
Dynamic Ontological Support for Qualitative Reasoning in The
Knowledge Collective (TKC)

Jay Yusko and Martha Evens

Illinois Institute of Technology
Department of Computer Science

10 West 31st Street, Chicago, IL 60616
jay.yusko@gensolco.com, evens@iit.edu

Abstract
If you want to do Qualitative Reasoning about a
specific domain, ontologies along with an
ontology inference engine are needed to support
that reasoning. If you want to reuse information
between multiple systems, you have to share
knowledge and ontologies that are needed for
each system. If you also want to have low
maintenance of the ontologies, the ontologies
have to be developed dynamically as needed by
the end user during a session with The
Knowledge Collective (TKC). If agents bring
along their own ontologies instead of having an
ontology server or ontology agents, the ontology
for a task-specific agent is easier to maintain and
develop. TKC framework uses objects to
represent the ontologies and a production rule
ontology inference engine for Qualitative
Reasoning about domain specific ontologies.

Introduction
A group of students and faculty at Rush Medical
College and Illinois Institute of Technology have
been building medical learning systems for the
last twenty years. Even though much of the
knowledge underlying these systems is the same,
they have laboriously constructed a new
knowledge base for each new system. The goal
of The Knowledge Collective (TKC) is to
provide a reusable, extensible knowledge base
that can be used to support a wide variety of
systems.

TKC is an intelligent knowledge base that is
built on a multi-layered, multi-agent framework
with the goal of supporting Qualitative
Reasoning (Forbus 1996) about specific
domains. This framework is described in The
Knowledge Collective Ontology section. The
reason for this type of framework is so that the
knowledge needed by an end user to do
Qualitative Reasoning can be stored in a format
that makes sense for the knowledge, and the end
user does not need to know where the knowledge

is stored or how to access it. Storing and
accessing knowledge is the mission of the
agents. Therefore an agent needs two kinds of
information to understand how the knowledge
that the end user wants is stored and how to
retrieve it: the meta knowledge (Yusko and
Evens 2002) and the ontology of the knowledge
base. The meta knowledge is the knowledge that
the agent needs to understand its structure and
storage of the information. The ontology tells
how the agent can make use of the knowledge
for the end user. This paper will just cover the
ontology side of the equation. If you want to
know more about the meta knowledge side, see
Yusko and Evens (2002).

As with any agent based system, ontology is
very important. Agents have to have an
understanding of the environment that they are
working in. If an agent is to be the keeper of
specific knowledge then the agent needs to know
how the semantics of the knowledge is
structured. The ontological model can be either
artifact based or process based. This is the model
that is given to the computer to understand the
knowledge (Yusko 1994, Bredeweg and Forbus
2003, Falkenhainer and Forbus 1988). With this
type of ontological framework, Qualitative
Reasoning can be accomplished for a specific
domain.

Ontology architectures will be discussed in the
Ontology Background Section. TKC will be
described in The Knowledge Collective
Ontology Section. A special type of agent called
a MicroDroid is used in TKC and will be
discussed in the MicroDroid Ontology in The
Knowledge Collective Section. Then a medical
tutoring system will be used as an example in the
Ontology Example section. The paper is
summarized in the Conclusion Section.

Ontology Background
Don Hutcheson (2003, p. 45) defines ontology as
“a list with relationships to other lists”. The
foundation for Intelligent Physical Agents
(FIPA) describes ontology in the following way
(FIPA 2002a p. 34):

An ontology provides a
vocabulary for representing and
communicating knowledge about
some topic and a set of
relationships and properties that
hold for the entities denoted by
that vocabulary.

An ontology is a model of a specific domain that
can be used for Qualitative Reasoning about
either structural objects and their relationships or
processes using the Qualitative Process Theory
of Kenneth Forbus (1985). The ontologies
enable agents to communicate with each other
and an end user in a intelligent manner. FIPA
has a specification for an ontology service (FIPA
2002b). This specification assumes that the
system has an ontology server. It talks about
using ontology agents to make the ontology
available to all agents in the system (FIPA 2002b
p. 1-8).

The concept of an ontology server with ontology
agents does not properly fit The Knowledge
Collective framework. Each time a user
connects to TKC, a session is set up. This
session will last until the end user has completed
the desired tasks. The important issue dealing
with the ontology for TKC is that each user
session will dynamically build its own ontology.
Each user session could have a different
ontology depending on what the user is doing.

Many ontologies are stored physically in frames
(FIPA 2002b p.16). The thought was originally
to store TKC ontologies in frames. Reasoning
about frame based ontologies in agent systems is
usually done using predicate logic such as prolog
type rules. TKC will use production type rules as
an ontology inference engine to accomplish
Qualitative Reasoning about specific domains as
explained the MicroDroid Ontology in The
Knowledge Collective Section. How the
ontological support works in TKC is explained
in the next two sections.

The Knowledge Collective (TKC)
Ontology

TKC is a multi-layer multi-agent framework for
the reuse of information in an intelligent
knowledge base (Yusko In Progress). It contains
6 layers:

1. Graphical User Interface
2. Coordination
3. Application
4. Solution
5. Task
6. Database

Each layer is composed of classes of
MicroDroids, a specific type of agent that is
explained in the next major section. Therefore,
there can be many instances of each MicroDroid
in Figure 1. The actual MicroDroids will be
discussed in the next section

1. Graphical User Interface Layer
The Graphical User Interface Layer is the portal
into the actual application information in TKC.
This is an application interface for the user. It
gives the end user access to application
information. It gives the developer the ability to
add, delete, maintain or monitor the MicroDroids
in each layer. It also allows the subject matter
experts to view, add and update their subject
areas.

There is a USER INTERFACE MicroDroid in
the Coordination Layer that controls the
Graphical User Interface. It can control many
screens and all the information about them.

2. Coordinator Layer
The Coordinator Layer controls TKC. This layer
always contains three specific purpose
MicroDroids: COORDINATOR, USER
PROFILE and USER INTERFACE. The
COORDINATOR works with the User Interface
to deal with all tasks from the Graphical User
Interface Layer whether they come from the end
user or a developer. The COORDINATOR also
sets up a common goal that starts a session. The
rest of the MicroDroids in TKC cooperate to
satisfy this goal. The COORDINATOR knows
about all of MicroDroids in TKC by asking them
for information. If MicroDroids are added or
deleted, or their functionality is changed, the
COORDINATOR will know about these
changes. It sends out orders along with the goals

Figure 1: The Knowledge Collective Framework

 find one or more MicroDroids in the
pplication Layer to solve end user problems.

d user
r a developer. It controls the information about

 Layer
ains a MicroDroid

. These MicroDroids

IRCSIM-Tutor (Michael et al 2003) deals with
e baroreceptor reflex, the part of the circulatory
stem that controls the blood pressure. GASP-

utor is a new tutoring system (still being

 to deal with a
n in Figure 1. They get
 from an Application

use the same solution
formation, the same Solution MicroDroid will

to
A
However, the COORDINATOR can interface
with any MicroDroid in TKC to solve various
development and maintenance problems.

The USER PROFILE can be either an en
o
a specific user.

3. Application
The Application Layer cont
for each application in TKC
get their orders from the COORDINATOR.
They work individually to solve application
problems. They use from one to many
MicroDroids in the Solution Layer to access,
delete or insert application data in the Database
Layer. This is the only layer that is application
specific. The Knowledge Collective example in
Figure 1 is designed to support two medical
tutoring systems: CIRCSIM-Tutor and GASP-
Tutor.

C
th
sy
T
implemented) that deals with the pulmonary
system with a focus on the two interacting
negative feedback systems that control breathing
and gas exchange in the lungs.

4. Solution Layer
There are many MicroDroids in the Solution
Layer. Each one knows how
specific domain as see
their marching orders
MicroDroid. They can work individually or as
teams to solve an application problem. They use
from one to many MicroDroids in the Task
Layer to access, delete or insert application data
in the Database Layer.

These MicroDroids are very information
specific. If you add a new Application
MicroDroid that will
in

respond. If changes are mad

ata structure these MicroDroids will not have to
e modified. There are specific MicroDroids

 Layer.
to solve specific tasks.

ching orders from the Solution

ific.
he only time you would add a new one or

n data is stored in relational

et it
roperly.

owever, there is one specific MicroDroid,
ATABASE that knows all the information

 Layer can contain from one to

knows about all the

 to many databases and

Figure 2: The Knowledge Collective Ontology

e to the application though the applicatio
d
b
that can deal with domain specific information
and others that deal with application specific
information. For instance CIRCSIM-Tutor uses
all the MicroDroids in this layer except Gasp
Chemistry and Respiratory Physiology. GASP-
Tutor will use all the MicroDroids in the layer
except Baroreceptor Reflex Equations and
Baroreceptor Reflex Anatomy. This can be seen
in Figure 1. This really shows the knowledge
and ontology reuse capabilities of TKC.

5. Task Layer
There are many MicroDroids in the Task
Each one knows how
They get their mar
Layer. They work individually or as teams to
deal with application data in the Database Layer
to answer the calls from the Solution Layer.

The MicroDroids in this layer are not application
specific. They are data architecture spec
T
modify an existing one is if there is a change to
the actual data structure. An example would be
the Frame MicroDroid. It uses the Frame
Building Language (Yusko 1984), which
understands how to deal with frames and
relationships like semantic networks. Even

format in a relational database in the Database
Layer, this MicroDroid knows how to interpr
p

H
D
about the Database Layer.

6. Database Layer
he DatabaseT

many databases. However, there is a
DATABASE MicroDroid in the Task Layer that
knows about all the databases in this layer and
how to access them. It
databases and what they contain. Therefore
there can be connectivity
only one place to maintain the information about
the databases. This layer is where the
information used by the MicroDroids is stored.
The database is an industry standard relational
database.

These six layers make up the overall high level
ontology for TKC as shown in Figure 2. This is
an object ontology used for doing Qualitative
Reasoning about The Knowledge Collective in
general.

MicroDroid Ontology in The
Knowledge Collective

f you look at Figure 3, MicroDroids are a
subc on
Fran 96,
pp. 23). re 1 is a

I
lass of Task-Specific Agents based
klin and Graesser’s Agent Taxonomy (19

Each box inside of TKC in Figu
class of MicroDroids that do a very specific task.

Figure 3: Agent Hierarchy

What really makes a MicroDroid different from

e Task-Specific Agents is the fact that
MicroDro ontology

rver or an ontology agent. Built into every

as decided for TKC
at objects developed using the Unified

id. The
USER IN s always
connected icroDroid

hen has to set up the
bject area ontology. This is the purpose of the

 (Evens and Michael In Progress), has a process

th
ids do not depend on an

se
MicroDroid are its own ontology and an
ontology inference engine. This is vital since the
ontology used during an end user session needs
to dynamically build the session ontology. This
also allows each MicroDroid to do Qualitative
Reasoning about its specific domain using an
ontology inference engine.

Most systems physically use frames to develop
the ontologies and predicate logic to do the
Qualitative Reasoning. It w
th
Modeling Language (UML) from the Object
Management Group (OMG) would be used
instead of frames for storing the ontologies.
This follows OMG’s Model Driven
ArchitectureTM (Frankel 2003) approach. The
UML objects are converted to Java classes. The
ontology inference engine being used is a Java
class that reasons about Java objects and their
relationships. The development environment is

Eclipse (Gallardo et al., 2003) and the Eclipse
Modeling Framework plug-in (Budinsky et al.,
2004)). ILOG JRulesTM is used to implement the
production rule based ontology inference engine.
Physically using objects instead of frames, does
not preclude the use of concepts like frame
semantics as used in FrameNet (Fillmore and
Baker 2001). The ontology inference engine will
be able to make use of the information.

Ontology Example
When a user logs into TKC, the user is working
thru the USER INTERFACE MicroDro

TERFACE MicroDroid i
to a COORDINATOR M

and to a USER PROFILE MicroDroid. These
three MicroDroids are a part of all sessions and
supply the initial ontology for the session. Then
the session ontology grows as new MicroDroids
are added to the session.

The USER PROFILE MicroDroid sets up the
user ontology so that the system can understand
the user. The system t
su
COORDINATOR MicroDroid to ascertain what
the user wants to do. If the user wants to
understand circulatory chemistry issues, then the
COORDINATOR MicroDroid broadcasts the
request to the Application Layer. The GASP-
TUTOR MicroDroid would answer and a session
pipeline would be set up with the
COORDINATOR MicroDroid for the user. The
COORDINATOR MicroDroid communicates
with the user via the USER INTERFACE
MicroDroid. If the user wants to learn about
baroreceptor reflexes, the CIRCSIM-Tutor
MicroDroid would answer and a pipeline would
be set up. If no MicroDroid answers, a list of
possible applications would be given to the user.

If the CIRCSIM-Tutor MicroDroid answers, a
session ontology is set up. In this case the
CIRCSIM-Tutor MicroDroid, as shown in Figure
4
ontology. Every time a new MicroDroid
answers, a new piece of the session ontology is
produced. Each MicroDroid understands the
environment it works in and adds a piece of the
ontology to the session ontology. Therefore, the
ontology for the session is developed
dynamically as a new MicroDroid becomes part
of it. When a session is complete, the
MicroDroids involved drop out and take their
ontologies with them. Therefore, the ontology of

Figure 4: The Tutoring Process in CIRCSIM-Tutor

the session grows as the
etwork of MicroDroids is developed each
ringing with its own piece of the session

logies
for that knowled ce can become
overwhelming i s with an

ing models (ontologies)

 needed.
sing UML models that can generate Java
bjects is a good start.

se for doing Qualitative
easoning.

artially supported by the
Cognitive of Naval
Research -0660 to

14-02-1-0442 to
linois Institute of Technology. The content

 session develops. A The concept of embedd
n
b
ontology. As the session grows, the number of
MicroDroids needed will increase. Therefore,
more and more experts (Qualitative Reasoners)
are instantiated to help solve the problem.

Conclusion
If you want share knowledge and the onto

ge, the maintenan
f you use general agent

ontology server or ontology agent concept. If
you really want to share knowledge between
systems, the agents need to be more fine-tuned
and task-specific. The ontologies for these task-
specific agents need to be part of the agent with
their own ontology inference engine that does
Qualitative Reasoning. This is the concept
behind MicroDroids. With this concept, as the
end user session grows, the number of
MicroDroids used also grows. The session
ontology then grows dynamically as the number
of MicroDroids that are needed increases. This
means that the Qualitative Reasoning capabilities
are also expanded as the new MicroDroids are
added to solve specific problems.

into tutoring systems is not a new one (Bredeweg
and Forbus 2003). Better standards are
U
o

TKC is not only a collection of knowledge
managed by the MicroDroids, but it is also a
collection of ontologies modeling the
knowledge. This makes TKC an intelligent
reusable knowledge ba
R

Acknowledgments
I would like to thank ILOG® for supplying their
JRulesTM System for this work.

This work was p

Science Program, Office
under Grant 00014-00-1

Stanford University as well as Grants No.
N00014-94-1-0338 and N000
Il
does not reflect the position or policy of the
government and no official endorsement should
be inferred.

References
Bredeweg, B. and Forbus, K. D. (2003).

Qualitative Modeling in Education. AI
Magazine, Volume 24, No. 4, pages 35-46.

Budinsky, F., St s, E., Ellersick,

vens, M. and Michael, J.A. (In Progress). One

alkenhainer, B. and Forbus, K. D. (1988).

Paul,
MN. Pp. 301-301.

F

op, NAACL, Pittsburgh,
PA, June, 2001.

F

IPA (2002b). FIPA Ontology Service

orbus, K. D. (1985). Qualitative Process

rankel, D. S. (2003). Model Driven

onal Workshop on Agent

G

Manning
Publishing Co.

H

e Technical Publications Inc.
Palo Alto, CA. pp. 41-45.

M

Natural Language
Capabilities. Interactive Learning

Y

ina
aul

University.

Y

, IL.

nformation Reuse in an
Intelligent Knowledge Base. Ph.D. Thesis,

Y

Knowledge. In
Proceedings of the Thirteenth Midwest

einberg, D., Merk
R. and Grose, T. (2004). Eclipse Modeling
Framework. Reading, MA: Addison-Wesley.

E
on One Tutoring by Humans and Computers.
Hillsdale, NJ: Lawrence Erlbaum.

F
Setting up Large-Scale Qualitative Models. In
Proceedings of the American Association for
Artificial Intelligence (AAAI-90). St.

illmore C.J. and Baker, C.F. (2001). Frame
Semantics for Text Understanding. In
Proceedings of WordNet and Other Lexical
Resources Worksh

IPA (2002a). FIPA Abstract Architecture
Specification. Foundation for Intelligent
Physical Agents. Geneva, Switzerland.

F
Specification. Foundation for Intelligent
Physical Agents. Geneva, Switzerland.

F
Theory. In Qualitative Reasoning about
Physical Systems. Cambridge, MA: The MIT
Press. pp. 85–168.

Forbus, K. D. (1996). Qualitative Reasoning. In

CRC Handbook of Computer Science, Boca
Raton, FL: CRC Press.

F
Architecture: Applying MDA to Enterprise
Computing. Indianapolis, IN: Wiley
Publishing, Inc.

Franklin, S., and Graesser, A. (1996). Is It an
Agent or Just a Program? A Taxonomy for
Autonomous Agents. In Proceedings of the
Third Internati
Theories, Architectures, and Languages. New
York: Springer-Verlag. pp. 21-35.

allardo, D. and Burnett, E., McGovern, R.
(2003). Eclipse in Action: A Guide for Java
Developers. Greenwich, CT:

utcheson, D. S. (2003). Architecture Comes
Alive for IBM. In Enterprise Architect. Vol. 1
No. 2. Fawcett

ichael, J.A., Rovick, A.A., Glass, M.S., Zhou,
Y., and Evens, M. (2003). Learning from a
Computer Tutor with

Environments, 11(3), 233-262. Nov. 2003.

usko, J. A. (1984). FBL: Frame Building
Language. F l Project CSC580, Dept. of
Computer Science. Chicago, IL: DeP

usko, J. A. (1994). The Reality of Change.
Internal technical paper. Unlimited Solutions,
Inc. Lombard

Yusko, J. (In Progress). The Knowledge

Collective: A Multi-Layer, Multi-Agent
Framework for I

Dept. of CS, IIT. Chicago, IL.

usko, J. A. and Evens, M. (2002). The
Knowledge Collective: Using MicroDroids to
Turn Meta Data Into Meta

Artificial Intelligence and Cognitive Science
Conference. Chicago, IL. pp. 56-60.

	Abstract
	Introduction
	Ontology Background
	The Knowledge Collective (TKC) Ontology
	1. Graphical User Interface Layer
	2. Coordinator Layer
	3. Application Layer
	4. Solution Layer
	5. Task Layer
	6. Database Layer

	MicroDroid Ontology in The Knowledge Collective
	Ontology Example
	Conclusion
	Acknowledgments
	References

