
 
 

Action Recognition from Skeleton Data Via Analogical Generalization 

Kezhen Chen and Kenneth D. Forbus 
Qualitative Reasoning Group, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 USA  

 
 
 

Abstract 
Human action recognition remains a difficult problem for AI. 
Traditional machine learning techniques have had some suc-
cess, but have two disadvantages.  First, these models are typ-
ically black boxes whose internal models are not inspectable 
and whose results are not explainable.  Second, typically 
massive amounts of data are needed to achieve good recog-
nition performance.  This paper describes a new pipeline for 
recognizing human actions from skeleton data via analogical 
generalization. Specifically, starting with Kinect data, we 
segment each human action by finding temporal regions 
where the qualitative spatial descriptions are constant, creat-
ing a sketch graph that provides a compact relational repre-
sentation of the behavior that is easy to visualize.  Models are 
learned from sketch graphs via analogical generalization, 
which are then used for classification via analogical retrieval.  
The retrieval process also produces links between the new 
example and components of the model that provide explana-
tions.  We describe results on two public standard datasets to 
illustrate its utility. 
 

 Introduction   
Human action recognition is an important but difficult prob-
lem.  Traditional machine learning techniques rely on ex-
tracting large numbers of features and using techniques such 
as deep learning [Baccouche et al., 2011]. However, these 
techniques have two disadvantages.  First, they are black 
boxes: They can produce results, but they provide no expla-
nations for their answers.  This makes their results difficult 
to trust and to debug [Lowd et al., 2005].  Second, they typ-
ically require massive amounts of data to achieve reasonable 
accuracy.  Such data is not always available.  People learn 
with far less data than today’s machine learning systems re-
quire [Forbus et al., in press].  We suspect that part of the 
reason is that, even for visual tasks, relational representa-
tions are important in human cognition [Marr, 1982; Palmer 
1999].  By working with relational representations inspired 
by human vision, can we produce more explainable results? 

This paper draws on research in qualitative spatial reason-
ing and cognitive simulation of visual problem-solving and 

                                                
 

analogy to provide a new approach to recognizing human 
actions from Kinect skeleton data. Instead of computing 
frame-based features, the video stream is divided into a 
sketch graph, consisting of multiple sequences of snapshots.  
Each snapshot is like a panel in a comic strip: It consists of 
a motion described by a single qualitative state, which might 
correspond to one frame or many.  Each body segment has 
its own sequence of such states.  The trajectories within 
these states and relationships across these states are de-
scribed qualitatively, using automatically constructed visual 
representations.  The sketch graphs for each instance of a 
behavior type are combined via analogical generalization, 
to automatically construct probabilistic relational schemas 
(plus outliers) characterizing that behavior type.  Given a 
new behavior, a sketch graph is computed for it, and analog-
ical retrieval is used across the entire set of behavior models 
to retrieve the closest schema (or outlier).  The correspond-
ences found during analogical retrieval provide links be-
tween the new example and the aspect of the model used, 
providing a means of explanation.   
 We begin by summarizing the work we build on, includ-
ing the Qualitative Trajectory Calculus, CogSketch, and an-
alogical processing.  We then describe the learning pipeline 
and how classification works.  Results on the University of 
Texas at Dallas(UTD) Multimodal Human Action and the 
Game 3D datasets are described, and we close with related 
and future work. 

Background 
Our approach combines ideas from qualitative spatial rea-
soning, visual problem solving, and analogical processing. 
We discuss each in turn. 

The Qualitative Trajectory Calculus (QTC) 
QTC [Weghe et al., 2005] is a qualitative calculus for rep-
resenting the motion of a continuously moving point object 
in a Euclidean space relative to a stationary reference object.  



Given a moving object W and a reference point P, at any 
time the relative motion of W can be described as either: 

 -: W is moving towards P 
 +: W is moving away from P 
 0: W is stable with respect to P 

 
In QTC theory for three dimensions, moving towards rela-
tion means that the Euclidean distance between the object 
and the reference decreases, moving away relation means 
that the Euclidean distance between the object and the ref-
erence increases and stable relation means that the Euclid-
ean distance between the object and the reference does not 
change. Consequently, if W is stable with respect to P and P 
has 0 velocity, W could also be stationary object with 0 ve-
locity or W could move around P with a circle path. In both 
situations, the Euclidean distance between W and reference 
P does not change. 

CogSketch 
CogSketch [Forbus et al., 2011] is a sketch understanding 
system that provides a model of high-level visual pro-
cessing.  It provides multiple, hierarchical levels of visual 
representation, including decomposing digital ink into 
edges, combining edges into entities, and gestalt grouping 
methods.  The qualitative visual representations that it auto-
matically computes from digital ink have enabled it to model 
a variety of visual problem-solving tasks [e.g. Lovett & For-
bus, 2011; 2017].  These relations include qualitative topol-
ogy [Cohn et al., 1997], positional relations (e.g. above, 
leftOf), and directional information (e.g. quadrants and di-
rections).   

Sketches in CogSketch can be divided into units, called 
subsketches, which themselves can participate in relation-
ships. Here subsketches are used to implement the panels in 
the sketch graph, with digital ink in each subsketch corre-
sponding to trajectory information.  Thus, CogSketch’s vis-
ual processing is used to construct additional relations 
among and between subsketches.  The metalayer in Cog-
Sketch enables multiple subsketches and relationships be-
tween them to be displayed, to support visualization. 

Analogical Processing 
We build on models inspired by Gentner’s [1983] structure-
mapping theory of analogy and similarity.  Its notion of 
comparison is based on structured descriptions, including 
both attributes and relations.  There is considerable psycho-
logical evidence supporting it. This makes structure-map-
ping attractive for use in AI systems so that, with the right 
representations, what looks similar to us will look similar to 
our software and vice-versa.  We use the Structure-Mapping 
Engine [SME; Forbus et al., 2016] for analogical matching, 
MAC/FAC [Forbus et al., 1995] for analogical retrieval, and 
SAGE [McLure et al., 2015] for analogical generalization.  

Since these operations are at the heart of our learning ap-
proach, we summarize each in turn. 

SME takes as input two structured, relational representa-
tions and produces one or more mappings that describe how 
they align.  These mappings include correspondences, i.e. 
what goes with what, a similarity score, and candidate infer-
ences that suggest how statements from one description can 
be projected to the other. SME has been used in a variety of 
AI systems and cognitive models.  Most relevant to this pa-
per, the representations produced by CogSketch have been 
used to model human performance on several visual tasks, 
including Ravens’ Progressive Matrices, one of the most 
common tests used to measure human fluid intelligence.  
The CogSketch model uses SME at multiple levels of visual 
representations, including re-representing visual descrip-
tions automatically as needed, leading to performance in the 
75% percentile, better than most adult Americans [Lovett & 
Forbus, 2017].  Ravens and the other visual problems that 
SME has been used with are static, this paper marks the first 
time it and the other analogical components have been used 
with dynamic visual data.   
 Analogical retrieval is performed by MAC/FAC, which 
stands for “Many are Called/Few are Chosen”, because it 
uses two stages of map/reduce for scalability.  The inputs 
consist of a probe case and a case library. The MAC stage 
computes, in parallel, dot products over vectors that are au-
tomatically constructed from structured descriptions, such 
that each predicate, attribute, and logical function are di-
mensions in the vector and whose magnitude in each dimen-
sion reflects their relative prevalence in the original struc-
tured description.  The best, and up to two others (if they are 
sufficiently close) are passed to the FAC stage.  The map 
component compares the best structured descriptions from 
the MAC stage to the input probe using SME.  Again, the 
best match, with up to two others if sufficiently close, are 
returned.  This provides scalability (because the MAC stage 
is inexpensive) as well as structural sensitivity (because the 
content vector dot product is a coarse estimate of SME sim-
ilarity, followed by using SME itself).   
 Analogical generalization is performed by the Sequential 
Analogical Generalization Engine [SAGE; McLure et al., 
2015].  Every concept to be learned by analogy is repre-
sented by a generalization pool, which maintains both gen-
eralizations and outlying examples.  Examples are added in-
crementally.  The closest matching item (example or gener-
alization) is retrieved via MAC/FAC, using the contents of 
the generalization pool as a case library.  If there is no item, 
or the similarity to what is retrieved is less than an assimila-
tion threshold, the new example is added as an outlier. Oth-
erwise, if the item retrieved is an example, the two are com-
bined into a new generalization.  This process involves 
merging them, replacing non-identical entities by skolems, 
and assigning a probability to each statement depending on 
whether it was in just one description or both.  If the item 



retrieved was a generalization, that generalization is updated 
with skolems and probabilities based on its alignment with 
the new example.  Generalizations in SAGE are thus proba-
bilistic, but still concrete – skolem entities may become 
more abstract due to fewer high-probability statements 
about them, but logical variables are not introduced.  Instead, 
candidate inferences are used for schema application.   
 SAGE also supports classification, by treating the union 
of generalization pools as a large case library.  The case li-
brary which contained the closest item is taken as the clas-
sification of that example, with the correspondences of the 
match constituting an explanation of why it is a good match.  
Since a generalization pool can have multiple generaliza-
tions, SAGE naturally handles disjunctive concepts. 

Our Approach 
Our approach focuses on human skeleton action recognition 
by using analogical generalization over qualitative represen-
tations. It is implemented as a pipeline with three stages: Ac-
tion Segmentation, Relational Enrichment, and Action Gen-
eralization. The system is totally automatic, and all sketches 
and relations are computed from Cogsketch automatically.  
Figure 1 shows the pipeline of our system. We describe each 
stage, and classification, in turn.   
 

 
Figure 1: Flowchart for our pipeline system 

 

Action Segmentation 
The skeleton data produced by a Kinect (or other 3D sen-
sors) contains many points per frame, representing each 
body part such as the head, neck, right hand, and right foot.  
We use 20 main body points to track movement of 20 body 
parts, as shown in Table 1.  Connecting these body points 
provide a concise body skeleton graph.  Each instance of an 
action consists of a continuous movement stream, sampled 
via many frames, each frame containing coordinates for 
these points.  The first step of our pipeline abstracts away 
from frames into qualitatively distinct intervals describing 

the motion of particular body parts.  A track is a sequence 
of data about a body part.  For example, we use movements 
of right hand, left hand, right foot and left foot with respect 
to a static reference point as tracks.  The quantitative de-
scription of motion represented by the change in track val-
ues frame by frame is used to construct qualitative descrip-
tions of the motion of each track.  Intervals of time over 
which the motion is qualitatively the same are panels in the 
sketch graph.  
 
  

1 Head 6 Elbow 
Left 

11 Wrist 
Right 

16 Foot 
Left 

2 Neck 7 Wrist 
Left 

12 Hand 
Right 

17 Hip 
Right 

3 Spine 
Base 

8 Hand 
Left 

13 Hip 
Left 

18 Knee 
Right 

4 Spine 
Mid 

9 Shoulder 
Right 

14 Knee 
Left 

19 Ankle 
Right 

5 Shoulder 
Left 

10 Elbow 
Right 

15 Ankle 
Left 

20 Foot 
Right 

Table 1: Kinect 20 body points 

 

We use head, spine-middle and spine-base as three refer-
ence points for computing QTC relations, using QSRlib 
[Gatsoulis et al., 2016].  For example, in segmenting the 
movement of the right hand, the head is picked as a refer-
ence point.  The QTC relations can be computed for the right 
hand with respect to the head in each frame as following: 

[0,0,0,+,+,+,+,0,0,0,0,-,-] 
 

This track has 13 frames. “0” means that right hand is 
relatively stable with respect to head. “+” means that right 
hand moves towards the head and “–” means that right 
hand moves away from the head. In this example, the right-
hand movement is segmented into four sub-actions. The 
right hand is static in first three frames, it moves towards 
the head in the next four frames, then it stay the same dis-
tances with respect to head in the next four frames and the 
right hand moves away from the head in the last two 
frames.  The start and end times for each panel are rec-
orded.  Note that tracks will often have segmentations that 
vary from each other.   

The next stage uses CogSketch to construct additional 
representations, but CogSketch assumes its input consists 
of 2D information.  To provide an approximation to 3D, 
our system segments the movement in each skeleton data 
from front view based on (x,z) and from right view based 
on (z,y).  It is also useful to simplify the segmentations, 
eliminating small segments that are very likely to represent 
noise, by computing the spatial distance between the start 
and end points for the segmentations for each track.  The 



segmentation with the highest variance is used to set a 
threshold for filtering small segments.  Figure 2 shows a 
segmentation of raising right hands movement. Figure 2 (a) 
is the segmentation of front view and 2(b) is the segmenta-
tion of right view.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 (a): front segmentation of raising hand(Kinect mirror view) 

 
 
 
 

 
 
 
 
 
 
 

Figure 2 (b): right segmentation of raising hand(Kinect mirror view) 

Relational Enrichment 
The relational enrichment stage involves automatically add-
ing additional relationships, using CogSketch, to provide 
more information about the motions within and between 
segments.  Each example of a behavior is imported into Cog-
Sketch as a set of sketches, one per track, with each panel 
within a track being represented by a separate subsketch.  
Hence each action is represented by eight sketches in Cog-
Sketch: right hand front view, right hand right view, left 
hand front view, left hand right view, right foot front view, 
right foot right view, left foot front view and left foot right 
view.  In each sketch and subsketch, CogSketch is used to 
compute relationships between body parts, e.g. the relative 
position of the right hand to the head.   
 We use the following logical function to denote panels in 
a sketch graph:  
 

(KinectMotionFn <body-part> <view> <direction> <token>) 
 

                                                
1 CogSketch uses the OpenCyc ontology and knowledge base contents, but 
a different reasoning engine. 

<body-part> is from the four main body points: right hand, 
left hand, right foot and left foot. <view> is front or right. 
<direction> is drawn from the CogSketch 2D direction vo-
cabulary, which contains quadrant representations Quad1, 
Quad2, Quad3, Quad4, and Up, Down, Left and Right, 
plus the constant NoMotion to indicate there is no motion. 
<token> is a unique identifier denoting the segment.   

Sequence information between panels is represented us-
ing the occursAfter relation, e.g.  
 
(occursAfter  

(KinectMotionFn RightHand Front Up D1RHFSeg2)  
(KinectMotionFn RightHand Front Down D1RHFSeg4))  

 
That is, a down movement of the right hand in this behav-
ior occurs after an up movement.  Additional details can be 
provided via Cyc’s holdsIn relation1.  For example, the 
spatial relations are helpful to decide the accurate locations 
of body points, so these relations can be added in the spe-
cific motion segments. The fact can be written as follow-
ing: 
 
(holdsIn                     

(KinectMotionFn RightHand Front Up D1RHFSeg2) 
(Above Head RightHand))  
 

This representation enables facts about different segments 
to be included in one unified case representation, without 
contradiction.   
The attributes and relations that should be included for char-
acterizing motion are still in flux, but our initial choices have 
been useful enough to get reasonable results, as illustrated 
below. 

Action Generalization 
All facts for each segment are combined as a case represent-
ing the entire action.  Each such action is added to the gen-
eralization pool being used to learn that concept.  For the 
experiments reported here, we used an assimilation thresh-
old of 0.8.  SAGE also uses a probability cutoff, i.e. if a 
fact’s probability drops below this value, it is removed from 
the generalization.  In these experiments, we used a proba-
bility cutoff of 0.2.  Figure 3 shows a generalization pool 
which contains one generalization created from eight train-
ing examples. The other eight examples are outliers, suffi-
ciently different from the generalization that they are stored 
as cases in the generalization pool. 



 
Figure 3: One example of a generalization pool 

Classification 
By treating the union of generalization pools for actions as 
one large case library, our system can classify new examples 
based on which library the closest retrieved item came from, 
as outlined above.  The correspondences of the mapping 
constructed during analogical retrieval can be used to gen-
erate an explanation of why this label was deemed appropri-
ate.  We note that this explanation only includes positive in-
formation; an extension to SAGE enables it to construct 
near-misses [McLure et al., 2015], but we have not tried that 
extension on this task yet. 

Experiments 
While we view the ability to produce understandable expla-
nations as an important part of our approach, we note that 
other approaches do not explore explanation, so we confine 
ourselves here to comparing using their metrics. 

UTD-MHAD Dataset 
The University of Texas at Dallas(UTD) Multimodal Hu-
man Action Dataset (UTD-MHAD) was collected as part of 
research on human action recognition by Chen et al.  [Chen 
et al., 2015], University of Texas at Dallas. This dataset con-
tains eight different humans performing twenty-seven ac-
tions in a controlled environment and each action repeats 
four times, collecting data from a Kinect V1 sensor. As our 
research only focuses on Skeleton data, we only use Skele-
ton files from RGB, Depth and Skeleton videos. There are 
many pairs of actions that may have same segments and sim-
ilar representations, such as Wave and Throw, arm cross and 

Arm curl, and Draw circle clockwise and counter clockwise. 
To test the performance of our system training model, we 
pick the top seven significant and consistent motions in their 
task: swipe right, draw triangle, bowling, boxing, arm curl, 
catch and stand to sit.  

The qualitative spatial relations and RCC8 relations are 
computed for the start point and end point of every move-
ment track with respect to the Head, Spine-Mid and Spine-
Base. The RCC8 relations are picked for the movement 
body point with respect to the other three movement body 
points, such as the RCC8 relations between right hand and 
left hand.  
With the qualitative spatial relations described previously, 
we used the same cross-subject testing method from Chen, 
et al’s [2015] paper, which contains four subjects’ data for 
training and four subjects’ data for testing. With the seven 
actions they used, we get 81% accuracy. We also used three 
subjects and two subjects as training data to test whether our 
system could have good performance even with less training 
data. We compared our results with the results of the same 
seven actions using a CRC classifier from the original paper, 
as shown in Table 2: 

Methods Training 
data num-
ber 

Testing 
data num-
ber 

Actions 
number 

Overall Ac-
curacy 

Kinect & In-
ertial 

4 subjects 
(16 data) 

4 subjects 
(16 data) 

7 actions 80.9% 

Our method 4 subjects 
(16 data) 

4 subjects 
(16 data) 

7 actions 81% 

Our method 3 subjects 
(12 data) 

5 subjects 
(20 data) 

7 actions 65.7% 

Our method 2 subjects 
(8 data) 

6 subjects 
(24 data) 

7 actions 63.7% 

Table 2: Results on UTD-MHAD dataset 

Game 3D Dataset (G3D) 
The G3D dataset contains 10 subjects performing 20 gaming 
actions collected with Microsoft Kinect. The 20 gaming ac-
tions are categorized into seven scenarios: fighting, golf, 
tennis, bowling, first person shooter, driving a car, miscel-
laneous. This dataset was collected as part of Bloom et al.’s 
[2014, 2016] online actions recognition research. They used 
five actions from fighting scenarios as their data to test their 
Hierarchical transfer learning algorithm. 

We used the same pipeline for this data set, and used half 
of data as training data and the other half data for testing, 
focusing on the same five actions as Bloom et al.’s work: 
right punch, left punch, right kick, left kick and defend. We 
also trained our system with 1/3 of the data to test whether 



our system still has reasonable performance. The results are 
presented in the following Table 3. 

 
Methods Training data Actions number F1 Score 

Frame based 5 subjects 5 actions 
(fighting) 

70.46% 

Dynamic  
Feature  
Selection 

5 subjects 5 actions 
(fighting) 

91.9% 

Our Method 5 subjects 5 actions 
(fighting) 

77.6% 

Our Method 3 subjects 5 actions 
(fighting) 

71.58% 

Table 3: Results on G3D dataset 

   Our method does better than their frame-based technique, 
but not as well as their dynamic feature selection model.  
On the other hand, with only three subjects’ worth of data, 
it is already performing reasonably well. We suspect that 
using a more dynamic approach in the relational enrich-
ment stage of our pipeline could boost performance fur-
ther, but that is an empirical question.  

Discussion 
Our system has three advantages over traditional action 

recognition systems. First, given similar amounts of training 
data, it can achieve performance that is competitive with 
state of the art for several models.  Moreover, it starts pro-
ducing reasonable results with much less data.  The second 
advantage is explanation.  The constituents of the analogical 
model are relational representations, which can be displayed 
as text or via CogSketch, as opposed to a set of opaque nu-
merical values for a classifier’s parameters.  Such explana-
tions offer the possibility of enabling its users (or ultimately 
even itself) to tune its representations to improve perfor-
mance.  The third advantage is incremental operation: 
SAGE is designed for incremental operation, so that it can 
take advantage of new training examples without starting 
over from scratch.   

Our approach requires reasonably consistent and accurate 
segmentation.  If the initial data is too noisy, it will lead to 
many segments, among which many relationships might 
hold, which would make Action Segmentation and Rela-
tional Enrichment, and Action Generalization all slower and 
noisier.  How well this approach scales to noisier data is an 
empirical question.  We also plan to explore dynamic strat-
egies for relational enrichment, using CogSketch’s range of 
representations and data from the generalization pools to 
tune encoding strategies for better learning. 

Related Work 
Our paper shows a new method on the problem of human 
action recognition from a sequence of skeleton frame data, 
especially Kinect skeleton data. Actually, human action 
recognition from Kinect Skeleton data is a very popular 
topic and various methods have been used on this problem. 
In [Pichao Wang et al., 2016], the spatial-temporal infor-
mation from 3D skeleton data was projected into three 2D 
images (Joint Trajectory Maps), and Convolutional Neural 
Networks were used for action recognition system. In [Ye, 
2016], a novel octree-based algorithm was explored to ex-
tract spatial and temporal relations from each sequential Ki-
nect 3D data, and the First-Take-All(FTA) feature vector 
was built for activity recognition with nearest neighbor 
search based on Hamming distance. In [Jiawei Li et al., 
2016], the authors proposed a method on human action 
recognition by clustering human joints from Kinect data and 
use machine learning on each cluster to build a recognition 
system. Many researchers have focused on what kinds of 
features should be extracted in Skeleton movement data 
recognition. In [Maldonado et al., 2016], a feature selection 
algorithm, Reduction of Feature Dimensions based on 
Standard Deviation, was proposed to help extract useful fea-
tures on human action recognition tasks. To the best of our 
knowledge, this is the first paper to do skeleton movement 
recognition via analogical reasoning instead of machine 
learning. 

We used QSRlib to segment skeleton movements based 
on the change of qualitative relations. The idea of object and 
human movement analysis via qualitative relations has pre-
viously been used in many papers. Duckworth et al.  [2016] 
describes an experiment that deployed a mobile robot in an 
office environment for 6 weeks to test many different qual-
itative representations and study which qualitative represen-
tation is best for learning human motion behaviors. [Thippur 
et al., 2015] and [Kunze et al., 2014] designed experiments 
to test representations for classifying environments from 
visual data via QSRlib. In [Dondrup et al., 2015], QSRlib 
was used to compute qualitative relations for a robot in its 
navigation system in order to generate a safe path between 
the robot and moving human. However, these prior efforts 
only used QSRLib for qualitative representations.  Here, we 
use QSRlib to segment movements, but also use CogSketch 
to compute additional relationships within and across seg-
ments to provide richer relational description of the data, 
which facilitates learning. 

Conclusion and Future Work 
This paper presents a new approach, based on qualitative 
representations and analogical generalization, for learning 
how to classify human actions.  Our three-stage pipeline 



uses prior advances in qualitative spatial reasoning to seg-
ment tracks, a cognitive model of human high-level vision 
to enrich descriptions of motion and configuration, and an-
alogical generalization to provide learning via inspectable, 
relational models.  Our experiments provide evidence for 
the utility of this approach.   
 There are several avenues to explore next. The first is to 
test it with additional datasets, both to explore the noise and 
dynamic encoding issues.  The second is to construct visu-
alizations based on sketch graphs, to explore how they might 
be used to explain a system’s classification to users.  Fur-
thermore, we plan to explore using this same approach to 
analyze video more broadly, including RGB and depth data.  
Finally, to explore tinier human movements, we will explore 
new models to represent human face movements and other 
specific movements. 
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