Mathematical Aspects of Qualitative Modeling

Peter Struss Technical University of Munich and OCC'M Software GmbH

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Struss QRStruss QR - 1

Qualitative Modeling

The Goal:

• Models that make the essential and possible distinctions only

Yes!

"Small" is beautiful ...

Reflects

- Goals
 - What has to be distinguished?
- Input
 - Observations, hypotheses
 - What can be distinguished?
 - Partially specified information
 - Noise
 - Limited knowledge

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

For Example

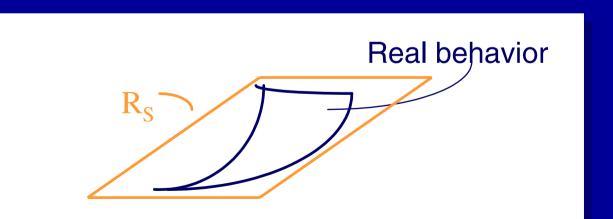
- Position of the accelarator pedal is above the idle threshold
- Increase in pressure increases negative acceleration of the wheel
- A leakage in the control pipe is not relevant to the turbo pressure Reflects
 - Goals
 - What has to be distinguished?
 - Input
 - Observations, hypotheses
 - What can be distinguished?
 - Partially specified information
 - Noise
 - Limited knowledge

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Everything is Real ...

- Position of the accelarator pedal is above the idle threshold
- Increase in pressure increases negative acceleration of the wheel
- A leakage in the control pipe is not relevant to the turbo pressure One Possible View:
 - There is a fine-grained (real-valued) model that describes the system accurately
 - Base Representation:
 - $DOM_0(\underline{v}_S)$
 - = IR^n
 - Model abstraction:
 - $Model_0 \rightarrow Model_1$

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

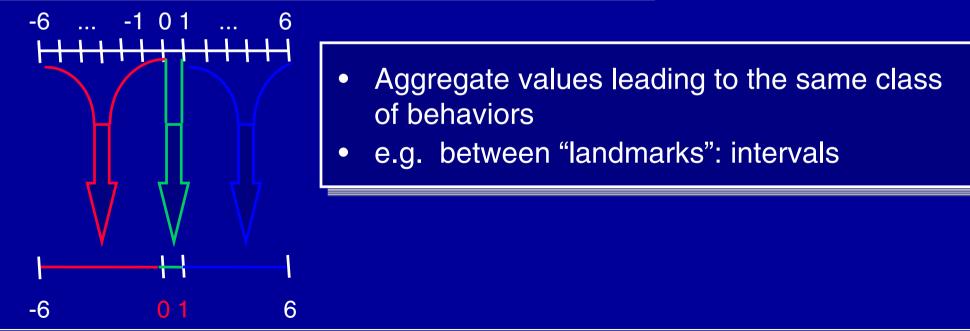

Relational Models

- Independently of the syntactical form:
- What set of states is allowed by the model?
- $R_S \subset DOM(\underline{v}_S)$

A valid model of a behavior:

R_s covers all states of the behavior

•
$$\forall s \in SIT \ Val(\underline{v}_S, \underline{v}_{S,0}, s) \Rightarrow \underline{v}_{S,0} \in R_S$$



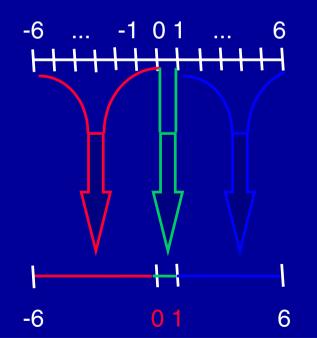
Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Domain Abstraction

- Position of the accelarator pedal is above the idle threshold
- Increase in pressure increases negative acceleration of the wheel
- A leakage in the control pipe is not relevant to the turbo pressure

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich **OCC'M** Software

Struss QRStruss QR - 6


Domain Abstraction - Formally

General:

• $\tau_i: DOM_0(v_i) \rightarrow DOM_1(v_i)$

Aggregation of values:

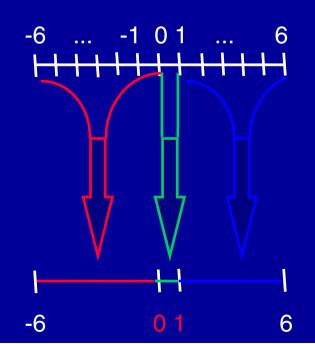
 $\tau_i: DOM_0(v_i) \rightarrow DOM_1(v_i) \subset P(DOM_0(v_i))$

(Generalized) Intervals:

 $\tau_i: IR_{\infty} \to DOM_1(v_i) \subset I(IR_{\infty})$

Real landmarks and intervals between them:

- $L \subset IR_{\infty}$
 - $\tau_i: IR_{\infty} \to DOM_1(v_i) \subset I_L(IR_{\infty})$


MLQLM

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Symbolic Landmarks

Totally or partially ordered symbols:

- $(L, \leq_L) \subset IR_{\infty}$
- I_L : {(l_i, l_j), (l_i, l_i) | $l_i, l_j \in L$ }

Interpretation over IR_{∞} :

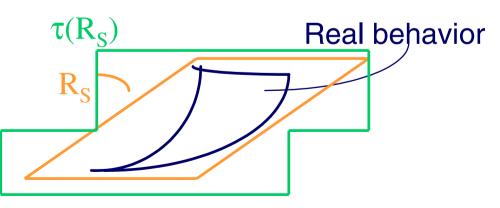
- $\iota: L \to IR_{\infty}$
- $\iota: L^2 \to I(IR_{\infty})$
- $l_i \leq_L l_j \rightarrow \iota(l_i) \leq_{IR} \iota(l_j)$

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

OCC'M Software

Struss QRStruss QR – 8

Model Abstraction


- Domain abstraction
- $\tau: DOM_0(v_S) \rightarrow DOM_1(v_S)$
- induces model abstraction
- $R_S \subset DOM(\underline{v}_S) \rightarrow \tau(R_S) \subset DOM_1(v_S)$

Theorem:

If the base relation is a valid model of a behavior

OCC'M Software

- then so is its abstraction
- Important for consistency check

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Struss QRStruss QR - 9

States and Behaviors

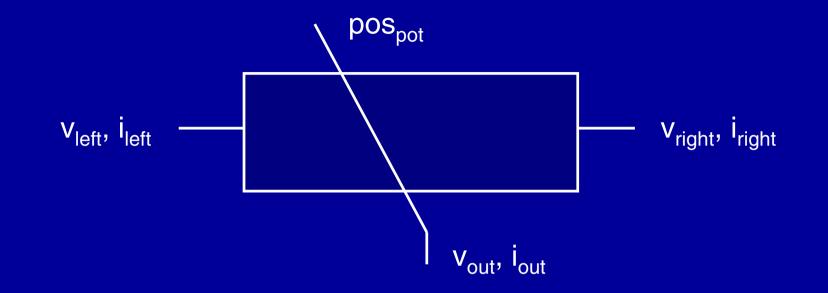
- R_S and $\tau(R_S)$ describe the set of states
- What about behaviors?
- sequences of states
- Usually
- the constraints on state transitions are general
- i.e. apply to all models
- Reflecting continuity, integration, derivative relations

Theorem

- For two models model₁, model₂
- STATES(model₁) = STATES(model₂) iff BEHAVIORS(model₁) = BEHAVIORS(model₂)

Transformation of Model Descriptions

- But:
- we do not want to compute R_s and $\tau(R_s)$

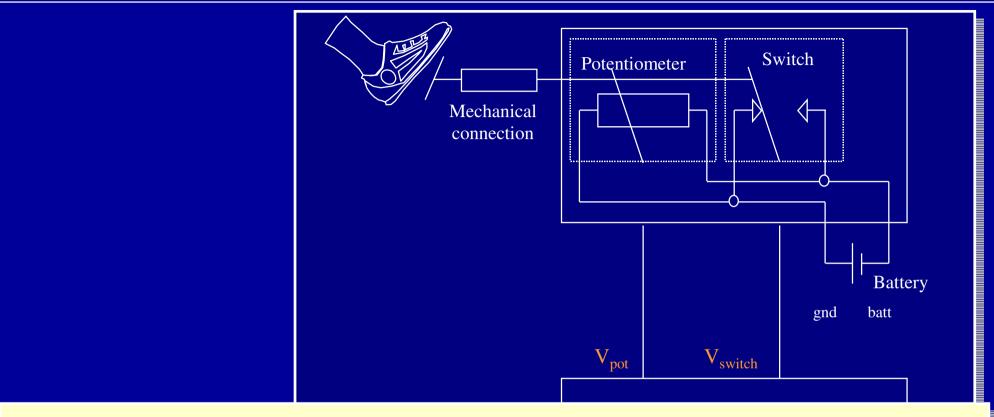

Instead

- Transform e.g.
- (Ordinary differential) equations into model descriptions over $\tau(DOM(\underline{v}_S))$ and solve them
- How are these solutions related to $\tau(R_S)$?
- Soundness and completeness?

A Simple Exercise: Qualitative Model of a Potentiometer

Library

Potentiometer

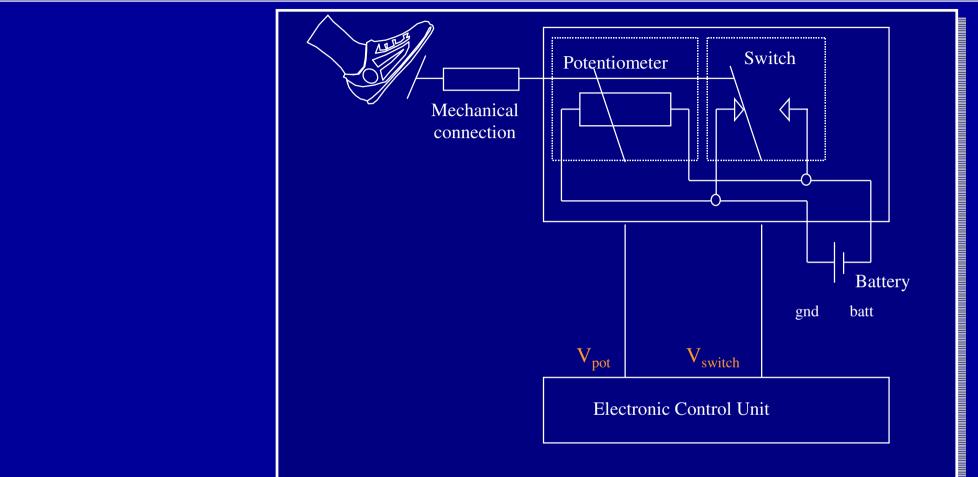

pospot	iout	V _{left}	Vright	Vout	
0	0	{gnd, betw, batt}	{gnd, betw, batt}	$= v_{left}$	
pos _{p.max}	0	{gnd, betw, batt}	{gnd, betw, batt}	$= v_{right}$	
$(0, \text{pos}_{p,\text{max}})$	0	gnd	gnd	gnd	
$(0, \text{pos}_{p,\text{max}})$	0	batt	{betw, batt}	betw	
$(0, \text{pos}_{\text{p,max}})$	0	batt	batt	batt	

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

OCC'M Software García / SachenbacherStruss QR – 12

The Pedal Position Sensor

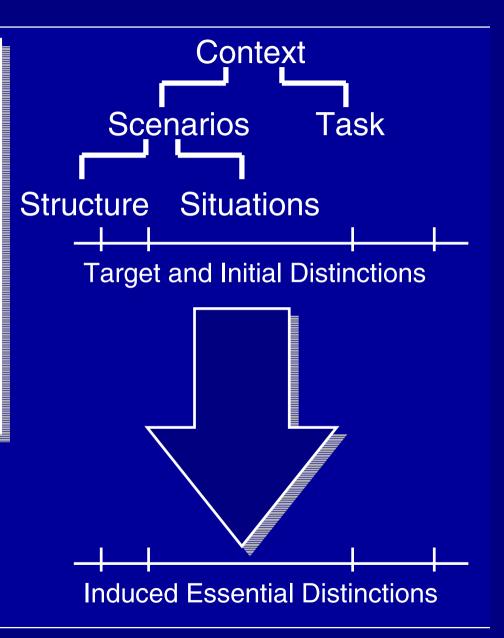
Library


• Switch

pos _{switch}	state	V _{left}	Vright	Vswitch
$[0, pos_{s.med}]$	left	{gnd, betw, batt}	{gnd, betw, batt}	$=V_{left}$
$(pos_{s.med}, pos_{s.max}]$	right	{gnd, betw, batt}	{gnd, betw, batt}	$=$ v l_{eft}

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

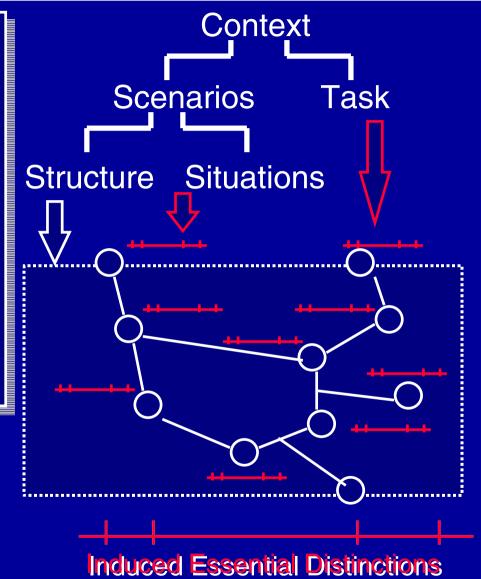
The Problem



Generate a (qualitative) model that is appropriate for a particular device and task

Elements of the Context

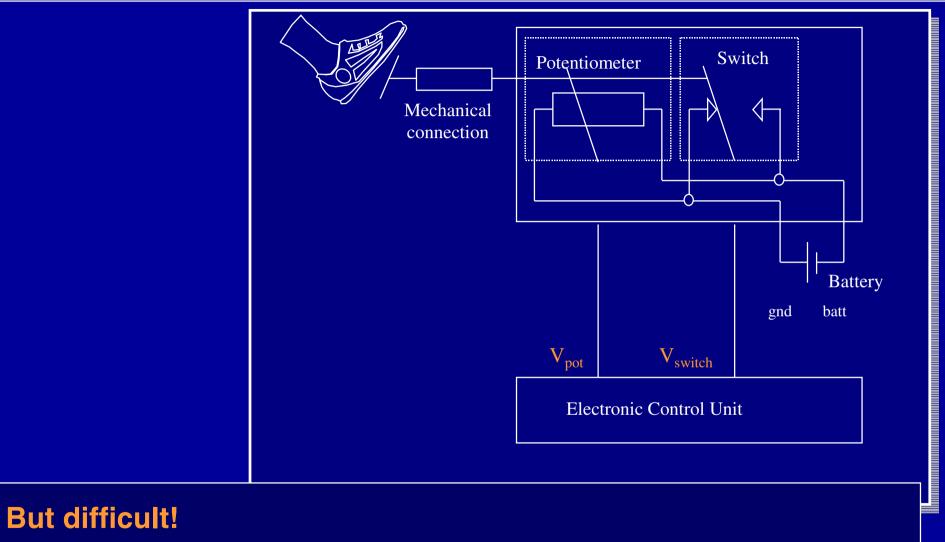
- Task and situation:
 - requirements for distinctions on certain variables
 - possible distinctions
- Structure and behavior models: induce distinctions on other variables
- Required: a "base model"


Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

OCC'M Software García / SachenbacherStruss QR – 15

Model-based Qualitative Model Abstraction

Task and situation:


- requirements for distinctions on certain variables
- possible distinctions
- Structure and behavior models: induce distinctions on other variables
- Required: a "base model"

OCC'M Software García / SachenbacherStruss QR – 16

"Small" is Beautiful

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich