

It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot

John E. Laird

University of Michigan

1101 Beal Ave.
Ann Arbor, Michigan 48109-2110

laird@umich.edu

Abstract
The complexity of AI characters in computer games is
continually improving; however they still fall short of
human players. In this paper we describe an AI bot for the
game Quake II that tries to incorporate some of those
missing capabilities. This bot is distinguished by its ability
to build its own map as it explores a level, use a wide
variety of tactics based on its internal map, and in some
cases, anticipate its opponent's actions. The bot was
developed in the Soar architecture and uses dynamical
hierarchical task decomposition to organize it knowledge
and actions. It also uses internal prediction based on its own
tactics to anticipate its opponent's actions. This paper
describes the implementation, its strengths and weaknesses,
and discusses future research.

AI bots in first-person shooter (FPS) computer games have
continually gotten more complex and more intelligent. The
original bots in FPSs were completely oblivious to their
environment and used fixed scripts to attack the human
player. Current bots, such as those found in Quake III or
Unreal Tournament, are beginning to approximate the
game play of humans. They collect health and other
powerups, and they have a variety of tactics such as circle-
strafing and popping in and out of doorways. What, if
anything, are they missing? Although they can react to
different situations and opponents, as of yet they do not
anticipate or adapt to the behavior of other players. The
following quote from Dennis (Thresh) Fong, the Michael
Jordon of Quake, gives some insight into the importance of
anticipation (Newsweek, November 1999):

Say my opponent walks into a room. I'm visualizing
him walking in, picking up the weapon. On his way
out, I'm waiting at the doorway and I fire a rocket
two seconds before he even rounds the corner. A lot
of people rely strictly on aim, but everybody has
their bad aim days. So even if I'm having a bad day,
I can still pull out a win. That's why I've never lost a
tournament.

A related example is when you see an enemy running down
a hallway far away. Because the enemy has only the blaster
(an inferior weapon), you realize he is probably looking for
the hyperblaster (a much better weapon), which is just
around the corner from you. You decide to go get the

hyperblaster first and directly confront the enemy,
expecting that your better firepower will win the day.

Each of these tactics can be added manually for specific
locations in a specific level of a game. We could add tests
that if the bot is ever in a specific location on a specific
level and hears a specific sound (the sound of the enemy
picking up a weapon), then it should set an ambush by a
specific door. Unfortunately, this approach requires a
tremendous effort to create a large number of tactics that
work only for the specific level.

Instead of trying to encode behaviors for each of these
specific situations, a better idea is to attempt to add a
general capability for anticipating an opponent's actions.
From an AI perspective, anticipation is a form of planning;
a topic researchers in AI have studied for 40 years. The
power of chess and checkers programs comes directly from
their ability to anticipate their opponent's responses to their
own moves. Anticipation for bots in first-person shooters
(FPS) has a few twists that differentiate it from the standard
AI techniques such as alpha-beta search.
1. A player in a FPS does not have access to the complete

game state as does a player in chess or checkers.
2. The choices for action of a player in a FPS unfold

continuously as time passes. At any time, the player
can move, turn, shoot, jump, or just stay in one place.
There is a breadth of possible actions that make search
intractable and requires more knowledge about which
actions might be useful.

This paper describes the Soar Quakebot and how
anticipation was added to it. The original Soar Quakebot
(Laird & van Lent, 1999) was designed to be a human-like
expert at playing Quake deathmatches. It did not
incorporate any planning, and was designed to be a reactive
system that integrated large bodies of tactics via
hierarchical goals based on the techniques we used to
successfully model the behavior of military pilots (Jones et
al. 1999; Tambe et al. 1995). However, as we developed
the Quakebot, we found that in order to improve the
behavior of the bot, we were forced to add more and more
specialized tactics. In addition, when we presented our
work to game developers, they invariably asked, "Does it
anticipate the human players actions? If it did, that would
be really cool." Given that the underlying goal of all of our
research is to be "really cool" (which may be hard to
believe given that we are nerdy AI researchers), we finally

got around to looking at adding anticipation, which is the
subject of this paper.

The remainder of the paper is as follows. First, we
present the design of the Soar Quakebot sans anticipation.
Next we describe how anticipation was added to the
Quakebot and present examples of its behavior. To our
surprise, it was straightforward to add anticipation to the
Soar Quakebot, and it also provided a general approach to
encoding many of the tactics that originally required
specialized knowledge. Finally, we describe future work to
extend the work on anticipation with the main emphasis on
learning opponent-specific models of behavior.

The Soar Quakebot
The Soar Quakebot plays the death match version of Quake
II. In a death match, players exist in a "level", which
contains hallways and rooms. The players can move
through the level, picking up objects, called powerups, and
firing weapons. The object of the game is to be the first to
kill the other players a specified number of times. Each
time a player is shot or is near an explosion, its health
decreases. When a player's health reaches zero, the player
dies. A dead player is then "spawned" at one of a set of
spawning sites within the level. Powerups, which include
weapons, health, armor, and ammo, are distributed
throughout the level in static locations. When a powerup is
picked up, a replacement will automatically regenerate in
30 seconds. Weapons vary according to their range,
accuracy, spread of damage, time to reload, type of ammo
used, and amount of damage they do. For example, the
shotgun does damage in a wide area if used close to an
enemy, but does no damage if used from a distance. In
contrast, the railgun kills in a single shot at any distance,
but requires very precise aim because it has no spread.

The Soar Quakebot controls a single player in the game.
We have attempted to make the perceptual information and
motor commands available to the bot similar to those that a
human has playing the game. For example, a bot can see
only unobstructed objects in their view cone and they can
hear only nearby sounds. One issue is that bots cannot
sense the walls in a level as coherent objects because they
consist of many polygons that are displayed to the user to
give the appearance of solid walls, open doorways, etc. To
navigate a level, the Quakebot explores the level and

deliberately builds up a map based on range data to walls.
The Quakebot uses this internally generated map to know
where walls, rooms, hallways, and doors are when it is
running through a level. To make the internal map
construction code easier to implement, the Soar Quakebot
can map only two-dimensional levels that are made up of
rectangular rooms connected by rectangular hallways. Once
a map is built, it can be saved for later use when the Soar
Quakebot replays the same level.

As shown in Figure 1, the Soar Quakebot reasoning code
currently runs on a separate computer and interacts with the
game using the Quake II interface DLL (dynamically
loaded library). C code, which implements the Soar
Quakebot's sensors and motor actions, is embedded in the
DLL along with our inter-computer communication code,
called Socket I/O. Socket I/O provides a platform
independent mechanism for communicating all perception
and action information between the Quakebot and the game
and has also been used to interface Soar to Descent 3. The
Quakebot uses Soar (Laird et al., 1987) as its underlying AI
engine. All the knowledge for playing the game, including
constructing and using the internal map, is encoded in Soar
rules. The underlying Quake II game engine updates the
world and calls the DLL ten times a second (the graphics
engine updates much more often than the game engine). On
each of these cycles, all changes to the bots sensors are
updated and any requested motor actions are initiated.

In this configuration, Soar runs asynchronously to Quake
II and executes its basic decision cycle anywhere from 30-
50 times a second, allowing it to take multiple reasoning
steps for each change in its sensors. Soar runs as fast as
possible, consuming 5-10% of the processing of a 400MHz
Pentium II running Windows NT.

Soar is an engine for making and executing decisions -
selecting the next thing the system should do and then
doing it. In Soar, the basic objects of decision are call
operators. An operator can consists of primitive actions to
be performed in the world (such as move, turn, or shoot),
internal actions (remember the last position of the enemy),
or more abstract goals to be achieved (such as attack, get-
item, go-through-door) that in turn must be dynamically
decomposed into simpler operators that ultimately bottom
out in operators with primitive actions. These primitive
actions are implemented by if-then rules.

 Interface
DLL

Quake II

Soar

Socket

I/O

Figure 1: Interface between Quake II and the Soar Quakebot
Quakebot
Rules
Perception
Action
Socket
I/O

 The basic operation of Soar is to continually propose,
select, and apply operators to the current state via rules that
match against the current state. When an abstract operator
is selected that cannot be applied immediately, such as get-
item, then a substate is generated. For this substate,
additional operators are then proposed selected and applied
until the original operator is completed, or the world
changes in such a way as to lead to the selection of another
operator. Figure 2 shows a typical trace of operators being
selected. Indentation indicates that a substate has been
created and that operators are then selected to pursue the
operator that led to the substate.

10: O: O11 (collect-powerups)
11: ==>S: S14
12: O: O12 (get-item)
13: ==>S: S16
14: O: O19 (goto-item)
15: ==>S: S17
16: O: O23 (face-item)
17: ==>S: S20
18: ==>S: S21
22: O: O25 (wait)
23: O: O24 (wait)
24: O: O28 (move-to-item)
25: ==>S: S23
26: ==>S: S24
27: O: O29 (wait)
28: O: O30 (wait)
29: O: O31 (wait)

Figure 2: Trace of operator selections

The trace starts with the selection of the collect-
powerups operator (O11). This operator immediately
becomes a goal, as it is not possible to apply it
immediately. In the resulting substate (S14), many rules
can fire (not shown) to propose getting specific items that
the bot needs. Additional rules fire (also not shown) that
create preferences for the operators based on the worth of
the item, its distance, etc. At decision 12, one instance is
selected, which in this case is to get the supershotgun in the
current room. Get-item is further decomposed into
suboperators go-through-door, when the item is not in the
current room, and goto-item, when the item is in the current
room. The supershotgun is in the room, so goto-item is
selected, which is then implemented in a substate by face-
item and move-to-item. The proposal for face-item tests
that if the bot is not facing the item being picked up, then
the bot should turn toward it. Facing an item is not
instantaneous, and decisions 17-23 show how the bot just
waits until the turning is complete. Once the bot is facing
the item, the proposal for move-to-item fires, and move-to-
item is selected, which also takes time to complete.

Figure 3 shows the underlying organization of operators
that gave rise to the trace in Figure 2. This is just a small
part of the overall hierarchy, but includes some of the top-
level-operators, such as wander, explore, attack, and those
that are used in the substate that can arise to apply the
collect-powerups operator.

S

wh
the
ope
lon
aga
wo
info
per
rep
suc
cha
dec
cou
stat
situ
obs
con

S
app
4. T
to
inte
1.

2.

k e
attac
F

oar does n
ich operato
 knowledg
rators is e
g-term pro
inst the s
rking mem
rmation

ception, e
resenting t
cessfully m
nge worki
larative st
nter that
ement to
ation, poss
olete. Inst
tinually tes
oar's und
lies operat
he follow

a level of
rested in a
Sensing: U
in the t
perceptua
routines i
a human
unobstruc
to a pr
movemen
range. Th
as the ite
speed, etc
Elaboratio
evaluation

em
wander

igure 3: Partial operator hierarchy

ot use any pre-defined ordering to
rs to select and apply. As mentio
e in Soar to propose, select,
ncoded as if-then rules. The rules
cedural knowledge, and they a
tates stored in Soar's global

ory. Working memory holds all
about the current situation,
laborations of perception, data
he map of the game, etc. All
atch working memory fire in

ng memory by either adding
ructures. There is no underlyin

inexorably moves execution
the next, independent of chan
ibly performing an action that h

ead, each action is selected by
t the current situation.
erlying processing cycle that s
ors consists of five phases as show
ing paragraphs describe the proce
 detail that can be skipped for
nticipation.

pdating the available perceptual
op state. The creation and u
l information is done automatic
n the Quake DLL that simulate the
. For example, the Quakebot
ted objects in a forward facing vie
e-set range. The Quakebot c
t, explosions, and other sounds t
e Quakebot can also sense its own
ms it has, its health, its position,
.
n, operator proposal, and
:

m

tem

em s
xplore
collect-powerups
get-ite
go-through-door
goto-i

 face-it
 move-to-it
 top-moving
notice-item-missing

 determine
ned earlier,
and apply
 are Soar's

re matched
declarative

of the bot's
including

 structures
 rules that
parallel to

or deleting
g program
from one

ges to the
as become
 rules that

elects and
n in Figure
ssing cycle
those only

information
pdating of
ally by C
 sensing of
can "see"
w cone out
an "hear"
o a pre-set
 state, such
orientation,

 operator

a) Elaboration: Based on the contents of working
memory, rules may fire to monotonically elaborate
the sensory information with task-specific data.
For example, rules might test current health level
and then create a new structure in working
memory that classifies it as critical, low, medium,
or high. Additional rules can test for the presence
of these structures.

b) Operator Proposal: Based on the contents of
working memory, rules may fire to propose
operators to be selected for the current states (the
origin of states besides the top state is described
below). The action of these rules is to create
special working memory elements that signal Soar
that the operator should be considered for
selection for a specific state. You can think of
these rules as testing the pre-conditions of the
operators and proposing the operators when it is
legal to apply them to the current situation.

c) Operator Evaluation: Additional rules can test
which operators have been proposed, and then
create preferences for them. There is a fixed set of
preferences that can specify partial orders among
operator, that some operators should not be
selected, that it doesn't matter which operator is
selected, and so on. The rules that create the
preferences can test other aspects of the state for
which the operator is proposed, making it easy to
encode heuristic selection knowledge.

All of these three types of rules fire in parallel - there
is no separate phase for elaboration or proposal or
evaluation - the ordering of rule firing is completely
data driven. Because of data dependencies, elaboration
rule firings will usually lead to proposal and then
evaluation rule firings. In addition, these rules retract
their actions when their conditions no longer match
working memory so that only elaborations, proposals,
and evaluations relevant to the current situation are
maintained in working memory. Soar stays in this
phase until quiescence is reached and no more rules
fire or retract. This usually happens in two to three
waves of parallel rule firing.

3. Operator Selection: Based on the created preferences,
a fixed decision procedure picks the best operator for

each state. Once an operator is selected, it is installed
as the current operator for the current state in working
memory. In many cases, the result of the decision
procedure will be to maintain the current operator,
especially when it takes time for an operator to apply.
If the preferences are inconsistent (one operator is
better than another and the second is also better than
the first), incomplete (the preferences do not
distinguish between the available operators or there are
no operators proposed), or do not lead to the selection
of a new operator, then an impasse is reached,
signifying that more knowledge is required. Whatever
the cause of the impasse, Soar automatically creates a
new substate in which the goal of the problem solving
is to resolve the impasse. As problem solving
progresses, an impasse may arise in the substate,
leading to a stack of states. Soar continually fires rules
and attempts to select operators for every state in the
stack during each loop through the decision cycle.
When a different operator selection can be made for an
impassed state (through the creation of results in the
substate or because through changes in perception that
in turn lead to changes in which operators are
proposed), then the impasse is resolved, the substate
(and all of its substates) is removed from working
memory and problem solving continues.

4. Operator Application: Once an operator is selected,
rules that match against it can fire, changing working
memory, possibly including commands to the motor
system. Because the actions are implemented as rules,
Soar directly supports conditional operators as well as
operators whose actions unfold over time based on
feedback from the perceptual system. Rules that apply
operators do not retract their actions when they no
longer match, but create persistent data structures in
working memory that are removed only when they are
explicitly removed by another operator application rule
or become disconnected from the state because of
some other change. The operator application phase
continues until no additional rules fire.

5. Output: Following application, all newly created
output commands, such as turn, move, shoot, are sent
to the motor system.

Figure 4: The Soar Deci

Sensing

Elaboration

Proposal

Evaluation

Operator
Application

Output

Operator
Selection
sion Cycle

 The Soar Quakebot is designed based on the principles
developed early on for controlling robots using Soar (Laird
and Rosenbloom 1990) and then extended in our research
on simulating military pilots in large scale distributed
simulations (Jones, et al. 1999). For more details on the
structure of the Soar Quakebot than provided below, see
the Soar Tutorial (Laird 2000).
 Below is a list of the main tactics the Quakebot uses.
These are implemented across the top-level operators.
Excluding the anticipation capability, the current Soar
Quakebot has 100 operators, of which 20 have substates,
and 715 rules.
• Collect-powerups

• Pick up items based on their spawn locations
• Pick up weapons based on their quality
• Abandon collecting items that are missing
• Remember when missing items will respawn
• Use shortest paths to get objects
• Get health and armor if low on them
• Pickup up other good weapons/ammo if close by

• Attack
• Use circle-strafe
• Move to best distance for current weapon

• Retreat
• Run away if low on health or outmatched by the

enemy's weapon
• Chase

• Go after enemy based on sound of running
• Go where enemy was last seen

• Ambush
• Wait in a corner of a room that can’t be seen by

enemy coming into the room
• Hunt

• Go to nearest spawn room after killing enemy
• Go to rooms enemy is often seen in

Finally, the Soar Quakebot is has many numeric parameters
that determine the details of behavior, such as how long
does it hide for an ambush, how far should it try to get for a
certain weapon. We have grouped some of these
parameters together to create different styles of Quakebots
that vary in the tactics in terms of aggressiveness, reaction
time, aiming skill, and overall intelligence (where certain
tactics are disabled or enabled).

Anticipation
Our approach to anticipation is to have the Quakebot create
an internal representation that mimics what it thinks the
enemy's internal state is, based on its own observation of
the enemy. It then predicts the enemy's behavior by using
its own knowledge of tactics to select what it would do if it
were the enemy. Using simple rules to internally simulate

external actions in the environment, the bot forward
projects until it gets a prediction that is useful, or there is
too much uncertainty as to what the enemy would do next.
The prediction is used to set an ambush or deny the enemy
an important weapon or health item.

In adding a general capability like anticipation to the
Soar Quakebot, one of the goals is that it really is general.
There are many different ways it should be general. It
should be independent of the level the bot is in. Moreover
it should be as independent as possible of the specific
tactics the bot already has. That does not mean it can't
make use of them when doing anticipation, but it does
mean that we should be able to add anticipation with as few
as changes to the existing bot as possible. This makes the
addition easier, and also gives us some confidence that the
anticipation capability can be used for other bots that play
other games. Therefore, as part of the discussion of
anticipation, we will report on the number and character of
the rules needed to be added, modified, or deleted, and
whether these rules were task-dependent (test or modify
working memory elements specific to Quake) or domain-
independent.

Anticipation requires adding knowledge about when it
should be used, how it is done, and how the results are used
to change behavior. These map on to the following:
1. Proposal and selection knowledge for a predict-enemy

operator.
2. Application knowledge for applying the predict-enemy

operator.
3. Proposal knowledge for selecting operators that will

use the predictions to set ambushes.

Proposal and Selection
When should the Soar Quakebot attempt to predict the
enemy's behavior? It should not be doing it continually,
because of the computational overhead and the interference
with other activities. It shouldn't do it when it has
absolutely no idea what the state of the other bot is and it
also shouldn't do it when any prediction will be ignored
because the bot already knows what to do. The Soar
Quakebot attempts to anticipate an enemy when it senses
the enemy (so it knows some things about the enemy's
state), and the enemy is not facing the bot and is far away
(otherwise the bot should be attacking). When the predict-
enemy operator is proposed, a rule fires that prefers it to all
other top-state tactical operators (such as wander, collect-
powerups, and retreat).

Figure 5 shows an example where the Quakebot (lower
left) sees its enemy (upper center) heading north, on its way
to get a desirable object (the heart). This corresponds to the
situation described above and causes the Quakebot to
propose and select the predict-enemy operator.

Figure 5: Initial situation in which the predict-enemy
operator is selected.

One important aspect of Soar is that if the enemy turns
toward the Quakebot instead of continuing north, the
predict-enemy operator will be retracted so that the
Quakebot can select the attack operator and not be caught
napping.

The proposal and selection rules are not specific to a
given level, nor are they even specific to the game of
Quake. However, they do restrict anticipation so that it is
only used in limited cases. Later we will discuss the
possibility of an even more general approach that extends
the use of anticipation. Overall, there are 4 rules used to
propose and select the predict-enemy operator.

Application
Once the decision has been made to predict the enemy's
behavior (via the selection of the predict-enemy operator),
the next stage is to do it. Our approach is straightforward.
The Quakebot creates an internal representation of the
enemy's state based on its perception of the enemy and then
uses its own knowledge of what it would do in the enemy's
state to predict the enemy's actions. Thus, we will assume
that the enemy's goals and tactics are essentially the same
as the Quakebot's. This is the same approach that is taken
in AI programs that play most games, such as chess or
checkers. However, in this case the actions that are taken
are not moving a piece on a board but are the movement of
a Quakebot through its world using perception and motor
commands.

The first step is to create the internal representation of
the enemy's situation so that the Quakebot's tactics can
apply to them. This is easy to do in Soar because Soar
already organizes all of its information about the current
situation in its state structure in working memory. All that
needs to be done is that when the predict-enemy operator is
selected and a substate is created, that state needs to be

transformed into a state that looks like the top-level state of
the enemy. This is done using an operator (create-enemy-
state) that creates structures on the substate that
corresponds to what the Quakebot thinks the enemy is
sensing and has in its working memory, such as the map.
The internal representation of the enemy's state is only
approximate because the Quakebot can sense only some of
it and must hypothesize what the enemy would be sensing.
Surprisingly, just knowing the enemy's position, health,
armor level, and current weapon are sufficient to make a
plausible prediction of high-level behavior of players such
as the Soar Quakebot. Sixteen rules are involved in creating
the enemy state, nine that are specific to the Quakebot data
structures and seven that are general. Three existing rules
had to be modified to inhibit them from firing during the
initialization of the prediction, so that the internal
representation for the enemy's state did not include sensory
information from the Quakebot itself.

Figure 6: The Quakebot creates internal representation of
enemy's situation.

The second step involves letting the Quakebot's tactics
work on its representation of the enemy's state. In the
internal simulation of the example in the figures, rules
would propose the collect-powerups operator in order to
get the heart powerup. The Quakebot knows that the
powerup is in the room to the north from prior explorations
and attributes that knowledge to the enemy. Once collect-
powerups is selected, a substate will be created, and then
get-item, which in turn will have a substate, followed by
go-through-door. If this was no an internal simulation, go-
through-door would lead to a substate in which goto-door
is selected. However, for tactical purposes, the Quakebot
does not need to simulate to that level of detail. To avoid
further operator decompositions, a rule is added that tests
that a prediction is being done and that the go-through-door
operator is selected. Its actions are to directly change the
internal representation so that the Quakebot (thinking it is
the enemy), thinks it has moved into the hall. Similar rules
are added to short-circuit other operator decompositions.
Additional rules are needed to update related data
structures that would be changed via new perceptions
(frame axioms), such as that health would go up if a health

item was picked up. One additional rule is added to keep
track of how far the enemy would travel during these
actions. This information is used later to decide when to
terminate the prediction. Altogether, nine rules are added to
simulate the effects of abstract operators. All of these rules
are specific to the operators used in Quake, but
independent of the details of the specific level. However, if
we ever wanted to add the ability of the Quakebot to plan
its own behavior, these rules would be necessary. Figure 7
shows the updated internal representation of the Quakebot.

Figure 7: The Quakebot projects that enemy will move into
hallway in pursuit of powerup.

The selection and application of operators continues until
the Quakebot thinks that the enemy would have picked up
the powerup. At that point, the enemy is predicted to
change top-level operators and choose wander. Because
there is only one exit, wander would have the enemy leave
the room, going back into the hallway and finally back into
the room where the enemy started (and where the Quakebot
is).

Figure 8: The Quakebot projects that enemy will return to
the current room.

Predicting
Throughout this process, the Quakebot is predicting the
behavior of the enemy. That prediction is only useful if the
Quakebot can get into a tactical position that takes
advantage of the prediction. Up until the enemy returns to

the room, the prediction does not help the Quakebot.
However, if the Quakebot hides by the hallway, it can get
off a shot into the back or side of the enemy as it comes
into the room. Thus, following the prediction, the Quakebot
can set an ambush.

What are the general conditions for using the prediction:
that is, what advantage might you get from knowing what
the enemy is going to do? For Quake II, we've concentrated
on the case where the bot can predict that it can get to a
room before the enemy, and either set an ambush or deny
the enemy some important powerup. This is done by
continually comparing the distance that the enemy would
take to get to its predicted location to the distance it would
take for the Quakebot to get to the same location. For the
current system, the number of rooms entered is used a
rough distance measure. In the example above, the
Quakebot predicts that it will take the enemy four moves to
get back to the current room, and it knows it is already in
that room. Why doesn't the Quakebot stop predicting when
the enemy would be coming down the hallway, which is
three moves for it vs. one for the bot? The reason is that the
Quakebot knows that it cannot set an ambush in a hallway,
and thus waits until the predicted location is a room.

A prediction can also terminate when the Quakebot
(thinking as the enemy) comes across a situation in which
there are multiple possible actions for which it does not
have a strong preference. This would have arisen in the
previous example if there had be three doors in the north
most room - with only two doors, the prediction would
have gone forward because of the preference to avoid
going back where you came from. When this type of
uncertainty arises, the Quakebot abandons the prediction. A
total of five rules are used to detect that a relevant
prediction has been created. These are specific to the
approaches of using distance or uncertainty to decide when
to terminate the prediction.

One possible extension to our approach is to have the bot
maintain explicit estimates or probabilities of the different
alternatives and search forward, predicting all possible
outcomes and their probabilities. There are two reasons this
is not done. First, the Quakebot does not need the
probability estimates in order to make its own decision.
Second, the added time to do such an extensive prediction
could make the prediction meaningless as the enemy will
have already moved through the environment by the time
the prediction completes.

Using the Prediction
In the Soar Quakebot, three operators make use of the
predictions created by predict-enemy: hunt, ambush, and
deny-powerups. When a prediction is created that the
enemy will be in another room that the Quakebot can get to
sooner, hunt is proposed and it sends the bot to the correct
room. Once in the same room that the enemy is predicted to
be in, ambush takes over and moves the bot to an open
location next to the door that the enemy is predicted to
come through. In general, the bot will try to shoot the

enemy in the back or side as it enters the room (shown
below in the figure). But if the bot has the rocket launcher,
it will take a pre-emptive shot when it hears the enemy
getting close (a la Dennis Fong, who was quoted earlier).
Both of these ambush strategies have time limits associated
with them so that the bot waits only a bit more time than it
thinks the enemy will take to get to the room in which the
bot has set the ambush. Deny-powerups is selected when
the enemy is predicted to attempt to pick up a powerup that
the bot can get first.

Figure 9: The Quakebot executes an ambush based on the
results of its prediction.

Learning predictions
Inherent to Soar is learning mechanism, called chunking,
that automatically creates rules summarizes the processing
within impasses as rules. Chunking creates rules that test
the aspects of the situation that were relevant during the
generation of a result. The action of the chunk creates the
result. Chunking can speed up problem solving by
compiling complex reasoning into a single rule that
bypasses the problem solving in the future. Chunking is not
used with the standard Quakebot because there is little
internal reasoning to compile out; however, with
anticipation, there can be a long chain of internal reasoning
that takes significant time (a few seconds) for the Quakebot
to generate. In that case chunking is perfect for learning
rules that eliminate the need for the Quakebot to regenerate
the same prediction. The learned rules are specific to the
exact rooms, but that is appropriate because the predictions
are only valid under special circumstances.

Below is an English version of a rule learned by the
Quakebot.

If predict-enemy is the current operator and
 there is an enemy with health 100,
 using the blaster, in room #11 and
 I am distance 2 from room #3
then
 predict that the enemy will go to room #3
 through door #7.

Compiled into the prediction is that the bot can get to room
#3 before the enemy.

Once this rule is learned, the bot no longer needs to go
through any internal modeling and will immediately predict
the enemy's behavior when it sees the enemy under the
tested situations. The impact is that as the bot plays the
game, it will build up a set of prediction rules, and it will
make fast predictions in more situations. In fact, it might
turn out that originally when it does prediction, the time to
do the prediction sometimes gets in the way of setting an
ambush or denying a powerup, but with experience that
time cost will be eliminated. One possibility to create more
challenging opponents is to pre-train Quakebots so that
they already have an extensive set of prediction rules.

Limitations and Extensions

In this section we discuss various limitations and possible
extensions to the anticipation capabilities of the Soar
Quakebot.

Generality of Anticipation Capability
Our goal was to create a general anticipation capability that
could be used by a given Quakebot for different game
levels. In that we've succeeded. None of the knowledge
added to support anticipation needs to be customized for a
specific level. The power comes from reusing the bot's
tactics and knowledge of the structure of a level (which it
gains by mapping the level on its own).

A more general goal is for the anticipation capability to be
useful by other bots in completely different games. Many
parts of the capability are completely independent of
Quake. However, some are not. Below is a recap of the
different parts of the anticipation capability and the types
of game-specific or game-independent knowledge they
require.

• Deciding when to predict an enemy's behavior.

General across games but restrict to a set of situations.
• Predicting the enemy's behavior.

• Creating the internal representation of the enemy's
state.
Specific to the structure of the perceptual data and
important internal state features.

• Proposing and selecting operators for the enemy.
General: uses existing bot knowledge.

• Simulating the execution of operators.
Specific to the operators, but part of planning
knowledge would be available if bot planned some
of its own actions.

• Deciding that a prediction is useful.
Specific to the situations that the bot expects to be
useful: places the bot can get to first.

• Using the prediction to select other tactics/operators.
Specific to those tactics.

The minor weaknesses are in terms of adding knowledge
about the perceptual data and the abstract execution of

operators. They are usually easy to add and in no way
restrict the use of anticipation.

The more troubling issue arises from the need for
knowledge that determines when the enemy's behavior
should be predicted and how will the predictions be useful.
This restricts anticipation to being used only under
situations that the designer has deemed worthwhile. This is
important because anticipation could be used as the
generator for many of the tactics that would otherwise be
coded by hand. For example, during a fight the bot could
predict that an injured enemy would attempt to pick up a
nearby health. The bot could use this to either get the health
first, or direct its weapon toward the health, making it more
likely that the enemy will be hit. Another example is where
the bot uses its knowledge about the expected path of the
enemy to avoid the enemy when the bot is low on health or
has inferior weapons. Similarly, when the bot kills an
enemy, it could predict that the enemy will be recreated at a
spawn location with only a mediocre weapon. It could use
that prediction to move toward the closest spawn point in
hope of engaging the enemy before it gets a better weapon.
This second tactic is currently hard coded in the Soar
Quakebot, but could arise from the appropriate use of
anticipation.

The obvious approach would be to always predict the
enemy and then always attempt to plan what actions the bot
could perform that would get the bot to a preferred state
(such as the enemy being dead, or having full health and a
good weapon). This has the potential of even further
simplifying the current structure of the bot by having the
planning mechanism generate plans for getting powerups,
attacking the enemy, etc. Many of the current tactics could
be discarded. However, this approach comes with
significant costs. There is the cost of planning and the fact
that the planning would interfere with the bot's ability to
react quickly to its environment - although chunking would
gradually decrease with practice. Unfortunately, forward
planning in these environments in intractable. As
mentioned earlier, the bot has a huge space of possible
moves it can take at each moment, with the most obvious
culprit being which direction it should face. The more
subtle cost is the cost of developing the planning
knowledge that is used to generate the tactics, which in
practice can be very difficult. An alternative is to be more
selective, using some knowledge about the goals the bot is
trying to achieve and means-ends problem solving to
constrain the search.

Recursive Anticipation
The Quakebot anticipates what the enemy does next. An
obvious extension is for the Quakebot to anticipate the
enemy anticipating its own actions. This recursion can go
on to arbitrary depths, but the usefulness of it is probably
limited to only a few levels. Recursive anticipation could
lead the Quakebot to actions that are deceptive and
confusing to the enemy. Although this might be useful in
principle and for non-real-time computer games, such as

real-time strategy games where there is more global sensing
and a less frantic pace, it might be of only limited use for
the Quakebot. The reason is that the bot must sense the
enemy in order to have some idea of what the enemy's state
is, and the enemy must sense the bot in order to have some
idea of what the bot's state is. In Quake, there are only rare
cases where the bot and the enemy can sense each other
and one will not start attacking the other. However, we plan
to do some limited investigation of recursive anticipation to
find out how useful it is.

Enemy-Specific Anticipation
The current anticipation scheme assumes that the enemy
uses exactly the same tactics as the Quakebot. However,
there may be cases where you know beforehand that an
opponent has different tactics, such as preferring different
weapons. By incorporating more accurate models of an
enemies weapon preferences, the Quakebot can decide to
ambush an enemy in completely different (and more
appropriate) rooms.

This is easily handled by adding rules that encode the
given tactics or weapon preferences. These rules must test
the name of the opponent so that they apply only for the
reasoning about the appropriate enemy. Additional rules
may be required that reject the bot's tactics that conflict
with the enemy's tactics, or it may be necessary to add
conditions to the rules that encode those conflicting tactics
so that they do not match when the enemy is being
simulated.

Adaptive Anticipation
Unfortunately, an enemy's tactics and preference are rarely
known beforehand. It is only through battle that one learns
about the enemy. Thus, an important area of future research
will be building models of enemy tactics that can be used to
predict enemys' behavior. Our expected approach will be to
learn how the enemy's tactics differ from the Quakebot's
own knowledge. We will examine at a variety of learning
approaches. The simplest is to pre-enumerate different
"styles" or groups of tactics and explicitly gather data on
the enemy in order to build up a better internal model. For
example, noticing which weapons are used most often
should give some idea as to those preferences. This
approach is simple to implement, has low computational
overhead, but has limitations in that the bot can only learn
about the set of styles that have already been enumerated.
Although this limitation is of concern to us as researchers,
it may be completely sufficient for computer games.
Similar approaches have already been successfully used in
football games to track and adjust to the play-calling
behavior of human players (Whatley, D. 1999).
 A more general, but more difficult approach is to have
the bot modify its knowledge each time the enemy does
something unpredictable. The bot would continually try to
build up its knowledge so that it can successfully predict
the enemy. One final complexity is that the enemy will not
be static, but will be adapting to the bot's tactics, and even

to the bot's use of anticipation and it adaptation to the
enemy. For example, after the first time an enemy is
ambushed after getting the powerup from a dead-end room,
it will probably anticipate the ambush and modify its own
behavior. Our research into these issues will build on
previous research we've done on learning from experience
with dynamic environments (Laird, J. E., Pearson, D. J, and
Huffman, S. B. 1997).

Summary and Perspective

The goal of our research is to create synthetic characters
for computer games with human-level intelligence.
Incorporating anticipation is a critical part of human-level
intelligence and we have demonstrated how it can be added
to an existing computer bot.
 From our perspective, this has been a success because it
was added with only minimal changes to our existing bot, it
added significantly new capabilities and behavior, and it
points the way to many additional research issues.
 From an AI perspective, our work is a bit of a rehash of
research on opponent modeling, planning, and reactive
planning. Its contribution to AI is that it pursues these
topics within the context of a complex, dynamic, and
competitive environment, where planning and execution
efficiency are of utmost importance as well as ease of
implementation.
 From a computer games perspective, our work points the
way for where commercial bots could be in a few years, not
just "thinking" on their own, but predicting what you are
thinking.

Acknowledgments

The author is indebted to the many students who have
worked on the Soar/Games project, most notably Michael
van Lent, Steve Houchard, Joe Hartford, and Kurt
Steinkraus.

References

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J.,
Kenny, P.G., and Koss, F.V. (1999) Automated Intelligent
Pilots for Combat Flight Simulation, AI Magazine, 20(1),
27-42.

Keighley, G. (1999) The Final Hours of Quake III Arena:
Behind Closed Doors at id Software, GameSpot,
http://www.gamespot.com/features/btg-q3/index.html.

Laird, J. E. (2000) The Soar Tutorial, Part V. The Soar
Quakebot, http://ftp.eecs.umich.edu/~soar/tutorial.html.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987),
Soar: An architecture for general intelligence. Artificial
Intelligence, 33(3), 1-64.

Laird, J. E., Pearson, D. J., and Huffman, S. B., (1997)
Knowledge-directed Adaptation in Multi-level Agents.
Journal of Intelligent Information Systems. 9, 261-275.

Laird, J. E. and Rosenbloom, P. S. (1990) Integrating
Execution, Planning, and Learning in Soar for External
Environments. In Proceedings of National Conference of
Artificial Intelligence, Boston, MA, 1022-1029.

Laird, J. E. and van Lent, M. (1999) Developing an
Artificial Intelligence Engine. In Proceedings of the Game
Developers' Conference, San Jose, CA, 577-588.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird,
J. E., Rosenbloom, P. S., and Schwamb, K. (1995),
Intelligent Agents for Interactive Simulation Environments,
AI Magazine, 16 (1), 15-39.

Whatley, D. (1999) Designing Around Pitfalls of Game AI.
In Proceedings of the Game Developers' Conference, San
Jose, CA, 991-999.

	Adding Anticipation to a Quakebot
	
	The Soar Quakebot
	Anticipation
	Proposal and Selection
	Application
	Predicting
	Using the Prediction
	Learning predictions

	Limitations and Extensions
	Generality of Anticipation Capability
	Recursive Anticipation

