
Using Nodes to Develop Strategies For Combat with Multiple Enemies

Lars Lidén

Valve Software
520 Kirkland Way #201

Kirkland, WA 98033
lars@valvesoftware.com

Abstract

Nodes (or waypoints) are commonly used in computer
games for the navigation of computer controlled characters
(also known as non-player characters or NPCs). The
following paper demonstrates how these nodes can also be
used to develop combat strategies for NPCs that engage in
combat with multiple enemies. By storing data about node
relationships in a bit string class, tactical information about
locations in the environment can efficiently calculated and
exploited by NPCs.

Introduction
 As behavior of computer controlled characters (or
NPCs) in computer games becomes more sophisticated, the
need for efficient algorithms for determining behavior
becomes critical. Determining intelligent combat strategies
for an NPC with multiple enemies requires that the NPC be
aware of its environment and the strategic value of various
locations within the environment for any given
configuration of its enemies.
 In many 3D computer games, it is common practice to
place nodes (or waypoints) in the world that NPCs use to
navigate (Lidén 2000). Nodes are usually placed in key
locations in an environment by a level designer who is
familiar with the behavior of the NPCs and their ability to
navigate. Connections between nodes are calculated
automatically in a pre-processing step or are specified by a
level designer. NPCs then use algorithms such as A* to
find paths through the node graph.
 The following paper demonstrates that the same set of
nodes that is used for navigation can also be used to
efficiently calculate strategic combat information. In
addition to calculating the connectivity between nodes one
can pre-calculate the visibility between nodes. During run-
time visibility information can provide a rough
approximation of the danger of particular areas in a given
map and locations from which an NPC can mount an
intelligent attack.

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Using Visibility For Evaluating Spatial
Locations

 For an NPC with single enemy, danger nodes are
calculated by determining the enemy’s nearest node. All
nodes that are visible from the enemy’s nearest node are
considered to be dangerous. (See Figure 1).

 As the enemy will not necessarily be on top of the
danger node, only nearby, the labeling of dangerous areas
will not be perfect. It serves as an initial gross
approximation for the NPC who can fine tune its behavior
as it approaches a node.
 The key value in evaluating the dangerousness of
different regions in this manner is that it is efficient. As
visibility between nodes is pre-calculated the operation is
cheap. Although one could use run-time line-of-sight
checks with world geometry to determine the same
information, when multiple NPCs with multiple enemies
are involved geometry tests become too expensive.

Safe Pathing
 Details about the safety of locations in the environment
can also be used to find safe paths for NPCs to traverse the
environment. Most path finding algorithms use a cost
function associated with the distance between nodes along
the path. By adding a penalty to transitions whose

destination is an unsafe node, one can bias the path finding
algorithm to find safe paths for an NPC. (See Figure 2).

BitStrings
 When an NPC has to contend with multiple enemies it
becomes critical that an efficient data structure is used to
store node visibility data. An effective and economical
method for calculating safe locations for multiple enemies
is to create a bitstring class that consists of a string of bits
of arbitrary length along with operators for Boolean
operations such as <and>, <or> and <not>.
 For a given network of nodes, visibility is represented by
a bitstring whose length is equal to the total number of
nodes in the network. Each node has one bitstring whose
values represent the visibility of all other nodes in the
network. Calculating safe locations for a NPC with
multiple enemies then consists of <and>ing the visibility
bitstrings for the each of enemy’s nearest nodes. The
resulting bitstring is a map of the safe locations for the
NPC from all its enemies (See Figure 3).

Node Based Combat Strategies
 An NPC lives on a network Nn consisting of n nodes.
Network visibility is represented by a set of pre-calculated
bitstrings, Λn. Network connectivity is represented by a set
of pre-calculated bitstrings, ψn.
 The NPC also has a set of k enemies Ek. If β(Ei, t,) is a
function that returns the nearest node for enemy i at time t
than the visibility of an enemy, i at time t is given by the
bitstring:

1.

 For notational simplification, the time component will
not be included in equations as it is understood that
formulas apply to a specific time.

Fleeing and Fighting
 NPCs can use information about which nodes are
dangerous to find locations to flee (safe nodes) or locations
from which they have a line of sight to shoot at an enemy
(danger nodes).
 The set of danger nodes for an NPC is the bitstring:

2. Υ
kj

j
jV

=

=

=
0

θ

The set of all safe nodes its inverse, θ

Flanking
 One interesting combat behavior is that of flanking.
Flanking consists of finding a location behind a particular
enemy, Ea from which it can be attacked. Additionally the
flanking position should not be visible to any of the other
NPC’s enemies. Otherwise while the NPC is attacking Ea
from its flanking position it becomes a sitting duck to its
other enemies.
 The initial candidates for flank nodes is the set of visible
nodes from the selected enemy’s nearest node, or:

3.)ß(E a
Λ=aF

A new bitstring, F’a is created by eliminating those nodes
from Fa, that Ea is facing. This is done using a simple dot
product operation between Ea’s facing direction and the
vector formed between the each node and Ea.
 Next, nodes that are potentially visible to all other
enemies, D, need to be eliminated from the set of possible
flank positions. D is given by:

4. ajVD
kj

j
j ≠=

=

=

,
0

Υ

) t,ß(E i
Λ=itV

Its inverse, D , is the set of all nodes that are safe from all
other enemies.
 The set of legal flanking nodes, F’’a is given by the
intersection of the set of potential flanking nodes and the
set of nodes that are safe from all other enemies:

5. Ι DFF aa ''' =

 If there is more than one legal flanking node in V’’a, the
best flank node still needs to be determined. This can be
accomplished in several ways. The simplest method is to
pick the closest flanking node. Alternatively, one can
choose the flanking node that can be reached using the
safest path. (See Figure 4.)

Flanking Multiple Enemies

 A similar set of computations can be used to find a
flanking position for multiple enemies. In this case the
initial set of potential flanking nodes is given by:

6. ξξ ∈Λ=
=

=
j

kj

j

EF ,
0

)ß(EJΥ

Whereξ is the set of enemies being flanked. F’ξ is created
by eliminating those nodes from Fξ, that any ξ∈jE is
facing. The set of danger nodes is then given by:

7. ξξ ∉=
=

=
j

kj

j
j EVD ,

0
Υ

 As before, the set of legal flanking nodes, F’’a for ξ is
given by the intersection of the set of potential flanking
nodes and the set of nodes that are safe from all other
enemies:

8. Ι ξξξ DFF ''' =

Sniping
 As previously discussed, establishing a line-of-sight for a
NPC to shoot an enemy can be accomplished by finding the
set of nodes that are visible to that enemy. However, a
more sophisticated NPC would find a position from which
to shoot that is both not in the line of sight of other enemies
and near a safe place to run to when it needs to reload.

Such sniping, is another behavior that can be quickly and
efficiently generated from node visibility information.
 As before, the potential set of legal sniping nodes starts
with the set of nodes that are visible to the selected enemy,
Ea:

9.)ß(E a
Λ=aS

Nodes that are visible to other enemies (equation 4), are
eliminated from the set, resulting in a subset of potential
sniping nodes, S’’a, that are safe from other enemies.

10. Ι DVS aa ''' =

 To find a sniping location with a safe retreat, potential
sniping nodes that do not have safe neighbors need to be
eliminated. The set of all dangerous nodes is given by:

11. Υ
kj

j
jVH

=

=

=
0

It’s inverse, H is the set of all safe nodes.
 Network connectivity is represented by a set of pre-
calculated bitstrings, ψn Therefore, nodes in S’’a should be
eliminated if:

12. 0=Ι Hjψ

 The remaining set of nodes represents those that have a
line of sight to the enemy, are not in the line of sight of any
other enemies and have a nearby safe place where to retreat
for reloading or if under attack. (See Figure 5.)

 Conclusion
 In many 3D computer games nodes are used to help
NPCs navigate the environment. This paper discussed a
few uses of information about node visibility and how it
can applied to combat strategies of NPCs. Particularly it
was shown how nodes can be used to find places to flee,
places to attack and how to derive more sophisticated
behaviors such as flanking and sniping from node visibility.
 There are several reasons that one might want to use
node information in this manner. First calculating
strategies using node visibility information is efficient even
when large numbers of NPCs are involved and the
representation of node visibility is compact. Secondly as
nodes are already being used for navigation there is no
need to place additional information into the world for
strategic planning.

References
Lidén, L. 2000. The Integration of Autonomous and
Scripted Behavior through Task Management. In Artificial
Intelligence and Interactive Entertainment: Papers from
the 2000 AAAI Spring Symposium, Technical Report SS-
00-02, 51-55.

