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Scaling Up in Size and Knowledge

e The Good News

QSIM predicts all possible behaviors consistent with
given gualitative and semi-quantitative knowledge.

e The Bad News

QSIM output can be large, even infinite.
The problem is real, not spurious, behaviors.

e The Good News

There are solutions.



Four Solutions to Intractability

e (1) Chatter Abstraction: detect and abstract a region of
unconstrained change to a single qualitative state.

¢ (2) Model Decomposition use both state-based and
history-based simulation to ignore irrelevant
relationships.

¢ (3) Temporal Logic Model-Checking use a
theorem-prover to query the behavior tree.

¢ (4) Temporal Constraints. guide the simulator’s
attention to specified portions of the state space.



(1) The Problem of Chatter

Chatter occurs when a variable’s direction of change is
unconstrained, except by continuity.
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Chatter in one variable can propagate to others.



The Chatter Box

Qualitative behaviors are trajectories through state space.
Chatter is a property of a region of the state space.
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Sometimes knowledge of higher-order derivatives can help.
Often not.




Chatter Box Abstraction

e Detect entry into a chatter box.
¢ Identify chattering variables and boundary values.
e Do focused envisionment to detect exits from chatter box

e Replace envisionment with a single abstract state.
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But: envisionment is still exponential in number of
chattering variables.



Dynamic Chatter Abstraction

e Detect entry into chatter box.

e Createchatter dependency graph
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e Evaluate status of classes of chatter-equivalent variables

e Simulate with abstracted gdirs. (Unigue values indicate
exit from chatter box.)

Analysis is complex, but the algorithm is efficient.



(2) Model Decomposition

e The Problem:

— Basic QSIM uses a global state representation.
— Unrelated changes must be temporally ordered.

— Branch on all possible orders.
e The Solution:

— Decompose complex model into weakly-interacting
components. [Simon, 1969]

— Combine component behaviors into model behavior.



QSIM = Temporally-Extended CSP

e Computeall behaviors of each component.

— State-based simulation within components.
— Abstract values for unknown boundary variables.

— Guided simulation for known boundary variable
behavior.

e Each component behavior must belongtmeglobal
behavior.

— History-based analysis between components.

— Causal dependency among components controls
simulation order: sequential or concurrent.

e Record dependencies among component behaviors.



Example: Controlled Two-Tank Cascade
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Efficiency Gains on N-Tank Systems

Different causal topologies:
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(3) Temporal Logic Model-Checking

e Temporal logic expresses what we want to know about
the behaviors.

e The QSIM behavior tree can be viewed as a model for
statements in a branching-time temporal logic.

e Model-checking determines whether a statement is true
of the behavior tree.

— Sound and complete.

e QSIM behavior tree predicts behaviors of dynamical
systems.

— Guaranteed coverage, but possible spurious behavior
(Filtering Is sound but incomplete.)

A universal statement can thus be proved by qualitative
simulation.



Temporal Logic and Behavior Trees

OCONOURAWNE

modal temporal | logical | QSIM

necessarily  until and gval
possibly next or status
eventually, implies| funcall

always not

Simulating KJA PI controller.
Behavior tree rooted at S-O,
with 1 initial states and 17 behaviors.

Some behaviors don’'t terminate...
Checking: (EVENTUALLY (STATUS QUIESCENT)).
Validity = (NIL NIL T NIL TTTNILTTTNILTTTTT).

...but all that terminate have zero error.

Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT)
(QVAL E (0 STD)))).

Validity = T.

Every fixed point is stable.

Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT)
(STATUS STABLE)))).

Validity = T.



Technical Issues

Matching assumptions between QSIM and Model-Checking

e A behavior tree i€losedwhen every behavior terminates
with a quiescent state, a region transition, or a cycle.

e The QSIM Guaranteed Coverage theorem applies only t
closed behavior trees.

e For effective model-checking, cycles in the behavior tree
output by QSIM must be unwound one extra time.



The Main Theorem

e Main Theorem:;

—If ® is a universal state formula in EBTL
andM is a closed tree and (TI/ @) returns T,
thend’ is true of every real function
consistent with the QDE.

e Lemma: the QSIM Guaranteed Coverage Theorem

— If QSIM returns a closed tree then
QSIM predicts every real function
consistent with the QDE input.

e Caveats

—If M is not closed, some real behaviors may not be
predicted (yet).

—If ® is not universal, the model @f could be a
spurious behavior.



Level Control of the Water Tank
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x = amount in tank

g = inflow into tank
u = drain area

p(z) = influence of pressure at drain



A Heterogeneous Controller

The operating regions and their appropriateness
measures

1
1(x) n(x) h(x)

Low Normal High

The local control laws

r € Low = w(x) =0
r € Normal = u,(x) = k(x — xs) + us
r € High = up(T) = Upmae

The global control law:
u(z) = l(x)w(z) + n(x)u,(x) + h(x)ug(z).

The discrete abstraction

Low, — ||[Normal| +— |High,|.




Qualitative Combination of Behaviors

e Overlapping operating regions for the local laws.

I(z) n(z) h(z)

Low Normal High

e Require gualitative agreement where laws overlap.

Low=| — —
Normal = — || —

High = — —

e Guarantee monotonic behavior in overlap regions.

Low = ¢>0
Normal = q, < q<q,
High = q < Upaz - p(c)

e Abstract the control law to a finite transition diagram.
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Behavior Trees for Local Control Laws
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Validity of Qualitative Properties

Simulating controller U_|I.

Behavior tree rooted at S-0, with 3 initial states and 3 behaviors.

Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL
(QVAL X (NIL INC))))

Validity at S-0 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-0 = T.

Simulating controller U_n.

Behavior tree rooted at S-40, with 16 initial states and 34 behaviors.

Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL °

(QVAL X (NIL INC))))
Validity at S-40 = T.
Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) N
(QVAL X (NIL DECQC)) °

Validity at S-40 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-40 = T.

Checking STABILITY: (NECESSARILY (EVENTUALLY (AND (QVAL X ((B C) STD))
(STATUS QUIESCENT)
(STATUS STABLE)))).

Validity at S-40 = T.

Simulating controller U_h.

Behavior tree rooted at S-167, with 3 initial states and 21 behaviors.

Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) NI
(QVAL X (NIL DECQC)) °

Validity at S-167 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-167 = T.



(4) Temporal Constraints: TeQSIM

Temporal logic lets the modeler use knowledge not
expressible in the QDE or SQDE.

e Trajectory constraints describe intended behaviors.

— Time-varying exogenous variables.
— Events and discontinuous changes.

— Semi-quantitative bounds on behaviors.

e Interleave QSIM with the temporal logic model-checker.
Accept only behaviors consistent with TL constraints.

e Focus attention on subset of behavior space.



TeQSIM Examples

e Specify exogenous input.

(event step-up :time (2 3))
(event step-down :time (17 24))
(disc-change (event step-up)
((inflow (normal high)
range (1500 1800))
(disc-change (event step-down)
((inflow normal)))

e Focus on overflow scenario.

(event open)
(disc-change (event open)
((valve (normal max)
range (4 nil))))
(before (qvalue level (top nil)) (event o
(eventually (gvalue level (top nil)))

Derive temporal bounds on (event open) to prevent
overflow.



More Information:
http://www.cs.utexas.edu/users/qr

Qualitative Reasoning

e Daniel J. Clancy and Benjamin J. Kuipers. 1998. Qualitative
simulation as a temporally-extended constraint satisfaction problem
AAAI-98

e Daniel J. Clancy and Benjamin Kuipers. 1997. Model
decomposition and simulation: a component based qualitative
simulation algorithmAAAI-97.

e Daniel J. Clancy and Benjamin Kuipers. 1997. Static and dynamic
abstraction solves the problem of chatter in qualitative simulation.
AAAI-97.

e Giorgio Brajnik and Daniel J. Clancy. 1996. Trajectory constraints
in qualitative simulationAAAI-96

e Benjamin Shults and Benjamin Kuipers. 1997. Proving properties of
continuous systems: qualitative simulation and temporal logic.
Artificial Intelligence Journab2: 91-129.

e Benjamin J. Kuipers and Karl Astrom. 1994. The composition and
validation of heterogeneous control lawgitomatica30(2),
February 1994.



