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Abstract 
The complexity of AI characters in computer games is 
continually improving; however they still fall short of 
human players. In this paper we describe an AI bot for the 
game Quake II that tries to incorporate some of those 
missing capabilities. This bot is distinguished by its ability 
to build its own map as it explores a level, use a wide 
variety of tactics based on its internal map, and in some 
cases, anticipate its opponent's actions. The bot was 
developed in the Soar architecture and uses dynamical 
hierarchical task decomposition to organize it knowledge 
and actions. It also uses internal prediction based on its own 
tactics to anticipate its opponent's actions. This paper 
describes the implementation, its strengths and weaknesses, 
and discusses future research. 

 

AI bots in first-person shooter (FPS) computer games have 
continually gotten more complex and more intelligent. The 
original bots in FPSs were completely oblivious to their 
environment and used fixed scripts to attack the human 
player. Current bots, such as those found in Quake III or 
Unreal Tournament, are beginning to approximate the 
game play of humans. They collect health and other 
powerups, and they have a variety of tactics such as circle-
strafing and popping in and out of doorways. What, if 
anything, are they missing? Although they can react to 
different situations and opponents, as of yet they do not 
anticipate or adapt to the behavior of other players. The 
following quote from Dennis (Thresh) Fong, the Michael 
Jordon of Quake, gives some insight into the importance of 
anticipation (Newsweek, November 1999): 

Say my opponent walks into a room. I'm visualizing 
him walking in, picking up the weapon. On his way 
out, I'm waiting at the doorway and I fire a rocket 
two seconds before he even rounds the corner. A lot 
of people rely strictly on aim, but everybody has 
their bad aim days. So even if I'm having a bad day, 
I can still pull out a win. That's why I've never lost a 
tournament. 

A related example is when you see an enemy running down 
a hallway far away. Because the enemy has only the blaster 
(an inferior weapon), you realize he is probably looking for 
the hyperblaster (a much better weapon), which is just 
around the corner from you. You decide to go get the 

hyperblaster first and directly confront the enemy, 
expecting that your better firepower will win the day.  

Each of these tactics can be added manually for specific 
locations in a specific level of a game. We could add tests 
that if the bot is ever in a specific location on a specific 
level and hears a specific sound (the sound of the enemy 
picking up a weapon), then it should set an ambush by a 
specific door. Unfortunately, this approach requires a 
tremendous effort to create a large number of tactics that 
work only for the specific level.  

Instead of trying to encode behaviors for each of these 
specific situations, a better idea is to attempt to add a 
general capability for anticipating an opponent's actions. 
From an AI perspective, anticipation is a form of planning; 
a topic researchers in AI have studied for 40 years. The 
power of chess and checkers programs comes directly from 
their ability to anticipate their opponent's responses to their 
own moves. Anticipation for bots in first-person shooters 
(FPS) has a few twists that differentiate it from the standard 
AI techniques such as alpha-beta search. 
1. A player in a FPS does not have access to the complete 

game state as does a player in chess or checkers.  
2. The choices for action of a player in a FPS unfold 

continuously as time passes. At any time, the player 
can move, turn, shoot, jump, or just stay in one place. 
There is a breadth of possible actions that make search 
intractable and requires more knowledge about which 
actions might be useful. 

This paper describes the Soar Quakebot and how 
anticipation was added to it. The original Soar Quakebot 
(Laird & van Lent, 1999) was designed to be a human-like 
expert at playing Quake deathmatches. It did not 
incorporate any planning, and was designed to be a reactive 
system that integrated large bodies of tactics via 
hierarchical goals based on the techniques we used to 
successfully model the behavior of military pilots (Jones et 
al. 1999; Tambe et al. 1995). However, as we developed 
the Quakebot, we found that in order to improve the 
behavior of the bot, we were forced to add more and more 
specialized tactics. In addition, when we presented our 
work to game developers, they invariably asked, "Does it 
anticipate the human players actions? If it did, that would 
be really cool." Given that the underlying goal of all of our 
research is to be "really cool" (which may be hard to 
believe given that we are nerdy AI researchers), we finally 



 

 

got around to looking at adding anticipation, which is the 
subject of this paper.  

The remainder of the paper is as follows. First, we 
present the design of the Soar Quakebot sans anticipation. 
Next we describe how anticipation was added to the 
Quakebot and present examples of its behavior. To our 
surprise, it was straightforward to add anticipation to the 
Soar Quakebot, and it also provided a general approach to 
encoding many of the tactics that originally required 
specialized knowledge. Finally, we describe future work to 
extend the work on anticipation with the main emphasis on 
learning opponent-specific models of behavior. 

The Soar Quakebot 
The Soar Quakebot plays the death match version of Quake 
II. In a death match, players exist in a "level", which 
contains hallways and rooms. The players can move 
through the level, picking up objects, called powerups, and 
firing weapons. The object of the game is to be the first to 
kill the other players a specified number of times. Each 
time a player is shot or is near an explosion, its health 
decreases. When a player's health reaches zero, the player 
dies. A dead player is then "spawned" at one of a set of 
spawning sites within the level. Powerups, which include 
weapons, health, armor, and ammo, are distributed 
throughout the level in static locations. When a powerup is 
picked up, a replacement will automatically regenerate in 
30 seconds. Weapons vary according to their range, 
accuracy, spread of damage, time to reload, type of ammo 
used, and amount of damage they do. For example, the 
shotgun does damage in a wide area if used close to an 
enemy, but does no damage if used from a distance. In 
contrast, the railgun kills in a single shot at any distance, 
but requires very precise aim because it has no spread.  

The Soar Quakebot controls a single player in the game. 
We have attempted to make the perceptual information and 
motor commands available to the bot similar to those that a 
human has playing the game. For example, a bot can see 
only unobstructed objects in their view cone and they can 
hear only nearby sounds. One issue is that bots cannot 
sense the walls in a level as coherent objects because they 
consist of many polygons that are displayed to the user to 
give the appearance of solid walls, open doorways, etc. To 
navigate a level, the Quakebot explores the level and 

deliberately builds up a map based on range data to walls. 
The Quakebot uses this internally generated map to know 
where walls, rooms, hallways, and doors are when it is 
running through a level. To make the internal map 
construction code easier to implement, the Soar Quakebot 
can map only two-dimensional levels that are made up of 
rectangular rooms connected by rectangular hallways. Once 
a map is built, it can be saved for later use when the Soar 
Quakebot replays the same level. 

As shown in Figure 1, the Soar Quakebot reasoning code 
currently runs on a separate computer and interacts with the 
game using the Quake II interface DLL (dynamically 
loaded library). C code, which implements the Soar 
Quakebot's sensors and motor actions, is embedded in the 
DLL along with our inter-computer communication code, 
called Socket I/O. Socket I/O provides a platform 
independent mechanism for communicating all perception 
and action information between the Quakebot and the game 
and has also been used to interface Soar to Descent 3. The 
Quakebot uses Soar (Laird et al., 1987) as its underlying AI 
engine. All the knowledge for playing the game, including 
constructing and using the internal map, is encoded in Soar 
rules. The underlying Quake II game engine updates the 
world and calls the DLL ten times a second (the graphics 
engine updates much more often than the game engine). On 
each of these cycles, all changes to the bots sensors are 
updated and any requested motor actions are initiated. 

In this configuration, Soar runs asynchronously to Quake 
II and executes its basic decision cycle anywhere from 30-
50 times a second, allowing it to take multiple reasoning 
steps for each change in its sensors. Soar runs as fast as 
possible, consuming 5-10% of the processing of a 400MHz 
Pentium II running Windows NT. 

Soar is an engine for making and executing decisions - 
selecting the next thing the system should do and then 
doing it. In Soar, the basic objects of decision are call 
operators. An operator can consists of primitive actions to 
be performed in the world (such as move, turn, or shoot), 
internal actions (remember the last position of the enemy), 
or more abstract goals to be achieved (such as attack, get-
item, go-through-door) that in turn must be dynamically 
decomposed into simpler operators that ultimately bottom 
out in operators with primitive actions. These primitive 
actions are implemented by if-then rules. 
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   The basic operation of Soar is to continually propose, 
select, and apply operators to the current state via rules that 
match against the current state. When an abstract operator 
is selected that cannot be applied immediately, such as get-
item, then a substate is generated. For this substate, 
additional operators are then proposed selected and applied 
until the original operator is completed, or the world 
changes in such a way as to lead to the selection of another 
operator. Figure 2 shows a typical trace of operators being 
selected. Indentation indicates that a substate has been 
created and that operators are then selected to pursue the 
operator that led to the substate. 
 
10:    O: O11 (collect-powerups) 
11:    ==>S: S14  
12:       O: O12 (get-item) 
13:       ==>S: S16  
14:          O: O19 (goto-item) 
15:          ==>S: S17  
16:             O: O23 (face-item) 
17:             ==>S: S20  
18:                ==>S: S21  
22:                   O: O25 (wait) 
23:                   O: O24 (wait) 
24:             O: O28 (move-to-item) 
25:             ==>S: S23  
26:                ==>S: S24  
27:                   O: O29 (wait) 
28:                   O: O30 (wait) 
29:                   O: O31 (wait) 

Figure 2: Trace of operator selections 
 

The trace starts with the selection of the collect-
powerups operator (O11). This operator immediately 
becomes a goal, as it is not possible to apply it 
immediately. In the resulting substate (S14), many rules 
can fire (not shown) to propose getting specific items that 
the bot needs. Additional rules fire (also not shown) that 
create preferences for the operators based on the worth of 
the item, its distance, etc. At decision 12, one instance is 
selected, which in this case is to get the supershotgun in the 
current room. Get-item is further decomposed into 
suboperators go-through-door, when the item is not in the 
current room, and goto-item, when the item is in the current 
room. The supershotgun is in the room, so goto-item is 
selected, which is then implemented in a substate by face-
item and move-to-item. The proposal for face-item tests 
that if the bot is not facing the item being picked up, then 
the bot should turn toward it. Facing an item is not 
instantaneous, and decisions 17-23 show how the bot just 
waits until the turning is complete. Once the bot is facing 
the item, the proposal for move-to-item fires, and move-to-
item is selected, which also takes time to complete.  

Figure 3 shows the underlying organization of operators 
that gave rise to the trace in Figure 2. This is just a small 
part of the overall hierarchy, but includes some of the top-
level-operators, such as wander, explore, attack, and those 
that are used in the substate that can arise to apply the 
collect-powerups operator. 
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a) Elaboration: Based on the contents of working 
memory, rules may fire to monotonically elaborate 
the sensory information with task-specific data. 
For example, rules might test current health level 
and then create a new structure in working 
memory that classifies it as critical, low, medium, 
or high. Additional rules can test for the presence 
of these structures.  

b) Operator Proposal: Based on the contents of 
working memory, rules may fire to propose 
operators to be selected for the current states (the 
origin of states besides the top state is described 
below). The action of these rules is to create 
special working memory elements that signal Soar 
that the operator should be considered for 
selection for a specific state. You can think of 
these rules as testing the pre-conditions of the 
operators and proposing the operators when it is 
legal to apply them to the current situation. 

c) Operator Evaluation: Additional rules can test 
which operators have been proposed, and then 
create preferences for them. There is a fixed set of 
preferences that can specify partial orders among 
operator, that some operators should not be 
selected, that it doesn't matter which operator is 
selected, and so on. The rules that create the 
preferences can test other aspects of the state for 
which the operator is proposed, making it easy to 
encode heuristic selection knowledge.  

All of these three types of rules fire in parallel - there 
is no separate phase for elaboration or proposal or 
evaluation - the ordering of rule firing is completely 
data driven. Because of data dependencies, elaboration 
rule firings will usually lead to proposal and then 
evaluation rule firings. In addition, these rules retract 
their actions when their conditions no longer match 
working memory so that only elaborations, proposals, 
and evaluations relevant to the current situation are 
maintained in working memory. Soar stays in this 
phase until quiescence is reached and no more rules 
fire or retract. This usually happens in two to three 
waves of parallel rule firing. 

3. Operator Selection: Based on the created preferences, 
a fixed decision procedure picks the best operator for 

each state. Once an operator is selected, it is installed 
as the current operator for the current state in working 
memory. In many cases, the result of the decision 
procedure will be to maintain the current operator, 
especially when it takes time for an operator to apply. 
If the preferences are inconsistent (one operator is 
better than another and the second is also better than 
the first), incomplete (the preferences do not 
distinguish between the available operators or there are 
no operators proposed), or do not lead to the selection 
of a new operator, then an impasse is reached, 
signifying that more knowledge is required. Whatever 
the cause of the impasse, Soar automatically creates a 
new substate in which the goal of the problem solving 
is to resolve the impasse. As problem solving 
progresses, an impasse may arise in the substate, 
leading to a stack of states. Soar continually fires rules 
and attempts to select operators for every state in the 
stack during each loop through the decision cycle. 
When a different operator selection can be made for an 
impassed state (through the creation of results in the 
substate or because through changes in perception that 
in turn lead to changes in which operators are 
proposed), then the impasse is resolved, the substate 
(and all of its substates) is removed from working 
memory and problem solving continues. 

4. Operator Application: Once an operator is selected, 
rules that match against it can fire, changing working 
memory, possibly including commands to the motor 
system. Because the actions are implemented as rules, 
Soar directly supports conditional operators as well as 
operators whose actions unfold over time based on 
feedback from the perceptual system. Rules that apply 
operators do not retract their actions when they no 
longer match, but create persistent data structures in 
working memory that are removed only when they are 
explicitly removed by another operator application rule 
or become disconnected from the state because of 
some other change. The operator application phase 
continues until no additional rules fire. 

5. Output: Following application, all newly created 
output commands, such as turn, move, shoot, are sent 
to the motor system. 
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   The Soar Quakebot is designed based on the principles 
developed early on for controlling robots using Soar (Laird 
and Rosenbloom 1990) and then extended in our research 
on simulating military pilots in large scale distributed 
simulations (Jones, et al. 1999). For more details on the 
structure of the Soar Quakebot than provided below, see 
the Soar Tutorial (Laird 2000). 
   Below is a list of the main tactics the Quakebot uses. 
These are implemented across the top-level operators. 
Excluding the anticipation capability, the current Soar 
Quakebot has 100 operators, of which 20 have substates, 
and 715 rules.  
• Collect-powerups 

• Pick up items based on their spawn locations  
• Pick up weapons based on their quality 
• Abandon collecting items that are missing 
• Remember when missing items will respawn 
• Use shortest paths to get objects 
• Get health and armor if low on them 
• Pickup up other good weapons/ammo if close by  

• Attack  
• Use circle-strafe 
• Move to best distance for current weapon 

• Retreat 
• Run away if low on health or outmatched by the 

enemy's weapon 
• Chase  

• Go after enemy based on sound of running 
• Go where enemy was last seen 

• Ambush  
• Wait in a corner of a room that can’t be seen by 

enemy coming into the room 
• Hunt  

• Go to nearest spawn room after killing enemy 
• Go to rooms enemy is often seen in 

Finally, the Soar Quakebot is has many numeric parameters 
that determine the details of behavior, such as how long 
does it hide for an ambush, how far should it try to get for a 
certain weapon. We have grouped some of these 
parameters together to create different styles of Quakebots 
that vary in the tactics in terms of aggressiveness, reaction 
time, aiming skill, and overall intelligence (where certain 
tactics are disabled or enabled). 

Anticipation 
Our approach to anticipation is to have the Quakebot create 
an internal representation that mimics what it thinks the 
enemy's internal state is, based on its own observation of 
the enemy. It then predicts the enemy's behavior by using 
its own knowledge of tactics to select what it would do if it 
were the enemy. Using simple rules to internally simulate 

external actions in the environment, the bot forward 
projects until it gets a prediction that is useful, or there is 
too much uncertainty as to what the enemy would do next. 
The prediction is used to set an ambush or deny the enemy 
an important weapon or health item.  

In adding a general capability like anticipation to the 
Soar Quakebot, one of the goals is that it really is general. 
There are many different ways it should be general. It 
should be independent of the level the bot is in. Moreover 
it should be as independent as possible of the specific 
tactics the bot already has. That does not mean it can't 
make use of them when doing anticipation, but it does 
mean that we should be able to add anticipation with as few 
as changes to the existing bot as possible. This makes the 
addition easier, and also gives us some confidence that the 
anticipation capability can be used for other bots that play 
other games. Therefore, as part of the discussion of 
anticipation, we will report on the number and character of 
the rules needed to be added, modified, or deleted, and 
whether these rules were task-dependent (test or modify 
working memory elements specific to Quake) or domain-
independent. 

Anticipation requires adding knowledge about when it 
should be used, how it is done, and how the results are used 
to change behavior. These map on to the following: 
1. Proposal and selection knowledge for a predict-enemy 

operator.  
2. Application knowledge for applying the predict-enemy 

operator. 
3. Proposal knowledge for selecting operators that will 

use the predictions to set ambushes. 
 
Proposal and Selection  
When should the Soar Quakebot attempt to predict the 
enemy's behavior? It should not be doing it continually, 
because of the computational overhead and the interference 
with other activities. It shouldn't do it when it has 
absolutely no idea what the state of the other bot is and it 
also shouldn't do it when any prediction will be ignored 
because the bot already knows what to do. The Soar 
Quakebot attempts to anticipate an enemy when it senses 
the enemy (so it knows some things about the enemy's 
state), and the enemy is not facing the bot and is far away 
(otherwise the bot should be attacking). When the predict-
enemy operator is proposed, a rule fires that prefers it to all 
other top-state tactical operators (such as wander, collect-
powerups, and retreat).  



 

 

Figure 5 shows an example where the Quakebot (lower 
left) sees its enemy (upper center) heading north, on its way 
to get a desirable object (the heart). This corresponds to the 
situation described above and causes the Quakebot to 
propose and select the predict-enemy operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Initial situation in which the predict-enemy 
operator is selected. 
 
One important aspect of Soar is that if the enemy turns 
toward the Quakebot instead of continuing north, the 
predict-enemy operator will be retracted so that the 
Quakebot can select the attack operator and not be caught 
napping.  

The proposal and selection rules are not specific to a 
given level, nor are they even specific to the game of 
Quake. However, they do restrict anticipation so that it is 
only used in limited cases. Later we will discuss the 
possibility of an even more general approach that extends 
the use of anticipation. Overall, there are 4 rules used to 
propose and select the predict-enemy operator. 
 
Application 
Once the decision has been made to predict the enemy's 
behavior (via the selection of the predict-enemy operator), 
the next stage is to do it. Our approach is straightforward. 
The Quakebot creates an internal representation of the 
enemy's state based on its perception of the enemy and then 
uses its own knowledge of what it would do in the enemy's 
state to predict the enemy's actions. Thus, we will assume 
that the enemy's goals and tactics are essentially the same 
as the Quakebot's. This is the same approach that is taken 
in AI programs that play most games, such as chess or 
checkers. However, in this case the actions that are taken 
are not moving a piece on a board but are the movement of 
a Quakebot through its world using perception and motor 
commands.  

The first step is to create the internal representation of 
the enemy's situation so that the Quakebot's tactics can 
apply to them. This is easy to do in Soar because Soar 
already organizes all of its information about the current 
situation in its state structure in working memory. All that 
needs to be done is that when the predict-enemy operator is 
selected and a substate is created, that state needs to be 

transformed into a state that looks like the top-level state of 
the enemy. This is done using an operator (create-enemy-
state) that creates structures on the substate that 
corresponds to what the Quakebot thinks the enemy is 
sensing and has in its working memory, such as the map. 
The internal representation of the enemy's state is only 
approximate because the Quakebot can sense only some of 
it and must hypothesize what the enemy would be sensing. 
Surprisingly, just knowing the enemy's position, health, 
armor level, and current weapon are sufficient to make a 
plausible prediction of high-level behavior of players such 
as the Soar Quakebot. Sixteen rules are involved in creating 
the enemy state, nine that are specific to the Quakebot data 
structures and seven that are general. Three existing rules 
had to be modified to inhibit them from firing during the 
initialization of the prediction, so that the internal 
representation for the enemy's state did not include sensory 
information from the Quakebot itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The Quakebot creates internal representation of 
enemy's situation. 
 
The second step involves letting the Quakebot's tactics 
work on its representation of the enemy's state. In the 
internal simulation of the example in the figures, rules 
would propose the collect-powerups operator in order to 
get the heart powerup. The Quakebot knows that the 
powerup is in the room to the north from prior explorations 
and attributes that knowledge to the enemy. Once collect-
powerups is selected, a substate will be created, and then 
get-item, which in turn will have a substate, followed by 
go-through-door. If this was no an internal simulation, go-
through-door would lead to a substate in which goto-door 
is selected. However, for tactical purposes, the Quakebot 
does not need to simulate to that level of detail. To avoid 
further operator decompositions, a rule is added that tests 
that a prediction is being done and that the go-through-door 
operator is selected. Its actions are to directly change the 
internal representation so that the Quakebot (thinking it is 
the enemy), thinks it has moved into the hall. Similar rules 
are added to short-circuit other operator decompositions. 
Additional rules are needed to update related data 
structures that would be changed via new perceptions 
(frame axioms), such as that health would go up if a health 

 



 

 

item was picked up. One additional rule is added to keep 
track of how far the enemy would travel during these 
actions. This information is used later to decide when to 
terminate the prediction. Altogether, nine rules are added to 
simulate the effects of abstract operators. All of these rules 
are specific to the operators used in Quake, but 
independent of the details of the specific level. However, if 
we ever wanted to add the ability of the Quakebot to plan 
its own behavior, these rules would be necessary. Figure 7 
shows the updated internal representation of the Quakebot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: The Quakebot projects that enemy will move into 
hallway in pursuit of powerup. 
 
The selection and application of operators continues until 
the Quakebot thinks that the enemy would have picked up 
the powerup. At that point, the enemy is predicted to 
change top-level operators and choose wander. Because 
there is only one exit, wander would have the enemy leave 
the room, going back into the hallway and finally back into 
the room where the enemy started (and where the Quakebot 
is). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: The Quakebot projects that enemy will return to 
the current room. 
 
Predicting 
Throughout this process, the Quakebot is predicting the 
behavior of the enemy. That prediction is only useful if the 
Quakebot can get into a tactical position that takes 
advantage of the prediction. Up until the enemy returns to 

the room, the prediction does not help the Quakebot. 
However, if the Quakebot hides by the hallway, it can get 
off a shot into the back or side of the enemy as it comes 
into the room. Thus, following the prediction, the Quakebot 
can set an ambush. 

What are the general conditions for using the prediction: 
that is, what advantage might you get from knowing what 
the enemy is going to do? For Quake II, we've concentrated 
on the case where the bot can predict that it can get to a 
room before the enemy, and either set an ambush or deny 
the enemy some important powerup. This is done by 
continually comparing the distance that the enemy would 
take to get to its predicted location to the distance it would 
take for the Quakebot to get to the same location. For the 
current system, the number of rooms entered is used a 
rough distance measure. In the example above, the 
Quakebot predicts that it will take the enemy four moves to 
get back to the current room, and it knows it is already in 
that room. Why doesn't the Quakebot stop predicting when 
the enemy would be coming down the hallway, which is 
three moves for it vs. one for the bot? The reason is that the 
Quakebot knows that it cannot set an ambush in a hallway, 
and thus waits until the predicted location is a room. 

A prediction can also terminate when the Quakebot 
(thinking as the enemy) comes across a situation in which 
there are multiple possible actions for which it does not 
have a strong preference. This would have arisen in the 
previous example if there had be three doors in the north 
most room - with only two doors, the prediction would 
have gone forward because of the preference to avoid 
going back where you came from. When this type of 
uncertainty arises, the Quakebot abandons the prediction. A 
total of five rules are used to detect that a relevant 
prediction has been created. These are specific to the 
approaches of using distance or uncertainty to decide when 
to terminate the prediction. 

One possible extension to our approach is to have the bot 
maintain explicit estimates or probabilities of the different 
alternatives and search forward, predicting all possible 
outcomes and their probabilities. There are two reasons this 
is not done. First, the Quakebot does not need the 
probability estimates in order to make its own decision. 
Second, the added time to do such an extensive prediction 
could make the prediction meaningless as the enemy will 
have already moved through the environment by the time 
the prediction completes. 
  
Using the Prediction 
In the Soar Quakebot, three operators make use of the 
predictions created by predict-enemy: hunt, ambush, and 
deny-powerups. When a prediction is created that the 
enemy will be in another room that the Quakebot can get to 
sooner, hunt is proposed and it sends the bot to the correct 
room. Once in the same room that the enemy is predicted to 
be in, ambush takes over and moves the bot to an open 
location next to the door that the enemy is predicted to 
come through. In general, the bot will try to shoot the 

 

 



 

 

enemy in the back or side as it enters the room (shown 
below in the figure). But if the bot has the rocket launcher, 
it will take a pre-emptive shot when it hears the enemy 
getting close (a la Dennis Fong, who was quoted earlier). 
Both of these ambush strategies have time limits associated 
with them so that the bot waits only a bit more time than it 
thinks the enemy will take to get to the room in which the 
bot has set the ambush. Deny-powerups is selected when 
the enemy is predicted to attempt to pick up a powerup that 
the bot can get first.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: The Quakebot executes an ambush based on the 
results of its prediction. 
 
Learning predictions 
Inherent to Soar is learning mechanism, called chunking, 
that automatically creates rules summarizes the processing 
within impasses as rules. Chunking creates rules that test 
the aspects of the situation that were relevant during the 
generation of a result. The action of the chunk creates  the 
result. Chunking can speed up problem solving by 
compiling complex reasoning into a single rule that 
bypasses the problem solving in the future. Chunking is not 
used with the standard Quakebot because there is little 
internal reasoning to compile out; however, with 
anticipation, there can be a long chain of internal reasoning 
that takes significant time (a few seconds) for the Quakebot 
to generate. In that case chunking is perfect for learning 
rules that eliminate the need for the Quakebot to regenerate 
the same prediction. The learned rules are specific to the 
exact rooms, but that is appropriate because the predictions 
are only valid under special circumstances.  

Below is an English version of a rule learned by the 
Quakebot. 

If predict-enemy is the current operator and 
    there is an enemy with health 100,  
    using the blaster, in room #11 and 
    I am distance 2 from room #3 
then 
    predict that the enemy will go to room #3  
    through door #7. 

Compiled into the prediction is that the bot can get to room 
#3 before the enemy.  

Once this rule is learned, the bot no longer needs to go 
through any internal modeling and will immediately predict 
the enemy's behavior when it sees the enemy under the 
tested situations. The impact is that as the bot plays the 
game, it will build up a set of prediction rules, and it will 
make fast predictions in more situations. In fact, it might 
turn out that originally when it does prediction, the time to 
do the prediction sometimes gets in the way of setting an 
ambush or denying a powerup, but with experience that 
time cost will be eliminated. One possibility to create more 
challenging opponents is to pre-train Quakebots so that 
they already have an extensive set of prediction rules. 

Limitations and Extensions 
 
In this section we discuss various limitations and possible 
extensions to the anticipation capabilities of the Soar 
Quakebot. 
 
Generality of Anticipation Capability 
Our goal was to create a general anticipation capability that 
could be used by a given Quakebot for different game 
levels. In that we've succeeded. None of the knowledge 
added to support anticipation needs to be customized for a 
specific level. The power comes from reusing the bot's 
tactics and knowledge of the structure of a level (which it 
gains by mapping the level on its own). 
 
A more general goal is for the anticipation capability to be 
useful by other bots in completely different games. Many 
parts of the capability are completely independent of 
Quake. However, some are not. Below is a recap of the 
different parts of the anticipation capability and the types 
of game-specific or game-independent knowledge they 
require. 
 
• Deciding when to predict an enemy's behavior. 

General across games but restrict to a set of situations. 
• Predicting the enemy's behavior. 

• Creating the internal representation of the enemy's 
state. 
Specific to the structure of the perceptual data and 
important internal state features. 

• Proposing and selecting operators for the enemy. 
General: uses existing bot knowledge. 

• Simulating the execution of operators. 
Specific to the operators, but part of planning 
knowledge would be available if bot planned some 
of its own actions. 

• Deciding that a prediction is useful. 
Specific to the situations that the bot expects to be 
useful: places the bot can get to first. 

• Using the prediction to select other tactics/operators. 
Specific to those tactics. 

The minor weaknesses are in terms of adding knowledge 
about the perceptual data and the abstract execution of 



 

 

operators. They are usually easy to add and in no way 
restrict the use of anticipation. 

The more troubling issue arises from the need for 
knowledge that determines when the enemy's behavior 
should be predicted and how will the predictions be useful. 
This restricts anticipation to being used only under 
situations that the designer has deemed worthwhile. This is 
important because anticipation could be used as the 
generator for many of the tactics that would otherwise be 
coded by hand. For example, during a fight the bot could 
predict that an injured enemy would attempt to pick up a 
nearby health. The bot could use this to either get the health 
first, or direct its weapon toward the health, making it more 
likely that the enemy will be hit. Another example is where 
the bot uses its knowledge about the expected path of the 
enemy to avoid the enemy when the bot is low on health or 
has inferior weapons. Similarly, when the bot kills an 
enemy, it could predict that the enemy will be recreated at a 
spawn location with only a mediocre weapon. It could use 
that prediction to move toward the closest spawn point in 
hope of engaging the enemy before it gets a better weapon. 
This second tactic is currently hard coded in the Soar 
Quakebot, but could arise from the appropriate use of 
anticipation. 

The obvious approach would be to always predict the 
enemy and then always attempt to plan what actions the bot 
could perform that would get the bot to a preferred state 
(such as the enemy being dead, or having full health and a 
good weapon). This has the potential of even further 
simplifying the current structure of the bot by having the 
planning mechanism generate plans for getting powerups, 
attacking the enemy, etc. Many of the current tactics could 
be discarded. However, this approach comes with 
significant costs. There is the cost of planning and the fact 
that the planning would interfere with the bot's ability to 
react quickly to its environment - although chunking would 
gradually decrease with practice. Unfortunately, forward 
planning in these environments in intractable. As 
mentioned earlier, the bot has a huge space of possible 
moves it can take at each moment, with the most obvious 
culprit being which direction it should face. The more 
subtle cost is the cost of developing the planning 
knowledge that is used to generate the tactics, which in 
practice can be very difficult. An alternative is to be more 
selective, using some knowledge about the goals the bot is 
trying to achieve and means-ends problem solving to 
constrain the search.  
 
Recursive Anticipation 
The Quakebot anticipates what the enemy does next. An 
obvious extension is for the Quakebot to anticipate the 
enemy anticipating its own actions. This recursion can go 
on to arbitrary depths, but the usefulness of it is probably 
limited to only a few levels. Recursive anticipation could 
lead the Quakebot to actions that are deceptive and 
confusing to the enemy. Although this might be useful in 
principle and for non-real-time computer games, such as 

real-time strategy games where there is more global sensing 
and a less frantic pace, it might be of only limited use for 
the Quakebot. The reason is that the bot must sense the 
enemy in order to have some idea of what the enemy's state 
is, and the enemy must sense the bot in order to have some 
idea of what the bot's state is. In Quake, there are only rare 
cases where the bot and the enemy can sense each other 
and one will not start attacking the other. However, we plan 
to do some limited investigation of recursive anticipation to 
find out how useful it is. 
 
Enemy-Specific Anticipation 
The current anticipation scheme assumes that the enemy 
uses exactly the same tactics as the Quakebot. However, 
there may be cases where you know beforehand that an 
opponent has different tactics, such as preferring different 
weapons. By incorporating more accurate models of an 
enemies weapon preferences, the Quakebot can decide to 
ambush an enemy in completely different (and more 
appropriate) rooms. 

This is easily handled by adding rules that encode the 
given tactics or weapon preferences. These rules must test 
the name of the opponent so that they apply only for the 
reasoning about the appropriate enemy. Additional rules 
may be required that reject the bot's tactics that conflict 
with the enemy's tactics, or it may be necessary to add 
conditions to the rules that encode those conflicting tactics 
so that they do not match when the enemy is being 
simulated.  
 
Adaptive Anticipation 
Unfortunately, an enemy's tactics and preference are rarely 
known beforehand. It is only through battle that one learns 
about the enemy. Thus, an important area of future research 
will be building models of enemy tactics that can be used to 
predict enemys' behavior. Our expected approach will be to 
learn how the enemy's tactics differ from the Quakebot's 
own knowledge. We will examine at a variety of learning 
approaches. The simplest is to pre-enumerate different 
"styles" or groups of tactics and explicitly gather data on 
the enemy in order to build up a better internal model. For 
example, noticing which weapons are used most often 
should give some idea as to those preferences. This 
approach is simple to implement, has low computational 
overhead, but has limitations in that the bot can only learn 
about the set of styles that have already been enumerated. 
Although this limitation is of concern to us as researchers, 
it may be completely sufficient for computer games. 
Similar approaches have already been successfully used in 
football games to track and adjust to the play-calling 
behavior of human players (Whatley, D. 1999). 
 A more general, but more difficult approach is to have 
the bot modify its knowledge each time the enemy does 
something unpredictable. The bot would continually try to 
build up its knowledge so that it can successfully predict 
the enemy. One final complexity is that the enemy will not 
be static, but will be adapting to the bot's tactics, and even 



 

 

to the bot's use of anticipation and it adaptation to the 
enemy. For example, after the first time an enemy is 
ambushed after getting the powerup from a dead-end room, 
it will probably anticipate the ambush and modify its own 
behavior. Our research into these issues will build on 
previous research we've done on learning from experience 
with dynamic environments (Laird, J. E., Pearson, D. J, and 
Huffman, S. B. 1997).  
 

Summary and Perspective 
 

The goal of our research is to create synthetic characters 
for computer games with human-level intelligence. 
Incorporating anticipation is a critical part of human-level 
intelligence and we have demonstrated how it can be added 
to an existing computer bot.  
 From our perspective, this has been a success because it 
was added with only minimal changes to our existing bot, it 
added significantly new capabilities and behavior, and it 
points the way to many additional research issues.  
 From an AI perspective, our work is a bit of a rehash of 
research on opponent modeling, planning, and reactive 
planning. Its contribution to AI is that it pursues these 
topics within the context of a complex, dynamic, and 
competitive environment, where planning and execution 
efficiency are of utmost importance as well as ease of 
implementation.  
 From a computer games perspective, our work points the 
way for where commercial bots could be in a few years, not 
just "thinking" on their own, but predicting what you are 
thinking. 
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