reasoner using the new probabil-
istic mechanism.   
 The original reasoner could not correctly interpret this 
diagram, because the imprecision in the drawn glyphs 
provided inadequate visual relations to fire visual domain 
theory rules. However, the new mechanism easily recog-
nizes the NAND-gate glyphs and the rest of the circuit. 
The importance of recognizing the glyphs goes beyond 
simply the recognition alone. Recognizing the NAND-
gates and adding them to GeoRep’s high level representa-
tion allows further rules to be processed. For instance, the 
rule for system-input depends on the relationship between 
a segment and a recognized NAND-gate. The probabilistic 
mechanism recognizes the glyphs and then other rules 
from the visual-domain theory may be triggered.  
 The two systems working together in this integrated 
fashion, allows for better overall diagram understanding.  

Related Work 

There is a wide variety of work on diagram and sketch 
recognition systems (Davis, 2002; Alvarado, Oltmans, & 
Davis, 2002; Alvarado & Davis, 2001; Cohen et al., 1997; 
Ferguson & Forbus, 2002; Gross, 1996; Landay, 1995; 
Stahovich, 1998). These systems vary in the amount of 
glyph recognition they perform and the contextual knowl-
edge they integrate into the glyph recognition process. 
They also vary in how well recognizers in one area can be 
used in another.  

Several previous systems have shown the general effec-
tiveness of probability-based methods of glyph recogni-
tion. These systems have used techniques such as partial 
template matches (Gross, 1996), and hidden-Markov 
models and neural networks (Cohen et al., 1997) to flexi-
bly recognize glyphs given noisy data. In general, how-
ever, probabilistic recognizers built using these techniques 
can be difficult to generalize, often requiring extensive 
training for new glyphs. 

The use of contextual information and additional mo-
dalities can also aid recognition (Oviatt, 1999). Extra in-
formation beyond what exists solely in the diagram is used 
to aid the process of sketch or diagram understanding. A 

strong demonstration of the power of this technique may 
be found in Quickset (Cohen, 1997), which combines in-
formation from a speech-understanding module with the 
glyph recognition system to improve recognition. Simi-
larly, NuSketch Battlespace (Forbus, Ferguson, & Usher, 
2000; Ferguson & Forbus, 2002) uses speech understand-
ing to avoid intensive glyph recognition, while retaining 
the ability to make domain inferences based on spatial 
characteristics of the drawn glyphs. The use of a probabil-
istic framework in the system described here may allow 
for easier integration of other modalities. 

There are also a number of systems that, like the one de-
scribed here, use a two-level approach to the problem of 
glyph recognition, where a low-level domain-independent 
module recognizes primitive shapes and elements, and a 
high-level domain-dependent system uses the low-level 
representation to perform glyph recognition (Ferguson, 
1994; Ferguson & Forbus, 2000). This approach can be 
made considerably less brittle by the incorporation of 
flexible recognizers at the low level, allowing for sketch 
input (Davis, 2002).  

A significant limitation of the current system is that it 
does not yet work from sketch data. Although this system 
does not yet have the power and flexibility of systems that 
work from sketch data, it does have a number of potential 
advantages long-term. First, many existing systems do not 
work with static diagrams, but use timing information 
from the sketch as part of glyph recognition. In contrast, 
this system should be able to recognize diagrams inde-
pendent of the process of creation. Second, unlike some of 
these systems, this technique focuses on ambiguity that 
exists at the level of the set of available visual relations, 
rather than at the level of visual elements. 

There has also been work implementing probabilistic 
reasoning in truth maintenance systems. These systems 
are called belief maintenance systems and typically extend 
the TMS labeling from {True, False, Unknown} to label-
ing via intervals such as in probabilistic logic (Ramoni & 
Riva, 1994; Nilsson, 1986). The system presented here 
does not attempt to integrate probabilistic reasoning di-
rectly into the TMS framework by, but rather to allow two 
different knowledge representations to interleave, each 
relying on the other’s output for a more robust diagram 
interpretation. 

 
Figure 6: Results of running the new mechanism on an imprecise SR-latch diagram. The predicates in bold indicate the NAND-gate 
glyphs that were recognized via the new mechanism. The remaining predicates are a result of the mechanism detecting these glyphs. 
The earlier GeoRep system would have been unable to detect any of these. 



Beyond the truth maintenance framework, there is im-
portant work on merging symbolic and probabilistic repre-
sentations. Koller and Pfeffer’s (1998) probabilistic frame-
based systems demonstrate how representations of differ-
ent types can be combined to produce a more robust final 
result, in this case, the ability to compensate for the lack of 
structural representation in Bayesian networks and the 
limited ability to represent uncertainty in frame-based 
systems.  

Conclusions 

Robust recognition of diagram glyphs will lead to better 
diagram understanding. We have presented a new mecha-
nism that can recognize glyphs that vary widely in the 
level of precision in which they are drawn. By recognizing 
these glyphs the complete process of diagram understand-
ing can continue. The mechanisms together provide this 
benefit. 
 Future work will look to incorporating this system into 
a more dynamic sketching environment. We also plan to 
look at some of the interesting properties of visual rela-
tions (such as jointly exhaustive and pairwise disjoint rela-
tion sets) to see if these properties can be better leveraged 
in probabilistic networks. We are also developing a more 
compact formalism for the conditional probability tables, 
and are investigating the reuse of probability tables. 
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