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Overview

• Ontologies for qualitative modeling

• Quantities and values

• Qualitative mathematics

• Reasoning with qualitative mathematics



Design Space for Qualitative Physics

• Factors that make up a qualitative physics
– Ontology

– Mathematics

– Causality

• Some parts of the design space have been well
explored

• Other parts haven’t



Goal: Create Domain Theories

• Domain theory is a knowledge base that
– can be used for multiple tasks

– supports modeling of a wide variety of systems and/or
phenomena

– supports automatic formulation of models for specific
situations.

• Examples of Domain theory enterprises
– Engineering thermodynamics (Northwestern)

– Botany (Porter’s group, U Texas)

– Chemical engineering (Penn)

– Electro-mechanical systems (Stanford KSL)



Organizing Domain Theories

• Domain theory =  collection of general knowledge
about some area that can be used to model a wide
variety of systems for multiple tasks.

• Scenario model = a model of a particular situation,
built for a particular purpose, out of fragments
from the domain model.
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Ontology

• The study of what things there are

• Ontology provides organization
– Applicability

• When is a qualitative relationship valid?  Accurate?
Appropriate?

– Causality

• Which factors can be changed, in order to bring
about desired effects or avoid undesirable
outcomes?



How Ontology addresses Applicability

• Figure out what kinds of things you are dealing
with.

• Associate models with those kinds of things

• Build models for complex phenomena by putting
together models for their parts



Ontology 0: Math modeling

• Just start with a set of equations and quantities

• Many mathematical analyses do this

• QSIM does, too.  QDE’s instead of ODE’s

• Advantage: Simplicity

• Drawback: Modeling is completely manual labor,
often ad hoc.



Ontology 1: Components

• Model the world as a collection of components
connected together
– Electronic circuits

– Fluid/Hydraulic machinery

– etc -- see System Dynamics

• Model connections via links between properties
– Different kinds of paths

– Nodes connect more than two devices



Classic case: Electronics

• Components include resistors, capacitors,
transistors, etc.

• Each component has terminals, which are
connected to nodes.



Nodes in electronics

• 2-terminal node = wire

• 3-terminal node = junction

• Can build any size node out of 2 & 3 terminal
nodes
– theorem of circuit theory in electronics.

≡



Component Laws

• Associate qualitative or quantitative laws with
each type of component

• Example: Resistor
– Quantitative version: V = IR

– Qualitative version: [V] = [I] + [R]



States in components

• Some components require multiple models,
according to state of the component

• Example: diode
– Only lets current flow in one direction

– Conducting versus Blocked according to polarity of
voltage across it

• Example: Transistors can have several states
(cutoff, linear, saturated, etc.)



Building circuits

• Instantiate models for parts

• Instantiate nodes to connect them together

• And then you have (almost) a model for the circuit,
via the combination of the models for its parts



Other laws needed to complete models

• Kirkoff’s Current Law
– Sum of currents entering and leaving a node is zero

• i.e., no charge accumulates at nodes

– Local, tractable computation
• Example: 0 = [i1] + [i2] + [i3]

• Kirkoff’s Voltage Law
– Sum of voltages around any path in a circuit is zero

– In straightforward form, not local.  Requires finding all
paths through the circuit

– Heuristic: Do computation based on exhaustive
combination of triples of nodes.



Component ontology is appropriate when…

• Other properties of “stuff” flowing can be ignored

• No significant “stuff” stored at nodes
– Otherwise KCL invalid

• All interactions can be limited to fixed set of
connections between parts



Component ontology often inappropriate

• Motion: Momentum flows??

• Real fluids accumulate



Components avoid interesting modeling
problems

• Step of deciding what components to use lies
outside the theory

• How should one model a mass?



Ontology 2: Physical Processes

• All changes in world due to physical processes

• Processes act on collections of objects related
appropriately.

• Equations associated with appropriate objects,
relationships, and processes



Example: Fluids

• Entities include containers, fluid paths, heat paths.

• Relationships include connectivity, alignment of
paths

• Processes include fluid flow, heat flow, boiling,
condensation.



How processes help in modeling

• Mapping from structural description to domain
concepts is part of the domain theory

• Given high-level structural description, system
figures out what processes are appropriate.



The Number Zoo
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Issues in representing numbers

• Resolution
– Fine versus coarse? (i.e., how many distinctions can be made?)
– Fixed versus variable?  (i.e., can the number of distinctions made be

varied to meet different needs?)

• Composability
– Compare (i.e., How much information is available about relative

magnitudes?)
– Propagate (i.e., given some values, how can other values be computed?)
– Combine (i.e., What kinds of relationships can be expressed between

values?)

• Graceful Extension
– If higher resolution information is needed, can it be added without

invalidating old conclusions?

• Relevance
– Which tasks is this notion of value suitable for?
– Which tasks are unsuitable for a given notion of value?



What do we do with equations?

• Solve by plugging in values
– When done to a system of equations, this is often

referred to as propagation

– x+y=7; if x=3, then we conclude y=4.

• Substitute one equation into another
– x+y=7; x-y=-1; then we conclude x=3; y=4.



Signs

• The first representation used in QR

• The weakest that can support continuity
– if [A]= - then it must be [A]= 0 before [A]= +

• Can describe derivatives
– [∂Α∂Α∂Α∂Α]=+ ≡ “increasing”

– [∂Α∂Α∂Α∂Α]=0 ≡ “steady”

– [∂Α∂Α∂Α∂Α]=- ≡ “decreasing”



Confluences

• Equations on sign values
• Example: [x]+[y] = [z]

• Can solve via propagation
– If [x]=+ and [z]=- then [y]=-

– If [x]=+ and [z]=+ then no information about [y]



Confluences and Algebra

• Algebraic structure of signs very different than the
reals or even integers

• Different laws of algebra apply

• Example: Can’t substitute equals for equals
– [X] = +, [Y] = +

– [X] - [X] = 0

– [X] - [Y] = 0 ?  Nope
• (Suppose X = 1 and Y = 2)



Ordinals

• Describe value via relationships with other values
A > B; A < C; A< D

• Allows partial information
in the above, don’t know relation between C and
D

• Like signs, supports continuity and derivatives



Quantity Space

• Value defined in terms of
ordinal relationships with
other quantities

• Contents dynamically
inferred based on
distinctions imposed by rest
of model

• Can be a partial order
• Limit points are values

where processes change
activation

• Specialization: Value space
is totally ordered quantity
space.

Twater

Tboil

Tfreeze

Tstove



Landmark values

• Behavior-dependent values taken on at specific
times

• Limit point ⇒  Landmark
– “The boiling point of water”

• ¬  [Landmark ⇒  Limit point]
– “The height the ball bounced after it hit the floor the

third time.”

• Landmarks enable finer-grained behavior
descriptions



Monotonic Functions

• Express direction of dependency without details
• Example: M+(pressure(w),level(w))

says that pressure(w) is an increasing
monotonic function of level(w)
– When level(w) goes up, pressure(w) goes up.

– When level(w) goes down, pressure(w) goes
down.

– If level(w) is steady, pressure(w) is steady.



Monotonic Functions (cont)

• Example:
M-(resistance(pipe),area(pipe))
– As area(pipe) goes up, resistance(pipe)

goes down.
– As area(pipe) goes down, resistance(pipe)

goes up.

• Form of underlying function only minimally
constrained
– Might be linear

– Might be nonlinear



What do we mean by “goes down”?

• Version 1: Comparative analysis

• Version 2: Changes over time

Situation 1 Situation 2

>

>

Then Now

>

>



Qualitative proportionalities

• Examples
– (qprop (temperature ?o) (heat ?o))

– (qprop- (acceleration ?o) (mass ?o))

• Semantics of (qprop A B)

– ∃∃∃∃ f s.t. A = f(…, B,…) ∧∧∧∧  f is increasing
monotonic in B

– For qprop-, decreasing monotonic

– B is a causal antecedent of A

• Implications
– Weakest causal connection that can propagate sign information

– Partial information about dependency requires closed world
assumption for reasoning



Qualitative proportionalities capture aspects
of intuitive mental models

• “The more air there is, the more it weighs and the
greater its pressure”
– (qprop (weight ?air-mass)
 (n-molecules ?air-mass))

– (qprop (pressure ?air-mass)
 (n-molecules ?air-mass))

• “As the air temperature goes up, the relative
humidity goes down.”
– (qprop- (relative-humidity ?air-mass)
(temperature ?air-mass))

• Source: Weather: An Explore Your World ™
Handbook.  Discovery Press



Level(w)

Pressure(w)

(qprop+ (pressure w) (pressure g))

Pressure(g)



Composability

• Can express partial theories about relationships
between parameters

• Can add new qualitative proportionalities to
increase precision



Cost of Composability

• Explicit closed-world assumptions required to use
compositional primitives

• Requires understanding when you are likely to get
new information

• Requires inference mechanisms that make CWA’s
and detect when they are violated



Causal Interpretation

• (qprop+ A B) means that changes in B cause
changes in A

• But not the reverse.

• Can never have both (qprop+ A B)and (qprop+
B A)true at the same time.



Resolving Ambiguity

• Suppose
– (Qprop A B)

– (Qprop- A C)

– B & C are increasing.

– What does A do?

• Without more information, one can’t tell.



Correspondences

• Example:
– (correspondence ((force spring) 0)
        ((position spring) 0)

– (qprop- (force spring)
        (position spring))

• Pins down a point in the implicit function for the
qualitative proportionalities constraining a quantity.

• Enables propagation of ordinal information across
qualitative proportionalities.



Explicit Functions

• Allow propagation of ordinal information across
different individuals

Same shape, same size, same height ⇒
   Higher level implies higher pressure



Representing non-monotonic functions

• Decompose complex function into monotonic
regions

• Define subregions via limit points

Y

X

(qprop- Y X)(qprop Y X)



Direct Influences

• Provide partial information about derivatives
– Direct influences + qualitative proportionalities = a

qualitative mathematics for ordinary differential
equations

• Examples
I+(AmountOf(w),FlowRate(inflow)

I-(AmountOf(w),FlowRate(outflow)



Semantics of direct influences

• I+(A,b)≡≡≡≡ D[A]=…+b+…
• I-(A,b)≡≡≡≡ D[A]=…-b+…
• Direct influences combine via addition

– Information about relative rates can disambiguate

– Abstract nature of qprop ⇒  no loss of generality in
expressing qualitative ODE’s

• Direct influences only occur in physical processes
(sole mechanism assumption)

• Closed-world assumption needed to determine
change



Example of influences

Aof(Wf)

Level(Wf)

P(Wf)

Aof(Wg)

Level(Wg)

P(Wg)

FR(G→F)

∝ Q+

∝ Q+ ∝ Q+

∝ Q+

∝ Q-∝ Q+

∝ Q+
∝ Q-

I-
I+

I-

I+

FR(F→G)



FR(F→G)

Example of influences

Aof(Wf)

Level(Wf)

P(Wf)

Aof(Wg)

Level(Wg)

P(Wg)

∝ Q+

∝ Q+ ∝ Q+

∝ Q+

∝ Q-∝ Q+

I-
I+

Suppose the flow
from F to G is active



FR(F→G)

Example of influences

Aof(Wf)

Level(Wf)

P(Wf)

Aof(Wg)

Level(Wg)

P(Wg)

∝ Q+

∝ Q+ ∝ Q+

∝ Q+

∝ Q-∝ Q+

I-
I+Ds = -1 Ds = 1

Closed-world
assumption on

direct influences
enables inference of
direct effects of the

flow



FR(F→G)

Example of influences

Aof(Wf)

Level(Wf)

P(Wf)

Aof(Wg)

Level(Wg)

P(Wg)
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∝ Q+ ∝ Q+

∝ Q+
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I-
I+Ds = -1 Ds = 1

Closed-world
assumptions on

qualitative
proportionalities enables

inference of indirect
effects of the flow
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Ds = 1



FR(F→G)

Example of influences

Aof(Wf)

Level(Wf)

P(Wf)

Aof(Wg)

Level(Wg)

P(Wg)

∝ Q+

∝ Q+ ∝ Q+

∝ Q+

∝ Q-∝ Q+

I-
I+Ds = -1 Ds = 1

Rate of the flow also
changes as an indirect

consequence of the flow

Ds = -1

Ds = -1 Ds = 1

Ds = 1

Ds = -1


