
Creating Human-like Synthetic Characters with Multiple Skill Levels:
A Case Study using the Soar Quakebot

John E. Laird

University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
laird@umich.edu

John C. Duchi
Upper Arlington High School

1650 Ridgeview Rd.
Upper Arlington, OH 43221

duchmannnn@aol.com

Abstract
This paper reports on a preliminary attempt to develop and
evaluate synthetic characters with multiple skill levels and with
human-like behavior. Our goal was to determine which aspects of
behavior have impact on skill level and humanness. We
developed a bot that plays the computer game Quake against a
human opponent. That bot can be parameterized along four
dimensions: decision time, aggressiveness, number of tactics, and
aiming skill. We then played variations of the bot against a
human expert. Through empirical and human judgments we then
evaluated the skill level and humanness of the variations. Our
results suggest that both decision time and aiming skill are
critical parameters when attempting to create human-like
behavior. These two parameters could also be varied to modify
the skill of the bots, and for some ranges, maintain the same level
of humanness.

The two primary goals of this research are to create
synthetic characters with human-like behavior and varying
levels of skill within the context of highly interactive tasks.
The secondary goal is to develop and test a methodology
for evaluating the humanness of synthetic characters in
those types of tasks. Both primary goals require that we
explore computational mechanisms for modeling human
behavior and that we understand which behavioral
parameters affect the humanness of the behavior and the
skill of the behavior.

Towards these ends, we have developed a parameterized
AI system (called a bot) that plays the computer game
Quake against humans. In developing the bot, we have
tried to build an opponent that has the same strengths and
weaknesses as human players. As part of its development,
we parameterized the bot along four dimensions: decision
time, aggressiveness, aiming skill, and tactical knowledge.
This paper describes an evaluation of variations in those
parameters in terms of different levels of skill and
humanness. Our approach was to build versions of the bot
with different parameter values and then play them against
a "gold-standard" expert human player. Our results suggest
that this methodology is useful, and that we could produce
a range of skill levels using a subset of these parameters.

 Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The Soar Quakebot
The Soar Quakebot (Laird, 2000; Laird & van Lent, 1999)
plays the death match version of Quake II. In a death
match, players exist in a "level", which contains hallways
and rooms. The players can move through the level,
picking up objects, called powerups, and firing weapons.
The object of the game is to "kill" the other players. Each
time a player is shot or is near an explosion, its health
decreases. When a player’s health reaches zero, the player
dies. A dead player is then "spawned" at one of a set of
spawning sites within the level. Powerups, which include
weapons, health, armor, and ammo, are distributed
throughout the level in static locations. When a powerup is
picked up, a replacement will automatically regenerate in
30 seconds. Weapons vary according to their range,
accuracy, spread of damage, time to reload, type of ammo
used, and amount of damage they do.

The Soar Quakebot controls a single player in the game.
We have attempted to make the perceptual information and
motor commands available to the bot similar to those that a
human has while playing the game. For example, a bot can
see only unobstructed objects in its view cone and it can
hear only nearby sounds. One issue is that bots cannot
sense the walls as coherent objects because they consist of
many polygons that give the appearance of solid walls,
open doorways, etc. To navigate, the Quakebot explores
and builds up an internal map based on range data to walls.
The Quakebot uses this map to know where walls, rooms,
hallways, and doors are when it is running through a level.
Once a map is built, it can be saved for later use when the
Soar Quakebot replays the level.

The Quakebot uses Soar (Laird et al., 1987) as its
underlying AI engine. The Soar Quakebot is designed
based on the principles developed early on for controlling
robots using Soar (Laird and Rosenbloom 1990) and then
extended in our research on simulating military pilots in
large scale distributed simulations (Jones, et al. 1999). All
the knowledge for playing the game, including
constructing and using the internal map, is encoded in Soar
rules. The Soar Quakebot evaluated in this paper has 100
operators, of which 20 have substates, and 715 rules. The
underlying Quake II game engine updates the world ten
times a second (the graphics engine updates much more
often than the game engine). On each of these cycles, all

changes to the bot’s sensors are updated and any requested
motor actions are initiated. In this configuration, Soar runs
asynchronously to Quake II and executes its basic decision
cycle anywhere from 30-50 times a second, allowing it to
take multiple reasoning steps for each change in its
sensors. Nominally, Soar runs as fast as possible,
consuming 5-10% of the processing of a 400MHz Pentium
II running Windows NT.

Methodology

Our methodology for evaluating the humanness and skill
level of synthetic characters is an outgrowth of the
traditional Turing test, but with extensions for interactive
agents that attempt to maximize our ability to determine
where its behavior falls short of human behavior. One
deviation from the traditional Turing test is that instead of
having a human interact with the bot, we have the human
view the behavior of the bot from its perspective as it plays
the game. In earlier work on military simulations, we
observed that attempting to evaluate behavior while
participating in the simulation/game was not very
discriminating for two reasons. First, the human is also
performing a task and is unable devote full attention to the
evaluation. Second, the human participant is limited to
seeing only the small part of the bot’s behavior that is
available from the player’s sensors. The human sees none
of the bot’s behavior when it is out of view and can only
guess at what information the bot has available to it. In our
approach, the human evaluator sees what the bot is seeing,
so that all of the bot’s overt behavior is available to the
human.

In practice, the methodology involves the following steps:
1. Select a set of parameters of the bot’s internal structure

that should have impact on the behavior, either in
terms of skill level, humanness, or both. We selected
four parameters, three that had three distinct values
and one that had five. These parameters are described
in the next section.

2. Create a reference bot that we expect will have the
best overall performance. In our case, we had a single
bot that we expected to be best at both skill and
humanness.

3. For each parameter, create agents with different values
of only that parameter while holding all of the other
parameters at their reference value. We took this
approach to avoid the combinatorial explosion in
developing agents for every possible parameter
combination, which would have required 135 agents.
As it was, we developed and tested 11 distinct agents.

4. Play the bots against a gold-standard human expert. In
our case, the human expert had recently played Quake
II completely through twice and had played
extensively in internet multiplayer games. The bots
played for three minutes and we recorded the view of
the game from the agent’s perspective on videotape.

We also kept a record of the number of times the bot
killed the expert or was killed by the expert.

5. Have five humans play against the expert, each for
three minutes. The humans had varying levels of
experience with Quake II:

a. Novice: two subjects had never played this
type of game before, but were experienced
computer users.

b. Medium: one subject had played this type of
game before, but never this game.

c. High: two subjects had played this game
before, but not recently and not to the extent
that our expert had.

We recorded the view of the game from the subjects’
perspective on videotape. We also kept a record of
home many times the subjects’ killed the expert or was
killed by the expert.

6. We then used eight human judges to evaluate the
humanness and skill of the behavior recorded on
videotape. Three judges saw each of the videotapes
(we felt that it would be too tedious to have each
judge view every videotape). The judging was blind
so that the judges did not know whether they were
seeing humans or bots playing the game, although
they knew that there would be some combination of
human and computer players. The judges included
both experts and novices in Quake II.

Parameterizing the Quakebot

Our initial choice of parameters was based on the desire to
have parameters that had a high probability of having a
noticeable impact on skill level and humanness of the
resulting behavior. These were not meant to be exhaustive,
but merely illustrative of the types of parameters that could
be used to modify behavior. The parameters we have
investigated are:
• Decision time [5 levels]. In a standard simulation,

Soar’s primitive decision cycle runs as fast as possible
(AFAP), meaning it attempts to make decisions and
select operators as fast as the computer it is running on
it allows. For the Quakebot, this averages to be about
.025 seconds per decision, or 40 decisions per second.
One option in Soar is to set the timing of the primitive
decision cycle to a fixed time. Two complexities in
changing the decision time are as follows. The first is
that there is latency between the Quake simulator and
the Soar Quakebot because of the network connection
between them. One of our future goals is to eliminate
this by running both programs on the same machine.
The second issue is that the Quake world model is
updated only 10 times a second so that there is a point
at which speeding up Soar will have no impact. That
point is not at 10 times a second because Soar often
will make multiple decisions in response to changes in
the world.

Overall, the expectation was that slowing decision
time would monotonically decrease the ability of the
AI system - especially for tasks requiring high
interaction with the environment. We also wanted to
evaluate if changes in decision time influenced the
perceived humanness of the behavior. We expect that
it would because there is a growing body of work
suggesting that human behavior in these highly
interactive tasks is best modeled with the primitive
decision making function taking 50-100 msec. (If we
were accurately modeling perception and motor
actions, the expected value would be 50 msec.;
however, there is no explicit modeling of the time for
those processes in the current Quakebot so that 100
msec is a better estimate.)

• Aggressiveness [3 levels]. We varied a set of
parameters that determined how likely it is to attack
and what range it attacks from.

• Complexity of tactics [3 levels]. We created three
groupings of tactics to correspond to different skill
levels.

• Level of expertise of specific tactically critical skill [3
levels]. This involved using different levels for a
specific but critical tactical skill that is known to have
impact on performance - in the case of the domain it is
an aiming skill. Here we evaluated three levels. One
that we expected to be worse than human, one similar
to what we expect most humans to use (shoot at the
current location of the enemy), and one that is
superhuman because it uses information (very
accurate depth and velocity perception) and
calculations that are usually unavailable to human
players (shoot at the point where the enemy is
predicted to be when the projectile gets to that range).

Results

There are two sets of results, one in terms of skill and the
other in terms of humanness. The skill results come from
an empirical analysis of the head-to-head competition of
the human and agents against our expert and from
judgments of people watching the play of the bots. The
humanness results come from judgments of people
watching the play of the bots. We will concentrate on
results for three of the four parameters: decision time,
complexity of tactics, and aiming skill. The different levels
of aggressiveness did not lead to any notable results.

One overall note on the results is that although there are
interesting trends in the data, these results are only
preliminary - this is essentially a pilot study. There were
often moderately high standard deviations in the judgments
of the viewers of videotapes, due in part because of the
range of experience in our judges.

Skill Levels
To compute a skill level, we recorded the number of times
the subject or bot scored a kill and the number of times the
expert scored a kill for each trial. We then computed a
success ratio, which was the number of subject/agent kills
divided by the number of expert kills in that trial. For
example, if a subject scored one kill and the expert scored
ten kills that would give a success ratio of 1/10 = .1 and if
there were equal kills it would give a success ratio of 1.

To test the stability of our human expert, we played the
reference agent against the expert four times throughout
the testing. The ratios for these four trials were 1.2, .6 , 1.1,
.9 with an average of 0.93.

We also checked to ensure that the measure of skill
corresponded to the level of experience in our subjects
who played the games. The performance of our five human
players against our expert did improve with their level of
experience:

• Novices (2) = 1/28 = .036
• Medium (1) = 2/8 = .25
• High (2) = 7/19 = .37

This gives us some confidence that significant differences
in the success ratios of the bots corresponded to
differences in skill.

We can also compare the skill scores given by judges to
these levels of experience. These rankings are on a scale of
1 to 10, with 10 being highest skill:

• Novice (2) = 2.5
• Medium (1) = 4.3
• High (2) = 4.8

This suggests that there was consistency across the three
measures of human performance - experience, success, and
judges’ evaluations.

Skill vs. Decision Time
Decision time is the amount of time in seconds that the bot
has to make a decision. As we vary the decision time of the
agents, we expect to see improvement in skill, and this is
exactly the result we get:

• .50 = 0.0
• .25: = 0.23
• .10: = 0.625
• .05: = 0.71
• AFAP: = 0.93

There is a monotonic improvement of skill with decrease
in decision time, with the fastest decision time giving
performance close to the skill level of our expert.
However, this also shows that in order to achieve human-
level expert skill additional improvements are needed in
other skill areas because the decision time for AFAP is
probably superhuman. We need to improve the time

modeling of sensing and motor actions and probably
improve other aspects of skill of the bot if we run the bot at
the appropriate decision time of .1 or .05 seconds/decision.

The second way to evaluate skill is via the skill ratings of
our judges. As before, these rankings are on a scale of 1 to
10, with 10 being highest skill:

• .5 = 1.0
• .25 = 2.3
• .1 = 6.3
• .05 = 5.7
• AFAP = 6.0

These results show two things. First, that the human judges
do not base their decisions strictly on the success ratio and
second, that they perceived that the agents with a decision
time of .1 seconds had the highest skill.

Skill vs. Tactics
As we increase the complexity of the tactics available to
the bot, we expect that its skill will improve. The results:

• Low Tactics = 1.0
• Medium Tactics = 0.875
• Full Tactics = 0.9

The results suggest that there is no impact of the tactics on
skill. This could be because the different levels of skill we
implemented were not really significant for the specific
trials we ran with our expert. Surprisingly, our judges did
notice some difference, although these are not statistically
significant.

• Low Tactics = 3
• Medium Tactics = 4.25
• Full Tactics = 4.25

One possibility is that we need to create more extreme
versions of the agents in terms of tactical knowledge.

Skill vs. Aiming Skill
We predicted that aiming skill would have a significant
impact on the success of the bots and this prediction was
borne out in the results.

• Poor = 0.0
• Good = 0.56
• Best = 0.93

The human judges had similar evaluations.
• Poor = 4.0
• Good = 5.7
• Best = 8.0

Humanness Levels
The humanness results are based on the ratings of our
judges. We asked the judges to rate the humanness of the
behavior they saw on videotape on a scale from 1 to 10
and to make a binary decision as to whether they were
seeing a human or a computer player (they were told that
they would see a mixture of human and computer players).
The binary judgments of the human players were: 16

human votes and 2 computer votes. The binary judgments
of the computer players were: 21 human votes and 27
computer votes. Only one of our judges was perfect in
picking human vs. computers - and this was the judge with
the most experience in the game.

The ratings of the human players as humans were high
with the following averages across our five human players:
7.3, 8.25, 8.0, 7.75, and 6.83. The highest rating for a bot
was 6.7. A more detailed look at the results gives us some
ideas as to where to improve the bot to make it appear
more human.

Humanness vs. Decision Time
Our hypothesis is that using a decision time close to the
predicted decision time of humans should maximize the
humanness of the bot.

• .50 = 4.3
• .25: = 2.6
• .10: = 6.3
• .05: = 5.6
• AFAP: = 5.0

These results confirm our hypothesis with the two highest
rating for the decision times closest to human decision
time. The bot with a decision time of .10 seconds was
unanimously judged to be human on the binary scale by
human judges (this bot was not judged by the judge with
the most experience in Quake). It should be noted that at
the slowest decision times (.50 and .25), the bots’ behavior
degrades noticeably as it is unable to avoid crashing into
walls.

Humanness vs. Tactics
Recall that we saw little impact of tactics on our computed
success ratings and only a small trend in the skill ratings of
our judges. The results for humanness judgments are:

• Low Tactics = 3.25
• Medium Tactics = 4.0
• Full Tactics = 5.0

Although there were high standard deviations for these
results, it is interesting that the trend is that more complete
tactics lead to more human behavior.

Humanness vs. Aiming Skill
In developing the different levels of aiming skill, we
created the best level to be superhuman.

• Poor = 6.7
• Good = 6.7
• Best = 5.0

It would appear that the judges recognized that the best
aiming skill was unlikely to be possible by a human.

Conclusions
The preliminary nature of this study does not let us draw
any hard and fast conclusions about modeling the skill
level or humanness in the Soar Quakebot; however, it does
identify some trends. It also indicates that we can use this
methodology to explore these issues and that there are
areas to explore in more detail.

The most interesting trends in the data concern the role of
decision time and aiming skill in the humanness and skill
of the bots. Variations in decision time show changes in
ratings of humanness, with the best performance coming
with a decision time similar to that hypothesized for
humans. Small variations near that time also show
variations in skill without large decreases in humanness.
An area for future study is to explore more carefully the
impact of small variations of decision time.

Variations in aiming skill show changes in both skill and
humanness. The judgments of humanness suggest that
variations of skill at the lower end can be achieved by
manipulating this parameter.

There are a number of lessons we learned from this
research that we will use in future developments and
experiments.

First, there are artifacts in the bot’s behavior that are
distinctive. It turns much faster than any of the human
players and its aim is much better. Such issues need to be
addressed in the underlying bot implementation.

Second, we need to improve the bot’s overall skill in
playing the game to compensate for changing its aiming
skill. We need to also broaden the range of behaviors we
add and remove when we test variants in the complexity of
its tactics. For example, all of the bots use a map to
navigate the world and know where to find powerups. This
is more knowledge than many commercial bots have, so it
would be appropriate to create bots with fewer tactics and
less knowledge than our lowest bot evaluated in this study.

Third, we need to model the decision times for perception
and action incorporated into our bots.

Fourth, we need to select the most human bot (.1 second
decision time and medium aiming skill) as our reference
bot. Even with the flaws in our bots, the results suggest
that we are in the ballpark for achieving human-like
behavior. The results suggest that we could immediately
improve the humanness of all of the bots by using a more
"human" approach to aiming. It will be interesting to see
the judgments of a bot with decision time of .1 seconds,
full tactics, and good aiming skill.

Finally, this research demonstrated that we could apply the
Turing test more broadly to interactive dynamic
environments with the goal of improving the humanness of
AI systems.

Acknowledgments

The authors are indebted to the many University of
Michigan students who have worked on the Soar/Games
project, most notably Michael van Lent, Steve Houchard,
Joe Hartford, and Kurt Steinkraus.

References

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J.,
Kenny, P.G., and Koss, F.V. (1999) Automated Intelligent
Pilots for Combat Flight Simulation, AI Magazine, 20(1),
27-42.

Laird, J. E. (2000) It Knows What You’re Going to Do:
Adding Anticipation to a Quakebot. AAAI 2000 Spring
Symposium Series: Artificial Intelligence and Interactive
Entertainment, March 2000: AAAI Technical Report SS-
00-02.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987),
Soar: An architecture for general intelligence. Artificial
Intelligence, 33(3), 1-64.

Laird, J. E. and Rosenbloom, P. S. (1990) Integrating
Execution, Planning, and Learning in Soar for External
Environments. In Proceedings of National Conference of
Artificial Intelligence, Boston, MA, 1022-1029.

Laird, J. E. and van Lent, M. (1999) Developing an
Artificial Intelligence Engine. In Proceedings of the Game
Developers Conference, San Jose, CA, 577-588.

