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Qualitative Design

How does qualitative reasoning help in design?

1. Find qualitative properties of initial design.

2. Transform design to eliminate bad properties and add or

ensure good ones.

3. Reach a design with the correct qualitative properties.

4. Construct a qualitative proof of correctness.

5. Accumulate the algebraic and numerical constraints

required for the proof to hold.

6. Any remaining degrees of freedom may be used to

optimize the design.



Heterogeneous (“fuzzy”) Control

� Design classical controllers in their own operating

regions.

� Overlapping operating regions defined by fuzzy set

membership functions.

– “appropriateness measures” for the controller

� The output of the heterogeneous controller is

– the average output of the local controllers,

– weighted by their appropriateness measures.

� Classical optimality within each region;

Smooth transitions.

� Example: the water tank controller



Level Control of the Water Tank
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_x = f(x; u) = q � u � p(x):

x = amount in tank

q = inflow into tank

u = drain area

p(x) = influence of pressure at drain



A Heterogeneous Controller

The operating regions and their appropriateness

measures:
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The local control laws:

x 2 Low ) ul(x) = 0

x 2 Normal ) un(x) = k(x� xs) + us

x 2 High ) uh(x) = umax

The global control law:

u(x) = l(x)ul(x) + n(x)un(x) + h(x)uh(x):

The discrete abstraction:

Low �! Normal  � High :



Qualitative Combination of Behaviors

� Overlapping operating regions for the local laws.
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� Require qualitative agreement where laws overlap.
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� Guarantee monotonic behavior in overlap regions.

Low ) q > 0

Normal ) qb < q < qc

High ) q < umax � p(c)

� Abstract the control law to a finite transition diagram.
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Designing Qualitative Behaviors

� Simple but general qualitative models have reliable

properties.

� The tank model:_x = �f(x), wheref 2M+.

– Converges to stable fixed point:f(x) �! 0.

� The undamped spring:�x = �h(x), whereh 2M+
0 .

– Periodic oscillation.

� The damped spring:�x = �h(x)� f( _x), where

f; h 2M+
0 .

– Converges to stable fixed point:x �! 0.

– Converges via spiral or nodal trajectory, depending on

sign(b2 � 4c), whereb = f 0(0) andc = h0(0).

We can design qualitative behaviors by matching these

models in local operating regions.



Design the Inverted Pendulum

(applying torque at the pivot)

� The pendulum is:�� = �g sin � � f( _�).

– (0; 0) is a stable attractor,

– (�; 0) is an unstable saddle.

� With controller: �� = �g sin � � f( _�) + u(�; _�).

� Designu(�; _�) so the model has the right qualitative

behavior.

� Make(0; 0) a spiral repellor by adding a “negative

friction” componentp( _�).

� Make(�; 0) a stable attractor by adding a “spring force”

componentq(� � �).

� Constraints follow from requirement that net forces be

monotonic functions of� or _�.

� Another constraint follows from need to get from

nbd(0; 0) to nbd(�; 0).

The cart-pole version of the problem is a little more

complicated.



Bottom: Attractor to Spiral Repellor

� Near(�; _�) = (0; 0), the pendulum is qualitatively a

damped spring.

�� = �h(�)� f( _�)

�� = �g sin � � f( _�)

� The friction termf( _�) is responsible for the spiral in.

� We can get spiral out behavior if we have “negative

friction” (pumping).

� Define the controlleru(�; _�) = p( _�) such that

p( _�)� f( _�) 2M+

0 :

� The result is a “negatively damped spring”:

�� = �g sin � � f( _�) + p( _�)

that will spiral away from(0; 0).



Top: Saddle to Stable Attractor

� Near(�; _�) = (�; 0), the pendulum has a saddle point.

� Changing variables to� = � � � gives

�� = g sin�� f( _�)

with “negative spring force” making(�; 0) unstable.

� Define the controlleru(�; _�) = �R(�) such that

R(�)� g sin� 2M+

0 :

� The result is a damped spring:

�� = �R(�) + g sin�� f( _�)

which converges� �! 0.



Can Pumping Reach from Bottom to Top?

� Let �1 be theminimumangle from which the Top

controller can pick up the stopped pendulum.

� Let �0 be the maximum angle reached on thepreceding

cycle.

�

� In the end, the constraint is:



The Pendulum Controller

� The Controllers

– Bottom: �� = �g sin � � f( _�) + p( _�)

– Top: �� = �R(� � �) + g sin(� � �)� f( _�)

– There is also a “Fast” region, to stop spinning.

� The Constraints

– Bottom: p( _�)� f( _�) 2M+
0 .

– Top: R(�)� g sin� 2M+
0 .

– Transition:

� The Regions:

– Bottom: neighborhood around(�; _�) = (0; 0).

– Top: neighborhood around(�; _�) = (�; 0).

– Fast:

�



Behavior of the Controller
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