
Behaviors for Virtual Creatures

by Constraint-based Adaptive Search

Philippe Codognet

University of Paris 6 and INRIA
LIP6, case 169, 8 rue du Capitaine Scott,

75 015 Paris, France
Philippe.Codognet@lip6.fr

Abstract
We present a high-level language for describing behaviors
for autonomous agents in virtual worlds, together with an
efficient run-time algorithm to implement those behaviors.
Our approach is based on the notion of constraint goals, and
we have designed a primitive set of constraints for
navigation purposes. The resolution of goal constraints is
done by a novel technique called adaptive search based on
local search techniques within a constraint-based formalism.

1. Introduction

Our aim is to design a high-level language for describing
behaviors for autonomous agents in virtual worlds, together
with an efficient run-time algorithm to implement those
behaviors. Virtual worlds are becoming increasingly
popular due to the definition of standard formats for
describing 3D scenes on the web (e.g. VRML97, Java3D
and the future X3D) and, in the computer games
community, because of the availability of tools to design
new maps for popular 3D action games such Unreal, Half-
life, or recently Deus Ex. Nevertheless, it is difficult to
“populate” such worlds with virtual agents representing
life-like creatures which could autonomously navigate and
react to their changing environment, and also possibly
interact with users. Path-planning problems are a key issue
in the so-called “Game AI” domain, and have been tackled
up to now with traditional AI techniques such as the
classical A* algorithm [14] or more modern extensions [15],
heavily relying on the complete knowledge of the complete
virtual environment to define an optimal trajectory for
computer-controlled characters. We are rather interested in
this work in the definition of autonomous agents that are
immersed in an undefined and changing environment and
have to react in real-time to evolving configurations. For
this purpose, we need to design a language in which such
behaviors can be stated, and this language should be both
simple, declarative and powerful in order to make it
possible to express a great variety of operations. The basis
of this declarative language is the notion of constraint,
which can be used to represent goals that the agents are

trying to achieve. The agent thus maintains a set of goal
constraints and we define a simple but effective action
selection mechanism that will select at each time-step the
best action in order to reduce the discrepancy between his
current state and the overall satisfaction of the goals. Thus,
it is worth noticing that behaviors are stated in an implicit
way (by giving a set of constraint goals) and not in an
explicit way (e.g. by giving a precise trajectory), which
makes it possible to reactively adapt the agent behavior to a
changing real-time environment.
As a first application of this framework, we have
considered agents with simple reactive behaviors or limited
planning capabilities inspired from research in the field of
Artificial Life and robotics [11] [12]. We consider the
problem of navigation of such autonomous creatures as an
optimization problem an propose to use an algorithm based
on local search techniques, called adaptive search, to
efficiently obtain optimal or near-optimal trajectories.
More generally, our framework can be used as a motivation
architecture for such virtual creatures, by considering
variables for denoting internal states (e.g. energy, thirst,
etc) and goal constraints for defining internal needs (e.g.
the energy should stay above a certain level), routine
behaviors (if the energy falls below some level, go for
food), or external desired properties (e.g. stay away from
predators).

2. Virtual Agents

We will focus in this paper on the design of simple reactive
agents in 3D virtual worlds. We are indeed interested in
designing autonomous creatures that can be embedded in
various and unknown environments and nevertheless
exhibit robust behaviors, in particular for navigation. The
paradigm of reactive agents has emerged in AI and robotics
in the mid 80's as a viable alternative to complex planning
agents. Brooks' subsumption architecture and his seminal
paper [5] has created, together with other researchers, a
new domain called "behavior-based" or "situated" robotics.
To use the definition given by one of the pioneers of this
approach [2]: « A reactive robotic system couples

perception to action without the use of intervening abstract
representation or time history ». Reactive agents are thus
simple entities that receive percepts from their environment
and can act on the environment by performing actions
through some effectors/actuators, the simplest of which
being to issue some motor command to effectively navigate
in the external or virtual world. Reactive agents have no
symbolic model of the world they live in, but rather use
sensory-action control loops in order to perform tasks in a
robust manner. It is worth noticing nevertheless that the
framework proposed in that paper goes beyond the
formalism of pure reactive agents, as creatures can
maintain internal states and therefore "memorize" some
particular aspects of their environments.

3. Biologically-inspired Creatures

In order to design autonomous, life-like creatures that can
autonomously navigate in the 3D world, we propose some
simple behaviors derived from biologically-inspired models
of navigation. . There is currently a growing interest for
such models both in the Artificial Life and the robotics
community, and such models could obviously applied to
virtual agents as well. The creatures will have to react to a
changing environment and to avoid collision with moving
obstacles. We will consider virtual creatures with limited
intelligence building no cognitive map but using only the
taxon system for route navigation, tracing a simple route
towards a goal by avoiding obstacles. We can nevertheless
consider some non-trivial navigation problems, as the
creature does not know in advance the location of the goal
but rather has a to explore the environment towards it,
guided by a stimulus (e.g. light or smell) towards the goal
(e.g. food). Our framework will also naturally cope with
moving goals and obstacles and modify the behavior
accordingly in real-time. We have investigated in [6] a
high-level formalism based on a Timed Concurrent
Constraint language for describing and implementing such
behaviors, but we will present in this paper a simpler
framework together with a new solving method for the run-
time implementation of these techniques.
The two classical methods for stimulus-driven exploration
in the biologically-inspired models of navigation are the
temporal difference or spatial difference methods Temporal
differences consists in considering a single sensor (e.g. the
nose) and checking at every time-point the intensity of the
stimulus. If the stimulus is increasing, then the agent
continues in the same direction, otherwise the direction is
changed randomly and so on so forth. This behavior is
exemplified for instance by the chemotaxis (reaction to a
chemical stimulus) of the Caenorabditis Elegans, a small
soil nemapode. A more efficient strategy is possible by
using the spatial differences method. It requires to have two
identical sensing organs, placed at different slightly
positions on the agent (e.g. the two ears). The basic idea is

simply to favor, at any time-point, motion in the direction
of the sensor that receive the most important stimulus This
behavior gives very good results, and the creature goes
most of the time directly towards the goal. When the goal is
moved away by the user, the agent reacts instantly towards
the new location.

4. A Constraint-based Language for
Describing Behaviors

In computer graphics and animation systems, the most
common formalism for representing behaviors is the finite
state automaton (FSA). Many variants exist, such as the
PatNets of [3], the Hierarchical FSA [9] or the parallel FSA
[7]. Our approach rather considers that for representing
complex life-like behaviors, one should not be restricted to
some extended FSA formalism but indeed needs the power
of a more advanced modeling language. In particular, we
need the ability to handle internal variables, parametrized
inputs, and dynamic representations of goals to be
achieved. We propose here a quite simple framework,
extended and abstracted from [6]. We will thus consider the
formalism of CSP (Constraint Satisfaction Problems, see
[10]) as a general modeling language. Constraints are used
to state goals, or more exactly partial goals, that the agent
has to achieve. The basic spatial constraints for autonomous
navigation are :

Constraint

Declarative meaning

In(Region) Stay within the zone define by

Region
out(Region) Stay outside the zone define by

Region
go(Object) move towards the location of

Object
away(Object) move away from the location of

Object
Attraction(Stimulus) Move towards the source of

Stimulus
Repulsion(Stimulus) Move away from the source of

Stimulus

Observe that for the last two constraint goals, the agent
does not know the location of the source of the stimulus,
but it can only sense the amount of stimulus received at
some location by one or more sensors, using either a
temporal difference or a spatial difference method, see [11]
for details. These declarative constraints will reduce to (or,
for efficiency, be approximated by) some simple arithmetic
constraints. For instance, the first constraint In(Region) for
a circle Region will reduce to :

Agent.position - Region.Center < Region.Radius

and the third constraint go(Object) will reduce to

Agent.position - Object.position < 0.1 .

It is clear that a combination of such goal constraints could
produce quite complex behaviors, e.g. that the agent
should go towards some object, avoid all objects it
perceives and stay away from some predefined regions. For
instance a following behavior can be simply obtained as a
combination of a go constraint (to move toward the
followed agent) and an out constraint (to stay at a certain
distance). In [5], a full logical language is proposed as
"planning" vocabulary for encoding cognitive behaviors,
but the large search space thus generated might be source
of performance problems. On the contrary, the limited set
of goal constraints defined here has been chosen because
efficient methods to solve such goals can be designed.
Indeed one can define, for each goal constraint, a
predefined repair mechanism that will propose (in case the
constraint is not satisfied) an action that could reduce the
degree of violation of the constraint. For instance if an
attraction(Object) constraint is violated by a agent
Creature, then the "repair" action to be performed is a
navigation step in the direction of Object, that is :

Creature.position +=

Creature.speed * || Object.position - Creature.position ||

Similarly, one can define a repair action for the obstacle
avoidance constraint out(Region), by considering that the
agent should change its direction either slightly to the left
or to the right until it can perform a side step without
violating the out constraint (this could amount to perform a
U turn). Let us now detail how to solve a combination of
goal constraints by choosing the most appropriate repair
action.

5. Adaptive Search

Heuristic (i.e. non-complete) methods have been used in
Combinatorial Optimization for finding optimal or near-
optimal solution since a few decades, in particular the
family of Local Search methods [1] [13]. It has been used
for problems like the Traveling Salesman Problem,
scheduling, vehicle routing, cutting stock, etc. Classical
instances of such methods are simulated annealing, Tabu
search and genetic algorithms. They work by iterative
improvement over an initial state and are thus anytime
algorithms well-suited to a reactive environment. Consider
an optimization problem with cost function which makes it
possible to evaluate the quality of a given configuration
(assignment of variables to current values) and a transition
function that defines for each configuration a set of
"neighbors ". The basic algorithm consists in starting from
a random configuration, explore the neighborhood and then
move to the best candidate. This process will continue until

some satisfactory solution is found. To avoid being trapped
in a local optimum, adequate mechanisms should be
introduced, such as the adaptive memory of Tabu search or
the cooling schedule of simulated annealing.

We can now detail our new heuristic method called
Adaptive Search, derived from the GSAT, Walksat and
Wsat(OIP) family of local search methods [13]. It will be
used in our framework to perform behaviors, i.e. to select
the adequate repair action if the goal constraints are not
satisfied. The input of the method is a problem in CSP
form, that is a set of variables and constraints over these
variables. A constraint is simply a logical relation between
several unknowns, these unknowns being variables that
should take values in some specific domain of interest. A
constraint thus restricts the degrees of freedom (possible
values) the unknowns can take; it represents some partial
information relating the objects of interest. Constraint
Solving and Programming has proved to be very successful
for Problem Solving and Combinatorial Optimization
applications, by combining the declarativity of a high-level
language with the efficiency of specialized algorithms for
constraint solving, borrowing sometimes techniques from
Operations Research and Numerical Analysis [10]. Several
efficient constraint solving systems for finite domain
constraints now exists, such as Ilog Solver on the
commercial side and GNU-Prolog on the
academic/freeware side. Although we will completely
depart in adaptive search from the classical constraint
solving techniques (i.e. Arc-Consistency and its
extensions), we will take advantage of the formulation of a
problem as a CSP. Such representation indeed makes it
possible to structure the problem in terms of variables and
constraints and to analyze more carefully the current
configuration (assignment of variables to values in their
domains) than a global cost function to be optimized, e.g.
the number of constraints that are not satisfied. Accurate
information can be collected by inspecting constraints (that
typically involve only a subset of all the problem variables)
and combining this information on variables (that typically
appear in only a subset of all the problem constraints). Our
method is not limited to any specific type of constraint, e.g.
linear constraints as classical linear programming or [13].

For each constraint, we need to define an "error" function
that will give an indication on how much the constraint is
violated. For instance the "error" function associated to an
arithmetic constraint X - Y < C will be max (0, |X-Y|-C).
Adaptive search relies on iterative repair based on variables
and constraint errors information, seeking to reduce the
error on the worse variable so far. The basic idea is to
compute the error function of each constraint, then combine
for each variable the errors of all constraints in which it
appear and then choose the variable with the maximal error
as a "culprit" and thus change its value. In this second step
we use the well-known min-conflict heuristic and select the
value in the variable domain that has the best temptative

value, that is, the value for which the total error overall
next configuration is minimal.
In order to prevent being trapped in local minima, the
adaptive search method also include an adaptive memory
module to prevent to be trapped by local minima (cf. Tabu
Search) : each variable leading to a local minimum is
marked and cannot be chosen for a few iterations. It is
worth noticing that this frameworks naturally copes with
Over-Constraint problems.

It is worth noticing that the adaptive search method is thus
a generic framework parametrized by three components :

- A family of error functions for constraints

(one for each type of constraint)

- An combination operation in order to aggregate, for a

variable, the errors of all constraints in which it
appears

- A cost function for evaluating configurations

In general the last component can be derived from the first
two ones. Also, we could require the combination operation
to be associative and commutative

Let us now detail this algorithm.

Input :

Problem given in CSP form :

- a set of variables V={V1, V2,…, Vn} with associated

domains of values

- a set of constraints C={C1, C2,…, Ck} over V

- a combination function to aggregate constraint errors

on variables

- a cost function to minimize (e.g. number of violated

constraints)

Output :

Sequence of moves (i.e. modifications of the value of one
of the variables) that will lead to a solution of the CSP (i.e.
a configuration where all constraints are satisfied)

Algorithm

Start from a random assignment of variables in V

Repeat

1. Compute errors of all constraints in C and
combine errors on each variable by considering
for a given variable only the constraints on which
it appears.

2. select variable X (not marked as tabu) with

highest error and evaluate costs of possible moves
from X

3. if no better move then mark X as tabu for a given

number of iterations
else select the best move (min-conflict) and change
the value of X accordingly

until a solution is found or the maximal number of
iterations is reached

This method, although very simple, could nevertheless be
quite efficient to solve complex combinatorial problems
such as classical CSPs.

6. Examples

Let us now detail some classical CSP examples tackled by
the adaptive search method.

6.1 God Saves the Queens

This puzzle consists in placing N queens on a NxN
chessboards so that no two queens attach each other. It can
be modeled by N variables (that is, one for each queen)
with domains {1,2,…,N} (that is, considering that each
queen should be placed on a different row) and 3 x N2
disequation constraints stating that no pair of queens can
ever be on the same column, up- or down-diagonal :

For all i,j in {1,2,…,N} : Qi =/= Qj Qi + i =/= Qj + j
Qi - i =/= Qj - j

We can define the error function for disequation as follows,
in the most simple way : 0 if the constraint is satisfied and
1 if the constraint is violated. The combination operation
on variables is simply the addition, and the overall cost
function is the sum of the costs of all constraints. Good
results can be obtained with this instance of adaptive
search, comparable to those of efficient constraint solving
systems like Ilog Solver or GNU Prolog with the same
modeling. Results on a 400 MHz Pentium-II PC of a
simple Java-based implementation for 50x50, 100x100 and
200x200 chessboards are given in the table below (we give
the average of 10 runs).

size CPU time

50x50 0.1 sec
100x100 2 sec
200x200 20 sec

However, even better results can be obtained with an
optimized Java-based implementation of adaptive search
which recomputes constraints errors only when necessary
and randomly resets 10% of the variables (and not just one)
when reaching a local minimun. Results on a 400 MHz
Pentium-II PC are given in the table below :

size CPU time
100x100 50 ms
200x200 110 ms
400x400 250 ms
800x800 650 ms

6.2 Magic to the Square

The magic square puzzle is much more complicated that N
queens. It consists in placing on a NxN square all the
numbers in {1,2,,…,N2} such as the sum of the numbers in
all rows, columns and diagonal are the same. It can
therefore be modeled in CSP by considering N2 variables
with initial domains {1,2,,…,N2} together with linear
equation constraints and a global all_different constraint
stating that all variables should have a different value. The
constant value that should be the sum of all lines, columns
and diagonals can be easily computed to be N(N2+1)/2.
Classical constraint solvers however perform quite poorly
on this problem and neither Ilog Solver nor GNU Prolog
could solve instances bigger that 10x10 square.
The instance of adaptive search for this problem is defined
as follows. The error function of an equation X1 + X2 + …
+ Xk = b is defined as the value of X1 + X2 + … + Xk - b.
The combination operation is the absolute value of the sum
of errors. The overall cost function is the addition of
absolute values of the errors of all constraints The method
will start by a random assignment of all N2 numbers in
{1,2,,…,N2}on the cells of the NxN square and consider as
possible moves all swaps between two values.

The method can be best described by the execution
snapshot depicted by Figure 1, which shows information
computed on a 4x4 square. Numbers on the right of rows
and diagonals, and below lines, denote the errors of the
corresponding constraints The 4x4 table immediately on
the right shows the combined error for each variable. The
cell (3,2) with value 6 (in red on the square) has maximal
error and is thus selected for swapping. We should now
score all possible swaps with other numbers in the square;
this is depicted in the table on the right, containing the cost
value of the overall configuration for each swap. The cell

(1,4) with value 15 give the best next configuration and is
thus selected to perform a move. The selected move will
thus reduce the cost of the current configuration from 57 to
33.

Figure 1. Adaptive Search on the 4x4 magic square.

Let us now detail the performances of this algorithm on
bigger instances. Results on a 400 MHz pentiumII PC of a
simple Java-based implementation for 6x6, 10x10, 16x16
and 20x20 squares are given in the table below (again
showing the average of 10 runs).

size CPU time

6 0.2 sec
10 1.8 sec
16 21 sec
20 1 min 30 sec

This results compares favorably with those obtained with
the Localizer system which is based on Tabu search
(personnal communication by Laurent Michel, one of the
designer of Localizer) , and it is worth noticing that some
choices in this adaptive search instance (e.g. the
combination and global cost functions) could be much
improved by careful tuning.

As defined above, this method does not perform any
planning, as it only computes the move for the next time
step out of all possible current moves. A simple extension
would be to allow some limited planning capability by
considering not only the immediate neighbors (i.e. nodes at
distance 1) but all configurations on all paths up to some
predefined distance (e.g. all nodes within at distance less or
equal to 10), and then choose to move to the neighbor in the
direction of the most promising node, as pioneered by
variable-depth local search some decades ago, see [1] for
details. Therefore the method can plan for the best
trajectory in some limited time-window. However real-time

considerations might prevent to extend this time-window
more than a few steps forwards.

7. Application to Path-finding and Stimulus-
driven Navigation

It is worth noticing that the adaptive search method applied
to agent navigation is also close to real time search
algorithms such as those of [15], but without paying the
price for heavy data structures. Let us consider a simple
example where the creature has to perform collision
avoidance. The behavior consisting in going to a particular
goal object while avoiding obstacles is simply described in
the following way :

go(goal) , out(obstacle1 , 0.1) , … , out(obstacleN , 0.1)

where obstaclei are the objects to avoid. It is worth noticing
that the creature is reactive to the changes in the
environment in real-time and will thus keep avoiding
objects if they move and further obstruct its trajectory,
which will be updated accordingly. All the constraints are
(re-) checked in real-time at each iteration of the adaptive
search algorithm and thus the trajectory is adaptive at each
time-step.

Figure 2. Initial setting for simple obstacle avoidance

Figure 2 describes the initial position of the agent (upper
left) and of the goal object (bottom right), together with the
position of the brick-textured obstacles. The trajectory of
the creature is depicted as a while line on Figure 3. It could
be observed that the trajectory is not optimal (the creature
could have anticipated the first obstacle and turned right
earlier) but not far from the optimal path and life-like
anyway. A better trajectory could have been achieved by
using limited planing with variable-depth exploration of the
neighborhood, as explained earlier.

Figure 3. Trajectory for simple obstacle avoidance

Similar behaviors can be obtained with stimulus-driven
search, by simply replacing the go constraint by an
attraction constraint on the given stimulus :

attraction(stimulus) ,
out(obstacle1 , 0.1) , … , out(obstacleN , 0.1)

 It appears than in general only two sensors (that is,
checking the intensity of the stimulus at only two points in
front of the creature) are enough to obtain a good
trajectory, which is consistent with biologically-inspired
models.

8. Conclusion

We have proposed a constraint-based language that makes
it possible to express in an implicit way reactive behaviors.
Behaviors are expressed as sets of goal constraints that
have to be satisfied by the agent. We have defined the
adaptive search method which is used as action selection
mechanism in order to choose among all the "repair"
actions (for goal constraints) the most promising one. We
have implemented a prototype version of this framework by
coupling a VRML browser and a JavaScript-based adaptive
search algorithm and experimented some simple
biologically-inspired behaviors for virtual creatures, such
as stimulus-driven search together with obstacle avoidance
in a reactive context (both the source of the stimulus and
the obstacles can be moved in real-time). The method is
indeed able to achieve life-like, near-optimal trajectories. A
more robust, full-fledge system is currently under
implementation in the Java3D environment . Perspectives
include the extension of the current adaptive search
framework to include limited look-ahead planning and the
development of a longer term action-planning module
based on constraint solving techniques.

Acknowledgements

This paper is a revised and extended version of a paper
presented at the VSMM2000 conference, 6th International
Conference on Virtual Systems and Multimedia, Gifu,
Japan, October 2000.

References

1. E. Aarts and J. Lenstra (Eds). Local Search in

Combinatorial Optimization, Wiley, 1997.

2. R. C. Arkin. Behavior-based robotics, MIT Press
1998.

3. N. Badler, C. Philips and B. Webber. Simulating
Humans : Computer Graphics animation and control,
Oxford University Press 1993.

4. G. Berry and G. Gonthier. The Esterel Programming
Language : Design, Semantics and Implementation,
Science of Computer Programming, vol. 19 no. 2,
1992

5. Rodney Brooks. A robust layered control system for
mobile robots, IEEE Journal of Robotics and
Automation, 1986 (2).

6. P. Codognet. Declarative Behaviors for Virtual
Creatures. Proc. ICAT’99, 8th International Conference
on Augmented Reality and Tele-existence, Tokyo,
Japan, IOS Press 1999.

7. S. Donikian. Multilevel Modeling of Virtual Urban
Environments for Behavioural Animation. Proc.
Computer Animation 97, Geneva, Switzerland, IEEE
Press 1997.

8. J. Funge, X. Tu and D. Terzopoulos. Cognitive
modeling : Knowledge, reasoning and planning for
intelligent characters. In proceedings of
SIGGRAPH'99, ACM Press 1999.

9. Y. Koga, C. Becker, M. Svihura, and D. Zhu. On
intelligent Digital Actors. Proc. Imagina 98, Monaco,
1998.

10. V. Saraswat, P. Van Hentenryck, P. Codognet et al.
Constraint Programming, ACM Computing Surveys
vol. 28 no. 4, December 1996.

11. N. Schmajuck (Ed.). Special issue on Biologically-
inspired models of Navigation, Adaptive Behavior,
vol. 6, no. 3/4, Winter/Spring 98.

12. O. Trullier, and J-A. Meyer. Biomimetic Navigation
Models and Strategies in Animats. AI Communications
Vol.10, no. 2, 1997.

13. J. P. Walser. Integer Optimization by Local Search : A
Domain-Independent Approach, LNAI 1637, Springer
Verlag 1999.

14. S. Woodcock. Game AI : the state of the industry.
Game developer, vol. 7 no. 8, August 2000.

15. M. Yokoo and T. Ishida, Search Algorithms for
Agents, In: Multiagent Systems, G. Weiss (ed.), MIT
Press 1999.

