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Abstract 
This paper reports on a preliminary attempt to develop and 
evaluate synthetic characters with multiple skill levels and with 
human-like behavior. Our goal was to determine which aspects of 
behavior have impact on skill level and humanness. We 
developed a bot that plays the computer game Quake against a 
human opponent. That bot can be parameterized along four 
dimensions: decision time, aggressiveness, number of tactics, and 
aiming skill. We then played variations of the bot against a 
human expert. Through empirical and human judgments we then 
evaluated the skill level and humanness of the variations. Our 
results suggest that both decision time and aiming skill are 
critical parameters when attempting to create human-like 
behavior. These two parameters could also be varied to modify 
the skill of the bots, and for some ranges, maintain the same level 
of humanness.  
 
The two primary goals of this research are to create 
synthetic characters with human-like behavior and varying 
levels of skill within the context of highly interactive tasks. 
The secondary goal is to develop and test a methodology 
for evaluating the humanness of synthetic characters in 
those types of tasks. Both primary goals require that we 
explore computational mechanisms for modeling human 
behavior and that we understand which behavioral 
parameters affect the humanness of the behavior and the 
skill of the behavior. 
 
Towards these ends, we have developed a parameterized 
AI system (called a bot) that plays the computer game 
Quake against humans. In developing the bot, we have 
tried to build an opponent that has the same strengths and 
weaknesses as human players. As part of its development, 
we parameterized the bot along four dimensions: decision 
time, aggressiveness, aiming skill, and tactical knowledge. 
This paper describes an evaluation of variations in those 
parameters in terms of different levels of skill and 
humanness. Our approach was to build versions of the bot 
with different parameter values and then play them against 
a "gold-standard" expert human player. Our results suggest 
that this methodology is useful, and that we could produce 
a range of skill levels using a subset of these parameters.  
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The Soar Quakebot 
The Soar Quakebot (Laird, 2000; Laird & van Lent, 1999) 
plays the death match version of Quake II. In a death 
match, players exist in a "level", which contains hallways 
and rooms. The players can move through the level, 
picking up objects, called powerups, and firing weapons. 
The object of the game is to "kill" the other players. Each 
time a player is shot or is near an explosion, its health 
decreases. When a player’s health reaches zero, the player 
dies. A dead player is then "spawned" at one of a set of 
spawning sites within the level. Powerups, which include 
weapons, health, armor, and ammo, are distributed 
throughout the level in static locations. When a powerup is 
picked up, a replacement will automatically regenerate in 
30 seconds. Weapons vary according to their range, 
accuracy, spread of damage, time to reload, type of ammo 
used, and amount of damage they do.  

The Soar Quakebot controls a single player in the game. 
We have attempted to make the perceptual information and 
motor commands available to the bot similar to those that a 
human has while playing the game. For example, a bot can 
see only unobstructed objects in its view cone and it can 
hear only nearby sounds. One issue is that bots cannot 
sense the walls as coherent objects because they consist of 
many polygons that give the appearance of solid walls, 
open doorways, etc. To navigate, the Quakebot explores 
and builds up an internal map based on range data to walls. 
The Quakebot uses this map to know where walls, rooms, 
hallways, and doors are when it is running through a level. 
Once a map is built, it can be saved for later use when the 
Soar Quakebot replays the level. 

The Quakebot uses Soar (Laird et al., 1987) as its 
underlying AI engine. The Soar Quakebot is designed 
based on the principles developed early on for controlling 
robots using Soar (Laird and Rosenbloom 1990) and then 
extended in our research on simulating military pilots in 
large scale distributed simulations (Jones, et al. 1999). All 
the knowledge for playing the game, including 
constructing and using the internal map, is encoded in Soar 
rules. The Soar Quakebot evaluated in this paper has 100 
operators, of which 20 have substates, and 715 rules. The 
underlying Quake II game engine updates the world ten 
times a second (the graphics engine updates much more 
often than the game engine). On each of these cycles, all 



changes to the bot’s sensors are updated and any requested 
motor actions are initiated. In this configuration, Soar runs 
asynchronously to Quake II and executes its basic decision 
cycle anywhere from 30-50 times a second, allowing it to 
take multiple reasoning steps for each change in its 
sensors. Nominally, Soar runs as fast as possible, 
consuming 5-10% of the processing of a 400MHz Pentium 
II running Windows NT. 

 
Methodology 

Our methodology for evaluating the humanness and skill 
level of synthetic characters is an outgrowth of the 
traditional Turing test, but with extensions for interactive 
agents that attempt to maximize our ability to determine 
where its behavior falls short of human behavior. One 
deviation from the traditional Turing test is that instead of 
having a human interact with the bot, we have the human 
view the behavior of the bot from its perspective as it plays 
the game. In earlier work on military simulations, we 
observed that attempting to evaluate behavior while 
participating in the simulation/game was not very 
discriminating for two reasons. First, the human is also 
performing a task and is unable devote full attention to the 
evaluation. Second, the human participant is limited to 
seeing only the small part of the bot’s behavior that is 
available from the player’s sensors. The human sees none 
of the bot’s behavior when it is out of view and can only 
guess at what information the bot has available to it. In our 
approach, the human evaluator sees what the bot is seeing, 
so that all of the bot’s overt behavior is available to the 
human. 
 
In practice, the methodology involves the following steps: 
1. Select a set of parameters of the bot’s internal structure 

that should have impact on the behavior, either in 
terms of skill level, humanness, or both. We selected 
four parameters, three that had three distinct values 
and one that had five. These parameters are described 
in the next section. 

2. Create a reference bot that we expect will have the 
best overall performance. In our case, we had a single 
bot that we expected to be best at both skill and 
humanness. 

3. For each parameter, create agents with different values 
of only that parameter while holding all of the other 
parameters at their reference value. We took this 
approach to avoid the combinatorial explosion in 
developing agents for every possible parameter 
combination, which would have required 135 agents. 
As it was, we developed and tested 11 distinct agents. 

4. Play the bots against a gold-standard human expert. In 
our case, the human expert had recently played Quake 
II completely through twice and had played 
extensively in internet multiplayer games. The bots 
played for three minutes and we recorded the view of 
the game from the agent’s perspective on videotape. 

We also kept a record of the number of times the bot 
killed the expert or was killed by the expert. 

5. Have five humans play against the expert, each for 
three minutes. The humans had varying levels of 
experience with Quake II: 

a. Novice: two subjects had never played this 
type of game before, but were experienced 
computer users. 

b. Medium: one subject had played this type of 
game before, but never this game. 

c. High: two subjects had played this game 
before, but not recently and not to the extent 
that our expert had. 

We recorded the view of the game from the subjects’ 
perspective on videotape. We also kept a record of 
home many times the subjects’ killed the expert or was 
killed by the expert. 

6. We then used eight human judges to evaluate the 
humanness and skill of the behavior recorded on 
videotape. Three judges saw each of the videotapes 
(we felt that it would be too tedious to have each 
judge view every videotape). The judging was blind 
so that the judges did not know whether they were 
seeing humans or bots playing the game, although 
they knew that there would be some combination of 
human and computer players. The judges included 
both experts and novices in Quake II. 

 
Parameterizing the Quakebot 

Our initial choice of parameters was based on the desire to 
have parameters that had a high probability of having a 
noticeable impact on skill level and humanness of the 
resulting behavior. These were not meant to be exhaustive, 
but merely illustrative of the types of parameters that could 
be used to modify behavior. The parameters we have 
investigated are:  
• Decision time [5 levels]. In a standard simulation, 

Soar’s primitive decision cycle runs as fast as possible 
(AFAP), meaning it attempts to make decisions and 
select operators as fast as the computer it is running on 
it allows. For the Quakebot, this averages to be about 
.025 seconds per decision, or 40 decisions per second. 
One option in Soar is to set the timing of the primitive 
decision cycle to a fixed time. Two complexities in 
changing the decision time are as follows. The first is 
that there is latency between the Quake simulator and 
the Soar Quakebot because of the network connection 
between them. One of our future goals is to eliminate 
this by running both programs on the same machine. 
The second issue is that the Quake world model is 
updated only 10 times a second so that there is a point 
at which speeding up Soar will have no impact. That 
point is not at 10 times a second because Soar often 
will make multiple decisions in response to changes in 
the world.  



Overall, the expectation was that slowing decision 
time would monotonically decrease the ability of the 
AI system - especially for tasks requiring high 
interaction with the environment. We also wanted to 
evaluate if changes in decision time influenced the 
perceived humanness of the behavior. We expect that 
it would because there is a growing body of work 
suggesting that human behavior in these highly 
interactive tasks is best modeled with the primitive 
decision making function taking 50-100 msec. (If we 
were accurately modeling perception and motor 
actions, the expected value would be 50 msec.; 
however, there is no explicit modeling of the time for 
those processes in the current Quakebot so that 100 
msec is a better estimate.)  

• Aggressiveness [3 levels]. We varied a set of 
parameters that determined how likely it is to attack 
and what range it attacks from.  

• Complexity of tactics [3 levels]. We created three 
groupings of tactics to correspond to different skill 
levels. 

• Level of expertise of specific tactically critical skill [3 
levels]. This involved using different levels for a 
specific but critical tactical skill that is known to have 
impact on performance - in the case of the domain it is 
an aiming skill. Here we evaluated three levels. One 
that we expected to be worse than human, one similar 
to what we expect most humans to use (shoot at the 
current location of the enemy), and one that is 
superhuman because it uses information (very 
accurate depth and velocity perception) and 
calculations that are usually unavailable to human 
players (shoot at the point where the enemy is 
predicted to be when the projectile gets to that range). 

 
Results 

There are two sets of results, one in terms of skill and the 
other in terms of humanness. The skill results come from 
an empirical analysis of the head-to-head competition of 
the human and agents against our expert and from 
judgments of people watching the play of the bots. The 
humanness results come from judgments of people 
watching the play of the bots. We will concentrate on 
results for three of the four parameters: decision time, 
complexity of tactics, and aiming skill. The different levels 
of aggressiveness did not lead to any notable results. 
 
One overall note on the results is that although there are 
interesting trends in the data, these results are only 
preliminary - this is essentially a pilot study. There were 
often moderately high standard deviations in the judgments 
of the viewers of videotapes, due in part because of the 
range of experience in our judges.  
 

Skill Levels 
To compute a skill level, we recorded the number of times 
the subject or bot scored a kill and the number of times the 
expert scored a kill for each trial. We then computed a 
success ratio, which was the number of subject/agent kills 
divided by the number of expert kills in that trial. For 
example, if a subject scored one kill and the expert scored 
ten kills that would give a success ratio of 1/10 = .1 and if 
there were equal kills it would give a success ratio of 1. 
 
To test the stability of our human expert, we played the 
reference agent against the expert four times throughout 
the testing. The ratios for these four trials were 1.2, .6 , 1.1, 
.9 with an average of 0.93.  
 
We also checked to ensure that the measure of skill 
corresponded to the level of experience in our subjects 
who played the games. The performance of our five human 
players against our expert did improve with their level of 
experience: 

• Novices (2)  = 1/28  = .036 
• Medium (1)  = 2/8 = .25 
• High (2)  = 7/19 = .37 

 
This gives us some confidence that significant differences 
in the success ratios of the bots corresponded to 
differences in skill. 
 
We can also compare the skill scores given by judges to 
these levels of experience. These rankings are on a scale of 
1 to 10, with 10 being highest skill: 

• Novice (2)  = 2.5 
• Medium (1)  = 4.3 
• High (2)  = 4.8 

This suggests that there was consistency across the three 
measures of human performance - experience, success, and 
judges’ evaluations. 
 
Skill vs. Decision Time 
Decision time is the amount of time in seconds that the bot 
has to make a decision. As we vary the decision time of the 
agents, we expect to see improvement in skill, and this is 
exactly the result we get: 

• .50 = 0.0 
• .25:  = 0.23 
• .10:  = 0.625 
• .05:  = 0.71 
• AFAP:  = 0.93 

There is a monotonic improvement of skill with decrease 
in decision time, with the fastest decision time giving 
performance close to the skill level of our expert. 
However, this also shows that in order to achieve human-
level expert skill additional improvements are needed in 
other skill areas because the decision time for AFAP is 
probably superhuman. We need to improve the time 



modeling of sensing and motor actions and probably 
improve other aspects of skill of the bot if we run the bot at 
the appropriate decision time of .1 or .05 seconds/decision. 
 
The second way to evaluate skill is via the skill ratings of 
our judges. As before, these rankings are on a scale of 1 to 
10, with 10 being highest skill: 

• .5 = 1.0 
• .25  = 2.3 
• .1 = 6.3 
• .05  = 5.7 
• AFAP  = 6.0 

These results show two things. First, that the human judges 
do not base their decisions strictly on the success ratio and 
second, that they perceived that the agents with a decision 
time of .1 seconds had the highest skill.  
 
Skill vs. Tactics 
As we increase the complexity of the tactics available to 
the bot, we expect that its skill will improve. The results: 

• Low Tactics = 1.0 
• Medium Tactics = 0.875 
• Full Tactics = 0.9 

The results suggest that there is no impact of the tactics on 
skill. This could be because the different levels of skill we 
implemented were not really significant for the specific 
trials we ran with our expert. Surprisingly, our judges did 
notice some difference, although these are not statistically 
significant. 

• Low Tactics = 3 
• Medium Tactics = 4.25 
• Full Tactics = 4.25 

One possibility is that we need to create more extreme 
versions of the agents in terms of tactical knowledge. 
 
Skill vs. Aiming Skill 
We predicted that aiming skill would have a significant 
impact on the success of the bots and this prediction was 
borne out in the results. 

• Poor  = 0.0 
• Good  = 0.56 
• Best  = 0.93 

The human judges had similar evaluations. 
• Poor  = 4.0 
• Good  = 5.7 
• Best  = 8.0 

 
Humanness Levels 
The humanness results are based on the ratings of our 
judges. We asked the judges to rate the humanness of the 
behavior they saw on videotape on a scale from 1 to 10 
and to make a binary decision as to whether they were 
seeing a human or a computer player (they were told that 
they would see a mixture of human and computer players). 
The binary judgments of the human players were: 16 

human votes and 2 computer votes. The binary judgments 
of the computer players were: 21 human votes and 27 
computer votes. Only one of our judges was perfect in 
picking human vs. computers - and this was the judge with 
the most experience in the game. 
 
The ratings of the human players as humans were high 
with the following averages across our five human players: 
7.3, 8.25, 8.0, 7.75, and 6.83. The highest rating for a bot 
was 6.7. A more detailed look at the results gives us some 
ideas as to where to improve the bot to make it appear 
more human.  
 
Humanness vs. Decision Time 
Our hypothesis is that using a decision time close to the 
predicted decision time of humans should maximize the 
humanness of the bot. 

• .50 = 4.3 
• .25:  = 2.6 
• .10:  = 6.3 
• .05:  = 5.6 
• AFAP:  = 5.0 

These results confirm our hypothesis with the two highest 
rating for the decision times closest to human decision 
time. The bot with a decision time of .10 seconds was 
unanimously judged to be human on the binary scale by 
human judges (this bot was not judged by the judge with 
the most experience in Quake). It should be noted that at 
the slowest decision times (.50 and .25), the bots’ behavior 
degrades noticeably as it is unable to avoid crashing into 
walls.  
 
Humanness vs. Tactics 
Recall that we saw little impact of tactics on our computed 
success ratings and only a small trend in the skill ratings of 
our judges. The results for humanness judgments are: 

• Low Tactics = 3.25 
• Medium Tactics = 4.0 
• Full Tactics = 5.0 

Although there were high standard deviations for these 
results, it is interesting that the trend is that more complete 
tactics lead to more human behavior. 
 
Humanness vs. Aiming Skill 
In developing the different levels of aiming skill, we 
created the best level to be superhuman.  

• Poor  = 6.7 
• Good  = 6.7 
• Best  = 5.0 

It would appear that the judges recognized that the best 
aiming skill was unlikely to be possible by a human.  
 



Conclusions 
The preliminary nature of this study does not let us draw 
any hard and fast conclusions about modeling the skill 
level or humanness in the Soar Quakebot; however, it does 
identify some trends. It also indicates that we can use this 
methodology to explore these issues and that there are 
areas to explore in more detail.  
 
The most interesting trends in the data concern the role of 
decision time and aiming skill in the humanness and skill 
of the bots. Variations in decision time show changes in 
ratings of humanness, with the best performance coming 
with a decision time similar to that hypothesized for 
humans. Small variations near that time also show 
variations in skill without large decreases in humanness. 
An area for future study is to explore more carefully the 
impact of small variations of decision time. 
 
Variations in aiming skill show changes in both skill and 
humanness. The judgments of humanness suggest that 
variations of skill at the lower end can be achieved by 
manipulating this parameter. 
 
There are a number of lessons we learned from this 
research that we will use in future developments and 
experiments. 
 
First, there are artifacts in the bot’s behavior that are 
distinctive. It turns much faster than any of the human 
players and its aim is much better. Such issues need to be 
addressed in the underlying bot implementation. 
 
Second, we need to improve the bot’s overall skill in 
playing the game to compensate for changing its aiming 
skill. We need to also broaden the range of behaviors we 
add and remove when we test variants in the complexity of 
its tactics. For example, all of the bots use a map to 
navigate the world and know where to find powerups. This 
is more knowledge than many commercial bots have, so it 
would be appropriate to create bots with fewer tactics and 
less knowledge than our lowest bot evaluated in this study. 
 
Third, we need to model the decision times for perception 
and action incorporated into our bots.  
 
Fourth, we need to select the most human bot (.1 second 
decision time and medium aiming skill) as our reference 
bot. Even with the flaws in our bots, the results suggest 
that we are in the ballpark for achieving human-like 
behavior. The results suggest that we could immediately 
improve the humanness of all of the bots by using a more 
"human" approach to aiming. It will be interesting to see 
the judgments of a bot with decision time of .1 seconds, 
full tactics, and good aiming skill. 
 

Finally, this research demonstrated that we could apply the 
Turing test more broadly to interactive dynamic 
environments with the goal of improving the humanness of 
AI systems. 
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