Unit A1.1 Motivation

Kenneth D. Forbus Qualitative Reasoning Group Northwestern University

Overview

- Why qualitative reasoning?
- Principles of qualitative representation and reasoning
- A brief history of qualitative reasoning

What is qualitative physics?

- Formalizing the intuitive knowledge of the physical world
 - From person on the street to expert scientists and engineers
- Developing reasoning methods that use such knowledge for interesting tasks.
- Developing computational models of human commonsense reasoning

Example

• What happens when you leave an espresso maker on a stove unattended for an hour?

What will this system do?

Example

• Why are there seasons?

Example

• Warm water freezes faster in ice cube tray than cold water. Why?

Why do qualitative physics?

- Understanding the mind
 - What do people know? Physical, social, and mental worlds.
 - Universal, but with broad ranges of expertise
 - Unlike vision, which is automatic
 - Unlike medical diagnosis

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics

Why do qualitative physics?

- Can build useful software and systems
 - Intelligent tutoring systems and learning environments
 - Engineering Problem Solving
 - Diagnosis/Troubleshooting
 - Monitoring
 - Design
 - Failure Modes and Effects Analysis (FMEA)
 - Robots
 - Models for understanding analogies and metaphors
 - "Ricki blew up at Lucy"

Engineering applications have driven most Qualitative/Model-based reasoning research

The Qualitative Physics Vision

Effect of Digital Computing on Engineering Problem Solving

Desired effect of Qualitative Physics on Engineering Problem Solving

Key Ideas of Qualitative Physics

- Quantize the continuous for symbolic reasoning
 - Example: Represent numbers via signs or ordinal relationships
 - Example: Divide space up into meaningful regions
- Represent partial knowledge about the world
 - Example: Is the melting temperature of aluminum higher than the temperature of an electric stove?
 - Example: "We're on Rt 66" versus "We're at Exit 42 on Rt 66"
- Reason with partial knowledge about the world
 - Example: Pulling the kettle off before all the water boils away will prevent it from melting.
 - Example: "We just passed Exit 42, and before that was 41. We should see 43 soon."

Comparing qualitative and traditional mathematics

- Traditional math provides detailed answers
 - Often more detailed than needed
 - Imposes unrealistic input requirements
- Qualitative math provides natural level of detail
 - Allows for partial knowledge
 - Expresses intuition of causality

 $\mathbf{F} = \mathbf{M}\mathbf{A}$

Traditional quantitative version

 $\mathbf{A} \propto \mathbf{O} + \mathbf{F}$

 $A \propto_{Q} M$

Qualitative version

Qualitative Spatial Reasoning

- Claim: Symbolic vocabularies of shape and space are central to human visual thinking
 - They are computed by our visual system
 - Their organization reflects task-specific conceptual distinctions as well as visual distinctions
 - They provide the bridge between conceptual and visual representations

Poverty Conjecture

- There is no purely qualitative, general-purpose representation of spatial properties
- Arguments for it
 - Pervasive human use of diagrams & model
 - Nobody's done it
 - Mathematics: No notion of partial order in dimensions greater than 1.
 - Examples of specific tasks
- Prediction: People map spatial problems to 1D subspaces as much as possible

Can't compute qualitative spatial descriptions in isolation

Problem-independent computation

Can compute qualitative spatial descriptions for a given task and context, using visual reasoning

Problem-dependent representation takes relationships into account

Arguments against Poverty Conjecture

- For some types of qualitative spatial reasoning, topological representations suffice (e.g., Cohn)
- Some spatial tasks can be done by purely qualitative representations, but others can't.
- Open questions:
 - What kinds of information are sufficient for which tasks?
 - What kinds of information do people actually use in those tasks?

Metric Diagram/Place Vocabulary model

- Qualitative representations express natural level of human knowledge & reasoning
- *Metric Diagram/Place Vocabulary* model links diagrammatic reasoning to conceptual knowledge
- Metric Diagram ≈ Visual Routines Processor
- Place Vocabulary ≈ Problemspecific qualitative representation

Example: Reasoning about motion of a ball (FROB)

- Q: Where can it go?
- Q: Where can it end up?
- Q: Can A and B collide?

A is purple, B is blue

Creating a place vocabulary for a FROB world

Integrating qualitative and metric knowledge

A brief history of qualitative reasoning

- Prehistory
- Initial steps
- Rise of general theories (1981-1984)
- Rapid expansion (1985-1991)
- Maturity (1992-1999)
- New directions (2000-???)

Prehistory

• Charniak

Common sense needed to solve story problems

- Rieger
 - Simple cause/effect mechanism descriptions
- Simple fixed-symbol vocabularies
 - TALL, MEDIUM, SMALL
 - Fuzzy logic

Initial steps (1975-1980)

- NEWTON (de Kleer, 1975)
 - Identified importance of qualitative reasoning in problem solving
 - Introduced notion of envisionment
- Naïve Physics Manifesto (Hayes, 1978)
 - Widely circulated, very inspirational
 - Introduced notion of histories
- FROB (Forbus, 1980)
 - Metric Diagram/Place Vocabulary model

Rise of general theories (1981-1984)

- Confluences (de Kleer and Brown)
 - Articulated notion of *mythical causality*
 - Clean sign-based qualitative calculus
- ENV \rightarrow QSIM (Kuipers)
 - Articulated importance of qualitative mathematics
 - Introduced *landmark values* to encode richer behavioral distinctions
- Qualitative Process theory (Forbus)
 - Articulated notion of *physical processes* as causal mechanisms
 - Introduced ordinal relations as qualitative values

Rapid expansion (1985-1991)

- General Diagnostic Engine (Williams and de Kleer)
- Explorations of qualitative reasoning
 - Chatter and how to get rid of it (legions)
 - Qualitative reasoning about phase space (Yip, Nishida)
 - Order of magnitude representations
- First applications
 - Qualitative Process Automation (LeClair & Abrams)
 - MITA photocopier (Tomiyama et al)

Maturity (1992-1999)

- More applications work
 - Lots of interesting demonstrations
 - More fielded applications
- Many new ideas, old ideas pushed farther
 - Order of magnitude representations
 - Reasoning about chaos and nonlinear dynamics via qualitative phase space descriptions
 - Model construction from data in material science, medicine
 - Compositional modeling
 - Self-explanatory simulators
 - Teleological reasoning
 - Large-scale textbook problem solving

New directions (2000 and beyond)

- Deeper ties to engineering
- Deeper ties to science
 - Material Science (cf Ironi)
 - Cognitive Science (cf Bredeweg & deKonig, Forbus & Gentner)
 - Biology (cf Trelease & Park)
- And whatever other new directions <u>you</u> come up with!
 - Several factors are radically changing our world
 - Moore's law
 - Rise of the networked world