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Abstract 
We present a high-level language for describing behaviors 
for autonomous agents in virtual worlds, together with an 
efficient run-time algorithm to implement those behaviors. 
Our approach is based on the notion of constraint goals, and 
we have designed a primitive set of constraints for 
navigation purposes. The resolution of goal constraints is 
done by a novel technique called adaptive search based on 
local search techniques within a constraint-based formalism. 

1. Introduction 

 
Our aim is to design a high-level language for describing 
behaviors for autonomous agents in virtual worlds, together 
with an efficient run-time algorithm to implement those 
behaviors. Virtual worlds are becoming increasingly 
popular due to the definition of standard formats for 
describing 3D scenes on the web (e.g. VRML97, Java3D 
and the future X3D) and, in the computer games 
community, because of the availability of tools to design 
new maps for popular 3D action games such  Unreal, Half-
life, or recently Deus Ex. Nevertheless, it is difficult to 
“populate” such worlds with virtual agents representing 
life-like creatures which could autonomously navigate and 
react to their changing environment,  and also possibly 
interact with users. Path-planning problems are a key issue 
in the so-called “Game AI” domain, and have been tackled 
up to now with traditional AI techniques such as the 
classical A* algorithm [14] or more modern extensions [15], 
heavily relying on the complete knowledge of the complete 
virtual environment to define an optimal trajectory for 
computer-controlled characters. We are rather interested in 
this work in the definition of autonomous agents that are 
immersed in an undefined and changing environment and 
have to react in real-time to evolving configurations. For 
this purpose, we need to design a language in which such 
behaviors can be stated, and this language should be both 
simple, declarative and powerful in order to make it 
possible to express a great variety of operations. The basis 
of this declarative language is the notion of constraint, 
which can be used to represent goals that the agents are 

trying to achieve. The agent thus maintains a set of goal 
constraints and we define a simple but effective action 
selection mechanism that will select at each time-step the 
best action in order to reduce the discrepancy between his 
current state and the overall satisfaction of the goals. Thus, 
it is worth noticing that behaviors are stated in an implicit 
way (by giving a set of constraint goals) and not in an 
explicit way (e.g. by giving a precise trajectory), which 
makes it possible to reactively adapt the agent behavior to a 
changing real-time environment. 
As a first application of this framework, we have 
considered agents with simple reactive behaviors or limited 
planning capabilities inspired from research in the field of 
Artificial Life and robotics [11] [12]. We consider the 
problem of navigation of such autonomous creatures as an 
optimization problem an propose to use an algorithm based 
on local search techniques, called adaptive search,  to 
efficiently obtain optimal or near-optimal trajectories. 
More generally, our framework can be used as a motivation 
architecture for such virtual creatures, by considering 
variables for denoting internal states (e.g. energy, thirst, 
etc) and goal constraints for defining internal needs (e.g. 
the energy should stay above a certain level), routine 
behaviors (if the energy falls below some level, go for 
food), or external desired properties (e.g. stay away from 
predators). 

2.  Virtual Agents 

 
We will focus in this paper on the design of simple reactive 
agents in 3D virtual worlds. We are indeed interested in 
designing autonomous creatures that can be embedded in 
various and unknown environments and nevertheless 
exhibit robust behaviors, in particular for navigation. The 
paradigm of reactive agents has emerged in AI and robotics 
in the mid 80's as a viable alternative to complex planning 
agents. Brooks' subsumption architecture and his seminal 
paper [5] has created, together with other researchers, a 
new domain called "behavior-based" or "situated" robotics. 
To use the definition given by one of the pioneers of this 
approach [2]: « A reactive robotic system couples 



perception to action without the use of intervening abstract 
representation or time history ». Reactive agents are thus 
simple entities that receive percepts from their environment 
and can act on the environment by performing actions 
through some effectors/actuators, the simplest of which 
being to issue some motor command to effectively navigate 
in the external or virtual world. Reactive agents have no 
symbolic model of the world they live in, but rather use 
sensory-action control loops in order to perform tasks in a 
robust manner. It is worth noticing nevertheless that the 
framework proposed in that paper goes beyond the 
formalism of pure reactive agents, as creatures can 
maintain internal states and therefore "memorize" some 
particular aspects of their environments. 

3.  Biologically-inspired Creatures 

 
In order to design autonomous, life-like creatures that can 
autonomously navigate in the 3D world, we propose some 
simple behaviors derived from biologically-inspired models 
of navigation. . There is currently a growing interest for 
such models both in the Artificial Life and the robotics 
community, and such models could obviously applied to 
virtual agents as well. The creatures will have to react to a 
changing environment and to avoid collision with moving 
obstacles. We will consider virtual creatures with limited 
intelligence building no cognitive map but using only the 
taxon system for route navigation, tracing a simple route 
towards a goal by avoiding obstacles. We can nevertheless 
consider some non-trivial navigation problems, as the 
creature does not know in advance the location of the goal 
but rather  has a to explore the environment towards it, 
guided by a stimulus (e.g. light or smell) towards the  goal 
(e.g. food). Our framework will also naturally cope with 
moving goals and obstacles and modify the behavior 
accordingly in real-time. We have investigated in [6] a 
high-level formalism based on a Timed Concurrent 
Constraint language for describing and implementing such 
behaviors, but we will present in this paper a simpler 
framework together with a new solving method for the run-
time implementation of these techniques. 
The two classical methods for stimulus-driven exploration 
in the biologically-inspired models of navigation are the 
temporal difference or spatial difference methods Temporal 
differences consists in considering a single sensor (e.g. the 
nose) and checking at every time-point the intensity of the 
stimulus. If the stimulus is increasing, then the agent 
continues in the same direction, otherwise the direction is 
changed randomly and so on so forth. This behavior is 
exemplified for instance by the chemotaxis (reaction to a 
chemical stimulus) of the  Caenorabditis Elegans, a small 
soil nemapode. A more efficient strategy is possible by 
using the spatial differences method. It requires to have two 
identical sensing organs, placed at different slightly 
positions on the agent (e.g. the two ears). The basic idea is 

simply to favor, at any time-point, motion in the direction 
of the sensor that receive the most important stimulus This 
behavior gives very good results, and the creature goes 
most of the time directly towards the goal. When the goal is 
moved away by the user, the agent reacts instantly towards 
the new location. 

4.  A Constraint-based Language for 
Describing Behaviors 

 
In computer graphics and animation systems, the most 
common formalism for representing behaviors is the finite 
state automaton (FSA). Many variants exist, such as the 
PatNets of [3], the Hierarchical FSA [9] or the parallel FSA 
[7]. Our approach rather considers that for representing 
complex life-like behaviors, one should not be restricted to 
some extended FSA formalism but indeed needs the power 
of a more advanced modeling language. In particular, we 
need the ability to handle internal variables, parametrized 
inputs, and dynamic representations of goals to be 
achieved. We propose here a quite simple framework, 
extended and abstracted from [6]. We will thus consider the 
formalism of  CSP (Constraint Satisfaction Problems, see 
[10]) as a general modeling language. Constraints are used 
to state goals, or more exactly partial goals, that the agent 
has to achieve. The basic spatial constraints for autonomous 
navigation are : 
 

 
Constraint 

 

 
Declarative meaning 

 
In(Region) Stay within the zone define by 

Region 
out(Region) Stay outside the zone define by 

Region 
go(Object) move towards the location of 

Object 
away(Object) move away from the location of 

Object 
Attraction(Stimulus) Move towards the source of  

Stimulus 
Repulsion(Stimulus) Move away from the source of 

Stimulus 
 
 
Observe that for the last two constraint goals, the agent 
does not know the location of the source of the stimulus, 
but it can only sense the amount of stimulus received at 
some location by one or more sensors, using either a 
temporal difference or a spatial difference method, see [11] 
for details. These declarative constraints will reduce to (or, 
for efficiency, be approximated by) some simple arithmetic 
constraints. For instance, the first constraint In(Region) for 
a circle Region will reduce to :  

Agent.position - Region.Center < Region.Radius 



and the third constraint go(Object) will reduce to  

Agent.position - Object.position < 0.1 . 

It is clear that a combination of such goal constraints could 
produce quite complex behaviors, e.g. that  the agent 
should go towards some object, avoid all objects it 
perceives and stay away from some predefined regions. For 
instance a following behavior can be simply obtained as a 
combination of a go constraint (to move toward the 
followed agent) and an out constraint (to stay at a certain 
distance). In [5], a full logical language is proposed as 
"planning" vocabulary for encoding cognitive behaviors, 
but the large search space thus generated might be source 
of performance problems. On the contrary, the limited set 
of goal constraints defined here has been chosen because 
efficient methods to solve such goals can be designed. 
Indeed one can define, for each goal constraint, a 
predefined repair mechanism that will propose (in case the 
constraint is not satisfied) an action that could reduce the 
degree of violation of the constraint. For instance if an 
attraction(Object) constraint is violated by a agent 
Creature, then the "repair" action to be performed is  a 
navigation step in the direction of Object, that is : 
 
Creature.position +=  

Creature.speed  *  || Object.position - Creature.position || 
 

Similarly, one can define a repair action for the obstacle 
avoidance constraint out(Region), by considering that the 
agent should change its direction either slightly to the left 
or to the right until it can perform a side step without 
violating the out constraint (this could amount to perform a 
U turn). Let us now detail how to solve a combination of 
goal constraints by choosing the most appropriate repair 
action. 

5. Adaptive Search 

 
Heuristic (i.e. non-complete) methods have been used in 
Combinatorial Optimization for finding optimal or near-
optimal solution since a few decades, in particular the 
family of Local Search methods [1] [13]. It has been used 
for problems like the Traveling Salesman Problem, 
scheduling, vehicle routing, cutting stock, etc. Classical 
instances of such methods are simulated annealing, Tabu 
search and genetic algorithms. They work by iterative 
improvement over an initial state and are thus anytime 
algorithms well-suited to a reactive environment. Consider 
an optimization problem with cost function which makes it 
possible to evaluate the quality of a given configuration 
(assignment of variables to current values) and a transition 
function that defines for each configuration a set of 
"neighbors ". The basic algorithm consists in starting from 
a random configuration, explore the neighborhood and then 
move to the best candidate. This process will continue until 

some satisfactory solution is found. To avoid being trapped 
in a local optimum, adequate mechanisms should be 
introduced, such as the adaptive memory of Tabu search or 
the cooling schedule of simulated annealing. 
 
We can now detail our new heuristic method called 
Adaptive Search, derived from the GSAT, Walksat and 
Wsat(OIP) family of local search methods [13]. It will be 
used in our framework to perform behaviors, i.e. to select 
the adequate repair action if the goal constraints are not 
satisfied. The input of the method is a problem in CSP 
form, that is a set of variables and constraints over these 
variables. A constraint is simply a logical relation between 
several unknowns, these unknowns being variables that 
should take values in some specific domain of interest. A 
constraint thus restricts the degrees of freedom (possible 
values) the unknowns can take; it represents some partial 
information relating the objects of interest. Constraint 
Solving and Programming has proved to be very successful 
for Problem Solving and Combinatorial Optimization 
applications, by combining the declarativity of a high-level 
language with the efficiency of specialized algorithms for 
constraint solving, borrowing sometimes techniques from 
Operations Research and Numerical Analysis [10]. Several 
efficient constraint solving systems for finite domain 
constraints now exists, such as Ilog Solver on the 
commercial side and GNU-Prolog  on the 
academic/freeware side. Although we will completely 
depart in adaptive search from the classical constraint 
solving techniques (i.e. Arc-Consistency and its 
extensions), we will take advantage of the formulation of a 
problem as a CSP. Such representation indeed makes it 
possible to structure the problem in terms of variables and 
constraints and to analyze more carefully the current  
configuration (assignment of variables to values in their 
domains) than a global cost function to be optimized, e.g. 
the number of constraints that are not satisfied. Accurate 
information can be collected by inspecting constraints (that 
typically involve only a subset of all the problem variables) 
and combining this information on variables (that typically 
appear in only a subset of all the problem constraints). Our 
method is not limited to any specific type of constraint, e.g. 
linear constraints as classical linear programming or [13]. 
 
For each constraint, we need to define an "error" function 
that will give an indication on how much the constraint is 
violated. For instance the "error" function associated to an 
arithmetic constraint X - Y < C will be max (0, |X-Y|-C). 
Adaptive search relies on iterative repair based on variables 
and constraint errors information, seeking to reduce the 
error on the worse variable so far. The basic idea is to 
compute the error function of each constraint, then combine 
for each variable the errors of all constraints in which it 
appear and then choose the variable with the maximal error 
as a "culprit" and thus change its value. In this second step 
we use the well-known min-conflict heuristic and select the 
value in the variable domain that has the best temptative 



value, that is, the value for which the total error overall 
next configuration is minimal.  
In order to prevent being trapped in local minima, the 
adaptive search method also include an adaptive memory 
module to prevent to be trapped by local minima (cf. Tabu 
Search) : each variable leading to a local minimum is 
marked and cannot be chosen for a few iterations. It is 
worth noticing that this frameworks naturally copes with 
Over-Constraint problems.  
 
It is worth noticing that the adaptive search method is thus 
a generic framework parametrized by three components : 
 
- A family of error functions for constraints  

(one for each type of constraint)  
 
- An combination operation in order to aggregate, for a 

variable, the errors of all constraints in which it 
appears 

 
- A cost function for evaluating configurations 
 
In general the last component can be derived from the first 
two ones. Also, we could require the combination operation 
to be associative and commutative 
 
Let us now detail this algorithm. 
 
Input :  
 
Problem given in CSP form : 
 
- a set of variables V={V1, V2,…, Vn} with associated 

domains of values 
 
- a set of constraints C={C1, C2,…, Ck} over V 
 
- a combination function to aggregate constraint errors 

on variables 
 
- a cost function to minimize (e.g. number of violated 

constraints) 
 
Output :  
 
Sequence of moves (i.e. modifications of the value of one 
of the variables) that will lead to a solution of the CSP (i.e. 
a configuration where all constraints are satisfied) 
 
 
 
Algorithm 
 
Start from a random assignment of variables in V 
 

Repeat  
 

1. Compute errors of all constraints in C and 
combine errors on each variable   by considering 
for a given variable only the constraints on which 
it appears. 

 
2. select variable X (not marked as tabu) with 

highest error and evaluate costs of possible moves 
from X 

 
3. if no better move then  mark X as tabu for a given 

number of iterations 
else select the best move (min-conflict) and change 
the value of X accordingly 
 

until a solution is found or the maximal number of 
iterations is reached 
 

This method, although very simple, could nevertheless be 
quite efficient to solve complex combinatorial problems 
such as classical CSPs.  

6. Examples 

 
Let us now detail some classical CSP examples tackled by 
the adaptive search method. 

6.1 God Saves the Queens 
 
This puzzle consists in placing N queens on a NxN 
chessboards so that no two queens attach each other. It can 
be modeled by N variables (that is, one for each queen) 
with domains {1,2,…,N} (that is, considering that each 
queen should be placed on a different row) and 3 x N2 
disequation constraints stating that no pair of queens can 
ever be on the same column, up- or down-diagonal : 
 

For all i,j in {1,2,…,N} :  Qi =/= Qj     Qi + i =/= Qj + j       
Qi - i =/= Qj - j 

 
We can define the error function for disequation as follows, 
in the most simple way  :  0 if the constraint is satisfied and 
1 if the constraint is violated. The combination  operation 
on variables is simply the addition, and the overall cost 
function is the sum of the costs of all constraints. Good 
results can be obtained with this instance of adaptive 
search, comparable to those of efficient constraint solving 
systems like Ilog Solver or GNU Prolog with the same 
modeling. Results on a 400 MHz Pentium-II PC of a 
simple Java-based implementation for 50x50, 100x100 and 
200x200 chessboards are given in the table below (we give 
the average of 10 runs). 
 
 
 

size CPU time 



50x50 0.1 sec 
100x100 2    sec 
200x200 20    sec 

 
 
However, even better results can be obtained with an 
optimized Java-based implementation of adaptive search 
which recomputes constraints errors only when necessary 
and randomly resets 10% of the variables (and not just one) 
when reaching a local minimun. Results on a 400 MHz 
Pentium-II PC are given in the table below : 
 
 

size CPU time 
100x100 50 ms 
200x200 110 ms 
400x400 250 ms 
800x800 650 ms 

 

6.2 Magic to the Square 
 
The magic square puzzle is much more complicated that N 
queens. It consists in placing on a NxN square all the 
numbers in {1,2,,…,N2} such as the sum of the numbers in 
all rows, columns and diagonal are the same. It can 
therefore be modeled in CSP by considering N2 variables 
with initial domains {1,2,,…,N2} together with linear 
equation constraints and a global all_different constraint 
stating that all variables should have a different value. The 
constant value that should be the sum of all lines, columns 
and diagonals can be easily computed to be N(N2+1)/2. 
Classical constraint solvers however perform quite poorly 
on this problem and neither Ilog Solver nor GNU Prolog 
could solve instances bigger that 10x10 square.  
The instance of adaptive search for this problem is defined 
as follows. The error function of an equation X1 + X2 + … 
+ Xk = b is defined as the value of X1 + X2 + … + Xk - b.             
The combination operation is the absolute value of the sum 
of errors. The overall cost function is the addition of 
absolute values of the errors of all constraints The method 
will start by a random assignment of all N2 numbers in 
{1,2,,…,N2}on the cells of the NxN square and consider as 
possible moves all swaps between two values. 
 
The method can be best described by the execution 
snapshot depicted by Figure 1, which shows information 
computed on a 4x4 square. Numbers on the right of rows 
and diagonals, and below lines,  denote the errors of the 
corresponding constraints The 4x4 table immediately on 
the right shows the combined error for each variable. The 
cell (3,2) with value 6 (in red on the square) has maximal 
error and is thus selected for swapping. We should now 
score all possible swaps with other numbers in the square; 
this is depicted in the table on the right, containing the cost 
value of the overall configuration for each swap. The cell 

(1,4) with value 15 give the best next configuration and is 
thus selected to perform a move. The selected move will 
thus reduce the cost of the current configuration from 57 to 
33. 
 

 
 

Figure 1. Adaptive Search on the 4x4 magic square. 
 
Let us now detail the performances of this algorithm on 
bigger instances. Results on a 400 MHz pentiumII PC of a 
simple Java-based implementation for 6x6, 10x10, 16x16 
and 20x20 squares are given in the table below (again 
showing the average of 10 runs). 
 

 
size CPU time 

6 0.2   sec 
10 1.8   sec 
16 21    sec 
20 1 min 30  sec 

 
 
This results compares favorably with those obtained with 
the Localizer system which is based on Tabu search 
(personnal communication by Laurent Michel, one of the 
designer of Localizer) , and it is worth noticing that some 
choices in this adaptive search instance (e.g. the 
combination and global cost functions) could be much 
improved by careful tuning. 
            
As defined above, this method does not perform any 
planning, as it only computes the move for the next time 
step out of all possible current moves. A simple extension 
would be to allow some limited planning capability by 
considering not only the immediate neighbors (i.e. nodes at 
distance 1) but all configurations on all paths up to some 
predefined distance (e.g. all nodes within at distance less or 
equal to 10), and then choose to move to the neighbor in the 
direction of the most promising node, as pioneered by 
variable-depth local search some decades ago, see [1] for 
details. Therefore the method can plan for the best 
trajectory in some limited time-window. However real-time 



considerations might prevent to extend this time-window 
more than a few steps forwards.  

7. Application to Path-finding and Stimulus-
driven Navigation 

 
It is worth noticing that the adaptive search method applied 
to agent navigation is also close to real time search 
algorithms such as those of [15], but without paying the 
price for heavy data structures. Let us consider a simple 
example where the creature has to perform collision 
avoidance. The behavior consisting in going to a particular 
goal object while avoiding obstacles is simply described in 
the following way : 
 

go(goal) , out(obstacle1 , 0.1) , … , out(obstacleN , 0.1) 
 

where obstaclei are the objects to avoid. It is worth noticing 
that the creature is reactive to the changes in the 
environment in real-time and will thus keep avoiding 
objects if they move and further obstruct its trajectory, 
which will be updated accordingly.  All the constraints are 
(re-) checked in real-time at each iteration of the adaptive 
search algorithm and thus the trajectory is adaptive at each 
time-step. 
 
   

 
 

Figure 2. Initial setting for simple obstacle avoidance 
 

Figure 2 describes the initial position of the agent (upper 
left) and of the goal object (bottom right), together with the 
position of the brick-textured obstacles. The trajectory of 
the creature is depicted as a while line on Figure 3. It could 
be observed that the trajectory is not optimal (the creature 
could have anticipated the first obstacle and turned right 
earlier) but not far from the optimal path and life-like 
anyway. A better trajectory could have been achieved by 
using limited planing with variable-depth exploration of the 
neighborhood, as explained earlier. 
 
 

 
 

Figure 3. Trajectory for simple obstacle avoidance 
 
 
Similar behaviors can be obtained with stimulus-driven 
search, by simply replacing the go constraint by an 
attraction constraint on the given stimulus : 
 

attraction(stimulus) ,  
out(obstacle1 , 0.1) , … , out(obstacleN , 0.1) 

 
 It appears than in general only  two sensors (that is, 
checking the intensity of the stimulus at only two points in 
front of the creature) are enough to obtain a good 
trajectory, which is consistent with biologically-inspired 
models.  

8. Conclusion 

 
We have proposed a constraint-based language that makes 
it possible to express in an implicit way reactive behaviors. 
Behaviors are expressed as sets of goal constraints that 
have to be satisfied by the agent. We have defined the 
adaptive search method which is used as action selection 
mechanism in order to choose among  all the "repair" 
actions (for goal constraints) the most promising one. We 
have implemented a prototype version of this framework by 
coupling a VRML browser and a JavaScript-based adaptive 
search algorithm and experimented some simple 
biologically-inspired behaviors for virtual creatures, such 
as stimulus-driven search together with obstacle avoidance 
in a reactive context (both the source of the stimulus and 
the obstacles can be moved in real-time). The method is 
indeed able to achieve life-like, near-optimal trajectories. A 
more robust, full-fledge system is currently under 
implementation in the Java3D environment . Perspectives 
include the extension of the current adaptive search 
framework to include limited look-ahead planning and the 
development of a longer term action-planning module 
based on constraint solving techniques. 
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