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Abstract

The most problematic issues in fuzzy modeling of nonlinear
system dynamics deal with robustness and interpretability. As
for these two issues, traditional data-driven approaches may
be affected by serious drawbacks. Especially when the data
set is not adequate, they may lead to a model structure that
results to be unable to reproduce the system dynamics. More-
over, parameter estimation may lead to a numerically unsta-
ble model unless proper regularization strategies are adopted.
Also, fuzzy models generated from data only do not guarantee
to gain insight into the system: the resulting model structure is
often not transparent, and, after their optimization, the model
parameters may lead to an incomplete, inconsistent and even
indistinguishable fuzzy partition. Herein, we demonstrate that
Qualitative Reasoning (QR) plays a crucial role to significantly
improve both robustness and interpretability. The method pro-
posed builds both fuzzy partition of input-output variables and
the fuzzy rule base from the available physical knowledge only.
On the one side, this leads to a clear and neat model structure
that does represent the system dynamics, and the parameters
of which have a precise physical meaning. Consequently, a
substantial improvement of the model generalization and inter-
pretability properties is obtained. On the other side, it allows
us to properly constrain the parameter optimization problem,
with a consequent gain in numerical stability.

Introduction
Robustness and interpretability are essential prerequisites for
a model to be used. The former issue concerns the generaliza-
tion and stability properties of the identified model, whereas
the latter one concerns its transparency and intelligibility as
well as the clear and sound physical meaning of the estimated
parameters. System modeling goes through two main stages,
namely structure identification and parameter optimization,
that heavily account for robustness and interpretability. As
for input-output approaches, the robustness and interpretabil-
ity aspects are perhaps the most challenging problems [Girosi
et al., 1995, Jin, 2000, Johansen, 1994, Niyogi and Girosi,
1999,Poggio and Smale, 2003,Pomares et al., 2002]. In such
approaches, structure identification deals with the reconstruc-
tion of functional relationships
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	�� �
between

the input-output variables from the available data samples
only1. This problem is usually solved by first selecting an ap-
propriate functional form for

��
����
, and then by identifying its

parameters. The form of
��
����

has to be selected in a space that
is known to possess good approximation properties. Meth-
ods recently proposed for constructing

�
range from feedfor-

ward neural networks [Haykin, 1997] to regularized neural
networks [Poggio and Girosi, 1990] to spline models [Wahba,

1For the sake of simplicity but without loss of generality, we con-
sider here Multiple Input - Single Output systems.

1990] to fuzzy systems [Wang, 1994]. With the exception of
fuzzy systems, these approaches ignore the possible exploita-
tion of available prior knowledge. Their main benefit is es-
sentially that they are able to reconstruct the unknown system
dynamics without requiring prior knowledge; but, they may
present poor generalization capabilities, ill-posed identifica-
tion problems, and lack of transparency.

Our interest is focused on Fuzzy Systems (FS) as they
have been proved to be excellent candidates for identification
purposes [Jang, 1993,Takagi and Sugeno, 1985]: (i) they hold
the universal approximation property, (ii) they are able to ex-
ploit the qualitative and uncertain a priori knowledge on the
system dynamics, which is expressed by inferential linguistic
information in the form of IF-THEN rules, and (iii) they are
able to handle data samples. In this context, structure iden-
tification requires to determine the fuzzy partition of input-
output variables, and how many rules must be used to gener-
ate the FS. The parameters, which are tuned on the experi-
mental data through optimization procedures, are associated
with the membership functions of input-output variables or, in
other words, with the locations of their fuzzy partition. In the-
ory, both partitions and inference rules can be derived by the
expert knowledge, but such information may be very poor, ir-
regular, and unstructured, and then, in practice, prevents from
defining the optimal form of
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����
, where by optimal we mean

that
��
����

is of minimal complexity, but able to capture all of
the significant features of the system dynamics. For these rea-
sons, the research efforts turned to the definition of learning
methods that automatically generate the fuzzy systems from
the data samples only [Wang and Mendel, 1992,Wang, 1994].
Although these methods have been successfully applied to a
variety of domains, they are affected by two serious draw-
backs: the resulting nonlinear function is not understandable
from a physical viewpoint, and it does not guarantee that the
generalization property holds unless a large amount of sam-
ples is employed. Even when the resulting

��
����
is abstracted

from the expert knowledge, the same problems may occur
since an empirical rather than structural kind of knowledge is
mostly given. In such a case, important pieces of information
about the system dynamics may be omitted or, in other words,
the structure of

��
����
may result to be sub-optimal.

Let us observe that for a great deal of dynamical systems
from different domains the available structural knowledge is
insufficient for the formulation of a quantitative differential
model, but does not prevent from formulating a qualitative
one. This consideration motivated our work aiming at the def-
inition of a new approach, called FS-QM, to the fuzzy identi-
fication of dynamical systems [Bellazzi et al., 1998, Bellazzi



et al., 1999, Bellazzi et al., 2000, Bellazzi et al., 2001]. Its
novelty consists in the way the FS is built: both the fuzzy
partition and rule base are defined upon the available struc-
tural knowledge. FS-QM is applicable whenever the incom-
pleteness of a priori knowledge is such that it allows us (i)
to write a QSIM model [Kuipers, 1994], and (ii) to bound the
uncertainty on landmark values to a range of numerical val-
ues. In outline, the whole range of possible system dynamics,
represented and simulated within the QSIM modeling frame-
work, is automatically translated into the fuzzy formalism.
The domain of each input/output variable is automatically
partitioned into fuzzy sets in accordance with its associated
quantity space, and with the prior information on landmark
numerical bounds. In other words, the cardinality of the fuzzy
partition of a variable and the membership function locations
are defined by the cardinality of the set of qualitative values
the variable may assume, and by the interval bounds of its
landmarks, respectively. Given a landmark-based fuzzy par-
tition and the simulated behavior tree, the generation of the
Fuzzy Rule Base (FRB) is straightforward derived by mapping
each behavior of the input/output variables into a set of rules,
where each rule describes a transition from a qualitative state
to the next one. The mathematical interpretation of the FRB
explicitly initializes

��
����
which is then refined through param-

eter identification from the data samples. Let us remark that
the idea of exploiting QR techniques for system identification
is not new within the QR community but most of the work
done addresses the problem of differential modeling [Capelo
et al., 1998, Kay et al., 2000, Bradley et al., 2001].

Herein, the emphasis is on recent results dealing with ro-
bustness and interpretability aspects of the model generated
within the FS-QM framework. Robustness is affected by fac-
tors related to the FRB, such as its completeness and consis-
tency, and by the possible numerical instability of the param-
eter optimization procedures. These factors may also make
interpretability problematic. As for interpretability, other is-
sues deal with both the completeness and distinguishability
and shape of the membership functions that characterize the
variable fuzzy partitions. We will demonstrate that the qual-
itative model underlying the FS allows us to tackle and solve
the problems above in a neat and efficient way.

The results herein reported deals with the identification
of Thiamine kinetics in the intestine tissue. The classical dif-
ferential approach turned out to be inapplicable for the incom-
pleteness of the available knowledge and for the difficulty of
gathering an adequate number of experimental data. This lat-
ter cause was also responsible for the failure of conventional
fuzzy approaches [Bellazzi et al., 2001].

Background
The reconstruction of nonlinear system dynamics from data
may be seen as a problem of modeling nonlinear discrete-time
dynamical systems. Among the possible schemes to describe
the system dynamics of the output variable � [Ljung, 1987],
let us consider the following one:����� ��
�� ���
	���
 ����� � (1)

where the output � measured at time � is a function of a � -
dimensional regressor vector

�
, which includes both output

and input variables, measured at time ����� . The function
��
����

is unknown and expresses the functional relationship between

the output and the input vector, 
 is the vector of parameters,
and the terms

� � ’s, independent, zero mean random variables,
account for the measurement errors. Then, the fuzzy model-
ing problem consists in finding a continuous function approx-
imator

��
of
�

within a proper class of FS’s. As for function
approximation two different classes have been widely used,
the Takagi-Sugeno [Takagi and Sugeno, 1985], and the Cen-
ter Average Defuzzifier [Mamdani, 1974]. Herein, we con-
sider the latter class. The knowledge on the relations between
input-output variables is expressed through IF-THEN rules:

IF
� 	 is � 	 and ... and

� 	 is � 	 THEN y is ��� .
The antecedents

���
are the input vector components, the con-

sequent � is the output, � � and � � are fuzzy sets characterized
by a membership function �� � � �"! # � �%$ . In accordance
with the interpretation of fuzzy operators in [Wang, 1994], &
rules are mathematically interpreted by the following fuzzy
system:

���
�� ��
 � �('
)*,+ 	.-� * !0/ 	� + 	 � * � 
�� � � -
 * � � $
'
)*,+ 	 ! / 	� + 	 � * � 
���� � -
 * � � $ (2)

where the parameter -� * is the center of the � that character-
izes � � in the 1 -th rule; � * � , that depends on the parameter

vector -
 * � , characterizes the fuzzy set associated with the vari-
able

���
in the 1 -th rule; the vector 
 includes all of the param-

eters. But, whatever class is selected, the problem of system
modeling goes through two sub-problems that should be sep-
arately solved to make the modeled system behavior easily
interpretable and transparent:

1. Structural identification:

(a) For each variable, define its fuzzy partition, i.e. the � ’s
that define the fuzzy values it may assume. The locations
of the � ’s initialize 
 ;

(b) define the optimal number of rules & , and the rules;
(c) mathematically interpret the rules.

2. Parameter estimation: seek for
 2 �436587�9;:=<> ?=? � � �� ?=? (3)

where ?@? � ?=? is a proper norm, � and
�� are A -dimensional

vectors of the measured data and of the computed values ac-
cording to the model

���
�� ��
 � , respectively.

Data-driven approaches
Recently, data-driven approaches to fuzzy modeling have
received more and more attention [Abe and Lan, 1995,
Horikawa et al., 1992, Jang, 1993, Pomares et al., 2002, Tak-
agi and Sugeno, 1985,Wang and Mendel, 1992,Wang, 1994].
These approaches mainly differ from each other in the way
they perform parameter initialization and rule base genera-
tion. But, to define the structure of

�� 
����
, all of them follow, in

outline, the flow given in Fig. 1: structure identification and
parameter estimation are mutually related, and are performed
within the same loop. The overall procedure loops on increas-
ing model complexity till the obtained model meets a given
criterion, such as a prespecified target accuracy or a model
evaluation index. The initial model complexity may fix ei-
ther the number L of partitions of each variable domain, often
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Figure 1: Main steps in data-driven approaches

performed in accordance with clustering techniques [Bezdek,
1981, Sugeno and Yasukawa, 1993], or the number & of
rules. In the former case, the domain is splitted into L re-
gions, to which a � is assigned; in the latter one, the � ’s are
initialized around & data by directly locating their centers on
the data themselves. The rules are generated by determining
either all the possible combinations of the � ’s [Jang, 1993] or
the combinations of those � ’s that identify regions where the
data pairs get the maximum degrees [Wang, 1994]. Given a
fuzzy structure, the parameter vector is optimized through a
nonlinear estimation procedure.

FS-QM: a QR-driven approach
The method we propose, sketched in Fig. 2, clearly sepa-
rates the structure identification phase from the parameter
optimization one. FS-QM strongly exploits a QR paradigm,
namely QSIM, to drive almost all modeling phases. It builds
the rules the model equation (2) is grounded on by encoding
the qualitative value and state descriptions of the system dy-
namics, inferred by the simulation of a QSIM model, into the
fuzzy formalism. A crucial issue deals with the proper rep-
resentation of landmarks and intervals between them in the
fuzzy framework since it determines the initial value 
 � of 
 .
Variable fuzzy partition. Given a generic input/output vari-
able

�
, and its quantity space

���
, let us call qualitative

quantity-space the finite totally ordered set
�����

, whose el-
ements are landmark values, � � , and open intervals


 � � � � �
	 	 � ,
bounded by two adjacent landmark values. Let us call fuzzy
quantity-space the finite ordered set

�  � , whose elements de-
fine the fuzzy partition of the domain of

�
. Let us assume that

quantitative knowledge on the real interval
! 3 � ��� � $ � 3 ��
� � � ,

which the landmark � � belongs to, is given:
�  � is defined as

image of a bijective mapping � of
�����

. More precisely:� � 
 � � � � ��� ���
	 , characterized by �� �������� 
�� � with support
 3 � ��� � � , and �  �������� 
 � � � � in
� ���%� � 
 3 � � � � ��� � ;

� � 
 
 � � � � �
	 	 � � � � � � , characterized by �  !�"� 
 � � with sup-
port


 �%� � �%�#	 	 � , and �  ���� 
�� � � � in
! � � � 3 �#	 	 $ .�  � is associated with a parameter vector

-
 $&%&'�)( ��	�* , whose
elements are the locations + 3 � � �%� ��� ��, associated with all � ’s
in

�  � . The fuzzy partition
�  � is built for each variable.

Then, the system parameter vector 
 � is made up of ( � � � )
vectors, i.e. 
 � � 
 -
 $ 	 '� �.-/-/- � -
 $ 	 	 	 '� �

where � vectors are
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Figure 2: Main steps in FS-QM

defined as above, and -
 $ 	 	 	 '� is made up of the centers of
the � ’s of the output variable � . Figure 3 exemplifies how� � � � +0� 	 � 
 � 	 � �1� � � �1� � 
 �1� � �12 � � �12 , is mapped into

�  � .
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The mapping � defines a complete and consistent fuzzy par-
tition, and states a correspondence one-to-one between the
landmark-based and the fuzzy-based representation of real
values. By definition, the � ’s have bounded supports: in this
implementation, we have respectively chosen triangular and
trapezoidal � ’s to represent landmarks and intervals between
them. But, due to the universal approximation theorem which
holds for the considered class of FS’s, other shapes could be
chosen to represent the � ’s without affecting the approxima-
tion capabilities of the resulting fuzzy model.
Fuzzy rule generation. On the basis of the mapping � , we
can automatically translate the finite set of qualitative behav-
iors +98 	 �/-.-/- � 85: , generated by QSIM into fuzzy rules. To
optimize the rule number, the behavior tree is conveniently
analyzed and preprocessed, and only behaviors representative
of significant distinctions are translated into rules. In outline
the algorithm, given in [Bellazzi et al., 2001, Guglielmann
and Ironi, 2002], maps each admissible behavior into a set of
rules. In each rule, the antecedents and the consequent are
the fuzzy representation of the qualitative value of all

�
�
at

the current time, and of � at the next time, respectively. Then,
each rule gives a measure of the possible transition from one
state to the next one. In this way, the entire range of possible
system dynamics is embedded into the rule base. As it may
happen that identical and/or conflicting rules are generated,
filtering procedures are applied, and the final rule base results
to be complete and consistent.



Robustness of fuzzy models
By model robustness we mean both generalization capability
and numerical stability of the identified model.
Generalization deals with the capacity of the model of com-
puting, for inputs never used to identify the model, an output
that correctly reproduces test data drawn in the same experi-
mental conditions as those of the identification data set. The
equation structure strongly influences model generalization.
But, the model is fully defined after its parameters have been
identified from the data samples. Therefore, also the size and
the representativeness of the data set are influencing factors
of such a property. Under the assumption that the data set is
fixed, the goal of achieving good generalization may be pur-
sued with the determination of the optimal model structure.

As for models represented by the equation (2), parame-
ter estimation (3) is generally equivalent to a nonlinear least
squares problem. Let us observe that such a problem is ill-
posed [Engl et al., 1996] in the sense that solutions do not
necessarily depend on the data in a continuous way, or equiv-
alently that solutions are not numerically stable. To obtain
a stable solution, we have to use regularization techniques.
Whereas the regularization theory is well developed for linear
ill-posed problems [Tikhonov and Arsenin, 1977], the nonlin-
ear case is not.

Data-driven approaches
Although they have been shown to be successful in many
applications, data-driven approaches still suffer from many
drawbacks as their performance strictly depends both on the
number and on the quality of data. As the experimental data
may be scattered and noisy, the completeness of the FRB
might fail, and the model built upon it, although optimal with
respect to the fixed criterion, might not be able to capture the
true underlying system dynamics. Moreover, if the input di-
mension or the number of rules are increased, the model com-
plexity grows exponentially, and parameter estimation may
become numerically untractable. This could lead to a sub-
optimal model structure. Last but not least, if the parameter
number of the built model is higher than the number of sam-
ples, overfitting phenomena may occur, i.e. the model may
also learn the noise present in the data themselves with a con-
sequent loss of the ability to generalize [Bellazzi et al., 2001].

A great deal of work related to fuzzy modeling pro-
vides methods for parameter optimization. Since a FS may
be represented as a three-layer neural network, most of the
approaches are based on variants of the back-propagation al-
gorithm. As a matter of fact, these methods find a local min-
imum that converges to the optimal value 
 2 when a “good”
initialization 
 � is given. Then, the definition of “good” parti-
tions of input-output variables is of great importance to a rea-
sonable solution of problem (3). However, even in case data
are not corrupted by noise, and their number is large enough,
the parameter estimation problem is ill-posed, and some prior
knowledge must be exploited to constrain the model search
space, or equivalently, problem (3) must be regularized. As
for fuzzy modeling, only recently the regularization prob-
lem has been addressed [Burger et al., 2002, Johansen and
Babuška, 2003] for a particular class of FS’s.

QR-based approach: FS-QM
The model built in the FS-QM framework does not suffer from
the drawbacks typical of data-driven approaches. The rule

base is generated from the QSIM model only, and then scat-
tered and noisy data do not hamper its completeness. Owing
to the way it has been generated, it includes all of the possi-
ble state transitions. Then, we can surely assert that it is not
sub-optimal. However, it may be redundant as it may include
rules that represent spurious transitions. Spurious rules are
never instantiated by the experimental data. Thus, they influ-
ence neither the approximation nor the generalization capa-
bilities of the resulting model, although they may reduce the
computational efficiency. The number of parameters, inde-
pendent of the number of rules and initialized on the basis of
prior knowledge, grows linearly with the number of qualita-
tive values, or equivalently with the number of variable par-
titions. This is an important feature of FS-QM as, rule num-
ber being equal, it builds a model with a significantly smaller
number of parameters than data-driven approaches. This to-
gether with a good initialization of both structure and param-
eter vector results in its outperformance as for computational
efficiency. If the QSIM model does represent the underlying
physical knowledge of the system at hand, the resulting equa-
tion structure holds good generalization capabilities. This
is still valid also when a small number of samples is avail-
able: as the model structure is not learned from data, over-
fitting phenomena do not occur as demonstrated in [Bellazzi
et al., 2001]. Let us remark that in the same paper, to make
the comparison with a number of different data-driven ap-
proaches fair, we considered gaussian � ’s, usually preferred
in those approaches as their unbounded supports ensure com-
pleteness of fuzzy partitions, and then better approximation
properties. But, in FS-QM, completeness of both fuzzy parti-
tions and rules is always ensured in itself due to the way they
have been built. Figures 4A and 4B illustrate that the gen-
eralization capability of FS-QM is preserved independently
wheter the chosen functions to represent the � ’s have bounded
or unbounded supports. More precisely, they show the results
obtained by validating models, that consider gaussian/double
gaussian � ’s and triangular/trapeziodal � ’s, respectively, on
a data set different from that used to identify the models but
gathered in the same experimental conditions.

Although the model equation and the initial guess 
 �
have been built on structural knowledge, parameter estima-
tion from data remains an ill-posed problem, and numeri-
cal instability may occur unless we further restrict the model
search space. This can be done by imposing prior knowledge
on the solution, namely by constraining either the function��
����

or the parameter vector 
 2 to belong, respectively, to a
specific functional space or a specific trust region. Under the
assumption that the prior knowledge used to define the ini-
tial estimate 
 � is correct, the optimal parameter vector 
 2
should be “close” to 
 � . Then, we remove ill–posedness by
constraining 
 2 to be in the neighborhood of 
 � . In practice,
for each input-output variable we constrain its associated pa-

rameter vector -
 $&%&' to belong to a “sufficiently small” region

centred on
-
 $&% '� . The width of such a region strictly depends on

the confidence of the knowledge about landmark values: the
more precise the available knowledge on the initial locations
of the � ’s is, the smaller the region defined in the constraint
is chosen. The optimization problem (3) is reformulated as a
nonlinearly constrained minimization problem as follows:
 2 � 365 7 9;:=<> ��� ?=? � � �� ?=? (4)
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Figure 4: FS-QM validation results: A - Gaussian/Double Gaussian� ’s; B - Triangular/Trapezoidal � ’s. Data are denoted by � , and
predicted values by ( � )

where � � + -
 $
� ' ( � 	�� � ?=? -
 $

� ' � -
 $ � '� ?@?��	� � , ; the � � ’s give
a measure of the degree of confidence in the initial values of
the parameters, i.e. in the prior knowledge. Problem (4) is
solved by means of Sequential Quadratic Programming [No-
cedal and Wright, 1999], a classical optimization algorithm.
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Figure 5: Model identification with unconstrained parameter opti-
mization: A - Original data; B - Original perturbed data.

The solution of the constrained problem is actually made
stable, in the sense that “small” perturbations on data do not
affect significantly the approximation properties of the iden-
tified model, and the estimated values of the parameters. To
support this, we show the identification results obtained with
two data sets, the second of which is obtained from a per-
turbation of the first one, in the case of both unconstrained
(Fig. 5) and constrained (Fig. 6) parameter optimization. The
original data have been perturbed with zero mean normally
distributed random noise that is really a small quantity, more
precisely its order of magnitude is � # ��
 . The figures clearly
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Figure 6: Model identification with constrained parameter opti-
mization: A - Original data; B - Original perturbed data.

highlight that the estimation procedure is sensitive to numer-
ical perturbations, and that it is made actually stable by con-
straining the minimum problem. The regularized problem is
not only more stable but also favors solutions that are easily
interpretable.

Interpretability of fuzzy models
Besides meeting robustness requirements, to be really use-
ful, models of dynamical real-world systems should provide
a transparent, and intelligible description of their complex dy-
namics, and parameter values with a clear physical meaning.

The main reason that makes fuzzy systems preferable
to other input-output modeling schemes is their capability to
express prior knowledge. But, in practice, this feature is not
entirely exploited by traditional approaches: they are not able
to express deep prior knowledge but heuristics established on
the basis of experience and intuition of the domain expert.
Then, the resulting model may fail in clearly representing (i)
all the information about the system dynamics, and (ii) the
physical parameters associated with important changes in the
system state. Not to mention data-driven approaches: the def-
inition of a model with good approximation performance very
often occurs at the cost of lack of model interpretability.

Factors that influence interpretability are related to both
the fuzzy partition and the rule base. On the one hand, the
variable partitions should be complete and distinguishable so
that each of its subsets may be associated with a clear physical
meaning. Distinguishability means that the elements in the
partition are separable and strongly consistent. On the other
hand, the rule base should be consistent, and made up of a
reasonable number of rules: either contradictory rules or their
combinatorial explosion, due to a too high dimension of input
vector, makes the model very hard to be understood.

To obtain an interpretable model two requirements have
to be met: (1) the initial model, namely initial fuzzy parti-
tion and rule base, must be interpretable; (2) the model must
remain interpretable after parameter estimation.



Data-driven approaches
The drawbacks, mentioned in the previous section, that
data-driven approaches suffer from clearly rebound on inter-
pretability [Jin, 2000]. These approaches may lead to in-
complete partitions, inconsistent rules, and to an exponen-
tial growth of the number of rules and parameters. But, even
when these phenomena are suitably controlled, and conse-
quently the initial model is interpretable, such a model feature
may vanish after parameter adjustment. During the learning
process, the parameters of the � ’s may be adjusted so drasti-
cally that the resulting fuzzy partition is not complete and dis-
tinguishable any more. Regularization techniques may help
also to reduce this phenomenon, and then to improve signifi-
cantly model interpretability [Burger et al., 2002].

Let us underline that, from the physical point of view,
the interpretability potential of traditional approaches is, in
general, rather weak, even when the identified model meets
the conditions for it. As a matter of fact, the model param-
eters identify regions that do not necessarily correspond to
descriptions of the system states physically significant.

QR-based approach: FS-QM
For the way fuzzy partitions are defined by the mapping � , i.e.
(i) complete covering of the variable domain suggested by the
knowledge about qualitative values and not by the data, and
(ii) � ’s with bounded supports, the above mentioned condi-
tions for interpretability, namely partition completeness and
distinguishability, are guaranteed. Moreover, a sound phys-
ical meaning is associated with each fuzzy set and its pa-
rameters as the fuzzy partition of each variable domain is
landmark–based. The rule base results to be complete, be-
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Figure 7: Triangular/trapezoidal � ’s: A - Initial; B - Identified.

cause it embeds all the significant features of the system dy-
namics captured by the qualitative behaviors, and fully in-
telligible, as each rule expresses the transition of the system
from a state to its successor. The rules are also consistent:
in fact, possible conflicts between them, namely rules with
the same IF–part and different consequent, are solved on the
basis of the degree of each rule calculated on the data sam-
ples. Finally, let us remind that the generation of rule base
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Figure 8: Gaussian/double-gaussian � ’s: A - Initial; B - Identified.

is grounded on the variable state transitions that occur in the
admissible behavior set, i.e., a physically significant subset
of the simulated behavior tree. Then, the number of rules is
linear with the number of such variable state transitions.

Since the model structure is properly initialized on
deep knowledge, the parameter estimation procedure refines
the numerical ranges to which landmark values are initially
bounded. Interpretability of fuzzy partitions is preserved af-
ter parameter optimization thanks to the constraint defined in
(4): as a matter of fact, such a constraint is able to keep the
physical meaning of the parameters, and the consistency and
separability properties ensured by the mapping � (Fig. 7).

Let us emphasize that the hypothesis made on the sup-
ports of the � ’s, namely that they must be bounded, is nec-
essary to retain the consistency property, and consequently
to gain interpretability. As a matter of fact, if the supports
were unbounded, such as in the case of gaussian functions,
the weak consistency of initial fuzzy partition [Zeng and
Singh, 1996] can be lost after the optimization procedure.
Figure 8-A shows the initial partition of the same variable in
Fig. 7 where gaussian functions are exploited to represent the
knowledge about its landmarks. From Fig. 8-B it is evident
that interpretability is definitely lost: as highlighted by the
regions in the boxes, both weak consistency and separability
are not preserved after the optimization procedure.

The model interpretability in “actual” physical terms,
made possible by FS-QM, lays the groundwork for new ap-
plication perspectives of fuzzy models. Let the initial model
structure describing the system under normal conditions be
the nominal model. We could exploit it in a diagnostic con-
text (i) to evaluate the deviations from the nominal values
of the parameters identified on new data samples, and then
to infer the most plausible diagnostic class; (ii) to test dif-
ferent hypotheses about the underlying physical mechanisms
by modifying the qualitative model, and then by simulating
it to generate a rule base which better describes the newly
observed system dynamics. The first task can be performed
thanks to the clear physical meaning of the parameters of the� ’s, whereas hypotheses testing is more concerned with the
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Figure 9: Thiamine dynamics in treated diabetic subjects: A - Identification results; B - Identified partition; C - Zoom of identified partition.

rule base generation. In outline, the diagnostic classification
problem may be tackled as follows. When a new data set is
available, parameter estimation is performed under the same
conditions (same initial � ’s and width of the region � de-
fined in (4)) used to identify the nominal model. If the opti-
mization procedure succeeds in identifying an accurate model
where the identified centers of the � ’s fall into their initial
supports, we can infer that the data set is related to a normal
situation. Otherwise, we can slightly relax the constraints
on the parameters: if the optimization procedure succeeds,
and again the centers of the identified � ’s lie in their initial
supports, we can conclude that the data set refers to “quasi–
normal” conditions. A further unsuccessful result means that
the data set actually refers to a system corrupted by a fault
or a disease, and prior knowledge on landmark values has to
be updated accordingly, i.e. the initial fuzzy partitions have
to be changed. As exemplification, let us consider as nom-
inal model that one related to Thiamine kinetics in normal
patients [Bellazzi et al., 2001]. We are given three different
sets of data measured in as many different experimental set-
tings. The first one, related to Thiamine kinetics in normal
patients, has been already used in the paper to refine the pa-
rameter values of the nominal model (Fig. 7); the second and
the third ones refer to insulin-treated and untreated diabetic
subjects, respectively. Let us observe that the centers of the
identified � ’s in Fig. 7-B do fall into their initial supports,
as we expected. As for the second set of data, the optimiza-
tion procedure fails to identify an accurate model under the
same initial conditions, unless we relax the constraints on the
parameters, i.e. we enlarge the region � . The results ob-
tained are really satisfactory in terms of approximation accu-
racy (Fig. 9-A). The optimized � ’s in Fig. 9-B mainly differ
from those in Fig. 7-B as for the fuzzy set labelled “MAX”
zoomed in Fig. 9-C: we can observe that, even if the center
moves away from its nominal value, it is still within the sup-
port of the initial � : �

�
(Fig. 7-A). Also with the third set of

data, FS-QM fails to approximate the system dynamics un-
der the same initial conditions, and a significant enlargement
of the region � reveals to be unsuccessful. Only a drastic
change of the initial partitions (Fig. 10) allows us to get good
results. Actually, this is due to the inadequacy of the prior
knowledge on landmark values related to the physiological
system to represent properly the pathological situation.

Conclusion
Fuzzy modeling aims at achieving an approximation of the
unknown functional relation between the input and output
variables of a system from experimental data. To achieve a
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Figure 10: Untreated diabetic subjects: Thiamine fuzzy partition.
A - Initial; B - Identified.

robust and interpretable fuzzy model, FS-QM effectively em-
ploys all the available structural prior knowledge, represented
in QSIM, and empirical data. The embedment of deep prior
knowledge into the FS makes the identification problem bet-
ter posed, since it properly delimits the model search space.
In addition, the prior knowledge allows us to define a good
initial estimate 
 � , and, then, to define a trust region where
 2 is supposed to belong to. If the prior knowledge is correct,
this will lead to a model that has good generalization and in-
terpretability properties also in data-poor contexts. In FS-QM,
the gained parameter interpretability from the physical point
of view represents an added value that stands chances for
fuzzy models to be used to perform a larger spectrum of tasks
than the usual one, namely system control. FS-QM models
might be conveniently applied, for example, in a diagnostic
context. On the one hand, diagnostic hypotheses that explain
the observed behaviors could be tested by introducing struc-
tural variations into the underlying qualitative model, and by
validating the fuzzy model built on the basis of the newly
generated rule base. On the other hand, diagnostic hypothe-
ses could be drawn from the analysis of the deviations of the
estimated values of parameters from the nominal ones. Fu-
ture work will thoroughly explore the diagnostic potential of
FS-QM models.

A drawback of FS-QM deals with the possible genera-



tion of spurious rules. A spurious rule is never instantiated
by the data samples, and then its rule degree is equal to zero.
Sufficient but not necessary condition for a rule to be sound is
that its degree is different from zero. The definition of criteria
for either detecting the presence of spurious rules or weight-
ing the “doubtfully sound” rules requires to be investigated to
further improve the computational efficiency of FS-QM.
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