
Advanced Topics

A bluffer’s guide to Cyc-style KBs

Dumping sketch knowledge to files

Extending the knowledge base

Making queries interactively

A KQML API for connecting CogSketch

to other software

OpenCyc Knowledge Base

• Cyc = World’s largest

and most complete

general knowledge

base

– Hundreds of thousands

of terms

• OpenCyc = open-

source subset of Cyc

– Entire ontology

– Structural facts

• Two ways to explore

– Download OpenCyc
of terms

– Millions of assertions

– English strings

corresponding to many

concept terms

– Download OpenCyc

from SourceForge

• Will not have the QRG

extensions to OpenCyc

– Use the browsing

capabilities built into

CogSketch

Collections and Genls

• Concepts and categories

in OpenCyc are

modeled as collections.

• Collections are related

to each other through

the genls hierarchy.

Dog

CanineGenus DomesticatedAnimal

genls genls

genls

Dog is the

collection of all

dogs.
the genls hierarchy.

• You can have instances

of collections

• Collection names begin

with capital letters

Collie

Collie is the

collection of

all dogs of the

breed Collie

dogs.
(genls Collie

Dog) also

(genls Beagle

Dog)

Everything that is an
instance of Collie is also
an instance of Dog but not

vice versa

Individuals

• An individual is a

single thing, not a

collection

• Individuals do not

have instances

• Use isa to relate an
(isa Lassie1 Dog)

• Use isa to relate an

individual to a

collection

(isa Timmy1 MaleChild)

Lassie1 is

an instance of

the collection
Dog.

Lassie1 is

also an

individual.

Predicates and genlPreds

• Predicates are used to

build sentences

• A sentence built with a

predicate is either true or

false
(owns Timmy1 Lassie1) True

False
• Predicate names begin

with lower-case letters

• genlPreds indicates a

hierarchical relationship

between predicates

(biologicalRelatives Timmy1

Lassie1)

False

Predicates can also relate
Collections

(animalTypeMakesSoundType

Dog

BarkingSound)

(disjointWith Cat Dog)

(genlPreds mother

biologicalRelative)

Arity and Argument Types

• Every predicate has two
central features:

– Arity: How many
arguments does it
require?

– Argument types:What
types of arguments does
it require?

Predicate: owns
arity: 2

arg1Isa: SocialBeing
arg2Isa: SomethingExisting

(owns Timmy1 Lassie1)
it require?

• arg�isa

• arg�Genl

• Every sentence must be
both semantically and
syntactically well-
formed

(owns Timmy1 Lassie1)

(owns Timmy1 Lassie1 Rover2)

(owns Timmy1 Dog)

OK!

Syntactically poorly-formed

Semantically poorly-formed

Microtheories

• The knowledge in

OpenCyc is organized

into Microtheories

– Assertions within a

microtheory must be

must be mutually

(objectFoundInLocation Timmy1

OldWell1)

(isa Lassie1 Dog)

…

TimmyInWellMT

Inconsistent but in different

Microtheoriesmust be mutually

consistent

– Assertions in different

microtheories may be

inconsistent

(objectFoundInLocation Timmy1

Home1)

(isa Lassie1 Dog)

…

TimmyEatsDinnerMT
Microtheories

Can separate statements based on:
Time, source, granularity, …

Using Microtheories

• To make a new microtheory

– (isa TimmyInWellMT Microtheory)

• To relate one microtheory to another

– (genlMt TimmyInWellMT LassieMT)

Every assertion that is true in is also true in

• To make a statement om a microtheory

– (ist-Information LassieMT

(isa Lassie1 Dog))

The assertion (isa Lassie Dog) is true in the microtheory

LassieMT

Every assertion that is true in LassieMT is also true in TimmyInWellMT

Exporting knowledge to files

MELD format files

• Similar to Cyc KE format

;; constant: Case-3429195339.

;; in Mt: BaseKB.

(isa Case-3429195339 Microtheory)

(isa Case-3429195339 COASpecificationMicrotheory)

(genlMt Case-3429195339 BaseKB)

;; constant: BCase-3429195452.

;; in Mt: BaseKB.

(isa BCase-3429195452 Microtheory)

(isa BCase-3429195452 COASpecificationMicrotheory)

(genlMt BCase-3429195452 Case-3429195339)

;; Default Mt: Case-3429195339.

FIRE format

• Pure Lisp syntax

• Microtheory toggled by directives in file

– cf. KB extension example

;;;

;;; Shopping Cart Redux;;; Shopping Cart Redux

(genlMt BCase-3429195452 Case-3429195339)

(genlMt Case-3429195339 SKEAReasoningCollectorMt)

(ist-Information Case-3429195339

(askConceptualForBinaryVisualRelation Case-3429195339 BCase-3429195452

Object-145 Object-147 rcc8-EC PhysicalView-SubSketch

LookingFromSide-SubSketch))

(ist-Information Case-3429195339

(askConceptualForBinaryVisualRelation Case-3429195339 BCase-3429195452

Object-145 Object-148 rcc8-EC PhysicalView-SubSketch

LookingFromSide-SubSketch))

Extending the Knowledge Base

• OpenCyc has a lot of

knowledge … but it

might not have

everything you need

• You add knowledge • You add knowledge

using a .meld file

• Create using your

favorite text editor.

Hint: Use an editor
that matches

parentheses, such as
emacs!

Example: A Simple Flat-File

(in-microtheory TimmyInWellMT) ;; Tells file

;; loader what microtheory to use. All forms after

;; this command are facts for that microtheory.

(isa Lassie1 Dog)

(isa Timmy1 MaleChild)

(isa OldWell1 Well)(isa OldWell1 Well)

(owns Timmy1 Lassie1)

(objectInLocation Timmy1 OldWell1)

(isa LassieGetHelp RescuingSomeone)

(performedBy LassieGetHelp Lassie1)

(beneficiary LassieGetHelp Timmy1)

Adding a Collection

To add a collection

you need at least three

things:
1. A statement that it is a

(isa Firefly Collection)

(genls Firefly Insect)

(comment Firefly

“the collection of all
1. A statement that it is a

Collection

2. A genls statement

3. A comment describing

the collection

“the collection of all

insects that having

glowing posteriors”)

Adding a Relation

To add a relation you

need at least four

things:
1. A statement that it isa

Relation

(isa aboveGrazingLine

Relation)

(arity aboveGrazingLine 2)

(arg1Isa aboveGrazingLine

NuSketchGlyph)

(arg2Isa aboveGrazingLine

NuSketchGlyph)

(comment aboveGrazingLineRelation

2. An arity statement

3. ArgIsa statements

4. A comment describing

the relation

(comment aboveGrazingLine

“the figure object

represented by the glyph in

arg1 is above the grazing

line created by the ground

object represented by the

glyph in arg2”)

Using Your ,ew KB entries in CogSketch

• Your new collections

– Can be used in conceptual labeling

– Can be used to constrain arguments to relations

• Your new relations

– Can show up as hypothesized visual/conceptual

relationship questions, if you weave them into the relationship questions, if you weave them into the

genlPreds hierarchy correctly.

– Can be used for your own reasoning, if you add Horn

clause axioms involving them also

• Via browser query window, or API calls

• Documentation on doing this is in progress

Querying the KB

Bottom left of
Knowledge Inspector

page
Can type in queries to the
reasoner of a sketch

If you’ve edited the
sketch, click this.sketch, click this.

Invokes a KB browser

Example: Browsing

• Let’s look for other relationships involving

rotation with the KB browser

Making

Queries

Can get Answers

Can Drill Down for Reasons

What is an API? Why do I want one?

• Application Programming Interface

• Allows you to access CogSketch from code

• Socket-based, using KQML messages

• Documentation and sample client provided with

CogSketch execuatable

What Can I do with the API?

• Manipulate Sketches
• (list-open-sketches)

• (get-active-sketch)

• (set-active-sketch :sketch-id <sketch id>)

• (save-sketch-to-file :sketch-id <sketch id>)

• (close-sketch :sketch-id <sketch id>)• (close-sketch :sketch-id <sketch id>)

• (open-sketch-from-file :filepath <full path to file

(string)>)

• (create-new-sketch)

• (name-of-sketch :sketch-id <sketch id>)

• (user-namestring-of-sketch :sketch-id <sketch id>)

What Can I do with the API?

• You can also manipulate subsketches, Layers and

Glyphs
• (list-bundles :sketch-id <sketch id>)

• (list-layers :sketch-id <sketch id> :bundle-id <bundle id>)

• (name-of-layer :sketch-id <sketch id> :layer-id <layer id>)

• (kind-of-layer :sketch-id <sketch id> :layer-id <layer id>)

(list-glyphs :sketch-id <sketch id> :layer-id <layer id>)• (list-glyphs :sketch-id <sketch id> :layer-id <layer id>)

• (delete-glyph :sketch-id <sketch id> :glyph-id <glyph id>)

• These are just examples of some of the available

commands

Visual/Conceptual Relationships

• People use conventions for depicting physical

relationships in sketches

• You can tell CogSketch about your assumptions

rotationallyConnectedTo

connectedAtEnd

connectedTo-Rigidly

connectedAlongSurface

Above-Touching
alignedCylinderWithin

Example: Shopping Cart

Providing Visual/Conceptual Relations

Use this
button to
bring up
web

interface on
selected
bundle

How visual/conceptual relations are hypothesized

• Qualitative topology used to suggest initial candidates

– (insideInSketch o1 o2) if (glyph o1) is inside (glyph o2)

– (atOrOverlapsInSketch o1 o2) if (glyph o1) touches or

overlaps (glyph o2)

• Possible specializations filtered by argument type

relationships

• You can choose more specialized relationship if desired.• You can choose more specialized relationship if desired.

• Not an easy problem

– Worst case: 150 possibilities for insideInSketch, 204 for

atOrOverlapsInSketch, with ResearchCyc KB

– For one corpus of 34 sketches:

• Mean # questions/sketch = 4

• Mean # candidates to consider per question = 122

Example: Front Wheel/Axle

Analogical
inferences

are
surmises,

Suggesting visual/conceptual relations by analogy

109
candidates

184
candidates

189
candidates

surmises,
not

certainties

MAC/FAC

Knowledge Base
(including case libraries of examples)

Candidate
Inference
Extraction

Suggestions
Filtering

109
candidates

