Qualitative Reasoning *and* Educational Software Systems

Lecture A4: MONET summer school, May 15-19, 2000

Bert Bredeweg

University of Amsterdam, Social Science Informatics Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

Phone: +31 - 20 - 525 6788 / Fax: +31 - 20 - 525 6896

bert@swi.psy.uva.nl

http://www.swi.spy.uva.nl/usr/bert/home.html

Main Message of the lecture

The computer as a knowledgeable agent requires a lot of smart/meta-level indexing of the 'stuff to be communicated' in order to address:

- with whom,
- tell what,

• and in what form.

- What are the issues !

Notice: relation with other lectures

Overview

- Learning and simulations
- Research questions
 - Diagnosing learning behaviour
 - Curriculum planning
 - Explanation (incl. visualisation) (*brief*)
- Concluding remarks
- Applications and References (brief)

Acknowledgements

The following people contributed to the insights presenting in this talk: Joost Breuker, Kees de Koning, Anders Bouwer and Paulo Salles

Learning about Systems and Behaviour

Systems...

e.g.

- Medical
- Biological / Environmental
- Physical / Technical (engineering)
- Chemical
- Economical

> STRUCTURE and BEHAVIOUR

Goal

Teach humans to interact with the physical world (*tasks*):

- Control / Operate
- Diagnose / Repair
- Design / Construct
- .

Basis Idea:

By having humans acquire an appropriate model of (parts of) the physical world

An Appropriate Model ?

Requirements ?

- Deriving behaviour from structure
- Causal account
- Domain independent / Re-useable
- Different models for different uses / purposes

How ?

By having humans interact with (tailor-made) computer models

Simulations of real-world systems

(but often beyond reality...)

Advantage • Time translation (fast / slow)

- Costs (x-times)
- Danger (no harm done)
- Impossible world (no gravity on earth)

relevant phenomena must be observable

Guidance is Required !

Learning from simulations requires some form of guidance, because of:

- museum problem
- getting lost time

Aspects of guidance () *teaching functions*)

- adjustment in speed and size/scope
- provide feedback / explanation
- show directions / suggest next step
- ...

Requirement

Simulation models must provide handles to facilitate a

'knowledgeable' interaction () *knowledge communication / AI*)

Need for: <u>Articulate</u> simulation models

If $\underline{\mathbf{V}}$ increases then $\underline{\mathbf{P}}$ increases (e.g. Forbus, 1984)

Role of Qualitative Reasoning ?

QR provides an 'ontology' by means of which computer programs can reason about the behaviour of 'systems' such that these computers can communicate about the behaviour of these systems with humans

Interactive Learning Environments and Coaching

BUT: Which teaching functions (1)?

- An inequality triggers a flow
- which leads initial changes (influence)
- which are propagated (*proportionality*)
- to restore <u>equilibrium</u>.

BUT: Which teaching functions (2)?

```
Because the {Obj1:Q1} of {Obj1} is {QuantityCondition}
then the {Obj2:Q2} of {Obj2} a 'flow' exists between {Obj1} and {Obj2}
which causes the {Obj1:Q1} of {Obj1} to {Obj1:Q1:\partial}
and the {Obj2:Q2} of {Obj2} to {Obj2:Q2:\partial}
<if connected props>
In turn, this causes the {Obj1:Q1} of {Obj1} to {Obj1:Q1:\partial}
and the {Obj2:Q1} of {Obj2} to {Obj2:Q1:\partial}.
```

```
Because the {temperature} of {heater} is {greater}
then the {temperature} of {water} a 'flow' exists between {heater} and {water}
which causes the {heat} of {heater} to {decrease}
and the {heat} of {water} to {increase}
<if connected props>
In turn, this causes the {temperature} of {heater} to {decrease}
and the {temperature} of {water} to {increase}.
```

'Inflexible and probably not exactly what you wanted to hear...'

Knowledge communication (1)

With whom ?

- how to relate to the receiver ?
 - adjust level of detail/expertise
 - use analogies
- does the receiver receive (learn) ?
 - assess response/reaction of receiver
- why does the receiver (not) understand ?
 - diagnose response/reaction of receiver

Knowledge communication (2)

What is the goal ? How will it be communicated ?

- what does the sender want to 'communicate'?
- what form should the sender use?
 - question / answer
 - (guided) discovery
- what representations
 - graphics, animations, text,...

Interactive Learning Environments

Functional units

- qualitative/quantitative simulation
- subject matter sequencing
- (prediction) exercise generation (≈scenario)
- subject matter model
- performance assessment
- behaviour diagnosis
- learner model (construct and store)
- question/assignment generation
- learner interface / visualisation