
Cognitive Modeling for Computer Games

John Funge
Microcomputer Research Lab

Intel Corporation

www.cs.toronto.edu/ funge

Abstract

One of the major challenges associated with making
compelling virtual worlds for computer games is popu-
lating them with intelligent characters. Most of today’s
characters are mindless automatons that follow an in-
flexible set of simple rules. Unfortunately, when we
start to make characters try and think for themselves
we can run into difficulties. For example, if we are
not extra careful about how we represent a character’s
knowledge we can deprive them of “common sense” as
they reason about the effects of their actions. Another
important issue we consider is how to provide a con-
venient mechanism to allow the programmer to strike
a balance between lots of fast pre-programmed behav-
ior and more expensive run-time decision making. In
addition, by using interval arithmetic to integrate sens-
ing into our underlying theoretical framework, we en-
able characters to generate plans of action even when
they find themselves in highly complex, dynamic vir-
tual worlds. All these ideas are made concrete in the
form of a cognitive modeling language (CML) we have
developed. CML is used to express what a character
knows, how that knowledge is acquired, and how it can
be used to plan actions. It has enabled us to quickly,
and easily, create various “intelligent” characters that
inhabit a variety of different virtual worlds.

Introduction
Characters that are autonomous contribute heavily to the
success of games like Doom. Unfortunately, gamers soon
tire of the predictable computer controlled characters. They
prefer the thrill of going head to head with fellow human
avatars in “Deathmatch” versions. Computer characters
with the wits to better match their human adversaries would
therefore be in high-demand. In response, our work explores
cognitive modelingfor computer games. Cognitive models
govern what a character knows, how that knowledge is ac-
quired, and how it can be used to plan actions. Cognitive
models are applicable to directing the new breed of highly
autonomous, quasi-intelligent characters that are beginning
to find use in game production. Moreover, cognitive models
can play subsidiary roles in controlling cinematography and
lighting.

We decompose cognitive modeling into two related sub-
tasks: domain knowledge specificationandcontrol specifi-

cation. One of the key benefits of such a separation is that
code is easier to maintain. Once we have the correct knowl-
edge about the world setup, we need only modify the con-
trol part when we want to generate new behavior. Charac-
ters can combine knowledge in ways that we did not think
of in advance and they can use their knowledge to work out
their own strategies for obtaining their goals. The approach
is reminiscent of the classic AI formula that tries to promote
modularity of design by separating out knowledge from con-
trol.

control + knowledge = behavior

Domain knowledge specification, or just domain spec-
ification, involves giving a character knowledge about its
world and how it can change. Control specification involves
directing the character to try and behave in a certain way
within its world. Like other advanced modeling tasks, both
of these steps can be fraught with difficulty unless devel-
opers are given the right tools for the job. To this end, we
developed a cognitive modeling language, CML.

CML provides an intuitive way to give characters, and
also cameras and lights, knowledge about their domain in
terms of actions, their preconditions and their effects. We
can also endow characters with a certain amount of“common
sense” within their domain and we can even leave out tire-
some details from their instructions. The missing details are
automatically filled in at run-time by an integral reasoning
engine which decides what the character must do to achieve
the specified behavior.

Traditional AI style planning certainly falls under the
broad umbrella of this description, but the distinguishing
features of CML are the intuitive way domain knowledge
can be specified and how it affords a game developer famil-
iar control structures to focus the power of the reasoning en-
gine. This forms an important middle ground between reg-
ular logic programming (as represented by Prolog) and tra-
ditional imperative programming (as typified by C). More-
over, this middle ground turns out to be crucial for cognitive
modeling in computer games. In rapid-prototyping, reduc-
ing development time is, within reason, more important than
fast execution. The game designer may therefore choose to
rely more heavily on the reasoning engine. When run-time
efficiency is also important our approach lends itself to an
incremental style of development. We can quickly create a

working prototype that can be gradually made more efficient
by including more and more heuristic control information to
narrow the focus of the reasoning engine.

Cognitive Modeling
The situation calculusis a well known formalism for de-
scribing changing worlds and provides the theoretical under-
pinnings for CML. Fortunately, from the CML user’s point
of view, the underlying theory iscompletely hidden. In
particular, a user isnot required to type in axioms written
in first-order mathematical logic. Instead, CML provides
an intuitive interaction language that resembles natural lan-
guage, but has a clear and precise mapping to the underlying
formalism.

Domain Specification
Domain specification involves giving a character knowledge
about how its world changes. The underlying idea is that the
world is conceived of consisting of a sequence ofsituations.
Each situation is a “snapshot” of the state of the world. Any
property of the world that can change over time is known
as afluentand a fluent’s value can change by performing
actions.

The possibility of performing an action is determined by
user specifiedpreconditions. For instance, in a simple maze
example it is possible to move in some compass directiond,
provided the cell we are moving to is free, and has not been
visited before.

action move(d) possible whenc = adjacent(position,d) &&
Free(c) && ! member(c,visited);

Specifying the effect of an action is just as straightfor-
ward. Returning to the maze example, we can use CML to
specify the initial position as the start point of the maze, and
the effect of moving to a new cell to update the position flu-
ent accordingly.

initially position = start;
occurrencemove(d) results in position = adjacent(pold,d)

whenposition = pold;

Unfortunately, specifying the effects of actions turns out
to be complicated by the problem of how to specify what
does not change. If characters are going to start thinking for
themselves they need to possess the common sense notion
that unless told otherwise they should assume things stay the
same. This is known as theframe problemand we adopt the
approach to dealing with it described in (Reiter 1991). That
is, for each fluent we automatically collect up all the action
effects specified by the user and make the assumption that
these are the only effects. For each fluent this assumption is
represented internally by what is known as asuccessor-state
axiom.

Control specification
With what we have described so far it would be possible
to do regular planning. Unfortunately, it often turns out to
be unrealistic to expect a character to generate a plan from
scratch. Even for simple problems the search space is sim-
ply too large. What is needed is a way to narrow the search

space. This is where complex actions come in (Levesqueet
al. 1997). A complex action is an action that is made up of
other actions using familiar programming constructs such as
“while” loops and less familiar ones like “nondeterministic
choice”. Complex actions are implemented in CML and al-
low the user to write what amounts to sketch plans. These
sketch plans allow the user to give the character an outline
of what to do. At one extreme a highly detailed outline will
heavily restrict the character’s behavior and at the other ex-
treme the user can choose to just provide high-level goals.
At run-time the character has the flexibility to decide on
how to best fill in any missing details and need not be over-
whelmed by having to solve the whole problem on its own.
Until more progress is made on planning from scratch our
approach seems like a reasonable compromise between pre-
programmed behavior and full run-time decision making.

Many examples of using complex actions to construct
sketch plans for animated agents are given in (Funge 1998a).
Numerous other examples, written in a closely related lan-
guage called Golog (alGOL in LOGic), can be found at
(Cognitive Robotics Group 1998). As a quick simple ex-
ample of a very loose sketch plan, the following CML code
can be used to find a path through a maze:

while (position != exit)
pick(d) move(d);

Just like a while-loop in a regular programming language,
this while loop expands out into a sequence of statements.
The difference is that in CML it can, potentially, expand out
into all possible sequences of actions. In the case of a maze,
this means that it will expand out into all possible paths
through the maze. The integral runtime reasoning engine
can then automatically search for a particular path through
the maze. We call this style of programming nondeterminis-
tic. Nothing random is occurring, we just have the ability to
cover multiple possibilities in one statement.

Sensing
In any reasonably complicated virtual world sensing is go-
ing to play a key role. This is especially so in computer
games as the person playing the game interacts with the vir-
tual world in a way that is highly unpredictable. The solu-
tion is to periodically sense aspects of the world and then
re-plan. If we want the character itself to anticipate its need
to intermittently re-plan then we need a way of representing
the character’s ignorance/knowledge about certain aspects
of its world. Then when the character anticipates that it will
no longer know something important it can plan to sense and
re-plan.

Representing ignorance/knowledge within the situation
calculus turns out to be a hard problem. Although there are
some theoretical results, as far as we are aware, no previ-
ous approaches to sensing within the situation calculus are
amenable to easy implementation. To address this problem
we introduced the notion of interval-valued epistemic (IVE)
fluents (Funge 1999) The idea is to use intervals to represent
a character’s level of ignorance/knowledge about aspects of
its world. For example, if we have a fluenttemp then the
interval〈10, 40〉 can be used to represent that the character

knows the temperature is between 10 and 40 degrees. Nar-
rower intervals correspond to more knowledge and wider in-
tervals to greater ignorance. We can write effect axioms to
state how the intervals grow and shrink with sensing actions
and with time. In this way a character can anticipate that af-
ter a certain time period, or event, it will be ignorant of some
aspect of its world, and it can plan to sense and re-plan.

Case Studies
So far we have created three complete fully-fledged work-
ing examples, the details of which can be found in (Funge
1998a).

1. A camera controller (described below).

2. A territorial T-Rex that can herd some uncooperative and
more agile Raptors toward a narrow passageway and out
of its territory. To generate this behavior using CML all
we had to tell the T-Rex were two things: First, that the
Raptors are afraid of it and will run in the opposite di-
rection if it gets to close; and second that every time it
re-plans its goal is to get as many Raptors heading in the
right direction as possible. From this simple knowledge
base the T-Rex is able to behave like a good sheepdog and
automatically plan motion paths that get “in and around”
the Raptors to frighten them in the right direction. More-
over, it automatically chooses paths that avoid deflecting
Raptors already heading in the right direction.

3. An intelligent merman that can use its wits to hide be-
hind obstacles to avoid being eaten by a larger and faster
shark. This example employs a sophisticated underwater
physics simulation (see (Tu & Terzopoulos 1994)) and,
unlike the previous two examples, does not currently run
in real-time.

The last two examples were created in collaboration with
Tu and Terzopoulos by using their low-level reactive behav-
ior system to provide a higher level API to interface with
CML . The camera example, however, did not require the
reactive behavior system and so in this paper we shall use
it as a complete working example of how CML is used in
practice.

Cinematography
At first, it might seem strange to be advocating building a
cognitive model for a camera. We soon realize, however,
that it is the knowledge of the cameraperson, and the direc-
tor, who control the camera that we want to capture with our
cognitive model.

We shall begin by introducing the fluentTalking(A, B)
that is true whenever characterA is talking to character
B. Domain knowledge can now be given to characters in-
tuitively, in terms of actions, their preconditions and their
effects. In [He96], the authors discuss one particular for-
mula for filming two characters talking to one another. The
idea is to flip between “external” shots of each character,
focusing on the character doing the talking. In this paper
our focus is on high-level camera control but for complete-
ness we give some low-level rules that cover the geometry
of camera placement. To make these low-level rules easy to

follow we include simplified versions of those we used in
our actual implementation.

We introduce an actionexternal that takes two arguments,
charactersA andB, and places the camera so thatA is seen
over the shoulder ofB. A precondition for this action states
that we only want the camera pointing atA, if we are already
filming A, and it has not got boring yet; or we not filmingA,
andA is talking, and we have stayed with the current shot
long enough.

action external(A,B) possible when(!Boring && Filming(A))
|| (Talking(A,B) && ! Filming(A) && ! TooFast;

Similarly, one effect of the external camera action is that
the camera is looking at characterA.

occurrenceexternal(A,B) results in lookAt = p when
scene(A(upperbody,centroid)) = p;

Another effect is that the camera is located above B’s shoul-
der:

occurrenceexternal(A,B) results in lookFrom = p + k2 ∗ up
+k3 ∗ normalize(p − c) when scene(B(shoulder,centroid))
= p && scene(A(upperbody,centroid)) = c;

wherek2 andk3 are some suitable constants.
We refer the reader to (Funge 1998a) for the remainder of

the domain specification (about 10 simple auxiliary defini-
tions) . Now we want to write a controller for the camera
to film a conversation. To break up the monotony, we want
our camera to ensure that shots are interspersed with reac-
tion shots of the other character. In (He, Cohen, & Salesin
1996), the formula is encoded as a finite state machine. Be-
cause we separate out the domain knowledge from tehcon-
trol information we can use complex actions to capture the
same formula with far more elegance and brevity. In partic-
ular, assuming the background domain knowledge described
above, the controller that will move the camera to look at the
character doing the talking, with occasional respites to focus
on the other character’s reactions, is as follows.

setCount;
while (0 < silenceCount) {

pick(A,B) external(A,B);
tick;

}
Figure 1 shows some frames from an animation called

“Cinemasauras”. The animation shows how our approach
has been applied to camera control. The action consists of a
T-Rex and a Raptor having a “conversation”.

Future Work
Real-time Decision Making
To enhance the applicability of our approach to computer
games would entail adopting a more comprehensive strat-
egy for real-time decision making. In (Funge & Tu 1997;
Funge 1998b) CML was combined with the reactive behav-
ior system described in (Tu & Terzopoulos 1994). The re-
sult was a system that tried to come up with an “intelligent”
course of action, but could always fall back on a reactive sys-
tem if that were not possible. In particular, a time constraint

Figure 1: Cinematography.

can cause the reasoning system to fail. To introduce a hard
real-time constraint we envisage moving to an architecture
in which the reasoning engine acts as a server that runs as
a separate process. Requests can be submitted to the server
and if it responds in time the results can be incorporated into
the characters behavior. While the character is waiting for a
response, or if a response is not forthcoming a simple reac-
tive system will take-over.

Learning
Learning is a large and complex field that could impact our
work in numerous ways. For example, instead of having
the user enter them manually, it should be possible to learn
some of the domain knowledge action-effect axioms. An-
other possibility is to use the reasoning engine to generate
a training set for learning a faster production-rule style con-
troller. This could even take place “on-line” so that the char-
acter constantly gets faster and smarter as time goes on. The
behavior capture work described in (van Lent & Laird 1998)
and the neural network learning described in (Grzeszczuk,
Terzopoulos, & Hinton 1998) give us reason to believe that
something along the lines of what we propose is feasible.

Applications
Perhaps one of the most interesting and challenging possible
future applications would be to create intelligent characters
that can assist the game player. For example an intelligent
wingman in a flight simulator game. Other challenges could

be to create intelligent characters that do not try too hard to
defeat their human adversaries, but instead try to “lose well”.

Conclusion
In order to create compelling intelligent characters for com-
puter games it is helpful to promote a firm understanding
of some of the underlying knowledge representation issues
that can arise. This understanding is likely to come through
examples that relate to the kind of problems faced by game
programmers in their own projects. Therefore we have de-
veloped a number of applications of CML to specifying the
behavior of the kinds of quasi-intelligent characters that will
populate the computer games of tomorrow. Some anima-
tions and selected frames from those animations are avail-
able at (Animations and Images 1998).

Acknowledgements
Thanks to Eugene Fiume for suggesting the application to
cinematography, and to Angel Studios for the dinosaur API.

References
Animations and Images, 1998.
www.cs.toronto.edu/˜funge .
Funge, J., and Tu, X. 1997. Making them behave. In
SIGGRAPH 97 Visual Proceedings. ACM SIGGRAPH.
Funge, J. 1998a.Hardcore AI for Computer Games and
Animation. Siggraph 98, Orlando, FL: Course Notes #10.
Funge, J. 1998b.Making Them Behave: Cognitive Models
for Computer Animation. Department of Computer Sci-
ence, University of Toronto, Toronto, Canada: PhD thesis.
Funge, J. 1999. Representing knowledge within the situa-
tion calculus using interval-valued epitemic fluents.Jour-
nal of Reliable Computing5(1).
The Cognitive Robotics Group, 1998.
www.cs.toronto.edu/˜cogrobo .
Contains copies of numerous relevant papers.
Grzeszczuk, R.; Terzopoulos, D.; and Hinton, G. 1998.
Neuroanimator: Fast neural network emulation and control
of physics-based models. In Proceedings of SIGGRAPH
’98 (Orlando, FL). ACM SIGGRAPH.
He, L.; Cohen, M. F.; and Salesin, D. 1996. The virtual cin-
ematographer: A paradigm for automatic real-time camera
control and directing. InProceedings of SIGGRAPH ’96
(New Orleans, LA). ACM SIGGRAPH.
Levesque, H.; Reiter, R.; Lesp´erance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming language
for dynamic domains.Journal of Logic Programming31.
Reiter, R. 1991. The frame problem in the situation calcu-
lus. In Lifschitz, V., ed.,Artificial Intelligence and Mathe-
matical Theory of Computation. Academic Press.
Tu, X., and Terzopoulos, D. 1994. Artificial fishes:
Physics, locomotion, perception, behavior. InProceedings
of SIGGRAPH ’94 (Orlando, Florida). ACM SIGGRAPH.
van Lent, M., and Laird, J. 1998. Behavior capture: Motion
is only skin deep. InIn Lifelike Computer Characters 98.

