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Intr oduction

Quantitative mathematical model

A mathematical description of the relations between the inputs x (causes)
and the outputs y (effects) of a system

input output

MODEL

\ /

\

Model: a mapping y = f(z)

Three modeling approaches:

e white box e grey box e black box
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White box modeling

input F=ma output

v
T
I
Py}
_|

e Physical laws are available
e Typical examples: mechanical and electrical systems

e The box is “transparent”
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unknown

Grey box modeling

input

F=ma
V=RI
pV=RT

output

e Physical laws are available but the values of some parameters are

e the internal structure of the box is only partially known

e |dea: tune the unknown parameters until the outputs predicted by
the model match the observed data

MONET Summer School / Liliana lroni

B5.1 - Quantitative Modeling/ 6



Black box modeling

input output

\

e physical knowledge is not available
e physical knowledge is very incomplete

e parameter estimation is not possible due to the lack of adequate
observed data sets

e useful for very complex systems

e |dea: collect data and use them to find the links between inputs and
outputs
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Problems in SI

e Choice of the structural model or identifier scheme

e appropriate set-up of numerical procedures
(e.g. initial conditions, start guess ...)

e Choice of adequate numerical methods
(e.g. curve fitting, ODE solvers,...)
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What can QR do for SI ?

QR helps to:
e find model classes consistent with prior knowledge
e find an initial guess of parameter values

e choose proper numerical methods
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Related work

e Kay [1996], Kay, Rinner, Kuipers [2000];
semi-quantitative Sl

e Bradley [1994], Bradley, O’Gallagher, J. Rogers [1997];
M. Easley, E. Bradley [1999]
guantitative structural SI

e Capelo, Ironi, Tentoni [1996, 1998];
guantitative structural Sl

e Bellazzi, Guglielmann, Ironi [1997,1998,2000];
guantitative “black-box” Sl
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Part 1

QR for structural S

Case study: Automated modeling of
visco-elastic material
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Structural modeling from data

e Physical insight helps defining the model space (grey vs. black-box
models)

e The model space definition requires modeling expertise

— difficult task, not easily made automatic

System ldentification: given the model space, the process of deriving
a good model for the system dynamics from the observations

e Sl grey modeling must not reduce to a mere numerical fit process

— adherence to the observations

— minimal complexity
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System Identification

Physical assumptions

Application task A priori knowledge and laws
/\ Modeling expertise
_<_oam_ mcmom
. h« Structural
Plausible model Identification
subset

Y

ﬁOUmQEmzo:m w -

Tentative model

—— e — e — o — — — o — ————

structure
= Parameter estimation
Quantitative model
) No Increase model
Model evaluation complexity
- — s eY————————————— /
OK

Quantitative model
of system dynamics
(ODE)
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Use of QR Iin SI

e Intelligent data analysis
e Structural identification

e Parameter estimation
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Automated modeling of visco-elastic materials

Motivations: assessment of visco-elastic materials from data

quantitative accurate
—» |model of mechanical behavior
of tested material

data from standard
rheological experiments

e deriving models by hand is a hard task

e models can be used for simulations, and provide a deeper insight
w.r. to a mere experimental study

Goal:to formulate the constitutive equation R(s,e) = 0 (linear ODE)
describing the mechanical behavior of a material under suitable
assumptions
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Modeling iIssues

e Modeling approach: compositional strategy (rheology)
The model space was automatically generated, and partitioned

into QB-homogeneous classes (see Capelo, Ironi, Tentoni 1998)

e EXxperimental data: Standard static tests - step input signal

— Creep experiments: s(t) — e(t)
— Relaxation experiments: e(t) — s(t)
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Model space characterization (1)

The mathematical model describes the relation between s(t) and e(t):

S 09De=Y"6""Dis 6.6 e R

v J

Formal model(FM):
symbolic ODE with the same ODE structureand 6; #0 — 1

The model space FM can be partitioned as FM = U FM;,
and each class is associated with its own QB

B5.1 - Quantitative Modeling/ 17
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k+1
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>

Model space characterization (2)

0} < QBy = (TTF); (TFF)=QB(H)

0} < QBo = (FT,T); (FFET)=QB(N)

0} + QB3 = (FTF);

> D'e, k >0} & QBy = (LTI (TET)=QB(H-N)

Qualitative strain response: e

QB= (ay,ax,an) , where

ey + e +

True < e, #0
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Intellig ent Data Analysis

e Observations drive the whole modeling process

measured . .
8mco:mmA| Instrumentation

Y

pre-processed . system knowl edge-base
data < _ data polish wd/ encoded

R « .......... _ expertise
+ ! 1 (thresholds, filters..)
System ! ﬁ geometric m:mumw\"«
| dentification " recognition ! geometric
" '/ characterization of
+ " H \"x basic physical features

gualitative observed physical ||
response | feature assesment )!

Qualitative Response Abstraction

Data pre-processing
e removal of outliers

e filtering

e evaluation of measure uncertainty
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Qualitative Response Abstraction

relevant
geometric —=-=
patterns

geometric characterization
of basic physical properties

A
\

A
4

[
y

A
/

& physical features assessment

[ Data | h Geometric shape recognition

J—

Behavioral description
of data

e Geometricreasoning:shaperecognitionand data segmentation

1
Ho_m

e Inferenceof obsewnedbehavior from the extracted geometricfeatures
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Structural Identification

Issue: select, within the model space, the subset of plausible models
— more efficient computation
(reduced Sl search space)

— ensured physical accuracy

How:

DATA » QBp — FM _OWNHOWQ

FM —— M= {My(0), 6 € RN™\{0}, k=0,..,7}

Mi(9) : M&&B&m = M&.&Uﬁ

¢ J
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Quantitative ldentification

The plausible model set M = {M}(6)} is hierarchical
(k: model complexity index, #: model parameters)

Problem: Find k£*, 8™ such that:

e(ti; 0) ?
o 0* IQGB_EMUA ke v

e and rcond(F) > 1l.e—5, F: information matrix

e k* =argmin, AIC(k), AIC" Akaike Information Criterion
Propertiesof My (6*):
e numerical and statistical reliability

e minimal complexity

e reasonably good data fitting
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Problems

(P1) o A good starting guess §° must be provided

(P2) o Initial conditions De(tg) = €® must be given
(De vector of the time derivatives of ¢)
o ODEs My (6) may be stiff
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Problem (P1)

A goodguessh’ is neededto ensure corvergenceto the true (rather than to
a local) minimum.

But #° has no explicit physical meaning, and extracting information from
data is not a straightforward task.

QR-driven curve fitting:

r

y(t;QBo, ¢, A) = x(ax)- Y ci(1—exp(=Ait))+x(an) - cryrt+x(am) - crys
i=1

(exploits a priori knowledge and gualitative data interpretation)

+ least-squares ODE collocation: 6° I.s. solution of

>0 Diy(t) = Y0 DIs(ty) , (k=1,.., Np).

g J
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Problem (P2)

e Initial conditionse® must be given.
e? could be treated as further parameters to be identified as well, but this

would entail a higher computational effort.

Y
el is defined by: e := Dy(¢()

e M;(6) may bestiff, accordingto the elasticcomponentsof the response
Explicit Adams or Runge-Kutta methods may be unstable

Y

Implicit, backward difference schemes (BDF, NDF) are preferred
(less accurate but stable)

Remark: Stiff systems are frequent in many application domains:

chemical kinetics, chemistry of polymers, mechanics...
A “stiff” system is characterized by time constants widely varying in

magnitude.

B5.1 - Quantitative Modeling/ 25

MONET Summer School / Liliana lroni



Remarks

Traditional structural SI does benefit from the integration with QR

Integrated frameworks:

e allow us to deal automatically with modeling problems difficult to be
handled by hand

e provide methodologies and tools for a deeper, more robust and eco-
nomic investigation of physical domains traditionally studied at a
mere experimental level
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Application to Pharmacology

Motiv ations

Polymeric drug delivery research within the design of Drug Delivery
Systems (DDS's)

v dosage form

DDS ﬁ

active vehiculant
material

ingredient

Aim: ensuring optimal drug bioavailability (fast targeting + most
effective delivery mode)

The development of a new DDS requires assessment of those
physicochemical properties of carrier materials which affect bioavailability
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Mucoadhesion

Mechanism whereby a polymeric carrier adheres to a mucosal tissue

— A better mucoadhesive performance would improve drug
bioavailability

Traditional approach is entirely experimental:

- time consuming and costly

- 1t hardly provides info on the structural requirements for adhesion

A model based approach would provide a deeper

comprehension of the polymer-mucus interaction
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RHEOLQ’s architecture

| MODEL
" | LIBRARY RHEOLOGICAL i
” FORMULAE |
| IDEAL \ / MATHEMATICAL |
| QUALITATIVE > MODELS ”
| BEHAVIORS | |
m OBSERVED PLAUSIBLE |
” QUALITATIVE MODELS ”
” BEHAVIOR m

System
Identification

CREEP DATA |v QUANTITATIVE

MODEL

Output: ODE model
compliance model
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Résum é

Variables:

e s(t) perturbation on the system (input)

e ¢(t) elicited system response (output)
Data:

e Standard creep test: s(t) = soH(t — to)
Models:

e ODE model

e Compliance model

Structural identification —) class and order of the model
Parameter estimation — values of the parameters
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Compliance model
Explicitly related to the rheological structure of the material:

k
t
J&)=Jo+ D Ji(1-exp(-—] )+
i=1 ’

Ju(t) < (instantaneous elasticity) Jj
Prompt elastic stretching of bonds between the primary structural units

Ji (t) <> (retarded elasticity) {J;,7i};,—; .

Bonds break and reform, producing a slower, still recoverable, deformation.
k < number of bond types

J; < intensity of each bond type

7; <> times at which the greater part of each bond type establishes

< ) NN
Irreversible rupture of bonds.In particular:

1. the # retardation times (model order),related to the establishment of new
types of bonds, characterizes the material complexity

2. the compliance values express the strength of the structural units
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The application problem

e Materials
NaCMC: solutions of polymer at three viscosity grades (LV, MV, HV),
each one at three concentration levels (low, medium, high).
Polymer+mucin: mixtures of each polymer with mucin at three
different concentrations

e Aim
Model-based investigation of polymer mucoadhesive performance,
to get a deeper knowledge on the polymer-mucin interaction
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Method

1. Quantitative characterization of rheological properties of
each material by means of model order and parameters

2. Highlight structural conditions at which polymer-mucin
synergy is higher (best mucoadhesive performance)
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1 - Results

.ﬂ_h_ RHEOLOGICAL ANALYSIS TOOL-KIT L
tModel library generation | Data modeling | Q-Simulation | Quit
_._h_ Qualitative data interpretation

Data file ==> bh1Em8&fn.cst,

Dir Data plot | Q-abstraction ) Plausible models ) Done |

KL A L
» ODE : — = —
m Pigs m 4T
Experimenty « RF: K.-N

il

=1

MATERIAL: Elanose High 1.B% + mucina 8% camp. H_
QUALTITATIVE CURWE DESCRIPTION
L

CREEP: growing(t_0) concaveCt_de_0) Tinear&arowing(t_v) _
#SSESSED QB: (F,T,TD WH_ Plausible models
FEATURED PROPERTIES: Done |

delayed elasticity

wiscosity

PLAUSIELE MODEL CLASS £, (m =1,%2,..9)

« CSCM: J(t)= Y Ji(l—exp(—t[r)) + w

t_t_de t_wv
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1 - Results

Model evaluation: Akaike indexes and condition numbers

Polymer (H.V. NaCMC 1.6%) + 8% mucin

k rcond A(k)
0 1.00 e+00 1005.5
1 4.00 e-04 780.4
k*= 2 9.33 e-03 591.4
3 2.19 e-08 423.6

Optimal model order and parameter estimates (95% confidence intervals)

Polymer (H.V. NaCMC 1.6%) + 8% mucin
k* 2
67 1.568e+2 [1.562e+2,1.574e+2] Pa-s
6; 2.880e+3 [2.879e+3,2.882e+3] Pas?
65 8.128 e+2 [8.123 e+2,8.132e+2] Pa-s®
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2 - Results

S

L.V. NaCMC low
Mixture with mucin
L.V. NaCMC medium
Mixture with mucin
H.V. NaCMC low
Mixture with mucin
H.V. NaCMC medium
Mixture with mucin

NININRINoOlw| ol

LV-NaCMC and HV-NaCMC at different concentrations, and their mixture
with mucin at 8% concentration : optimal model order (k*)
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2 - Results

The addition of mucin causes an increase in the elastic properties,
by the establishments of new bonds:

e Increase in model order «» better interaction between polymer and
mucin chains

e increase in the compliance values «> furher strengthening of the mu-
coadhesive interface

The polymer-mucin interaction is highest when LV-NaCMC is used

at the lowest concentration (deeper interpenetration)
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Conclusive remarks

e RHEOLO has favoured a model based approach to the investigation
of physicochemical properties relevant in DDS’s design (e.g. mu-
coadhesion)

e The proposed approach can be used to investigate phenomena in-
volving variations in the material structure revealed by changes in
the rheological behavior

e The model based approach has provided

- deep insight into the polymer-mucin interactions

- cheaper and more effective evaluation of polymer mucoadhe-
sive performances through model parameters and complexity
(rheological properties)

New application: Hemodynamics: study of blood rheological properties
for diagnostic and therapeutic purposes
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