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Abstract 
This paper lies within the domain of supervised learning 
algorithms based on neural networks whose architecture 
corresponds to radial basis functions. A methodology to use 
RBF when the descriptors of the patterns are given by means 
of their orders of magnitude is developed. A qualitative 
distance is constructed over the discrete structure of absolute 
orders of magnitude spaces. This distance is reliant on a metric 
structure defined in Rn. The aim is to capture the remoteness 
between the components of the patterns by locating labels with 
respect to extreme magnitudes. An application to a financial 
problem of the described learning method is given and it 
permits to compare results obtained from a qualitative 
treatment with those from a quantitative treatment. 
Keywords: Learning Algorithms, Radial Basis Functions, 
Orders of Magnitude Reasoning. 

Introduction 
Qualitative Reasoning has developed techniques that permit 
to formalize the human capabilities to perceive, analyze, 
understand and model real problems. In addition in the 
process of understanding the world around us, measurement 
is crucial. The measurement of reality needs, at the same 
time, the use of numbers, orders of magnitude and 
categories. One of the goals of qualitative reasoning is 
obtaining models allowing the treatment of problems in 
which variables described in different scales appear. 

On the other hand, learning processes can be considered as 
one of the main human reasoning capabilities. 
The majority of learning algorithms, fundamental subjects 
for AI, are based uniquely on numerical scales, whereas in 
human learning also non numerical variables take part, both 
qualitative variables described by orders of magnitude and 
attributes.  
In this sense, the process followed by the rating agencies 
analysts to classify bonds issued by a company according to 
their credit risk is a good example of how reasoning and 
learning are used in a human qualified assessment.  
In this paper it is shown that the learning capability of a 
neural network, specifically Radial Basis Function Networks 
(RBF), is improved when using qualitative information.  
In the improvement of RBF’s performance special attention 
is given to the qualitativization of the domain of activation 
functions. Orders of magnitude models are introduced in the 
development of this non linear type of algorithm and the 
selection of the stopping criteria is discussed. All these 
purposes are conducted to be applied to the financial problem 
of the determination of a credit risk prediction measure. For 
this problem the orders of magnitude and tendencies of the 
variables involved are considered more relevant than their 
exact numerical values [2]. 
Section 2 is devoted to homogenizing scales via a 
discretization that takes into account the qualitative 
categorical variables. To this aim the absolute orders of 



magnitude model with granularity n, OM(n), constructed via 
a symmetric partition of the real line, is considered and a 
location function and a distance in OM(n) are defined. 
Section 3 gives the basic concepts of RBF networks, 
highlights the importance of stepwise activation functions for 
these kinds of learning algorithms, and describes the forward 
selection algorithm to determine the centers for the treatment 
of qualitative information. In Section 4, an example of the 
proposed method is given involving some companies and 
their financial ratios, and results obtained from quantitative 
and qualitative methods are compared. The paper ends with 
several conclusions and outlines some proposals for future 
research. 

The discretization process 
In classification processes the situation in which the 
numerical values of some of the data are unknown, and only 
their qualitative descriptions are available - given by their 
absolute or relative orders of magnitude [13] - is not unusual. 
In other situations, the numerical values, even though they 
might be available, are not relevant for solving the proposed 
problem. In that sense, in problems in which there are 
involved either quantitative or categorical variables, the 
values of a given numerical variable have frequently 
different meanings depending on the categories of an 
attribute. Regarding the financial problem of a firm’s credit 
risk measurement, a particular value of, for instance, the 
variable leverage has different significances depending on 
the country in which the firm operates. 
In this section a discretization of quantitative variables that 
permits to unify the measurement scales considered is 
presented. 
This process is carried out by considering different 
landmarks for a fixed variable, in relation with the chosen 
category of an attribute, i.e., a Bayesian point of view of the 
discretization process is performed.  
To this end, a supervised discretization method based on the 
CAIM Method (Class-Attribute Interdependence 
Maximization) is used [6], [9]. The CAIM Method is one of 
the most recently proposed discretization methods and it 
provides interesting results in a reduced computational time. 
The method divides the range of a variable into a very small 
number of intervals that can be found automatically. 
Nevertheless, in this work a variant of the method will be 
used in which the number of intervals will be previously 
fixed by the user [5].  
The input variable F and the output variable C can be 
considered as random variables and their contingency table 
(quanta matrix) can be seen in Table 1. 

Table 1: Quanta Matrix

From the quanta matrix in [5] the following coefficient is 
considered: 
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Where: D stands for a particular discretization scheme on F, 
given by a set of n landmarks, n is the number of discrete 
intervals, r iterates through all intervals, maxr is the 
maximum value within the rth column of the quanta matrix 
and M+r is the total number of continuous values of attribute 
F that are within the rth interval. 
The algorithm chosen consists of maximizing the coefficient 
CAIM* by considering a fixed number n of intervals. 

Unifying scales by discretization 

Discretization is a process of converting the range of a 
continuous variable into a finite set of intervals. This allows 
to generate a variable with a smaller number of distinct 
values or ordered labels by determining a finite number of 
landmarks to establish the intervals. 
Within the frame of Artificial Intelligence, a key factor is 
extracting information from heterogeneous data. Considering 
variables described via a common set of orders of magnitude 
can be helpful to manage them simultaneously. Qualitative 
orders of magnitude reasoning tackle problems in such a way 
that the principle of relevance is preserved [7]; that is to say, 
each variable involved in a real problem is valued with the 
required level of precision. 
Given a categorical variable C, whose range is {C1, …,Cs}, 
and a quantitative variable V, it is considered the 
discretization of V conditioned by the category Cj, V(Cj), by 
a set of landmarks. The set of landmarks and the 
corresponding labels to distinguish the ordered classes, can 
be either defined by experts [2] or automatically generated 
by a discretization algorithm [6], [9]. 
After this process, discretized quantitative variables will be 
defined in a common orders of magnitude space with 
granularity n, OM(n). 
The absolute orders of magnitude models [11], [13], work 
with a finite set of symbols or qualitative labels obtained via 
a partition of the real line, where any element of the partition 
is a basic label. These models provide a mathematical 
structure which unifies sign algebra and interval algebra 
through a continuum of qualitative structures built from the 
rougher to the finest partition of the real line. This 
mathematical structure, the Qualitative Algebras or Q-
Algebras, have been studied in depth [1]. 
In this section the absolute orders of magnitude model is 
briefly described [1], and a new function to determine the 
location of labels is defined. The model used is a 
generalization of the model introduced in [11].  
The absolute orders of magnitude model of granularity n, 
OM(n), is defined from a symmetric partition of the real line 
in 2n+1 classes: 

a1-a1-an-2-an-1 an-2 an-1... ...
Nn PnPn-1Nn-1 P1N1N2 P2 ...... 0

Fig.1: Partition of the real line

where Ni=[-ai,-ai-1), 0={0} and Pi=(ai-1,ai].



Each class is named basic description or basic element, and, 
using the notation introduced in [1], is represented by a label 
of the set S1:

S1={Nn, Nn-1, ..., N1, 0, P1, ..., Pn-1, Pn}. 

The quantity space S is the set of labels in the form [X,Y] for 
all X,Y  S1, with X Y (i.e., x<y for all x X and y Y):

0.Yand0Xif
Y,andXcontaininginclusionto

respect with intervalsmallestthe

0;=XifY,

0;=YifX,

YX,

The relation P, to be more precise than (given X,Y  S, X is 
more precise than Y (X PY) if X Y) is an order relation in 
S.
For all X  S-{0}, the basis of X is the set: 

XB:0SBB p1X ,
and, given a basic element U  S1, the U-expansion of X  is: 

YUandYX:SYMinX PPU ,
the minimum label that is less precise than X and U, i.e., the 
smallest interval with respect to the inclusion containing X 
and U.  
Note that XU does not depend on the values of the landmarks 
used to determine the real line partition. 

The location function

In order to define a qualitative RBF, a distance between 
qualitative vectors will be considered. To this end, due to the 
lack of good properties of the qualitative difference in an 
OM(n) structure, a function that measures the relative 
position between patterns by means of a distance in Rn is 
defined. 
Each element X in S will be codified by a pair (l1(X), l2(X)) 
of integers: l1(X) is the number of basic elements in S1-{0}
that are “between” the basis of X and Nn, and l2(X) is the 
number of basic elements in S1-{0} that are “between” the 
basis of X and Pn.
These numbers permit each element to be “located” in S, 
where all different levels of precision are considered. These 
two numbers are necessary for the location to capture the 
particular level of precision of each element. The addition of 
l1(X) and l2(X) allows to obtain the number of basic elements 
contained in X. 
In addition, this “location” can be extended to any pattern 
defined by k orders of magnitude variables. 
As an example to illustrate this process, let us consider the 
absolute orders of magnitude model with granularity 3, 
OM(3): 

S1={N3, N2, N1, 0, P1, P2, P3},
and
S=S1 {[N3,N2],[N2,N1],[N1,P1],[P1,P2],[P2,P3],[N3,N1], 
[N2,P1],[N1,P2],[P1,P3],[N3,P1],[N2,P2],[N1,P3],[N3,P2],
[N2,P3],?}, 
where “?” stands for [N3,P3].  

The location of the label X=[N1,P2] is the pair (-2,1), because 
there are left two basic elements at the left hand side of X 
and only one at its right hand side: 

P3N3 P1N1N2 P20

[N1,P2]
B-2 +1

Fig. 2: The location function

The formal definition of the location function is 2ZS:l
such that:  
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This is a way to codify labels by points on a Euclidean plane, 
in such a manner that the Euclidean distance between them 
will allow a distance between labels to be defined. 
The extension of l to Sk is: 
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This function provides the relative position of a k-tuple of 
qualitative labels with respect to the basis of Sk.

Distance in OM(n)k

The location function allows similarity between patterns to 
be measured. Once the k-tuples of qualitative labels have 
been codified by 2k-tuples of integers, conditions to define 
distances in the space OM(n)k are achieved.  Let us define: 

))(L)(L(R))(L)(L(),(
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T
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where R represents any metric in R2k, that is to say, if 
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This function D inherits all properties of the distance in R2k,
and therefore satisfies the three axioms of a distance.  
The distance D between two k-tuples of qualitative labels 
measures the similarity between them, in the sense that the 
more similar labels are, the smaller the distance between 
their codifications is, and so the smaller their distance is. 

Qualitative radial functions in RBF 
In this section a methodology, allowing Radial Basis 
Function networks (RBF) to be used with orders of 
magnitude input data, is proposed. 
Before building appropriate radial functions for this kind of 
discrete spaces, let us remind ourselves of the basic concepts 
of Radial Basic Function networks, introduced by  
Broomhead and Lowe [4]. 

Radial basis function networks 

RBF are a type of artificial neural network for application to 
problems of supervised learning. RBF can be applied to 
problems of regression, classification and times series 
prediction. In this paper only the case of classification is 
considered. 



Several reasons make RBF especially interesting. On the one 
hand, they are universal classifiers, and on the other, the 
training process associated to these kind of neural networks 
is usually much faster than for other neural architectures, 
such as MLP or SVM, and, in addition, it is possible to 
extract rules from RBF architecture.   
RBF are associated with a simple architecture of three layers 
[4] as in Fig 1: 

Fig. 3: Radial basis function network architecture

Each layer is fully connected to the following one and the 
hidden layer is composed of a number of nodes with radial 
activation functions called radial basis functions. Each of the 
input components fits forward to the radial functions, 
whereas the outputs of these functions are linearly combined 
with a set of weights into the output of the network. 
The characteristic feature of radial functions is that their 
response decreases, or increases, monotonically with 
distance from a central point named center of the radial 
function. These functions involve two parameters, the center 
and a distance scale.  
Radial functions in the hidden layer have a structure 
represented as follows:  

))(R)(()( T
i ii cxcxx

where  is the radial function used, {ci | i=1,…,c} is the set 
of radial function centers and R is a metric. So, the term  

)()( T cxRcx  denotes the square of the distance between 
the input x and the center c according to the metric defined 
by R.
Usual radial functions are Gaussian, Cauchy’s, multiquadric, 
inverse multiquadric, spline and logarithm. The most widely 
used radial function is the Gaussian one, in the particular 

case when the metric is R = I
2r
1 , with I the identity matrix 

and r the radius of the radial function: 
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where d is the Euclidean distance in Rn. Gaussian function 
monotonically decreases with distance from the centre c, and 
in this sense, it is said that its response is local.  The output 
of the RBF network is: 

2

2c

1i
i0

r
),(d

expww)F( icxx

Qualitative radial functions 

Note that all the formulae in previous subsection are applied 
to the case in which the input x and the centers c are 
numerical vectors.  
When input data are described by their orders of magnitude, 
a new kind of radial functions, with a qualitative domain, 
have to be defined. Then, since both patterns and centers are 
described by their orders of magnitude in a space OM(n), the 
distances between them will be measured by using the 
definition previously introduced.  
Radial functions in the hidden layer become: 

)))L()(L(R))L()((L()( T
i ii cxcxx ,

and the output of the RBF network is: 

)L()L(R)L()L(ww)F( Tc

1i
i0 ii cxcxx ,

where  is the radial function used. 
As in the numerical case, the response of these radial 
functions decreases, or increases, monotonically with 
distance from the center. Qualitative radial functions, defined 
via the distance between the qualitative descriptions of the 
inputs, can be graphically represented by means of stepwise 
functions.  
As a first example, let us consider a space OM(3) with basic 
labels {N3,N2,N1,0,P1,P2,P3}, patterns described by only one 
input variable, and four centers with the four corresponding 
Gaussian radial basis functions with radius equal to 1. The 
centers are c1 = P2, c2 = [N2,N1], c3 = [N2, P1], and c4 = N3.
The explicit expression of all radial basis functions is then: 

)(x,cD
i

i
2

e(x)
By taking weights w0= 0, w1= 1, w2 = -3, w3= 2 and w4= -1, 
the output of the qualitative RBF network is: 

)(x,cD)(x,cD)(x,cD)(x,cD 4
2

3
2

2
2

1
2

e2e3eeF(x)
Fig. 4 shows the stepwise graphical representation of the 
output of this qualitative RBF:  

Fig.4: The output of a one-dimensional qualitative Gaussian RBF

Let us consider now an example in the case in which  
patterns are described by two input qualitative variables, 
again in a space OM(3) with basic labels 
{N3,N2,N1,0,P1,P2,P3}, only one center c = (P1,P2), and the 
corresponding radial basis function with a Gaussian 
expression with radius equal to 1. The explicit expression of 
the radial basis function is then: 
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By taking weights w0= 0.25 and w1= 1, the output of the 
obtained qualitative RBF network is: 

),(D2

e0.25)F( cxx
Fig. 5 shows the stepwise graphical representation of the 
output of this two-dimensional qualitative RBF:  

Fig.5: The output of a two-dimensional qualitative Gaussian RBF

Forward selection algorithm to determine centers to a 
qualitative RBF

There are several methods to determine the parameters for a 
RBF [4]; it is the set of centers for the basis functions within 
the entire set of patterns, their radii and the weights. Standard 
ways of optimizing networks involve the optimization by 
gradient descent, which needs differentiability and a fixed 
architecture in advance (number of layers and nodes). 
Nevertheless RBF has a simpler alternative based in subset 
selection. Subset selection compares the errors produced 
when different subsets of centers are chosen. Usually the 
entire set of patterns has too many subsets, so a heuristic 
method must be implemented. One of these is the forward 
selection method. It consists in starting with an empty subset, 
to which is added one center at a time, the one that most 
reduces the approximation error. Forward selection ends 
when some chosen criterion, such as Generalized Cross 
Validation, stops decreasing. In forward selection method, 
weights are not selected, because they are directly 
determined by the chosen centers and radii. 
The forward selection advantages in front of standard ways 
of optimizing networks are that it does not need a fixed 
number of centers in advance, and, moreover, it is a model 
easily tractable in the case of qualitative input data, and its 
computational requirements are lower. 
In addition, forward selection does not require 
differentiability, and this is crucial when considering a 
qualitative patterns description by means of orders of 
magnitude. In such a discrete structure the radial functions 
are neither continuous nor differentiable. 
The location function and the distance in OM(n)k allow 
forward selection algorithm and generalized cross validation 
criterion to be implemented in qualitative radial basis 
functions networks over orders of magnitude spaces. 

Experiments and results 
In this section the defined method is used to classify firms 
into investment and speculative grades in an example 
involving some companies and their financial ratios. Results 
obtained from quantitative and qualitative methods are 
compared. To this end 638 U. S. firms, defined by 21 of their 
financial ratios and classified by Standard & Poor’s, have 
been considered. Financial data used in this work were 
calculated considering the financial statements presented by 
the companies at the end of 2001. Information has been 
collected from two databases, acquired by the MERITO 
project (supported Spanish Ministry of Science and 
Technology): The Thompson’s WorldScope Database and   
Standard & Poor’s Database.  
First, let us introduce the problem of predicting financial risk 
of a firm by means of its financial rating. 

Predicting Financial Rating 

The rating is a qualified assessment about the risk of bonds 
issued by a company. The specialized rating agencies, such 
as Standard & Poor’s, classify firms according to their level 
of risk, using both quantitative and qualitative information to 
assign ratings to issues. The final rating is the agency's 
judgment, and reflects the probability of issuer default. 
Predicting the rating of a firm therefore requires a thorough 
knowledge of the ratios and values that indicate the firm’s 
situation and, also, a deep understanding of the relationships 
between them and the main factors that can alter these 
values.  
The processes employed by these agencies are highly 
complex. Decision technologies involved are not based on 
purely numeric models. Experts use the information given by 
the financial data, as well as some qualitative variables, such 
as the industry and the country or countries where the firm 
operates, and, at the same time, they forecast the possibilities 
of the firm’s growth, and its competitive position. Finally, 
they use an abstract global evaluation based on their own 
expertise to determine the rating. Standard & Poor’s ratings 
are labeled AAA, AA, A, BBB, BB, B, CCC, CC, C and D. 
From left to right these rankings go from high to low credit 
quality, i.e., the high to low capacity of the firm to return 
debt. 
Nevertheless, a first classification into two classes is derived 
from these labels. Under present commercial bank 
regulations, bonds rated in the top four categories ('AAA', 
'AA','A', 'BBB') are generally regarded as eligible for bank 
investment, it is with investment grade, meanwhile debt 
obligation of an issuer with a lower than investment grade 
rating is considered with speculative grade. Standard & 
Poors criteria to define groups of risk can be found in [14]. 
The model presented is especially adequate when the goal is 
to measure the magnitude of a result, based on the qualitative 
descriptions of the variables that participate. The qualitative 
descriptions appear when either numerical values are 
unknown or the experts use only their orders of magnitude. 

Training methodology 

Supervised learning over the available data of the 638 
companies has been implemented, using both the numerical 
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values of their ratios and their orders of magnitude, by a 
standard RBF network.  
Variables employed in this study are extracted from [3] and 
[8]. 
All 21 input variables are real-valued while the rating, i.e. the 
output variable, is a nominal variable with 2 different 
classes: investment grade and speculative grade, which have 
been represented using -1 and +1, respectively. 
Simulations have been carried out following the PROBEN1 
standard rules [12]. The data set available has been sorted by 
the company name before partitioning it into three subsets: 
training set, validation set and test set, with a relation of 
50%, 25% and 25% respectively. Table 1 shows the pattern 
distribution in each data subset.  

Rating Investment 
grade

Speculative 
grade

Total 

Training 163 156 319 
Validation 85 75 160 
Test 77 82 159 
Total 325 313 638 

Table 2: Pattern distribution over data subsets

To study and analyze the effect that input data discretization 
has over RBF generalization, two different kinds of training 
have been done. First training (referred to as quantitative
training) rescales input values to mean 0 and standard 
deviation 1. Second training (qualitative training) performs 
the input transformation described, i.e. it considers the 
discretization on orders of magnitude and the codification of 
the values given by the location function.  
Data discretization has been carried out following the 
modification of CAIM methodology, with 6 qualitative 
descriptions: {N3,N2,N1,0,P1,P2,P3}. In order to determine the 
landmarks, for each input variable, only the values with a 
distance to the mean less than three times the standard 
deviation have been considered. It is necessary to remark that 
this has been made to avoid the outliers’ strength only during 
the first step of the process. Nevertheless, the firms with 
extreme values not considered in the landmarks 
determination process, have been later qualitatively labeled 
by N3 or P3.

Results and discussion 

In both kinds of training processes, networks are initially 
trained on the training set and tested on the validation set. 
The results are used to adjust the radial function width (r). To 
perform this adjustment of the radial width, a total of 4000 
simulations have been done for each class. Widths checked 
are from 0.0001 to 0.1 with increments of 0.0001, from 0.101 
to 1.1 with increments of 0.001, from 1.11 to 11.1 with 
increments of 0.01 and 11.2 to 111.1 with increments of 0.1. 
The final width (see Table 3) is selected among the 4000 
widths trained by applying a standard criterion [10, 10b]. 
Once the radial width is determined, networks are trained on 
training and validation sets while the test set is used to assess 
the generalization ability of the final solution. 

t i Quantitative training

r CAtr CAva CAtr+va CAte
12,5 77,43% 75,62% 76,83% 74,84%

Qualitative training
r CAtr CAva CAtr+va CAte

17,8 85,27% 78,12% 83,92% 78,62%

Table 3: Classification accuracy for training data set (CAtr), 
validation data set (CAva), training + validation data set (CAtr+va)

and test data set (CAte)

As can be seen in Table 3, classification accuracy for the 
qualitative training is better than for the quantitative training. 
Since the only difference is the use of qualitative labels 
during the input conditioning, it confirms experts’ intuition 
when saying that orders of magnitude of the ratios are more 
relevant than their exact numerical values. Therefore, the use 
of qualitative values instead of real ones during training and 
test process not only does not carry a lost of information, but 
leads to better results, due to the fact that it implies working 
with the appropriate level of precision.  
In table 4, a threshold of 0.25 has been imposed in the test, 
avoiding classification of the firms with activation function 
value between -0.25 and 0.25. It can be seen that in this case 
classification for the qualitative case is again more suitable. 
The number of patterns correctly classified is more than 22% 
better for the qualitative training. At the same time, 
qualitative training has a lower indetermination in the 
classification (25.16% in front of the 36.48% of the 
quantitative training). The number of patterns incorrectly 
classified is the same in both tranings. 

Quantitative training
Investment Speculative Global 

Correctly 
classified 

41 53,25% 40 48,78% 81 50,94%

Incorrectly 
classified 

4 5,19% 16 19,51% 20 12,58%

Not classified 32 41,56% 26 31,71% 58 36,48%
Qualitative training 

Investment Speculative Global 
Correctly 
classified 

49 63,64% 50 60,98% 99 62,26%

Incorrectly 
classified 

6 7,79% 14 17,07% 20 12,58%

Not classified 22 28,57% 18 21,95% 40 25,16%
Table 4: Final classification for test data set (threshold = 0.25)

Conclusions and future research 
The present work aims at motivating, defining, and analyzing 
the viability of the use of artificial neural networks in 
structures defined in orders of magnitude spaces. 
The focus of this paper is the construction of a radial basis 
function, necessary in RBF networks, to be used in problems 
for which the input variables are described in terms of 
qualitative values on orders of magnitude. For this reason 
radial basis functions have been built from a distance defined 
over OM(n) via a location function for qualitative labels.  
It has been proved that, using variables defined on orders of 
magnitude, the network generalization is enhanced. 



The system is applied in the financial domain to evaluate and 
simulate credit risk. But this approach may also be applicable 
to problems in other areas where the involved variables are 
described in terms of orders of magnitude. The limitations of 
the method presented cannot be evaluated until the 
implementation is completed and sufficiently tested. 
The results obtained by using input variables defined over 
orders of magnitude spaces have been compared with the 
ones obtained by using numerical values in the example 
given. The good results obtained with a dataset of 638 U.S. 
firms from the industrial sector show the suitability of the 
presented methodology. 
Although this paper has focused on a binary classification 
problem (i.e. classes considered are investment and 
speculative grade), the methodological aspects considered 
and given can be used in a multi-classification problem 
(considering the nine Standard & Poor’s ratings from AAA 
to D).  
This work belongs to a wider project, MERITO project, 
supported by the Spanish Ministry of Science and 
Technology, in which the methodology given in this paper is 
going to be used. The project addresses the prediction and 
measurement of financial credit risk. The proposed method is 
currently being implemented to be applied to available data 
referring to the most important American and European 
firms, whose Standard & Poor’s rating is known. 
With regard to future work and open problems, the following 
comments can be made: 

To look for other appropriate distances between 
qualitative descriptors. 
To define new distances combining numeric and 
qualitative data. 
To choose different criteria to select centers instead of 
forward selection. 
To test the new criteria to obtain landmarks by using the 
information given by categorical variables in a wider 
dataset with firms from different countries and sectors. 
To implement the given method to be applied in 
problems of multi-classification. 
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